
CS 157: Assignment 3

Douglas R. Lanman
13 March 2006

In this write-up, we extend quicksort to the task of fuzzy sorting of intervals. In many situations
the precise value of a quantity is uncertain (e.g., any physical measurement is subject to noise). For
such situations we may represent a measurement i as a closed interval [ai, bi], where ai ≤ bi. A fuzzy-
sort is defined as a permutation 〈i1, i2, . . . , in〉 of the intervals such that there exist cj ∈ [aij , bij ]
satisfying c1 ≤ c2 ≤ . . . ≤ cn.

This document summarizes the design of a fuzzy sorting algorithm which operates in-place on
two arrays containing the interval endpoints. The proposed algorithm has the general structure of
randomized quicksort. As a result, its expected running time is Θ(n lg n) for disjoint intervals. The
presence of overlapping intervals is detected and reduces the expected running time. In fact, the
proposed algorithm has an expected running time Θ(n) when all intervals overlap at some point.

This document is organized in four sections. In Section 1 we introduce the basic strategy for
fuzzy-sorting and a linear-time algorithm to detect the intersection of a set of intervals. In Section
2 we modify randomized quicksort to allow fuzzy sorting. In Section 3 we present a proof of
correctness. Finally, in Section 4 we analyze the expected running time of the proposed algorithm.

1 Finding an Overlapping Interval in Linear Time

High-level Description: To begin our analysis, we review the basic operation of Quicksort, as
presented in [1]. First, note that quicksort utilizes the divide-and-conquer paradigm. It begins by
partitioning the input array into two subarrays based on a randomly-selected pivot value. These
subarrays are then sorted through recursive calls. Since quicksort operates in-place, a sorted array
will be produced after the recursive evaluations are completed.

Notice that fuzzy sorting can be trivially implemented by quicksorting the left endpoints (i.e.,
the ai’s). If we used a randomly-selected left endpoint for the pivot, then this algorithm would
achieve the desired worst-case expected running time of Θ(n lg n). We can do better than this,
however, by realizing that overlapping intervals do not require sorting. That is, for two overlapping
intervals i and j, [ai, bi] ∩ [aj , bj ] 6= ∅. In such situations, we can always choose {ci, cj} (within the
intersection of these intervals) such that ci ≤ cj or cj ≤ ci. In general, if n intervals overlap, then
any of the n! possible permutations would be a valid fuzzy-sort of the intervals.

Since overlapping intervals do not require sorting, we can improve the expected running time
by modifying quicksort to identify overlaps. To this end, we introduce Find-Intersection.

Find-Intersection(A,B, p, s, a, b)
1 i ← Random(p, s)
2 exchange A[i] ↔ A[s]
3 exchange B[i] ↔ B[s]
4 a ← A[s]
5 b ← B[s]
6 for i ← p to s− 1
7 do if A[i] ≤ b and B[i] ≥ a
8 then if A[i] > a
9 then a ← A[i]

10 if B[i] < b
11 then b ← B[i]

1



Assignment 3 CS 157 Douglas R. Lanman

Notice that A and B are arrays containing the interval endpoints ai and bi, respectively. A non-
empty intersection of a subset of intervals from p to s will be determined by Find-Intersection.
The right and left endpoints of this intersection are stored in a and b, respectively.

Proof of Correctness: On lines 1 through 3 of Find-Intersection, we select a random pivot
interval as the initial region of overlap [a, b]. If the intervals {[ai, bi]} are disjoint, then the estimated
region of overlap will simply be this randomly-selected interval. On lines 4 through 11, we loop
through every interval listed in arrays A and B (except the endpoint which is the initial interval).
At each iteration, we determine if the current interval overlaps the running estimate of the region
of overlap. If it does, we update the region of overlap as [a, b] = [ai, bi] ∩ [a, b].

If there exists a value c∗ ∈ [ai, bi], ∀i, then the intervals overlap at some point. In this situa-
tion, the estimated region of overlap [a, b] produced by Find-Intersection will contain c∗. As a
result, Find-Intersection will always find a valid region of overlap containing c∗ if the intervals
completely overlap.

