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1 Support Vector Machines

Problem 1

In this problem we will implement Support Vector Machine (SVM) classification using Radial Basis
Function (RBF) kernels. Make the following modifications to the supplied support code to complete
the SVM implementation.

1. Write the function Krbf.m which takes as its arguments two sets of examples XN and ZM

(as column vectors) and the RBF kernel width σ and returns the kernel matrix K.

2. Fill in the two missing pieces in trainSVM.m: the calculation of H and the calculation of w0.

Try to avoid loops and express as much of the computation as possible in matrix-vector notation.

Let’s begin by examining the general structure of trainSVM.m: the skeleton code which implements
SVM training. On lines 20-23 the training samples in data are parsed. On lines 25-29 we evaluate
an arbitrary kernel matrix (specified by the user as kernel with a single parameter param). Next,
on lines 31-61 we apply Matlab’s built-in quadratic programming quadprog routine to determine
the support vectors by solving for the Lagrange multipliers α with the margin/slack variable trade-
off given by C. On lines 63-66 we determine w0 (i.e., the bias parameter). Finally, the SVM data
structure is constructed on lines 68-74.

Recall from the lecture on 10/11/06 that, in order to construct a SVM in the non-separable
case, we need to solve the dual problem

argmax
α





N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi,xj)



 (1)

subject to
N∑

i=1

αiyi = 0, 0 ≤ αi ≤ C for all i = 1, . . . , N, (2)

where the Lagrange multipliers are given by α = (α1, . . . , αN )T , the labels of the training samples
{xi, yi} are given by y = (y1, . . . , yN )T , and the kernel matrix is K(xi,xj). Also recall, from the
Matlab documentation, that alpha = quadprog(H,f,A,b,Aeq,beq,l,u,x0) solves

argmin
α

1
2
αTHα + fT α, (3)

such that Aα ≤ b, Aeqα = beq, and l ≤ α ≤ u. (4)

Comparing Equations 3 and 4 to Equations 1 and 2, it is apparent that the following variable
definitions must hold: f = (−1, . . . ,−1)T , A = b = [], Aeq = yT , beq = 0, l = (0, . . . , 0)T , and
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u = (C, . . . , C)T . (Note that, since A = b = [], quadprog will ignore the constraint Aα ≤ b).
Taking a closer look at Equations 1 and 3, we find

argmin
α

1
2
αTHα + fT α = argmax

α





N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi,xj)



 .

Given that f = (−1, . . . ,−1)T , we can reduce this expression to obtain

argmin
α

1
2
αTHα = argmin

α

1
2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi,xj)

⇒ αTHα =
N∑

i=1

N∑

j=1

αiαjyiyjK(xi,xj),

since minimizing the left-hand expression is equivalent to minimizing the right-hand one. Note that
αTHα is a quadratic form [7] which can be expressed as

αTHα =
N∑

i=1

N∑

j=1

αiαjHij ⇒ Hij = yiyjK(xi,xj).

From this expression it is apparent that, in Matlab’s matrix-vector notation, H = (y*y’).*K, where
K is the kernel matrix and y*y’ is the outer product of y with itself. Note that this form for H
was used on line 34 in trainSVM.m.

At this point, we turn our attention to deriving a robust estimator for the bias parameter ω0.
Recall from Problem Set 3 that, for a linear kernel SVM without slack variables, we found

w0 =
1

NS

∑

s∈S

(
ys −

∑

i∈S
αiyixT

i xs

)
,

where S denotes the set of NS support vectors (i.e., the training samples {xi, yi} for which ai > 0).
From the lecture on 10/11/06 we recall that, if 0 < αi < C, then the corresponding support vector
xi will be on the margin. As a result, we propose the following estimator for w0 which once again
estimates the bias term using the support vectors on the margin.

w0 =
1

NM

∑

m∈M

(
ym −

∑

i∈S
αiyiK(xi,xm)

)

In this expression, we use M to denote the set of NM support vectors that satisfy the margin
constraint with equality (i.e., those that satisfy 0 < αi < C). Note that this form for w0 was used
on lines 63-66 in trainSVM.m.

