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1 Decision Theory

Problem 1

Part 1: In this problem we will examine randomized classifiers. Define, for any point x, a probabilty
distribution q(c|x) over the class labels c. We define a randomized decision rule given by

hr(x; q) = cr, for cr ∼ q(c|x).

The risk R(hr; q) for this classifier is given by the expectation over all possible outcomes such that

R(hr; q) =
∫

x

C∑

c=1

C∑

c′=1

L(c′, c)q(cr = c′|x)p(x, y = c)dx. (1)

Show that R(hr; q) ≥ R(h∗), that is, that the risk of the randomized classifier hr defined above is
at least as high as the Bayes risk R(h∗).

Recall from class on 9/20/06 that the risk R(h∗) of a C-way Bayesian classifier is given by

R(h∗) =
∫

x

C∑

c=1

L(h∗(x), c)p(x, y = c)dx. (2)

Equations 1 and 2 give the following form for the inequality R(hr; q) ≥ R(h∗).
∫

x

C∑

c=1

C∑

c′=1

L(c′, c)q(cr = c′|x)p(x, y = c)dx ≥
∫

x

C∑

c=1

L(h∗(x), c)p(x, y = c)dx

Applying Bayes rule and grouping terms within the integrals provides the following inequality.
∫

x

[
C∑

c=1

C∑

c′=1

L(c′, c)q(cr = c′|x)p(y = c|x)

]
p(x)dx ≥

∫

x

[
C∑

c=1

L(h∗(x), c)p(y = c|x)

]
p(x)dx

Note that it is sufficient to show that this inequality holds for the conditional risks such that
R(hr|x) ≥ R(h∗|x) for any x. As a result, we can restate the previous inequality as follows.

C∑

c=1

C∑

c′=1

L(c′, c)q(cr = c′|x)p(y = c|x) ≥
C∑

c=1

L(h∗(x), c)p(y = c|x) (3)

To prove this inequality, it is sufficient to show that each term in the summation satisfies the
inequality independently such that

C∑

c′=1

L(c′, c)q(cr = c′|x)p(y = c|x) ≥ L(h∗(x), c)p(y = c|x),
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holds for all c. Canceling the common factors of p(y = c|x), we obtain the following result.

C∑

c′=1

L(c′, c)q(cr = c′|x) ≥ L(h∗(x), c)

Note that we can separate the summation on the right-hand side as follows.

L(h∗(x), c)q(cr = h∗(x)|x) +
C∑

c′ 6=h∗(x)

L(c′, c)q(cr = c′|x) ≥ L(h∗(x), c)

⇒
C∑

c′ 6=h∗(x)

L(c′, c)q(cr = c′|x) ≥ L(h∗(x), c) (1− q(cr = h∗(x)|x)) (4)

Since q(c|x) must be a valid probability distribution, the following relationship must hold.

C∑

c′=1

q(cr = c′|x) = 1 ⇒ 1− q(cr = h∗(x)|x) =
C∑

c′ 6=h∗(x)

q(cr = c′|x) (5)

Substituting Equation 5 into 4 gives
C∑

c′ 6=h∗(x)

L(c′, c)q(cr = c′|x) ≥
C∑

c′ 6=h∗(x)

L(h∗(x), c)q(cr = c′|x).

In order for this inequality to hold it is sufficient for

L(c′, c) ≥ L(h∗(x), c), (6)

for all c′ 6= h∗(x). In general, L(h∗(x), c) will be the minimum loss attributed to the decision of the
optimum Bayes classifier. As a result, any valid loss function must assign a cost for misclassifying
a sample that is greater than or equal to this value in order to minimize the conditional risk; this
is precisely the requirement stated in Equation 6. As a result, the risk of the randomized classifier
is at least as high as the Bayes risk such that R(hr; q) ≥ R(h∗). (QED)

Part 2: Find the probability distribution q(c|x) that minimizes the risk of hr and express the
corresponding minimum risk in terms of R(h∗).

Since R(hr; q) ≥ R(h∗), the probability distribution q(c|x) that minimizes R(hr; q) could achieve
the Bayes risk in the best case. From inspection of Equation 1, we find q(c|x) must be given by

q(c|x) = δ(c, h∗(x)) =
{

1 for c = h∗(x)
0 for c 6= h∗(x),

,

where δ(c, h∗(x)) is the Kronecker Delta. Substituting this expression into Equation 1 gives

R(hr; q) =
∫

x

C∑

c=1

C∑

c′=1

L(c′, c)δ(c′, h∗(x))p(x, y = c)dx =
∫

x

C∑

c=1

L(h∗(x), c)p(x, y = c)dx = R(h∗).

In conclusion, the minimum risk R(hr; q) = R(h∗) and it is achieved with the Bayes classifier where
q(c|x) = δ(c, h∗(x)). In other words, the randomized decision rule cannot perform better than the
Bayes classifier.
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Problem 2

Assume that we model the class-conditional density for two classes y ∈ {±1} in Rd by Gaussians
with equal covariances. Assuming the priors are uniform (i.e., P+1 = P−1 = 1/2) and we operate
under the 0/1 loss model, we have seen in class that the optimal (Bayes) classifier is given by

h∗(x) = sign(w∗Tx + w∗0),

for certain w∗ and w∗0. Suppose that the priors are instead given by P̂+1 = 0.7 and P̂−1 = 0.3.
How will this affect the decision boundary?

