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1 Regularization

Problem 1

Show that the solution for the ridge regression problem

ŵridge = argmax
w

−
N∑

i=1

(yi −wTxi)2 − λ
d∑

j=0

w2
j (1)

is given by ŵridge = (XTX + λI)−1XTy.

This proof is conceptually similar to the one presented in class on 9/8/06 for unregularized linear
least-squares regression in d dimensions. Let us begin by defining the following quantities:

X =




1 x
(1)
1 · · · x

(1)
d

1 x
(2)
1 · · · x

(2)
d

...
...

. . .
...

1 x
(N)
1 · · · x

(N)
d




, y =




y1

y2
...

yN


 , w =




w0

w1
...

wd


 ,

where X is the design matrix and {x1,x2, . . . ,xN} and y are the observed points and their associ-
ated labels, respectively. By inspection, Equation 1 can be rewritten as

ŵridge = argmax
w

−(y −Xw)T (y −Xw)− λwTw.

Recall the following matrix identities: (AB)T = BTAT and (A+B)T = AT +BT . Applying these
expressions to the previous equation gives the following result.

ŵridge = argmax
w

−yTy + yTXw + wTXTy −wTXTXw − λwTw

Note that the maximum (or minimum) of this expression must occur where the derivative with
respect to w equals zero. Equating the first partial derivative with zero, we find

∂

∂w
{−yTy + yTXw + wTXTy −wTXTXw − λwTw

}
= 0

⇒ −∂(yTy)
∂w

+
∂(yTXw)

∂w
+

∂(wTXTy)
∂w

− ∂(wTXTXw)
∂w

− λ
∂(wTw)

∂w
= 0.

Note that the first term is independent of w and can be eliminated to obtain the following equation.

∂(yTXw)
∂w

+
∂(wTXTy)

∂w
=

∂(wTXTXw)
∂w

+ λ
∂(wTw)

∂w
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Also note that yTXw is a scalar quantity, so we must have yTXw = (yTXw)T = wTXTy.
Applying this identity to the previous equation leads to the following expression.

2
∂(wTXT)

∂w
y =

∂(wTXTXw)
∂w

+ λ
∂(wTw)

∂w
(2)

Recall the following identities for the derivatives of scalar and matrix/vector forms [4].

∂(xTA)
∂x

= A
∂(xTAx)

∂x
= (A + AT )x

∂(x)
∂x

=
∂(xT )

∂x
= I

From the first identity, we have
∂(wTXT)

∂w
= XT . (3)

Similarly, the second identity implies

∂(wTXTXw)
∂w

=
(
XTX + (XTX)T

)
w = 2XTXw. (4)

Finally, from the third identity and application of the chain rule, we have

∂(wTw)
∂w

= 2w. (5)

Substituting Equations 3, 4, and 5 into Equation 2 gives the following expression.

2XTy = 2XTXw + 2λw = 2(XTX + λI)w

⇒ XTy = (XTX + λI)w.

Assuming the inverse of the square matrix XTX + λI exists, we can solve for w in the previous
equation to yield the desired expression for the solution of the ridge regression problem.

ŵridge = (XTX + λI)−1XTy

(QED)
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Problem 2

In this problem we will examine the effect of L2 regularization on the bias-variance tradeoff in
regression. Using genData.m draw samples from h(x) = sin(x) + ν for ν ∼ N (ν; 0, 0.1). Modify
regularizationCode.m to implement ridge regression. Discuss the bias-variance tradeoff.

Let us begin by summarizing the modifications made to regularizationCode.m. Lines 12-18 define
the simulation parameters. Lines 20-87 apply 10th-order polynomial ridge regression to L = 200
test sets with N = 20 points in each. Finally, on lines 89-100, the bias, variance, and test error are
plotted. Note that line 37 applies ridge regression, as defined in Problem 1, to test set l to obtain
the predictions y(l)(xn) at each point xn. In addition, the following definitions are used on lines
45-53 to define the bias, variance, and test error [2].

