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1 Regression

Problem 1

Show that the prediction errors y − f(x; ŵ) are necessarily uncorrelated with any linear function
of the training inputs. That is, show that for any a ∈ Rd+1

σ̂(e,aTx) = 0,

where ei = yi − ŵTxi is the prediction error for the ith training example.

First, recall that the least squares estimate for the linear regression parameters is given by

ŵ = argmin
w

n∑

i=1

(yi − w0 −
d∑

j=1

wjx
(i)
j )2 = argmin

w

n∑

i=1

(yi − ŵTxi)2 = argmin
w

n∑

i=1

(ei)2, (1)

where we have augmented the inputs x ∈ Rd by adding 1 as the “zeroth” dimension such that
x0 = 1. Recall that the minimum (or maximum) of the argument of Equation 1 will be achieved
where ∂/∂wi equals zero for every regression parameter wi. Differentiating with respect to w0 and
equating with zero gives

∂

∂w0

n∑

i=1

(yi − w0 −
d∑

j=1

wjx
(i)
j )2 =

n∑

i=1

2(yi − w0 −
d∑

j=1

wjx
(i)
j ) · (−1) = 0

⇒ 1
n

n∑

i=1

(yi − w0 −
d∑

j=1

wjx
(i)
j ) =

1
n

n∑

i=1

ei = ē = 0. (2)

In other words, a necessary condition for ω̂ is that the prediction errors have zero mean. Similarly,
differentiating with respect to any wi (for i ∈ {0, . . . , n}) and equating with zero gives

∂

∂wi

n∑

i=1

(yi − w0 −
d∑

j=1

wjx
(i)
j )2 =

n∑

i=1

2(yi − w0 −
d∑

j=1

wjx
(i)
j ) · (−wjx

(i)
j ) = 0

⇒
n∑

i=1

(yi − w0 −
d∑

j=1

wjx
(i)
j )x(i) =

n∑

i=1

eixi = 0. (3)

As in class, this result implies that the prediction errors are uncorrelated with the training data.
We now turn our attention to proving the claim that the prediction errors are necessarily

uncorrelated with any linear function of the training inputs. Recall that the correlation is written

σ̂(e,aTx) =
n∑

i=1

(ei − ē)(aTxi − aTxi) =
n∑

i=1

ei(aTxi − aTxi), (4)
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where we have applied Equation 2 to conclude ē = 0. Now let us examine the term aTx.

aTx =
1
n

n∑

i=1

aTxi = aT

(
1
n

n∑

i=1

xi

)
= aT x̄

Note that we are allowed to bring aT out of the summation by linearity. Also note that aT x̄ is a
scalar quantity and, as a result, we can write Equation 4 as

σ̂(e,aTx) =

(
aT

n∑

i=1

eixi

)
−

(
aT x̄

n∑

i=1

ei

)
= 0,

where, by Equations 2 and 3, we know that both summations are equal to zero. As a result, we
have proven desired result.

σ̂(e,aTx) = 0

(QED)
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Problem 2

Suppose that the data in a regression problem are scaled by multiplying the jth dimension of the
input by a non-zero number cj . Let x̃ , [1, c1x1, . . . , cdxd]T denote a single scaled data point and
let X̃ represent the corresponding design matrix. Similarly, let ŵ be the maximum likelihood (ML)
estimate of the regression parameters from the unscaled X, and let ˆ̃w be the solution obtained
from the scaled X̃. Show that scaling does not change optimality, in the sense that ŵTx = ˆ̃wT x̃.

First, note that scaling can be represented as a linear operator C composed of the scaling factors
along its main diagonal.

C =




1
c1

. . .
cd




Using the scaling operator C, we can express the scaled inputs x̃ and design matrix X̃ as functions
of x and X, respectively.

x̃ = Cx X̃ = XC (5)

As was demonstrated in class, under the Gaussian noise model, the ML estimate of the regression
parameters is given by

ŵ = (XTX)−1XTy.

Using the expressions in Equation 5, we find

ˆ̃w = (X̃T X̃)−1X̃Ty =
(
(XC)TXC

)−1
(XC)Ty

=
(
CTXTXC

)−1
CTXTy.

At this point, we can apply the following matrix identity: if the individual inverses A−1 and B−1

exist, then (AB)−1 = B−1A−1. Since C is a real, symmetric square matrix, C−1 must exist.
Similarly, XTX is a real, symmetric square matrix so (XTXC)−1 must also exist. As a result, we
can apply the matrix identity to the previous expression.