Recall from class on 9/20/06 that, in the case of two classes, the Bayes classifier is

h∗(x) = argmax
c=±1

δc(x) = sign (δ+1(x)− δ−1(x)) ,

where δc(x) , log pc(x) + log Pc is the discriminant function. Substituting for the discriminant
function we obtain the following expression for the optimal classifier.

h∗(x) = sign (log p+1(x) + log P+1 − log p−1(x)− log P−1))

= sign
(

log p+1(x)− log p−1(x) + log
(

P+1

P−1

))
(7)

At this point, we recall the result of Problem 9 in Problem Set 1. In that problem we proved that
the optimal decision rule was based on calculating a set of C linear discriminant functions

δc(x) = log pc(x) = xTΣ−1µc − 1
2
µT

c Σ−1µc, (8)

when the class-conditionals were assumed to be multivariate Gaussians in Rd with equal covariance
matrices and the prior probabilities were uniform such that Pc = 1/C. As we previously shown,
under the assumption of uniform priors, the discriminant function δc(x) = log pc(x). As a result,
we can substitute Equation 8 into Equation 7 to obtain the solution for the Bayes classifier under
arbitrary priors given by

h∗(x) = sign
(
xTΣ−1µ+1 − 1

2
µT

+1Σ
−1µ+1 − xTΣ−1µ−1 +

1
2
µT
−1Σ

−1µ−1 + log
(

P+1

P−1

))

= sign
((

Σ−1µ+1 −Σ−1µ−1

)T x +
(

1
2
µT
−1Σ

−1µ−1 − 1
2
µT

+1Σ
−1µ+1

)
+ log

(
P+1

P−1

))

= sign
(
w∗Tx + w∗0 + log

(
P+1

P−1

))
,

for w∗ = Σ−1µ+1 −Σ−1µ−1 and w∗0 = 1
2µT

−1Σ
−1µ−1 − 1

2µT
+1Σ

−1. In conclusion, we find that the
optimal (Bayes) decision rule is given by the following expression.

h∗(x) = sign
(
w∗Tx + w∗0 + log

(
P+1

P−1

))

For P̂+1 = 0.7 and P̂−1 = 0.3, log
(

P+1

P−1

)
= 0.8473. As a result, we find that the decision boundary

shifts towards class −1 (i.e., away from class +1). This is expected, since if the class-conditions are
equal we’ll select the class with the greater prior probability.
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2 Estimation

Problem 3

In this section we will investigate various estimators for the parameter of the Bernoulli distribution.
Recall that the probability mass function for a Bernoulli random variable X is

p(X; θ) = θX(1− θ)1−X .

Show that the ML estimator of θ, given a set of observations X = {x1, . . . , xN}, is θ̂ML = 1
N

∑N
i=1 xi.

Assuming that the observations are independent and identically distributed (i.i.d.), then the like-
lihood P can be expressed as the following product.

P(X; θ) =
N∏

i=1

p(xi|θ) =
N∏

i=1

θxi(1− θ)1−xi .

The log-likelihood ` is then given by

`(X; θ) = logP(X; θ) =
N∑

i=1

log p(xi|θ) =
N∑

i=1

log
(
θxi(1− θ)1−xi

)

=
N∑

i=1

log (θxi) +
N∑

i=1

log
(
(1− θ)1−xi

)

= log θ
N∑

i=1

xi +
N∑

i=1

log(1− θ)− log(1− θ)
N∑

i=1

xi

= (log θ − log(1− θ))
N∑

i=1

xi + N log(1− θ).

The corresponding ML estimate for θ is

θ̂ML = argmax
θ

`(X; θ) = argmax
θ

{
(log θ − log(1− θ))

N∑

i=1

xi + N log(1− θ)

}

The maximum (or minimum) of this function will necessarily be obtained where the derivative with
respect to θ equals zero.

∂

∂θ

{
(log θ − log(1− θ))

N∑

i=1

xi + N log(1− θ)

}
= 0

⇒
(

1
θ

+
1

1− θ

) N∑

i=1

xi =
1

θ(1− θ)

N∑

i=1

xi =
N

1− θ

Simplifying this expression we prove the desired result.

θ̂ML =
1
N

N∑

i=1

xi (9)

(QED)
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Problem 4

Part 1: Let θ∗ denote the true value of the parameter of the underlying Bernoulli distribution.
What are the bias and variance of the ML estimator based on a set of three coin tosses (i.e., N =
3)? Explain the dependence, or lack thereof, of the answers on θ∗.

In the following analysis let’s define θ̂N as the ML estimate of the Bernoulli parameter using N
trials. Recall from class on 9/22/06 that the bias and variance are given by

bias(θ̂N ) , E[θ̂N − θ∗] and var(θ̂N ) , E[(θ̂N − θ̄N )2], (10)

where θ̄N , E(θ̂N ) and the expectation is over all possible sample sequences of length N . As
described in class on 9/25/06, the expectation for a discrete probability distribution is given by the
following expression.

E[f(x)] =
∑

v∈X
f(v)p(x = v), where

∑

v∈X
p(x = v) = 1 (11)

From Problem 3 we know that the ML estimator is given by θ̂N = 1
N

∑N
i=1 xi. Let xi = 1 denote

heads and xi = 0 denote tails. Using this formulation, we find that the ML estimator reduces
to θ̂N = m/N , where m is the total number of heads in a sequence of length N . Combining
Equations 10 and 11, we obtain

bias(θ̂N ) = E[θ̂N ]− θ∗ =

{
N∑

m=0

m

N
p(m heads)

}
− θ∗ (12)

var(θ̂N ) = E[θ̂2
N ]−E[θN ]2 =

{
N∑

m=0

(m

N

)2
p(m heads)

}
−

{
N∑

m=0

m

N
p(m heads)

}2

, (13)

where p(m heads) is the probability of obtaining m heads in N trials. In a sequence of three coin
flips, there are only eight possible outcomes: {(000), (100), (010), (001), (110), (101), (011), (111)}.
If the probability of heads is θ∗, then the probability of tails is 1− θ∗. As a result, we obtain the
following probabilities for the total number of heads in a set of three coin flips.