ȳ(x) =
1
L

L∑

l=1

y(l)(x)

(bias)2 =
1
N

N∑

n=1

{ȳ(xn)− h(xn)}2 (6)

variance =
1
N

N∑

n=1

1
L

L∑

l=1

{y(l)(xn)− ȳ(xn)}2 (7)

Note that the prediction errors are typically specified as e(l)(x) = y(l)(x) − h(x), however for this
problem I will considered the test error to be given by the squared loss function as follows.

test error =
1
N

N∑

n=1

1
L

L∑

l=1

{y(l)(xn)− h(xn)}2 (8)

The resulting plots of (bias)2, variance, (bias)2 + variance, and test error are shown in Figure 1.

10
−1

10
0

10
1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

λ

 

 

bias
2

variance

bias
2

+ variance
test error

Figure 1: Comparison of squared bias, variance, their sum, and the test error.
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(a) λ = 0.05
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(b) λ = 0.05
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(c) λ = 0.61
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(d) λ = 0.61
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(e) λ = 7.40

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(f) λ = 7.40

Figure 2: Illustration of the dependence of bias and variance on the ridge regression parameter λ.
The left column shows the results of applying 10th-order polynomial ridge regression to 20 random
trials (with 20 points in each) drawn from the distribution defined in Problem 2. The right column
compares the average over 200 random tests sets (in red) to the true underlying function (in green).

4



CS 195-5: Machine Learning Problem Set 3 Douglas Lanman

Several trends are apparent from an examination of Figure 1. First, we note that the regular-
ization parameter λ effectively controls the bias-variance tradeoff. That is, for a small value of λ,
the estimated model tends to have low bias, but high variance. For large values of λ, the estimated
model tends to have low variance, but high bias. Note that these observations are consistent with
the individual and average models shown in Figure 2.

From these observations it is apparent that we would like to select a value of the regularization
parameter that leads to an effective bias-variance tradeoff and, ultimately, a low test error. In order
to investigate this issue quantitatively, we can apply the decomposition of the expected loss derived
in class on 9/25/06. Following the derivation in Chapter 3.2 of [2], we can express the test error
{y(x;D)− h(x)}2 on a data set D as

{y(x;D)− h(x)}2 = {y(x;D)− ED[y(x;D)] + ED[y(x;D)]− h(x)}2

= {y(x;D)− ED[y(x;D)]}2 + {ED[y(x;D)]− h(x)}2+
2{y(x;D)− ED[y(x;D)]}{ED[y(x;D)]− h(x)},

where the expectation over the ensemble of data sets D is denoted by ED. Taking the expectation
of this expression with respect to D yields the following equation for the expected loss.

ED[{y(x;D)− h(x)}2]︸ ︷︷ ︸
expected loss

= {ED[y(x;D)]− h(x)}2

︸ ︷︷ ︸
(bias)2

+ED[{y(x;D)− ED[y(x;D)]}2]︸ ︷︷ ︸
variance

(9)

We can approximate Equation 9 using Equations 6, 7, and 8 to obtain the following expression.

1
N

N∑

n=1

1
L

L∑

l=1

{y(l)(xn)− h(xn)}2

︸ ︷︷ ︸
test error

=
1
N

N∑

n=1

{ȳ(xn)− h(xn)}2

︸ ︷︷ ︸
(bias)2

+
1
N

N∑

n=1

1
L

L∑

l=1

{y(l)(xn)− ȳ(xn)}2

︸ ︷︷ ︸
variance

Recall that, according to Equation 8, the test error is defined to be the squared loss; as a result, we
obtain the familiar decomposition of the expected loss (i.e., test error) as the sum of the squared
bias and variance. This result is confirmed by the plots in Figure 1. Specifically, we find that the
plot of the test error is identical to the plot of (bias)2 + variance.