ˆ̃w =
(
(CT )(XTXC)

)−1
CTXTy

= (XTXC)−1(CT )−1CTXTy

= C−1(XTX)−1XTy

= C−1ŵ (6)

To prove that the scaled solution is optimal, we apply Equations 5 and 6 as follows.

ˆ̃wT x̃ = (C−1ŵ)TCx = ŵT (C−1)TCx

Recall from [4] that (A−1)T = (AT )−1. As a result, (C−1)TC = (CT )−1C. Since C is a real,
symmetric matrix, C = CT and, as a result, (C−1)TC = I. In conclusion we have proven the
desired result.

ŵTx = ˆ̃wT x̃

(QED)
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Problem 3

Derive the maximum likelihood (ML) estimate of σ2 under the Gaussian noise model.

Recall that the likelihood P of the noise variance σ2, given the observations X = [x1, . . . ,xN ]T

and Y = [y1, . . . , yN ]T , is defined to be

P(Y;w, σ) , p(Y|X,w, σ).

Also recall that, under the Gaussian noise model, the label y is a random variable

y = f(x;w) + ν, ν ∼ N (ν, 0, σ),

with the following distribution

p(y|x,w, σ) = N (y; f(x;w), σ) =
1

σ
√

2π
exp

(
−(y − f(x;w))2

2σ2

)
.

Assuming that the observations are independent and identically distributed (i.i.d.), then the like-
lihood can be expressed as the following product.

P(Y;w, σ) =
N∏

i=1

p(yi|xi,w, σ) =
N∏

i=1

1
σ
√

2π
exp

(
−(yi − f(xi;w))2

2σ2

)
,

with the corresponding ML estimator for σ2 given by

σ̂2
ML = argmax

σ2

N∏

i=1

1
σ
√

2π
exp

(
−(yi − f(xi;w))2

2σ2

)
.

As was done in class, we consider the log-likelihood ` which converts this product into a sum-
mation as follows.

`(Y;w, σ) , logP(Y;w, σ) = − 1
2σ2

N∑

i=1

(yi − f(xi;w))2 −N log(σ
√

2π) (7)

Since the logarithm is a monotonically-increasing function, the ML estimator becomes

σ̂2
ML = argmax

σ2

{
− 1

2σ2

N∑

i=1

(yi − f(xi;w))2 −N log(σ
√

2π)

}
.

The maximum (or minimum) of this function will necessarily be obtained where the derivative with
respect to σ2 equals zero.

∂

∂σ2

{
− 1

2σ2

N∑

i=1

(yi − f(xi;w))2 −N log(σ
√

2π)

}
= 0

⇒ 1
2σ4

N∑

i=1

(yi − f(xi;w))2 − N

2σ2
= 0
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In conclusion, the ML estimate of σ2 is given by the following expression.

σ̂2
ML =

1
N

N∑

i=1

(yi − f(xi;w))2 (8)

Note that this expression maximizes the likelihood of the observations, assuming w is known. If
this is not the case, then the ML estimate ŵML should be substituted for w in Equation 8. As
was shown in class, the ML estimate ŵML is independent of σ2 and, as a result, can be estimated
independently. In other words, if the ML estimates of both w and σ2 are required, then the following
expressions should be used.

ŵML = argmin
w

N∑

i=1

(yi − f(xi;w))2

σ̂2
ML =

1
N

N∑

i=1

(yi − f(xi; ŵML))2

5



CS 195-5: Machine Learning Problem Set 1 Douglas Lanman

Problem 4

Part 1: Consider the noise model y = f(x;w) + ν in which ν is drawn from the following distrib-
ution.

p(ν) = C exp(−ν4), for C =
(∫ ∞

−∞
exp(−x4) dx

)−1

Derive the conditions on the maximum likelihood estimate ŵML. What is the corresponding loss
function? Compare this loss function with squared loss on the interval [−3, 3]. How do you expect
these differences to affect regression?

As in Problem 3, let’s begin by defining the distribution of the label y, given the input x.

p(y|x,w) = C exp
(−(y − f(x;w))4

)

Once again, we assume that the observations are i.i.d. such that the likelihood P is given by

P(Y;w) =
N∏

i=1

p(yi|xi,w) =
N∏

i=1

C exp
(−(yi − f(xi;w))4

)
.