Number of Heads Sequences Probability
0 (000) (1− θ∗)3

1 (100), (010), (001) 3θ∗(1− θ∗)2

2 (110), (101), (011) 3(θ∗)2(1− θ∗)1

3 (111) (θ∗)3

Using the probabilities tabulated above, we can substitute into Equation 12 to obtain the following
expression for the bias.

bias(θ̂3) =
{
θ∗(1− θ∗)2 + 2(θ∗)2(1− θ∗)1 + (θ∗)3

}− θ∗

⇒ bias(θ̂3) = 0

Similarly, the variance is given by substitution into Equation 13.

var(θ̂3) =
{

1
3

θ∗(1− θ∗)2 +
4
3

(θ∗)2(1− θ∗)1 + (θ∗)3
}
− {

θ∗(1− θ∗)2 + 2(θ∗)2(1− θ∗)1 + (θ∗)3
}2

5
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Figure 1: Dependence of var(θ̂3) on θ∗.

⇒ var(θ̂3) =
θ∗(1− θ∗)

3
In conclusion, we find that the ML estimator is unbiased and, as a result, the bias is independent
of θ∗. The variance, however, is a quadratic function of θ∗. In general, the variance will only
be independent of θ∗ when θ∗ = {0, 1}. In these cases the coin flips are deterministic (i.e., they
always come up on the same side) and, as a result, the variance is zero. For all other values of θ∗

the variance of the ML estimator will have the dependence on θ∗ shown in Figure 1. (Note that
these results are consistent with the statement made in class on 9/25/06; ML estimators tend to
be unbiased, but have comparatively high variance.)

Part 2: Empirically evaluate the bias and variance of the ML estimator on a 1000-trial data set for
θ∗ = 0.7. Also report the mean squared error for the estimation of θ (averaged over 1,000 trials).

A series of 1,000 three-flip Bernoulli trials were simulated using prob4.m. Note that the results
reported here depend on the value of the random number seed specified on line 17. The empirical
bias and variance were estimated using the following formulas.

empirical-bias(θ̂3) =

{
1

1000

1000∑

i=1

(θ̂3)i

}
− θ∗ and empirical-var(θ̂3) =

1
1000

1000∑

i=1

((θ̂3)i − θ̄3)2

For the selected random number seed, we report the following results for θ∗ = 0.7.

Predicted Empirical
Bias 0 0.0143

Variance 0.07 0.0692
MSE 0.07 0.0694

First, note that the predictions are accurate. In addition, note that the mean squared error (MSE) satisfies
the bias-variance decomposition described in class on 9/25/06. Specifically, the MSE is given by the following
expression.

MSE(θ̂3) = E[(θ̂3 − θ∗)2] = bias2(θ̂3) + var(θ̂3)

6
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Problem 5
We now consider the maximum a posteriori (MAP) estimator for the Bernoulli distribution based on a
Beta prior. We consider the following four priors: {p1(θ) = Beta(θ; 1, 1), p2(θ) = Beta(θ; 4, 4), p3(θ) =
Beta(θ; 20, 20), p4(θ) = Beta(θ; 20, 10)}. Plot the priors and explain how they will effect the MAP estimator.

Recall that the Beta distribution, defined by hyperparameters a and b, is given by

Beta(θ; a, b) , Γ(a + b)
Γ(a)Γ(b)

θa−1(1− θ)b−1.

Using the Matlab function betapdf, the four priors were plotted in prob5.m and are shown in Figure 2.
From class on 9/27/06 we know that the Beta distribution is conjugate for the Bernoulli; for a set of N
consecutive coin flips XN , if N1 are heads and N0 tails, then we have p(θ|XN ) ∝ θN1+a−1(1 − θ)N0+b−1.
In other words, we can consider a and b as the effective number of prior heads and tails, respectively. In
general, the default value θ0 = a/(a + b) and a + b indicates the confidence in this value. This gives the
following prior believes under the four Beta distributions.

Beta Prior Initial θ Confidence
p1(θ) = Beta(θ; 1, 1) 1/2 2
p2(θ) = Beta(θ; 4, 4) 1/2 8

p3(θ) = Beta(θ; 20, 20) 1/2 40
p4(θ) = Beta(θ; 20, 10) 2/3 30

Note that the values in the table agree with the plots in Figure 2. Specifically, {p1(θ), p2(θ), p3(θ)} are all
consistent with a prior belief that θ = 1/2, but represent increasing confidence in that belief. Alternatively,
p4(θ) represents a prior belief that θ = 2/3 with slightly less confidence than p3(θ). For all priors, increasing
confidence means the MAP estimator will require more observations to overcome an incorrect prior.
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Figure 2: Comparison of Beta priors for MAP estimation in Problems 5 and 6.
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Problem 6
Part 1: Write down formulas for the bias and variance of the MAP estimator of θ based on a Beta prior.

Let’s begin by deriving the MAP estimator for the Bernoulli distribution under a Beta prior. Recall from
class on 9/27/06 that the maximum a posteriori (MAP) estimator satisfies the following condition.

θ̂MAP (X) = argmax
θ

p(θ|X) = argmax
θ

p(X|θ)p(θ) (14)

In this problem, X represents a sample composed of N consecutive coin flips of which N1 are heads and N0

are tails. Let p(X|θ) ∼ Bin(θ; N0, N1) and p(θ) ∼ Beta(θ; a, b). Substituting into Equation 14, we obtain

θ̂MAP (X) = argmax
θ

{(
N0 + N1

N1

) (
θN1(1− θ)N0

)(
Γ(a + b)
Γ(a)Γ(b)

θa−1(1− θ)b−1

)}

= argmax
θ

{
θN1+a−1(1− θ)N0+b−1

}

= argmax
θ

{(N1 + a− 1) log(θ) + (N0 + b− 1) log(1− θ)} ,

where the last expression is obtained by taking the logarithm of the previous equation. The maximum (or
minimum) of this function will necessarily be obtained where the derivative with respect to θ equals zero.

∂

∂θ
{(N1 + a− 1) log(θ) + (N0 + b− 1) log(1− θ)} = 0

⇒ N1 + a− 1
θ

=
N0 + b− 1

1− θ

Simplifying this expression gives the solution for the MAP estimator for the Bernoulli distribution using a
Beta prior.