Analysis of Running Time: Find-Intersection has a worst-case running time Θ(n). Lines 1
through 5 and lines 7 through 11 involve Θ(1) operations. Line 6 is an iteration over s − p array
elements. Since we may evaluate the intersection for p = 1 and s = length(A), then the worst-case
running time is Θ(n) – linearly proportional to the size of the input.

2 In-Place Fuzzy Sorting using Randomized Quicksort

We can extend the pseudocode Quicksort presented in [1] to allow fuzzy sorting using Find-
Intersection. Following the strategy introduced in Section 1, we first partition the input array
into “left”, “middle”, and ”right” subarrays. The “middle” subarray elements overlap the interval
[a, b] found by Find-Intersection. As a result, they can appear in any order in the output. As in
quicksort, we recursively call Fuzzy-Sort on the “left” and “right” subarrays to produce a fuzzy
sorted array in-place. The following pseudocode implements these basic operations.

Fuzzy-Sort(A,B, p, s)
1 if p < s
2 then a ← b ← 0
3 Find-Intersection(A,B, p, s, a, b)
4 r ← Partition-Right(A,B, a, p, s)
5 q ← Partition-Left-Middle(A, B, b, p, r)
6 Fuzzy-Sort(A,B, p, q − 1)
7 Fuzzy-Sort(A,B, r + 1, s)

As before, A and B are arrays containing the interval endpoints ai and bi, respectively. To
fuzzy-sort an entire array, one can run Fuzzy-Sort(A,B, 1, length[A]). As shown in Figure 1(d),
the index of the first and last intervals in the “middle” region are given by q and r, respectively.
The first and last elements in a subarray are indexed by p and s, respectively.

At this point, we need to determine how to partition the input arrays into “left”, “middle”, and
“right” subarrays in-place. Recall that Quicksort partitions an input array into one subarray with
values less than or equal to the pivot and another subarray with values greater than the pivot. We
can exploit this property by first partitioning the array using a pivot value equal to the left endpoint
a found by Find-Intersection, such that ai ≤ a. Afterward, we can partition the subarray from
p to r using a pivot value equal to the right endpoint b found by Find-Intersection, such that

2



Assignment 3 CS 157 Douglas R. Lanman

p s

A

B

(a) initial ordering

p s

A

B

r

ai a ai > a

(b) after Partition-Right

p s

A

B

r

bi < b ai > a

q

bi b

(c) after Partition-Left-Middle

p s

A

B

r

“left” “right”

q

“middle”

(d) resulting partitions

Figure 1: The three regions maintained within Fuzzy-Sort. Subfigures (a) through (d) show the
in-place creation of the “left”, “middle”, and “right” regions for subarrays A[p .. s] and B[p .. s].

bi < b. These operations are preformed on lines 4 and 5 of Fuzzy-Sort using the following
subroutines. In addition, their effect on subarrays A[p .. s] and B[p .. s] are shown in Figure 1.

Partition-Right(A,B, a, p, s)
1 i ← p− 1
2 for j ← p to s− 1
3 do if A[j] ≤ a
4 then i ← i + 1
5 exchange A[i] ↔ A[j]
6 exchange B[i] ↔ B[j]
7 exchange A[i + 1] ↔ A[s]
8 exchange B[i + 1] ↔ B[s]
9 return i + 1

Partition-Left-Middle(A,B, b, p, r)
1 i ← p− 1
2 for j ← p to r − 1
3 do if B[j] < b
4 then i ← i + 1
5 exchange A[i] ↔ A[j]
6 exchange B[i] ↔ B[j]
7 exchange A[i + 1] ↔ A[r]
8 exchange B[i + 1] ↔ B[r]
9 return i + 1

3



Assignment 3 CS 157 Douglas R. Lanman

Figure 2: Comparison of Quicksort and Fuzzy-Sort results for the fuzzy interval sorting task.
The top figure shows 15 randomly-selected intervals [ai, bi] with {ai, bi} ∈ Z+. The middle figure
shows the fuzzy-sort produced by quicksorting the left endpoints (i.e., the ai’s). The bottom figure
shows a valid fuzzy-sort produced by Fuzzy-Sort. Notice that overlapping intervals can appear
in an arbitrary order in the Fuzzy-Sort output.