The log-likelihood ` is then given by

`(Y;w) = logP(Y;w) = NC −
N∑

i=1

(yi − f(xi;w))4,

with the corresponding ML estimate for w given by

ŵML = argmax
w

`(Y;w) = argmin
w

N∑

i=1

(yi − f(xi;w))4 = argmin
w

N∑

i=1

L′(yi, f(xi;w))

where L′ is the quadrupled loss function defined as follows.

L′(y, ŷ) = (y − ŷ)4

The squared loss L(y, ŷ) = (y − ŷ)2 and quadrupled loss were plotted (as a function of y − ŷ)
in Figure 1(a) using the Matlab script prob4.m. From this plot it is apparent that L′ creates a
greater penalty for outliers than L. That is, as the prediction error |y− ŷ| increases, the regression
with quadrupled loss will bias towards outliers more than with squared loss.

Part 2: Now consider the following data set X = [−1, 0, 1]T and Y = [−1, 1, 1]T . Find the
numerical solution for ŵML using both linear least squares (i.e., squared loss) and quadrupled loss
and report the empirical losses. Plot the corresponding functions and explain how what is seen
results from the differences in loss functions.

Using prob4.m, the optimal values of (w0, w1) were determined using the provided testWs.m func-
tion for both the squared and quadrupled losses. The results are tabulated below.

Loss Function ŵ0 ŵ1 Empirical Loss
Squared Loss (LSQ): L(y, ŷ) ≈0.33 1.00 ≈0.222
Quadrupled Loss: L′(y, ŷ) 0.44 1.00 ≈0.234
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(b) Comparison of ML-estimated models

w0

w
1

 

 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
S

qu
ar

ed
 L

os
s

0

2

4

6

8

10

(c) Squared loss surface
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(d) Quadrupled loss surface

Figure 1: ML estimation using exhaustive search under varying loss functions.

Note that the empirical losses LN or L′N are given by the average sum of squares as follows.

LN (w) = L′N (w) =
1
N

N∑

i=1

(yi − f(xi;w))2 (9)

Using the values in the table, the corresponding regression models were plotted in Figure 1(b),
with the associated loss surfaces as shown in Figures 1(c) and 1(d). Note that the two noise models
resulted in lines with identical slopes (i.e., equal values of w1), however the y-intercepts (given
by w0) differed. This is consistent with our previous observation that the quadrupled loss model
biases towards outliers. For this example, the estimated line moves towards the second data point
at (x = 0, y = 1) since this point can be viewed as an outlier.
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Problem 5

Apply linear and quadratic polynomial regression to the data in meteodata.mat using linear least
squares. Use 10-fold cross-validation to select the best model and plot the results. Report the
empirical loss and log-likelihood. Based on the plot, comment on the Gaussian noise model.

Recall from class on 9/13/06 that we can solve for the least squares polynomial regression coefficients
ŵ by using the extended design matrix X̃ such that

ŵ = (X̃T X̃)−1X̃Ty, with X̃ =




1 x1 x2
1 . . . xd

1

1 x2 x2
2 . . . xd

2
...

...
...

. . .
...

1 xN x2
N . . . xd

N


 ,

where d is the degree of the polynomial and {x1, . . . ,xN} and y are the observed points and their
associated labels, respectively. To prevent numerical round-off errors, this method was applied to
the column-normalized design matrix X̃ using degexpand.m within the main script prob5.m (as
discussed in Problem 2). The resulting linear and quadratic polynomials are shown in Figure 2(a).
The fitting parameters obtained using all data points and up to a fourth-order polynomial are
tabulated below.

Polynomial Degree Empirical Loss Log-likelihood 10-fold Cross Validation Score
Linear (d = 1) 1.057 -529.5 1.063

Quadratic (d = 2) 0.930 -506.1 0.943
Cubic (d = 3) 0.930 -506.1 0.947

Quartic (d = 4) 0.925 -505.1 0.950

Note that the empirical loss LN is defined to be the average sum of squared errors as given by
Equation 9. The log-likelihood of the data (under a Gaussian model) was derived in class on
9/11/06 and is given by Equation 7 as

`(Y;w, σ) = − 1
2σ2

N∑

i=1

(yi − f(xi;w))2 −N log(σ
√

2π),

where σ → σ̂ML is the maximum likelihood estimate of σ under a Gaussian noise model (as given
by Equation 8 in Problem 3).