θ̂MAP (X) =
N1 + a− 1

N + a + b− 2
(15)

Note that for a = b = 1 the MAP estimator is equivalent to the ML estimator given by Equation 9. As a
result, we expect the bias, variance, and mean squared error under the Beta prior p1(θ) = Beta(θ; 1, 1) to be
identical to Problem 4 – this observation is confirmed in the second part of this problem.

At this point we can obtain closed-form expressions for the bias and variance by substituting the MAP
estimator into Equation 10 such that

bias(θ̂N ) =

{
N∑

m=0

(
m + a− 1

N + a + b− 2

)
p(m heads)

}
− θ∗ (16)

var(θ̂N ) =

{
N∑

m=0

(
m + a− 1

N + a + b− 2

)2

p(m heads)

}
−

{
N∑

m=0

(
m + a− 1

N + a + b− 2

)
p(m heads)

}2

, (17)

where p(m heads) is the probability of obtaining m heads in N trials. Using the probabilities from the table
in Problem 4, we can simplify these expressions to obtain the following equations for the bias and variance
of the MAP estimator on a set of three coin tosses. First, the bias is given by

bias(θ̂3) =
(a− 1)− (a + b− 2) θ∗

a + b + 1
. (18)

Similarly, the variance is given by

var(θ̂3) =
3 θ∗(1− θ∗)
(a + b + 1)2

. (19)

8
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Part 2: Report the empirical estimate for the bias, variance, and mean squared error of each of the four
MAP estimators from Problem 5 on the data in Problem 4. Compare the results to the ML estimator.

A series of 1,000 three-flip Bernoulli trials were simulated using prob6.m (with the same random number seed
as in prob4.m). The empirical bias and variance were estimated using the MAP estimator in Equation 15
and the procedure in Problem 4.2. For the selected random number seed, we report the following results for
θ∗ = 0.7. (Note that the predicted values are shown in parentheses.)

Beta Prior Bias Variance MSE
p1(θ) = Beta(θ; 1, 1) 0.0143 (0) 6.9172e-2 (7.0000e-2) 6.9378e-2 (7.0000e-2)
p2(θ) = Beta(θ; 4, 4) -0.1286 (-0.1333) 7.6858e-3 (7.7778e-3) 2.4212e-2 (2.5556e-2)

p3(θ) = Beta(θ; 20, 20) -0.1843 (-0.1854) 3.7035e-4 (3.7478e-4) 3.4343e-2 (3.4735e-2)
p4(θ) = Beta(θ; 20, 10) -0.0180 (-0.0194) 6.4782e-4 (6.5557e-4) 9.7066e-4 (1.0302e-3)

First, note that the predictions are accurate. Once again, we note that the mean squared error (MSE)
satisfies the bias-variance decomposition described in class on 9/25/06. In addition, we can confirm our
previous claim that the MAP estimator under the Beta prior p1(θ) = Beta(θ; 1, 1) is equivalent to the ML
estimator given by Equation 9; that is, the bias, variance, and mean squared error for a = b = 1 are identical
to those reported in Problem 4.

Overall, we find that the MAP estimator is biased (except for the case a = b = 1). For large a and b,
Equation 18 has the approximate form

lim
a→∞, b→∞

bias(θ̂3) ≈ a

a + b
− θ∗.

In Problem 5 we found that the default value θ0 = a/(a + b); as a result, we find that if our initial belief (as
expressed by the Beta prior) is accurate, then the MAP estimator will be nearly unbiased. This is verified by
the empirical values, since the prior p4(θ) leads to a negligible value for the estimated bias since it predicted
that θ would be close to 2/3.

Finally, we note that the variance given by Equation 19 is monotonically decreasing in the “confidence”
a+b. As a result, we find that the empirical variances decrease for increasing confidence values. We conclude
that the MAP estimator has a better bias-variance trade-off for the sample data set. Under all four priors,
the MAP estimator does no worse (in terms of mean squared error) than the ML estimator – in most cases
it performs significantly better!

9
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Problem 7
Evaluate (empirically) and report bias, variance, and mean squared error of the estimator based on the
expectation of the posterior p(θ|X). What are the advantages and dsadvantages of this estimator?

Recall from class on 9/27/06 that an alternative estimator for the Bernoulli parameter can be obtained by
estimating the expectation according to the posterior.

θ̂Exp(X) = Eθ∼p(θ|X)[θ|X] =
∫ 1

0

θp(θ|X)dθ

Applying Bayes rule to this equation provides the following expression for the “Exp” estimator in terms of
the parametric model p(X|θ) and prior p(θ).

θ̂Exp(X) =
∫ 1

0

θ

(
p(X|θ)p(θ)

p(X)

)
dθ =

∫ 1

0
θp(X|θ)p(θ)dθ∫ 1

0
p(X|θ)p(θ)dθ

(20)

As in Problem 6, X represents a sample composed of N consecutive coin flips of which N1 are heads and N0

are tails. Let p(X|θ) ∼ Bin(θ; N0, N1) and p(θ) ∼ Beta(θ; a, b). Substituting into Equation 20, we obtain

θ̂Exp(X) =

∫ 1

0
θ
(
θN1+a−1(1− θ)N0+b−1

)
dθ∫ 1

0
θN1+a−1(1− θ)N0+b−1dθ

.

While not required for this problem, this integral can be solved in closed-form. Using the Mathematica
notebook prob7.nb, I obtained the following solution for the “Exp” estimator.

θ̂Exp(X) =
N1 + a

N + a + b
(21)

Note that, for the case of the Bernoulli distribution under a Beta prior, the MAP and “Exp” estimates are
similar but not equivalent. Following the procedure for estimating the bias and variance in Problems 4 and
6, we obtained the following expressions with prob7.nb.

bias(θ̂3) =
a− (a + b) θ∗

a + b + 3
and var(θ̂3) =

3 θ∗(1− θ∗)
(a + b + 3)2

The empirical bias and variance were estimated with prob7.m using a numerical approximation to the
“Exp” estimator in Equation 21 and the procedure in Problem 4.2. For the selected random number seed,
we report the following results for θ∗ = 0.7. (Note that the predicted values are shown in parentheses.)