4



Assignment 3 CS 157 Douglas R. Lanman

3 Proof of Correctness

The proposed Fuzzy-Sort algorithm is similar to the randomized quicksort presented in [1]. In
fact, Partition-Right and Partition-Left-Middle are nearly identical to the Partition pro-
cedure provided on page 146 of [1]. The primary difference, however, is the value of the pivot used
to sort the intervals.

Rather than using the value of the left endpoint of the last interval, Partition-Right uses a
pivot equal to a, the left endpoint of the region of overlap found by Find-Intersection. If we
apply Partition-Right to the subarrays A[p .. s] and B[p .. s], then we produce the result shown
in Figure 1(b). That is, we partition the subarray into two regions: the first with ai ≤ a and the
second with ai > a. As a result, any interval in the “right” region can be placed in the output
arrays after all intervals in the “left” or “middle” regions.

After we have completed the first partition, we still need to separate the “middle” intervals
(which overlap) from the intervals which are to the left of the region of intersection. This is done
by calling Partition-Left-Middle on the subarrays A[p .. r] and B[p .. r]. Afterwards, we will
have an in-place partitioning of the input arrays into “left”, “middle”, and “right” regions. This is
shown schematically in Figure 1(d).

To complete our proof, we can recall the fact proved in Section 1: overlapping intervals in the
“middle” region can appear in any permutation in the output array (so long as they appear after
those in the “left” region and before those in the “right”). In conclusion, the recursive calls to
Fuzzy-Sort on lines 6 and 7 will ensure that the final array is correctly fuzzy sorted in-place.

4 Analysis of Running Time

Proof of Θ(n lg n) Running Time: Since Fuzzy-Sort is nearly identical to randomized quick-
sort, we expect it to have a worst-case running time Θ(n lg n) for a set of input intervals which
do not overlap at any point. First, notice that lines 1 through 3 of Find-Intersection select a
random interval as the initial pivot interval – similar to the randomly-selected pivot used in [1].
As discussed in Section 1, if the intervals are disjoint, then [a, b] will simply be this initial interval.

Since for this example there are no overlaps, the “middle” region created by lines 4 and 5 of
Fuzzy-Sort will only contain the initially-selected interval. In general, line 3 is Θ(n) (as shown
in Section 1). Fortunately, since the pivot interval [a, b] is randomly-selected, the expected sizes of
the “left” and “right” subarrays are both bn

2 c – as proven on page 150 of [1]. In conclusion, the
reccurrence for the running time is

T (n) ≤ 2T (n/2) + Θ(n)

which is identical to that of randomized quicksort. As a result, we find that the worst-case expected
running time of Fuzzy-Sort is Θ(n lg n). For example, the worst-case will occur when the input
intervals are disjoint. (QED)

Proof of Best-case Θ(n) Running Time: As proven in Section 1, Find-Intersection will
always return a non-empty region of overlap [a, b] containing c∗ if the intervals all overlap at c∗.
For this situation, every interval will be within the “middle” region shown in Figure 1(d). Since
the “left” and “right” subarrays will be empty, lines 6 and 7 of Fuzzy-Sort are Θ(1). As a result,
there is no recursion and the running time of Fuzzy-Sort is determined by the Θ(n) running time
required to find the region of overlap. As a result, if the input intervals all overlap at a point, then
the expected worst-case running time is Θ(n). (QED)

5



Assignment 3 CS 157 Douglas R. Lanman

5 Conclusion

This write-up has presented a modification of Quicksort, as presented in [1], to allow fuzzy sorting
of intervals. Utilizing an architecture similar to randomized quicksort, the proposed algorithm has
an expected worst-case running time of Θ(n lg n). When the intervals all overlap at a point, however,
the expected worst-case running time is only Θ(n). In conlcusion, we find that for the special case
of fuzzy intervals, comparison-based sorting can be accomplished in less than Θ(n lg n) by expoiting
the property that overlapping intervals can appear in any permutation in the output.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill, 2001.

6