At this point, we turn our attention to the model-order selection task (i.e., deciding what degree
of polynomial best-represents the data). As discussed in class of 9/13/06, we will use 10-fold cross
validation to select the best model. First, we partition the data into 10 roughly equal parts (see
lines 65-70 of prob5.m). Next, we perform 10 sequential trials where we train on all but the ith

fold of the data and then measure the empirical error on the remaining samples. In general, we
formulate the k-fold cross validation score as

L̂k =
1
N

k∑

i=1

∑

j ∈ fold i

(yj − f(xj ; ŵi)2,

where ŵi is fit to all samples except those in the ith fold. The resulting 10-fold cross-validation
scores are tabulated above (for up to a fourth-order polynomial). Since the lowest cross-validation
score is achieved for the quadratic polynomial we select this as the best model.
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(a) Least squares polynomial regression results
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(b) Quadratic polynomial (selected by cross-validation)

Figure 2: Comparison of linear and quadratic polynomials estimated using linear least squares.

In conclusion, we find that the quadratic polynomial has the lowest cross-validation score.
However, as shown in Figure 2(b), it is immediately apparent that the Gaussian noise model does
not accurately represent the underlying distribution; more specifically, if the underlying distribution
was Gaussian, we’d expect half of the data points to be above the model prediction (and the other
half below). This is clearly not the case for this example – motivating the alternate noise model
we’ll analyze in Problem 6.
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Problem 6

Part 1: Consider the noise model y = f(x;w) + ν in which ν is drawn from p(ν) as follows.

p(ν) =
{

e−ν if ν > 0,
0 otherwise

Perform 10-fold cross-validation for linear and quadratic regression under this noise model, using
exhaustive numerical search similar to that used in Problem 4. Plot the selected model and report
the empirical loss and the log-likelihood under the estimated exponential noise model.

As in Problems 3 and 4, let’s begin by defining the distribution of the label y, given the input x.

p(y|x,w) =
{

exp (−(y − f(x;w))) if y > f(x;w),
0 otherwise

Once again, we assume that the observations are i.i.d. such that the likelihood P is given as follows.

P(Y;w) =
N∏

i=1

p(yi|xi,w) =
N∏

i=1

{
exp (f(xi;w)− yi) if yi > f(xi;w),
0 otherwise

(10)

The log-likelihood ` is then given by

`(Y;w) = logP(Y;w) =
N∑

i=1

{
f(xi;w)− yi if yi > f(xi;w),
−∞ otherwise

(11)

since the logarithm is a monotonic function and limx→0 log x = −∞. The corresponding ML
estimate for w is given by the following expression.

ŵML = argmax
w

`(Y;w) = argmin
w

N∑

i=1

{
yi − f(xi;w) if yi > f(xi;w),
∞ otherwise

(12)

Note that Equations 10 and 11 prevent any prediction f(xi;w) from being above the corresponding
label yi. As a result, the exponential noise distribution will effectively lead to a model corresponding
to the lower-envelope of the training data.

Using the maximum likelihood formulation in Equation 12, we can solve for the optimal re-
gression parameters using an exhaustive search (similar to what was done in Problem 4). This
approach was applied to all the data points on lines 19-72 of prob6.m. The resulting best-fit linear
and quadratic polynomial models are shown in Figure 3(a). The fitting parameters obtained using
all the data points and up to a second-order polynomial are tabulated below.

Polynomial Degree Empirical Loss Log-likelihood 10-fold Cross Validation Score
Linear (d = 1) 2.837 -487.5 2.837

Quadratic (d = 2) 1.901 -359.2 1.900

Note that the empirical loss LN was calculated using Equation 9. The log-likelihood of the data
(under the exponential noise model) was determined using Equation 11.

Model selection was performed using 10-fold cross-validation as in Problem 5. The resulting
scores are tabulated above. Since the lowest cross-validation score was achieved for the quadratic
polynomial we select this as the best model and plot the result in Figure 3(b). Comparing the

10
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(a) Polynomial regression results
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(b) Quadratic polynomial (selected by cross-validation)

Figure 3: ML estimation using exhaustive search under an exponential noise model.

model in Figure 3(b) with that in Figure 2(b), we conclude that the quadratic polynomial under
the exponential noise model better approximates the underlying distribution; more specifically,
the quadratic polynomial (under an exponential noise model) achieves a log-likelihood of -359.2,
whereas it only achieves a log-likelihood of -506.1 under the Gaussian noise model. It is also
important to note that the Gaussian noise model leads to a lower squared loss (i.e., empirical loss),
however this is by the construction of the least squares estimator used in Problem 5. This highlights
the important observation that a lower empirical loss does not necessarily indicate a better model
– this only applies when the choice of noise model appropriately models the actual distribution.