Beta Prior Bias Variance MSE
p1(θ) = Beta(θ; 1, 1) -0.0713 (-0.0800) 2.4961e-2 (2.5200e-2) 3.0039e-2 (3.1600e-2)
p2(θ) = Beta(θ; 4, 4) -0.1415 (-0.1455) 5.1450e-3 (5.2066e-3) 2.5180e-2 (2.6364e-2)

p3(θ) = Beta(θ; 20, 20) -0.1850 (-0.1860) 3.3670e-4 (3.4072e-4) 3.4579e-2 (3.4954e-2)
p4(θ) = Beta(θ; 20, 10) -0.0290 (-0.0303) 5.7167e-4 (5.7851e-4) 1.4127e-3 (1.4968e-3)

First, note that the predictions are accurate. Once again, we note that the mean squared error (MSE)
satisfies the bias-variance decomposition described in class on 9/25/06. Overall, we find that the “Exp”
estimator has similar, but not identical, performance to the MAP estimator. This is expected, given the
similarity of their closed-form solutions. From the experimental data it is apparent that the “Exp” estimator
has greater bias than the MAP estimator, but has also has lower variance. In conclusion, we find that the
“Exp” estimator is only useful when minimum variance is required; in all other cases, the MAP estimator is
preferred due to its simple form which avoids the necessity of evaluating integrals numerically.
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3 Logistic Regression and Softmax

Problem 8
Part 1: A näıve classification results from applying least-squares regression to the observed labels such that
ŷ(c|x) = ŵT x. When the class labels are 0 and 1, the corresponding classification rule is given by

h(x) =
{

1 if f(x;w) ≥ 1/2,
0 otherwise. (22)

Fit linear and quadratic functions directly to the labels (toyYtrain) and training examples (toyXtrain) in
LogRegToy.mat using the least-squares criterion. Report the empirical errors of the two näıve classifiers and
the error obtained on the test data (toyXtest and toyYtest).

Note that we have previously implemented polynomial least-squares regression for Problem 5 in Problem
Set 1. From our previous discussion, recall that we can solve for the least squares polynomial regression
coefficients ŵ by using the extended design matrix X̃ such that

ŵ = (X̃T X̃)−1X̃T y, with X̃ =




1 x1 x2
1 . . . xd

1

1 x2 x2
2 . . . xd

2
...

...
...

. . .
...

1 xN x2
N . . . xd

N


 ,

where d is the degree of the polynomial and {x1, . . . ,xN} and y are the observed points and their associated
labels, respectively. To prevent numerical round-off errors, this method was applied to the column-normalized
design matrix X̃ using degexpand.m within the main script prob8.m on lines 55-107. For this problem, the
classification error was measured by the percent of incorrect classifications on the training/test data. Under
the decision rule in Equation 22, this results in the following definition of the least-squares classification
error.

Error-LSQ =
1
N

N∑

i=1

(
yi −

(
ŵT x ≥ 1/2

))2

Applying this definition, the empirical errors for linear and quadratic least-squares classifiers were estimated
using prob8.m and are tabulated below.

Least-squares Regression Model Training Error Test Error
Linear 7.5% 14.444%

Quadratic 2.5% 6.667%

Part 2: An alternative to the näıve model above is the logistic regression model where the logistic function
σ is fit to the posterior of a single class such that

p̂(c|x) = σ(wT x).

Apply linear and quadratic logistic regression to the examples by modifying logisticRegression.m. Report
the training and test errors for these two models.

Polynomial logistic regression was implemented on lines 110-163 of prob8.m. Recall from class on 10/2/06
that the gradient of the log-probability is given by

∂

∂w
log p(yi|xi;w) =

(
yi − σ(w0 + wT xi)

) [
1
xi

]
.

11
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(a) Least-squares Regression for LogRegToy.mat
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(b) Logistic Regression for LogRegToy.mat

Figure 3: Comparison of least-squares and logistic polynomial regression.

Using this definition the gradient of the error function was implemented in gradient.m (with appropriate
changes also made to logisticRegression.m). Recall from class on 9/29/06 that the corresponding decision
boundary for the two-category logistic classifier is given by p(y = 1|x) = σ(wT x) = 1/2. Under this decision
rule the logistic classification error is defined as follows.

Error-Logistic =
1
N

N∑

i=1

(
yi −

(
σ(wT x) ≥ 1/2

))2

Applying this definition, the empirical errors for linear and quadratic logistic classifiers were estimated using
prob8.m and are tabulated below.

Logistic Regression Model Training Error Test Error
Linear 2.5% 6.667%

Quadratic 2.5% 6.667%

Part 3: Plot the functions found using least-squares and logistic regression (including the linear and
quadratic cases). Compare these plots, the empirical errors, and briefly explain the results.

The linear and quadratic functions obtained using the least-squares criterion are shown in Figure 3(a).
Similarly, the linear and quadratic functions obtained using logistic regresion are shown in Figure 3(b). Note
that, in both figures, the decision boundaries are denoted by thin red/green lines – corresponding to the
intersection of their respective classifier functions, shown by thick red/green lines, with y = 1/2.

From Figure 3(a) and the table in Part 1, it is apparent that the quadratic classifier achieves better
performance on both the training and test data sets. As discussed in class on 9/29/06, there are several
drawbacks of näıve classification using least-squared regression. Most significantly, the resulting classifiers
are sensitive to outliers. As shown in the figure, the training data are not evenly distributed – the samples
in Class 1 are more tightly clustered than those in Class 0 . As a result, we find that linear least squares
regression biases heavily towards the right which results in greater out-of-sample test errors. Note, however,
that the quadratic classifier will, for x > 120, begin to classify samples as in Class 1. This result may not
be desirable and could lead to decreased generalization performance.