To complete our modifications, we briefly review the implementation of the RBF kernel used in
Krbf.m. As required by the problem statement, K = Krbf(X,Z,d), where K is the kernel matrix,
{X, Z} are two data sets, and d is the standard derivation σ of the Gaussian kernel such that

Kij = exp
(
− 1

σ2
‖xi − zj‖2

)
. (5)

Note that the kernel matrix K was computed on lines 19-29 by explicitly evaluating Equation 5 in
a loop over the samples contained in the smaller of the two data sets.
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Problem 2

Train a SVM on dataTrain in dataSVM.mat using the RBF kernel for σ = {0.1, 1, 2, 5, 10, 50}
and C = 10. Use testSVM.m to evaluate the performance of the resulting SVMs on dataTrain,
dataTest, and dataTest2. Plot the errors as a function of σ, as well as the decision boundaries
obtained with each of the six SVMs. Briefly explain the behavior apparent in the results.

Before presenting the results, we briefly review the function of each m-file required to implement
SVM classification. First, note that trainSVM.m and Krbf.m are used to implement SVM training
using a RBF kernel. Next, observe that testSVM.m and svmDiscriminant.m can be used to test
a trained SVM classifier; svmDiscriminant.m takes a trained SVM classifier and returns a real
number, the sign of which can be used to classify a given test sample. The m-file testSVM.m
evaluates the performance on a test set and uses plotData.m and plotSVM.m to plot the results.

The Matlab script prob2.m was used to train SVM classifiers for σ = {0.1, 1, 2, 5, 10, 50} and
C = 10 using dataTrain from dataSVM.mat. After training, the classification errors were estimated
on both the original training set, as well as the two test sets: dataTest and dataTest2. The
resulting classification errors are tabulated below. In addition, the decision boundaries, support
vectors, and misclassified samples are shown in Figures 1, 2, and 3.

σ Errors on dataTrain Errors on dataTest Errors on dataTest2
0.1 0.0% 33.75% 38.75%
1 0.0% 5.0% 17.5%
2 0.0% 2.5% 13.75%
5 0.0% 3.75% 16.25%
10 0.0% 0.0% 15.0%
50 0.0% 0.0% 3.75%

From Figure 1 it is apparent that the standard deviation σ of the RBF kernel has a strong
influence on the resulting decision boundary. As discussed in class on 10/11/06, when σ is small we
expect every training sample to become a support vector – leading to overfitting. This is confirmed
by the results for σ = 0.1 shown in Figure 1(a). In this example, every point has become a support
vector and the SVM decision boundary simply encloses the samples from the yi = +1 class. Since
we can interpret the RBF kernel in Equation 5 as a similarity measure, increasing σ tends to allow
samples located further apart to be classified as similar. This behavior is apparent in Figure 1. As
we increase σ, the decision boundary “relaxes” from a tight bound around the yi = +1 samples to
a nearly-linear boundary separating the two classes.

While every value of σ leads to error-free classification of the training samples, the value of σ
has a strong impact on the generalization behavior of the SVM. From the tabulated errors, we find
that the SVMs with σ = {10, 50} are error-free when tested using dataTest. Similarly, the SVMs
with σ = {10, 50} achieve very low classification errors for dataTest2.

In addition to controlling the “complexity” of the decision boundary, σ also plays an important
role in regulating the number of support vectors. As shown in Figure 1, if σ is either too small
or too large, then a majority of training samples are selected as support vectors – leading to poor
compression of the training data. Alternatively, for σ = {2, 5} there are fewer support vectors. In
conclusion, we find that the selection of σ is a bit of an artform – do you seek few support vectors to
compress the data or do you want more to potentially achieve better generalization performance?
It remains a task of the SVM architect to balance these demands for a given application.
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(f) σ = 50

Figure 1: Results of SVM training on dataTrain using a RBF kernel. The input samples {xi, yi}
are drawn from two classes, with yi = +1 denoted by N and yi = −1 denoted by H. The support
vectors and misclassified samples are indicated by green and magenta circles, respectively. The
decision boundary is shown as a black line. Finally, the decision regions are shaded as red and blue.
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Figure 2: SVM test results for dataTest using a RBF kernel. The input samples {xi, yi} are drawn
from two classes, with yi = +1 denoted by N and yi = −1 denoted by H. Misclassified samples are
indicated by magenta circles. The decision boundary is shown as a black line. Finally, the decision
regions are shaded as red and blue, corresponding to the +1 and −1 classes, respectively.
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Figure 3: SVM test results for dataTest2 using a RBF kernel. The input samples {xi, yi} are drawn
from two classes, with yi = +1 denoted by N and yi = −1 denoted by H. Misclassified samples are
indicated by magenta circles. The decision boundary is shown as a black line. Finally, the decision
regions are shaded as red and blue, corresponding to the +1 and −1 classes, respectively.
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2 Locally Weighted Regression