In conclusion, we find that the regularization parameter λ = 0.61 that achieves a minimum
value of (bias)2 + variance corresponds to the value that leads to a minimum error on the test
set. This example illustrates model selection from a frequentist perspective; that is, the minimum
error for a test set can be achieved with the optimal bias-variance tradeoff given by the value of
the regularization parameter minimizing (bias)2 + variance. As discussed on page 152 in [2], this
interpretation is instructive, however in practical circumstances a single data set will be available for
training – preventing a direct determination of the optimal value of the regularization parameter.
As a result, we are left with the heuristic: λ should neither be too small nor too large.
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Problem 3

In this problem we will investigate the effect of regularization on classifiers. Specifically, we will
consider the two-dimensional quadratic logistic regression problem, i.e.

p(1|x) = 1/
(
1 + exp(−w0 − w1x1 − w2x2 − w3x

2
1 − w4x

2
2)

)
.

Modify your logistic regression code to implement the following regularized objective.

ŵ = argmax
w

N∑

i=1

log p(yi|xi;w)− λ(w2
3 + w2

4). (10)

Plot the decision boundaries obtained for the data in lrDataApricot.mat with λ = {0, 5, 20, 100, 500}.
Discuss the effect of regularization on the geometry of the decision boundary.

Let’s begin our discussion by reviewing the modifications made to logisticRegression.m. First,
note that the modified objective function is implemented on line 46. In addition, the modified
Hessian H is given by the expression on line 38. Finally, we note that the gradient expression
on line 34 (and in gradient.m) was modified to add the correct penalty-related term. We can
derive this term in a manner similar to that presented in class on 9/29/06. First, note that the
log-likelihood (under the regularized logistic regression objective) can be expressed as follows.

`(XN ;w) =
N∑

i=1

log p(yi|xi;w)− λ(w2
3 + w2

4) (11)

Recall that the update rule for the Newton-Raphson algorithm is given by

wnew = wold + H−1 ∂

∂w
`(XN ;w).

From Equation 11, the gradient of the log-likelihood `(XN ;w) is given the following expression.

∂

∂w
`(XN ;w) =

∂

∂w

N∑

i=1

log p(yi|xi;w)− λ
∂

∂w
(w2

3 + w2
4)

Recall from class on 10/2/06 that the gradient of the first term is given by XT (y − σ(Xw)), where
X is the design matrix. The gradient of the regularization term can be computed directly as follows.

∂

∂w
(w2

3 + w2
4) =

[
0, 0, 0,

∂ w2
3

∂w3
,
∂ w2

4

∂w4

]T

= [0, 0, 0, 2w3, 2w4]T

Substituting this result into the previous equation gives the desired expression for the gradient.

∂

∂w
`(XN ;w) = XT (y − σ(Xw))− 2λ[0, 0, 0, w3, w4]T (12)

The decision boundaries shown in Figure 3 were plotted using prob3.m. From these plots
it is apparent that increasing λ (i.e., the degree of regularization) causes the decision
boundary to become nearly linear. That is, for λ = 0 there is no regularization and the
decision boundary is a circular arc, as shown in Figure 3(e). As we increase the value of λ in
Equation 12, we are effectively preventing the quadratic terms {w3, w4} from being very large. As
a result, the quadratic decision boundary is constrained to a set of linear coefficients. This effect is
apparent in the near-linear decision boundary resulting from λ = 500 (i.e., a relatively large value
of the regularization parameter), as shown in Figure 3(d).
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(c) λ = 100
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(d) λ = 500
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Figure 3: Decision boundaries for the regularized logistic classifier trained on lrDataApricot.mat.
The decision boundary, for each value of the regularization parameter λ, is shown as a solid black
line. The contour lines denote level sets of the logistic function evaluated using the optimal regres-
sion parameters ŵ, with red and blue lines indicated values close to 1 and 0, respectively.
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2 Support Vector Machines

Problem 4

Let {xi, yi}, i = 1, . . . , N be the training samples and their labels, and let αi, i = 1, . . . , N be the
Lagrange multipliers found by solving the Support Vector Machine (SVM) optimization problem.
Recall that the SVM classifier is given by

ŷ(x) = sign

(
w0 +

∑

αi>0

αiyixT
i x

)
. (13)

Write down the expression for the optimal value of w0.