From Figure 3(b) and the table in Part 2, it is apparent that the linear and quadratic logistic classifiers
achieve equivalent performance on both the training and test data sets. This is expected, since this problem
involves a one-dimensional decision boundary (i.e., a single point). Unlike in higher dimensions, for this
one-dimensional data set the added degree of freedom does not enable the quadratic classifier to achieve
significantly-improved performance.

12
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Problem 9
In this problem we will classify part of the MNIST data set of handwritten digits. The provided data set
digitData.mat contains 10,000 examples from the four digits {1, 2, 3, 4}. We can classify each digit versus
all others. Using 10-fold cross validation, evaluate the error of the linear logistic regression model for each
of the four classification tasks. Which digit is most difficult to classify?

The Matlab script prob9.m was used to solve each of the four classification problems. The training
data in digitData.mat was read and re-normalized to [0, 1] on lines 14-47. On lines 50-103, 10-fold
cross validation was implemented to evaluate the performance of the linear logistic classifier defined in
logisticRegression.m and used in Problem 8. Recall that the k-fold cross validation score is defined as

L̂k =
1
N

k∑

i=1

∑

j ∈ fold i

(
yj −

(
σ(ŵT

i xj) ≥ 1/2
))2

,

where ŵi is fit to all samples except those in the ith fold. The resulting 10-fold cross-validation scores are
tabulated below.

Classification Task 10-fold C.V. Error
1 vs. {2, 3, 4} 1.68%
2 vs. {1, 3, 4} 4.25%
3 vs. {1, 2, 4} 3.50%
4 vs. {1, 2, 3} 1.63%

Note that, due to the computational complexity of applying gradient descent in logisticRegression.m, the
stopping criterion was chosen as the iteration when the change in error was 5.0 (0.01 was used in Problem
8). As a result, these estimates should be considered upper-bounds on the 10-fold cross-validation score.

From the table it is apparent that digit 2 is most difficult to classify, whereas digits 1 and 4 are the
easiest. To better understand this result, examine the subset of training samples shown in Figure 4(a).
Figure 4(b) shows the average across all members in each class and summarizes the general appearance of
each digit. Recall that the decision rule under the linear logistic classifier is given by σ(wT x) ≥ 1/2. If we
examine the argument of the logistic function, we find that wT x is simply a linear combination of the input
values in x. In other words, the parameters w of the logistic transform should have a strong positive weight
for pixels that are unique to the class, while those shared by other classes should have a strong negative
weight. From Figure 4(b) it is apparent that, on average, digit 2 does not possess many pixels which are not
present in other classes. As a result the classification performance is diminished for the 2 vs. {1, 3, 4} task.

(a) Sample of the MNIST handwritten data set (b) Class averages for digitData.mat

Figure 4: Samples and class averages obtained from a subset of the MNIST data set.
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Problem 10
Recall that a principled multi-class generalization of the logistic regression model is the softmax model.
Under this model the class posterior for class c becomes

p̂(c|x) =
exp(wT

c x)∑C
y=1 exp(wT

y x)
,

where c ∈ {1, . . . , C}. Show that for the case C = 2 the softmax model is equivalent to logistic regression.
That is, show that for any two (d+1)-dimensional parameter vectors w1 and w2 in the softmax model, there
exists a (d + 1)-dimensional parameter vector v such that

exp(wT
1 x)

exp(wT
1 x) + exp(wT

2 x)
= σ(vT x). (23)

Recall from class on 9/29/06 that the logistic function σ is given by

σ(x) =
1

1 + e−x
. (24)

Substituting Equation 24 into Equation 23 we obtain the following expression.

exp(wT
1 x)

exp(wT
1 x) + exp(wT

2 x)
=

1
1 + exp(−vT x)

We can simplify this equation to obtain a closed form expression for v in terms of w1 and w2, as follows.

1
1 + exp(−vT x)

=
exp(wT

1 x)
exp(wT

1 x) + exp(wT
2 x)

· exp(−wT
1 x)

exp(−wT
1 x)

=
exp(wT

1 x−wT
1 x)

exp(wT
1 x−wT

1 x) + exp(wT
2 x−wT

1 x)

=
exp(0)

exp(0) + exp
(
(wT

2 −wT
1 )x

)

=
1

1 + exp (−(w1 −w2)T x)

In conclusion, we find that the softmax model for C = 2 is equivalent to logistic regression (i.e., Equation 23
is valid for all w1 and w2) with the following relationship between v, w1, and w2.

v = w1 −w2

(QED)
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4 Näıve Bayes and Text Classification

Problem 11
Part 1: In this problem we will implement a Näıve Bayes (NB) spam filter for e-mail based on word
occurrence (modeled as a Bernoulli random variable). The NB classifier will use binary features corresponding
to the keywords provided in dictionary.mat. The jth binary feature is defined as

φj(x) =
{

1 if dictionary{j} appears in x at least once,
0 otherwise. (25)

Write and turn in code for computing the binary features, estimating the parameters of the Bernoulli
distributions (using a maximum likelihood procedure), and the NB classifier. Train the classifier using
trainSpam and trainHam1. Report the classification errors on the test data sets.

The binary feature vectors defined by Equation 25 were computed on lines 18-52 of estimateFeatures.m,
with email parsing handled by the provided routines parseDirectory.m and parseEmail.m. Each Bernoulli
parameter θ̂jc (i.e., for feature j and class c) was determined on lines 54-57 of estimateFeatures.m using
the ML estimator found in Problem 3. The NB classifier was implemented in filterNB.m using the decision
rule derived on class on 9/27/06; a document with feature vector x = [φ1, . . . , φm]T is classified as

ŷ = 1 ⇔
m∑

j=1

φj log(θj1) +
m∑

j=1

(1− φj) log(1− θj1)−

m∑

j=1

φj log(θj0)−
m∑

j=1

(1− φj) log(1− θj0)+ (26)

log(P1)− log(P0) ≥ 0,

where “ham” is class 0 and SPAM is class 1 and P1 and P0 are the class priors (assumed to be equal).
Using the Bernoulli parameters obtained with the trainSpam and trainHam1 data sets, prob11.m was used
to parse testSpam and testHam and estimate the empirical errors for the NB classifier. The results are
tabulated below.