Part 2: Now evaluate the polynomials selected under the Gaussian and exponential noise models
for the data in 2005. Report which performs better in terms of likelihood and empirical loss.

In both Problems 5 and 6.1, the quadratic polynomial was selected as the best model by 10-fold
cross validation. In order to gauge the generalization capabilities of these models, the 2004 model
parameters we used to predict the 2005 samples. The results for each noise model are tabulated
below.

Noise Model Empirical Loss Log-likelihood
Gaussian (d = 2) 1.136 -541.2

Exponential (d = 2) 2.081 -358.5

In conclusion, we find that the Gaussian model achieves a lower empirical loss on the 2005 samples.
This is expected, since the Gaussian model is equivalent to the least squares estimator which
minimizes empirical loss. The exponential model, however, achieves a significantly higher log-
likelihood – indicating that it models the underlying data more effectively than the Gaussian noise
model. As a result, we reiterate the point made previously: low empirical loss can be achieved even
if the noise model does not accurately represent the underlying noise distribution.

11



CS 195-5: Machine Learning Problem Set 1 Douglas Lanman

2 Multivariate Gaussian Distributions

Problem 7

Recall that the probability density function (pdf) of a Gaussian distribution in Rd is given by

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Show that a contour corresponding to a fixed value of the pdf is an ellipse in the 2D x1, x2 space.

An iso-contour of the pdf along p(x) = p0 is given by

1
(2π)d/2|Σ|1/2

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
= p0.

Taking the logarithm of each side and rearranging terms gives

(x− µ)TΣ−1(x− µ) = −2 log
(
p0(2π)d/2|Σ|1/2

)
= C,

where C ∈ R is a constant. As this point it is most convenient to write this expression explicitly
as a function of x1 and x2 such that x = [x1, x2]T and µ = [x̄1, x̄2]T .

⇒ (
x1 − x̄1 x2 − x̄2

)(
σ2

1 σ12

σ12 σ2
2

)−1 (
x1 − x̄1

x2 − x̄2

)
= C

(
x1 − x̄1 x2 − x̄2

) (
σ2

2 −σ12

−σ12 σ2
1

)(
x1 − x̄1

x2 − x̄2

)
= (σ2

1σ
2
2 − σ2

12)C = C ′

Multiplying the terms in this expression, we obtain

σ2
2(x1 − x̄1)2 − 2σ12(x1 − x̄1)(x2 − x̄2) + σ2

1(x2 − x̄2)2 = C ′.

Simplifying, we obtain a solution for the 2D iso-contours given by

1
σ2
1
(x1 − x̄1)2 − 2 σ12

σ2
1σ2

2
(x1 − x̄1)(x2 − x̄2) + 1

σ2
2
σ2

1(x2 − x̄2)2 = C0,

C0 , 2
(

σ2
12−σ2

1σ2
2

σ2
1σ2

2

)
log

(
p0(2π)d/2|Σ|1/2

)
.

(13)

Recall from [6] that a general quadratic curve can be written as

ax2
1 + bx1x2 + cx2

2 + dx1 + fx2 + g = 0,

with an associated discriminant given by b2 − 4ac. Also recall that if the discriminant b2 − 4ac <
0, then the quadratic curve represents either an ellipse, a circle, or a point (with the later two
representing certain degenerate configurations of an ellipse) [6]. Since Equation 13 has the form of
a quadratic curve, it has a discriminant given by

b2 − 4ac = 4
(

σ2
12

σ4
1σ

4
2

− 1
σ2

1σ
2
2

)
=

4
σ4

1σ
4
2

(
σ2

12 − σ2
1σ

2
2

) ?
< 0.
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Recall that the covariance must be non-negative, therefore {σ1, σ2, σ12} ≥ 0. As a result, 4/(σ4
1σ

4
2)

is positive and we only need to prove that σ2
12 < σ2

1σ
2
2 in order to show that Equation 13 represents

an ellipse. Recall from class on 9/15/06 that the definition of the cross-correlation coefficient ρ12

is
ρ12 =

σ12

σ1σ2
⇒ σ2

12 = ρ2
12σ

2
1σ

2
2,

where −1 ≤ ρ12 ≤ 1. As a result, 0 ≤ ρ2
12 ≤ 1 which implies σ2

12 < σ2
1σ

2
2 and the discriminant has

the form of an ellipse. In conclusion, Equation 13 has the associated discriminant

b2 − 4ac =
4

σ4
1σ

4
2

(
σ2

12 − σ2
1σ

2
2

)
< 0,

which by [6] defines an ellipse in the 2D x1, x2 space. (QED)

13



CS 195-5: Machine Learning Problem Set 1 Douglas Lanman

Problem 8

Suppose we have a sample x1, . . . ,xn drawn from N (x; µ,Σ). Show that the ML estimate of the
mean vector µ is

µ̂ML =
1
n

n∑

i=1

xi

and the ML estimate of the covariance matrix Σ is

Σ̂ML =
1
n

n∑

i=1

(xi − µ̂ML)(xi − µ̂ML)T .