In the following analysis we limit ourselves to the case where the training samples are linearly-
separable. Recall from the lecture on 10/11/06 that, since the samples are linearly-separable, we
can always find w such that

yi(w0 + wTxi) > 0, ∀i = 1, . . . , N.

In fact, by adjusting the value of ‖w‖, we can further guarantee that

yi(w0 + wTxi) ≥ 1, ∀i = 1, . . . , N.

As was done in class, this gives us the freedom to select y∗(w0 + wTx∗) = 1 for the set of points
{x∗, y∗} closest to the decision surface implicitly defined by Equation 13. Recall that the set
of support vectors S (i.e., the training samples {xi, yi} for which ai > 0) are the closest points
equidistant to the decision surface. As a result, we have

ys

(
w0 + wTxs

)
= 1, ∀s ∈ S

⇒ ys

(
w0 +

∑

i∈S
αiyixT

i xs

)
= 1,∀s ∈ S

since, by the lecture on 10/11/06, we have w =
∑

i∈S αiyixi. Multiplying both sides of this
expression by the class label ys gives

y2
s

(
w0 +

∑

i∈S
αiyixT

i xs

)
= ys ⇒ w0 = ys −

∑

i∈S
αiyixT

i xs, (14)

since y2
s = 1. Note that Equation 14 gives a solution for w0 for any support vector s ∈ S. In order

to provide a numerically robust solution for the bias term w0, we propose averaging the estimates
obtained with each support vector, such that

w0 =
1

NS

∑

s∈S

(
ys −

∑

i∈S
αiyixT

i xs

)

where NS is the number of support vectors. (Note that this derivation follows a similar approach
as that presented in Chapter 7.1 in [2].)
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Problem 5

If no test data is available we may estimate the risk of a classifier by computing the leave-one-out
cross-validation error εN . That is,

εN =
1
N

N∑

i=1

L(ŷ−i(xi), yi), (15)

where L is the zero-one loss function and ŷ−i(x) is the prediction of the SVM trained on all the
data except the ith sample. Suppose that, after training a SVM on a data set with N examples,
we obtain m support vectors (i.e., m out of N samples have non-zero multipliers αi). If εN is the
leave-one-out estimate of SVM risk on the same training data set, show that

εN ≤ m

N
.

Let’s assume that the training samples are separable under the selected SVM kernel. As a result,
if we train the SVM classifier on all input samples, then the classification error must satisfy

L(ŷ(xi), yi) = 0, ∀i = 1, . . . , N. (16)

In other words, since the training samples are separable, the SVM classifier is error-free. At this
point, we recall a key property for SVMs: the decision boundary is completely determined by the
set of support vectors S [2]. As a result, if we remove any individual data point i /∈ S, then the
resulting decision boundary will be identical to that found by training on the complete data set.
From this observation and the result given in Equation 16, we can conclude that

L(ŷ−i(xi), yi) = 0,∀i /∈ S. (17)

Substituting Equation 17 into Equation 15 gives the following expression for the leave-one-out
estimate of SVM risk.

εN =
1
N

N∑

i=1

L(ŷ−i(xi), yi) =
1
N

∑

s∈S
L(ŷ−s(xs), ys) (18)

Note that, if we remove a support vector, the SVM decision boundary may be altered. As a result,
we could potentially misclassify the data point we removed. In general, we could misclassify any
support vector s ∈ S such that

L(ŷ−s(xs), ys) ≤ 1, ∀s ∈ S. (19)

Substituting Equation 19 into Equation 18 gives the desired bound for the leave-one-out estimate
of SVM risk.

εN =
1
N

∑

s∈S
L(ŷ−s(xs), ys) ≤ 1

N

∑

s∈S
1 =

m

N

∴ εN ≤ m

N

(QED)
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