Total Error “Ham” Error SPAM Error
27.333% 40.0% 14.667%

Note that the “ham” error corresponds to the percentage of legitimate emails that got classified as SPAM,
whereas the SPAM errors are the percentage of SPAM emails that were classified as legitimate.

Part 2: Now repeat the experiment using trainHam2 instead of trainHam1. Report the resulting classifi-
cation errors. Compare the performance of the classifiers trained on different non-SPAM examples.

The procedure in the previous part was repeated using trainHam2 instead of trainHam1. The results are
tabulated below.

Total Error “Ham” Error SPAM Error
23.667% 29.333% 18.0%

Note that, overall, both NB classifiers achieved a total error rate less than 30%, which is significantly better
than a random guess. Comparing these results, it also appears that the classifier trained on trainHam2
performed better than that trained on trainHam1. Intuitively, one would expect that trainHam2 must
more-closely represent the variation within the test “ham” data set testHam than trainHam1. That is,
the estimates of the Bernoulli parameters using trainHam2 must more accurately model the parameters for
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(b) Correlation between testHam and trainHam2

Figure 5: Comparison of estimated Bernoulli parameters using various “ham” training data sets.

testHam. We can evaluate this hypothesis by estimating the Bernoulli parameters on both training sets and
the test data and examining their similarity. This procedure was implemented using compareBernoulli.m.
The resulting scatter plots are shown in Figure 5. Note that the scatter plot in Figure 5(b), comparing
testHam with trainHam2, demonstrates that the Bernoulli parameters are overestimated using trainHam2.
As a result, fewer emails are classified as spam and, for the limited test set of 150 emails, this resulted in a
lower overall classification error, but an increased error rate for SPAM.
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Problem 12
In practice, the cost of misclassifying a valid e-mail is much higher than the cost of misclassifying SPAM.
To be concrete, assume that the loss incurred by failing to detect a SPAM message is 1, whereas the loss
incurred by mistakenly flagging a non-SPAM is 3. Explain how to modify the NB classifier in Problem 11
to account for this asymmetric loss. Implement the necessary changes and report the new test errors as well
as the average loss on the test set.

Recall from class on 9/20/06 that the risk R(h), or the expected loss, of a two-way classifier h(x) is given by

R(h) =
∫

x

2∑
c=1

L(h(x), c)p(x, y = c)dx

=
∫

x

[
2∑

c=1

L(h(x), c)p(y = c|x)

]
p(x)dx.

To minimize the risk R(h) it is sufficient to minimize the conditional risk R(h|x) for any x such that

R(h|x) =
2∑

c=1

L(h(x), c)p(y = c|x). (27)

For the 0/1 loss model, Equation 27 leads to the NB classifier given in Equation 26. For an asymmetric loss
function, however, we must define a loss matrix such that

Lij =
(

0 3
1 0

)
, (28)

where Lij is the loss incurred for classifying a class i e-mail as class j, where class 0 is legitimate e-mail
and class 1 is SPAM. As described on page 42 in [2], the decision rule that minimizes the expected loss will
assign each sample x such that

ŷ = 1 ⇔ L01p(y = 0|x) + L11p(y = 1|x) ≤ L00p(y = 0|x) + L10p(y = 1|x).

Substituting for the loss matrix from Equation 28, applying Bayes rule, and taking the logarithm of the
inequality gives the following form for the decision rule.

ŷ = 1 ⇔ log
(

p(x|y = 1)P1

p(x|y = 0)P0

)
≥ log(3) (29)

Under the Näıve Bayes assumption the features are independent given their class such that

p(x|y = c) =
m∏

j=1

p(φj(x)|y = c). (30)

Substituting Equation 30 into Equation 29 and applying the properties of the logarithm gives the following
form for the decision rule.

ŷ = 1 ⇔
m∑

j=1

log (p(φj(x)|y = 1))−
m∑

j=1

log (p(φj(x)|y = 0)) + log(P1)− log(P0) ≥ log(3) (31)

Under the Bernoulli distribution φj ∼ Bern(φj |θjy) and we have

p(φj(x)|y = 0) = θ
φj

j0 (1− θj0)1−φj (32)

p(φj(x)|y = 1) = θ
φj

j1 (1− θj1)1−φj . (33)
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Substituting Equation 32 and Equation 33 into Equation 31 gives the following form for the Näıve Bayes
classifier.

ŷ = 1 ⇔
m∑

j=1

φj log(θj1) +
m∑

j=1

(1− φj) log(1− θj1)−

m∑

j=1

φj log(θj0)−
m∑

j=1

(1− φj) log(1− θj0)+

log(P1)− log(P0) ≥ log(3)

Using the Bernoulli parameters obtained with trainSpam and trainHam1, prob12.m was used to parse
testSpam and testHam and estimate the empirical errors and average loss for the modified NB classifier.
The results are tabulated below.

Total Error “Ham” Error SPAM Error Average Loss
26.667% 38.667% 14.667% 0.653

Similarly, the results using trainSpam and trainHam2 are tabulated below.

Total Error “Ham” Error SPAM Error Average Loss
24.0% 29.333% 18.667% 0.533

Note that, overall, the modifications made to the NB classifier had a negligible effect on the classification
errors. Assuming that there isn’t an error in our classifier, this can be attributed to putting too small a
penalty on misclassifying “ham” e-mails. As discussed in [4], the cost of false positives vs. false negatives
can range from 1 up to 1000; experimentally, it was found that increasing the penalty on misclassifying
legitimate e-mails did lead to a reduced classification error for “ham” (while increasing the SPAM and total
error rate).
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Problem 13
Now suppose that the NB classifier is limited to ten features. Propose a method for selecting the ten keywords
from the provided dictionary, list the keywords, and report the test error of the resulting classifier. (Use
trainSpam and trainHam2 for training.)