Qualitatively, we will repeat the derivation used for the univariate Gaussian in Problem 3. Let’s
begin by defining the multivariate Gaussian distribution in Rd.

p(x; µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Once again, we assume that the samples are i.i.d. such that the likelihood P is given by

P(X;µ,Σ) =
n∏

i=1

p(xi|µ,Σ).

The log-likelihood ` is then given by

`(X; µ,Σ) = logP(X;µ,Σ) =
n∑

i=1

log (p(xi|µ,Σ))

= −n log
(
(2π)d/2|Σ|1/2

)
− 1

2

n∑

i=1

(xi − µ)TΣ−1(xi − µ), (14)

with the corresponding ML estimate for µ given by

µ̂ML = argmax
µ

`(X; µ,Σ) = argmin
µ

n∑

i=1

(xi − µ)TΣ−1(xi − µ)

since the first term in Equation 14 is independent of µ. The minimum (or maximum) of this
function will occur where the derivative with respect to µ equals zero. Let’s proceed by making
the substitution Σ−1 → A. Equating the first partial derivative with zero, we find

∂

∂µ

{
n∑

i=1

(xi − µ)TA(xi − µ)

}
=

n∑

i=1

∂

∂µ

[
(xi − µ)TA(xi − µ)

]
= 0

⇒
n∑

i=1

∂

∂µ

[
xT

i Axi − xT
i Aµ− µTAxi + µTAµ

]
= 0.

Note that the first term is independent of µ and can be eliminated.

⇒
n∑

i=1

{
−∂(xT

i Aµ)
∂µ

− ∂(µTAxi)
∂µ

+
∂(µTAµ)

∂µ

}
= 0

14
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We can now apply the following identities for the derivatives of scalar and matrix/vector forms [4].

∂(Ax)
∂x

=
∂(xTA)

∂x
= A

∂(xTAx)
∂x

= (A + AT )x

Applying these expressions to the previous equation gives
n∑

i=1

{−xT
i A−Axi + Aµ + AT µ

}
= 0.

Recall that Σ is a real, symmetric matrix such that ΣT = Σ [1]. In addition, we have AT = A
since A is also a real, symmetric matrix. Finally, since A is symmetric, we have xT

i A = Axi.
Applying these identities to the previous equation, we find

2A
n∑

i=1

(xi − µ) = 0 ⇒
n∑

i=1

µ = nµ =
n∑

i=1

xi.

Diving by n, we obtain the desired result.

µ̂ML =
1
n

n∑

i=1

xi

Similar to the derivation of µ̂ML, the ML estimate for Σ̂ML is given by

Σ̂ML = argmax
Σ

`(X;µ,Σ) = argmin
Σ

{
1
2

n∑

i=1

(xi − µ)TΣ−1(xi − µ) + n log
(
(2π)d/2|Σ|1/2

)}

= argmin
Σ

{
n∑

i=1

(xi − µ)TΣ−1(xi − µ) + n log (|Σ|)
}

(15)

Once again, we make the substitution Σ−1 → A. As a result, the minimum (or maximum) of
Equation 15 will occur where the derivative with respect to A equals zero.

∂

∂A

{
n∑

i=1

(xi − µ)TA(xi − µ) + n log
(|A−1|)

}
= 0

Note that we can substitute |A−1| = |A|−1 to obtain the following result [4].

⇒ ∂

∂A
log (|A|) =

1
n

n∑

i=1

∂

∂A
[
(xi − µ)TA(xi − µ)

]

We can now apply the following identities for the derivatives of scalar and matrix/vector forms [4].

∂

∂A
[
(x− µ)TA(x− µ)

]
= (x− µ)(x− µ)T ∂

∂A
log (|A|) = A−1 = Σ

Applying these identities to the previous equation, we find the derived result.