Problem 3

In this problem we will develop a scheme for locally-weighted regression (LWR) when the number
of k nearest neighbors is less than or equal to the dimension of the training data d (i.e., where
k ≤ d). Let X′ be the weighted k × d design matrix formed from the k nearest neighbors. In
this case, the matrix X′TX′ is not invertible and, as a result, the least-squares solution using the
pseudoinverse is not unique. How do you suggest solving for the regression coefficients?

Let’s begin by briefly reviewing locally-weighted regression (LWR). Assume XN = {x1, . . . ,xN}
and y = (y1, . . . , yN )T represent the training data points and their labels, respectively. Without
loss of generality, we denote the k nearest neighbors (in XN ) of a given test point x0 as x1, . . . ,xk.
In general, we can define the normalized weights c = (c1, . . . , ck)T such that

cl =
K(x0,xl)∑l

m=1 K(x0,xm)
, (6)

where K(x,x′) is a user-defined kernel function (e.g., the Gaussian kernel in Equation 5). For a
given regression scheme, we can form the weighted design matrix X′ and weighted label vector y′

using the unweighted quantities X and y as

X′ = CX and y′ = Cy, where C =




1
c1

. . .
ck


 . (7)

For example, in the case of simple linear regression, we have

X′ =




c1 c1x1

c2 c2x2
...

...
ck ckxN


 and y′ =




c1y1

c2y2
...

ckyN


 .

In general, the LWR prediction for the point x0 is obtained as the least-squares solution given by

ŷ0 = ŵTx0, where ŵ = (X′TX′)−1X′Ty′. (8)

Note that Equation 8 can only be applied when the inverse of X′TX′ exists. Recall from [6]
that, in order for the inverse of an N × N matrix to exist, the matrix must have full rank (i.e.,
the number of linearly independent rows or columns must be equal to N). In addition, we recall
Sylvester’s inequality which states that the rank of the product AB of two matrices A and B is
at most min(rank(A), rank(B)). Combining these previous statements, we find that the rank of
X′TX′ is at most the rank of X′ which, in turn, is bounded by min(k, d). As a result, if the number
of k nearest neighbors is less than or equal to the dimension d of the training data, then the d× d
matrix X′TX′ will be rank deficient and therefore noninvertible.

As described, we seek a scheme for solving rank-deficient least-squares regression problems (i.e.,
the case where k ≤ d). Inspired by previous problem sets, we propose a solution using regularization.
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Figure 4: Plot of the Gaussian kernel function K(x,x′) given by Equation 5.

Recall (e.g., from Problems 1, 2, and 3 in Problem Set 3) that regularization is an efficient scheme
for limiting the complexity of a model and preventing overfitting. In this context, we note that
there is insufficient data to fit the desired regression model and, as a result, we should limit the
model complexity in a similar manner. Recall that the least-squares solution in Equation 8 satisfies

ŵLSQ = argmin
w

N∑

i=1

(y′i −wTx′i)
2.

In order to ensure that X′TX′ is well-conditioned (i.e., that it has an inverse), we propose applying
ridge regression (RR) such that

ŵRR = argmin
w

N∑

i=1

(y′i −wTx′i)
2 + λ

d∑

j=0

w2
j .

From Problem 1 in Problem Set 3, we know that the solution of this equation yields an expression
for the regularized prediction ŷ0 given by

ŷ0 = ŵT
RRx0, for ŵRR = (X′TX′ + λI)−1X′Ty′, (9)

where λ ≥ 0 is a user-defined regularization parameter. In conclusion, we find that ridge regression
once again provides an efficient means for controlling model complexity and preventing overfitting
(in this case in a situation where insufficient data is available to fit the desired model).
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Problem 4

Part 1: Write a function lwrLinear.m that implements locally-weighted regression (LWR) in 1D
as an extension of the k nearest-neighbor regression (k-NN) routine knnLinear.m. This function
should fit a linear model to the weighted neighbors of a test point x0; the weights should be assigned
using the Gaussian kernel with fixed width σ = 0.2. Document the modifications to knnLinear.m.