The original dictionary contains 1, 420 words. In general, we would like to select the ten most discriminative
words. That is, we’d like some words that are highly-indicative of SPAM and some that are highly-indicative
legitimate email. While mutual information metrics are typically used for this selection task, I propose a sim-
pler selection procedure based on maximizing the difference in the Bernoulli parameters between classes [4].
More specifically, I select the ten words with the highest value of the “Bernoulli difference” ∆j , where

∆j , |θj1 − θj0|.

In general, these keywords are outliers in the “Bernoulli space” shown in Figure 6.
This criterion was implemented using redEstimateParams.m; this Matlab routine parsed the training

sets trainSpam and trainHam2 and selected the following words.

Keyword θj0 θj0

jm@localhost 0.887 0.232
yyyy@localhost 0.886 0.234

imap 0.899 0.380
plain 0.877 0.449
drop 0.912 0.498
our 0.122 0.625
smtp 0.275 0.724
your 0.329 0.770
br 0.083 0.506

please 0.113 0.525

Note that the reduced dictionary was saved as redDictionary.mat with Bernoulli parameters given in
redBernParams.mat. Examining the keywords it is apparent that the selection criterion found five “ham”
keywords, given by {jm@localhost, yyyy@localhost, imap, plain, drop}, and five “spam” words, given
by {our, smtp, your, br, please}. A review of trainHam2 finds that many SPAM emails contain HTML
fragments; as a result, it is not surprising that br, the HTML clear tag, was selected as a top SPAM keyword.
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Figure 6: Keyword selection in the Bernoulli parameter space.
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The reduced dictionary was used with the NB classifier developed in Problem 11 and evaluated on the
test data given in testSpam and testHam. The results are tabulated below.

Total Error “Ham” Error SPAM Error
35.667% 26.0% 45.333%

Not surprisingly, the overall performance of the NB classifier is significantly degraded in comparison to the
results for the complete dictionary found in Problem 11. More specifically, the reduction in the “ham” error
rate is more than compensated for by the dramatic increase in SPAM classification errors. In general we
find that, while a reduced dictionary may be more efficient, care must be taken to select enough keywords
to maintain acceptable classification errors.
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Problem 14: Extra Credit
Instead of binary features we could use a representation that encodes relative frequencies of words. Let Nj

be the number of times the jth keyword appears in the e-mail x. Then we can define

φ′j(x) , Nj/N, (34)

where N =
∑m

j=1 Nj . Propose a distribution model for these features and ML estimator(s) for its parame-
ter(s). Build a Näıve Bayes classifier using these features and report its performance on the test set using
0/1 loss. What can you say about the validity of the NB assumptions?

First, note that φ′j(x) will be a continuous random variable on the interval [0, 1]. As a result, we propose
to model φ′j(x) using a Gaussian distribution. Recall from pages 78 in [2] that the Gaussian distribution
N (x|µ, σ2) has the following form.

N (x|µ, σ2) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)

From Problem 8 of Problem Set 1, the ML estimators for the mean µ and varance σ2 are given by the
following expressions.

µ̂ML =
1
N

N∑

i=1

xi and σ̂2
ML =

1
N

N∑

i=1

(xi − µ̂ML)2

The Matlab routine freqEstimateParams.m was used to compute the relative frequency features defined by
Equation 34 and estimate the parameters of the Gaussian distributions using the ML estimators.

Recall from class on 9/26/06 that the two-category Näıve Bayes classifier, under 0/1 loss, is given by

hNB(x) = 1 ⇔ log


P1

P0

m∏

j=1

p(φj(x)|y = 1)
p(φj(x)|y = 0)


 ≥ 0, (35)

where P1 and P1 are the class priors (assumed to be equal). For the Gaussian distribution φj ∼ N (φj |µjy, σ2
jy)

and we have

p(φj(x)|y = 0) =
1√

2πσj0

exp

(
− (φj − µj0)2

2σ2
j0

)
(36)

p(φj(x)|y = 1) =
1√

2πσj1

exp

(
− (φj − µj1)2

2σ2
j1

)
. (37)

Substituting Equations 36 and 37 into Equation 35, we obtain the following decision rule for the NB classifier.

hNB(x) = 1 ⇔ 1
2σ2

j0

m∑

i=1

(φj − µj0)2 − 1
2σ2

j1

m∑

i=1

(φj − µj1)2 +

m log
(

σj0

σj1

)
+ log(P1)− log(P0) ≥ 0

Using the Gaussian parameters obtained with the trainSpam and trainHam1 data sets, prob14.m was used
to parse testSpam and testHam and estimate the empirical errors for the NB classifier (implemented in
freqFilterNB.m). The results are tabulated below.

Total Error “Ham” Error SPAM Error
22.333% 20.667% 24.0%

The results using trainSpam and trainHam2 are tabulated below.
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Total Error “Ham” Error SPAM Error
24.333% 9.333% 39.333%

In general, the overall error rate is comparable to that achieved with 0/1 loss in Problem 11 using word
occurrence under a Bernoulli distribution. Note, however, that the error rate for legitimate email is signifi-
cantly reduced. As a result, the relative word frequency feature under a Gaussian distribution does a better
job at blocking spam while making fewer classification errors on legitimate emails. Further discussion of
distribution selection and features is covered in [4].

Note that the Näıve Bayes assumption, namely that the features are independent given the class, is not
satisfied for the relative word frequency feature in Equation 34. Due to their normalization, we must have∑m

j=1 φ′j(x) = 1. As a result, if a single value of φ′j(x) is close to one, then the remaining values must be near
zero – clearly violating the independence assumption. Although the NB assumption does not hold, we find
that the results are still comparable to those previously seen in Problem 11 through 13. This illustrates that,
even if the NB assumption doesn’t hold, one can still proceed as if it does and obtain a simple classification
scheme with some utility.
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