Σ̂ML =
1
n

n∑

i=1

(xi − µ̂ML)(xi − µ̂ML)T

(QED)
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3 Linear Discriminant Analysis

Problem 9

This problem will examine an extension of linear discriminant analysis (LDA) to multiple classes
(assuming equal covariance matrices such that Σc = Σ for every class c). Show that the optimal
decision rule is based on calculating a set of C linear discriminant functions

δc(x) = xTΣ−1µc − 1
2
µT

c Σ−1µc

and selecting C∗ = argmaxc δc(x). Assume that the prior probability is uniform for each class such
that Pc = p(y = c) = 1/C. Apply this method to the data in apple lda.mat and plot the resulting
linear decision boundaries or, alternatively, the decision regions. Report the classification error.

Recall from class on 9/20/06 and [3] that the Bayes Classifier minimizes the conditional risk, for
a given class-conditional density pc(x) = p(x|y = c) and prior probability Pc = p(y = c), such that

C∗ = argmax
c

δc(x), for δc(x) , log pc(x) + log Pc.

For this problem we can eliminate the class prior term to obtain δc(x) = log pc(x), since the class
prior is identical for all classes. In addition, we’ll assume that the class-conditionals are multivariate
Gaussians with identical covariance matrices such that

pc(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µc)TΣ−1(x− µc)

)
.

Substituting into the previous expression we find

δc(x) = log pc(x) = −1
2
(x− µc)TΣ−1(x− µc)− d

2
log 2π − 1

2
log |Σ|

= −1
2
(x− µc)TΣ−1(x− µc)

= −1
2
xTΣ−1x +

1
2
xTΣ−1µc +

1
2
µT

c Σ−1x− 1
2
µT

c Σ−1µc

=
1
2
xTΣ−1µc +

1
2
µT

c Σ−1x− 1
2
µT

c Σ−1µc (16)

where terms that are independent of c have been eliminated. To complete our proof, note that
µT

c Σ−1x = (µT
c Σ−1x)T = xT (Σ−1)T µc = xTΣ−1µc, since Σ and Σ−1 are symmetric matrices and,

as a result, Σ−1 = (Σ−1)T . Applying this observation to Equation 16, we prove the desired result.

δc(x) = xTΣ−1µc − 1
2
µT

c Σ−1µc

Using prob9.m, this method was applied to the data in apple lda.mat. The means and covari-
ance were obtained using the ML estimators derived in Problem 8; for a given class c, the mean
was calculated as

µ̂c =
1
nc

nc∑

i=1

xci.

16
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Figure 4: Optimal linear decision boundaries/regions for apple lda.mat.

Similarly, the the covariance matrix Σ was calculated as

Σ̂ =
1
n

∑
c

nc∑

i=1

(xci − µ̂c)(xci − µ̂c)T .

The resulting decision boundaries are shown in Figure 4. Note that δc(x) is linear in x, so we only
obtain linear decision boundaries. The classification error (measured as the percent of incorrect
classifications on the training data) was ≈12.7%.

17



CS 195-5: Machine Learning Problem Set 1 Douglas Lanman

Problem 10

Assume that the covariances Σc are no longer required to be equal. Derive the discriminant function
and apply the resulting decision rule to apple lda.mat. Plot the decision boundaries/regions and
report the classification error. Compare the performance of the two classifiers.

As in Problem 9, we begin by writing the Bayes Classifier

C∗ = argmax
c

δc(x), for δc(x) = log pc(x) + log Pc = log pc(x),

since Pc = 1/C is independent of c. The class-conditionals are multivariate Gaussians given by

pc(x) =
1

(2π)d/2|Σc|1/2
exp

(
−1

2
(x− µc)TΣ−1

c (x− µc)
)

.

Substituting into the previous expression we find

δc(x) = log pc(x) = −1
2
(x− µc)TΣ−1

c (x− µc)− d

2
log 2π − 1

2
log |Σc|

= −1
2
(x− µc)TΣ−1

c (x− µc)− 1
2

log |Σc|

= −1
2
xTΣ−1

c x +
1
2
xTΣ−1

c µc +
1
2
µT

c Σ−1
c x− 1

2
µT

c Σ−1
c µc − 1

2
log |Σc|

where terms that are independent of c have been eliminated. Once again, we can simplify this

x1

x
2
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Figure 5: Non-linear decision boundaries/regions for apple lda.mat.
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expression since µT
c Σ−1

c x = xTΣ−1
c µc. In conclusion, the discriminant function is given as follows.

δc(x) = −1
2
xTΣ−1

c x + xTΣ−1
c µc − 1

2
µT

c Σ−1
c µc − 1

2
log |Σc|

Using prob10.m, this discriminant function was applied to the data in apple lda.mat. The
means and covariances were obtained using the ML estimators derived in Problem 8. The resulting
decision boundaries are shown in Figure 5. The classification error (measured as the percent of
incorrect classifications on the training data) was 7%.

Note that the decision functions δc(x) are no longer linear in x, so now we can obtain non-linear
decision boundaries. In fact, the leading-order term −1

2x
TΣ−1

c x is a quadratic form which, together
with the lower-order terms, can be used to express any second-degree curve (i.e., conic sections in
two dimensions) of the form

ax2
1 + bx1x2 + cx2

2 + dx1 + fx2 + g = 0

as the decision boundary separating classes. In contrast to the linear decision boundaries in Problem
9, by allowing different covariance matrices for each class, we can now achieve a variety of decision
boundaries such as lines, parabolas, hyperbolas, and ellipses [5]. As shown in Figure 5, the resulting
decision boundaries are curvilinear and, as a result, can achieve a lower classification error due to
the increase in their degrees of freedom.
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Problem 11

An alternative approach to learning quadratic decision boundaries is to map the inputs into an
extended polynomial feature space. Implement this method and compare the resulting decision
boundaries to those in Problem 10.

As discussed in class on 9/15/06, we can utilize the linear regression framework to implement a
näıve classifier as follows. First, we form an indicator matrix Y such that

Yij =
{

1 if yi = c,
0 otherwise

where the possible classes are labeled as 1, . . . , C. Recall from Problem 10 that any quadratic curve
can be written as

ax2
1 + bx1x2 + cx2

2 + dx1 + fx2 + g = 0,

where {a, b, c, d, f, g} are unknown regression coefficients. As a result, we can define a design matrix
with extended polynomial features as follows.

X =




1 x2(1) x1(1) x2
2(1) x1(1)x2(1) x2

1(1)

1 x2(2) x1(2) x2
2(2) x1(2)x2(2) x2

1(2)

...
...

...
...

...
...

1 x2(N) x1(N) x2
2(N) x1(N)x2(N) x2

1(N)




where xi(j) denotes the ith coordinate of the jth training sample. (Note that inclusion of the cross

x1

x
2
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Figure 6: Quadratic decision boundaries/regions using extended polynomial features.
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(a) Decision boundaries using extended LDA
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(b) Decision boundaries using extended features

Figure 7: Comparison of classification results in Problems 10 and 11.

term x1x2 had little effect on the decision regions.) Together, X and Y define C independent linear
regression problems with least squares solutions given by

Ŵ = (XTX)−1XTY,

where the regression coefficients for each class correspond to the columns of Ŵ. For a general set
of samples x, we form the extended design matrix X0 with the corresponding linear predictions
given by

Ŷ0 = X0(XTX)−1XTY = X0Ŵ,

as shown in class. Finally, we assign a class label Ĉ by choosing the column of Ŷ0 with the largest
value (independently for each row/sample).

Using prob11.m, this classification procedure was applied to the data in apple lda.mat. The
resulting decision boundaries are shown in Figure 6. The classification error (measured as the per-
cent of incorrect classifications on the training data) was ≈9.3%. Since the regression features were
extended to allow quadratic decision boundaries, we find that the resulting regions are delineated
by curvilinear boarders. While the classification error is lower than in Problem 9, we find that the
resulting decision regions possess some odd/undesirable properties.

Compare the decision boundaries/regions in Figures 7(a) and 7(b). Using extended linear
discriminant analysis (LDA) as in Problem 10, we find that the decision boundaries are quadratic
and, assuming underlying Gaussian distributions, seem to make reasonable generalizations. More
specifically, examine the decision region for the second class (green) in Figure 7(a). Not surprisingly,
it continues on the other side of Class 3. This is reasonable since Class 3 varies in the opposite
direction of Class 2.

Unfortunately, this generalization behavior is not reflected in the decision regions found in this
problem. Surprisingly, we find that Class 3 becomes the most likely class label in the bottom left
corner of Figure 7(b). This is inconsistent with the covariance matrix of the underlying distribution
(assuming it is truely Gaussian). In conclusion, we find that the results in Problems 10 and 11
illustrate the benefits of generative models over näıve classification schemes (when there is some
knowledge of the underlying distributions).
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