Let’s begin by reviewing the structure of knnLinear.m. Lines 12-18 handle basic input parsing,
whereas lines 20-23 use findnn.m to evaluate the k nearest neighbors for each test sample. (Note
that findnn.m uses the subroutine lpnorm.m which, by default, computes the L1 norm between
input samples.) Lines 25-44 implement basic k-NN regression. Note that, on line 38, the solution
in Problem 3 is used when k ≤ d; otherwise, the standard least-squares estimate is used on line 40.

Following the scheme in Problem 3, knnLinear.m was modified to produce lwrLinear.m. Simi-
lar to knnLinear.m, lines 13-19 of lwrLinear.m parse the input. Lines 21-24 evaluate the k nearest
neighbors using findnn.m. Note, however, the addition of the LWR weight computation on lines
32-34 (which follow directly from Equation 6 using the Gaussian kernel in Equation 5). To complete
the LWR modifications, the weighting scheme from Equation 7 is implemented on lines 36-38.

Part 2: Using the training and test data in lwrData.mat, evaluate the LWR and k-NN models
for k = {1, 5, 30, 100}. For each k, plot the observed values of y and the fit obtained with both
regression models. Report the mean-squared prediction errors and briefly summarize the results.

Using prob4.m the k-NN and LWR linear regression models were applied to the data in lwrData.mat.
The resulting mean-squared prediction errors for each model are tabulated below. In addition, the
observed values are compared to the regression models in Figures 5 and 6.

k MSE for k-NN MSE for LWR
1 0.0865 0.0865
5 0.0564 0.0586
30 0.0805 0.0551
100 0.4471 0.0551

From the tabulated results, it is apparent that k has a strong impact on k-NN regression. As
shown in Figure 5, as we increase k, the model changes from a piecewise-continuous sinusoidal
approximation in (a) to a line segment in (d). As confirmed by the tabulated errors, k = 5 achieves
the lowest error on the test set. This is expected, since the corresponding regression in Figure 5(b)
appears to be the best approximation to the underlying distribution. As a result, we find that
k-NN is very sensitive to the value of k. As we increase k, we initially smooth the interpolating
function; however, if k becomes too large, then the fit smooths over too large a region.

In contrast to k-NN, LWR regression is less sensitive to the number of neighbors k. As shown
in Figure 6, as we increase k, the regression model converges to a smooth approximation. This
behavior can best be understood by examining the Gaussian kernel in Figure 4; note that the
weights fall off rapidly outside of several standard deviations (where σ = 0.2). Since neighboring
training samples are separated by a distance of 0.1, only about 5 neighbors will obtain significant
weights. This behavior is confirmed by the tabulated errors; for k ≥ 5, the resulting error does not
change significantly. In conclusion, LWR is less sensitive to k, but very sensitive to the value of
σ. As a result, both schemes require adjusting tuning parameters, however LWR tends to produce
smoother interpolating functions with minimum additional computation.
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Figure 5: Results of k nearest neighbor linear regression on the training data set in lwrData for
k = {1, 5, 30, 100}. The training data points {xi, yi} are denoted by •, whereas the test data points
are denoted by •. The estimated interpolating function, for each k, is indicated by a green line.
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Figure 6: Results of locally-weighted linear regression (LWR) on the training data in lwrData for
k = {1, 5, 30, 100}. The training data points {xi, yi} are denoted by •, whereas the test data points
are denoted by •. The estimated interpolating function, for each k, is indicated by a green line.
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3 The EM Algorithm

Problem 5

Part 1: In this problem we will derive and implement the EM algorithm for a discrete space in
which the observations are d-dimensional binary vectors. We will model distributions in this space
as a mixture of k multivariate Bernoulli distributions, such that

p(x|θ,p) =
k∑

i=1

pip(x|θi) =
k∑

i=1

pi

d∏

j=1

θ
xj

ij (1− θij)1−xj , (10)

where the ith component of the mixture is parametrized by θi = (θi1, . . . , θid)T and the mixing
probabilities are subject to

∑k
i=1 pi = 1. Begin by writing the exact expression for the posterior

probability p(zic|xi; θ,p) in terms of xi and the elements of θ and p. Implement the resulting
expression in estep.m and fill in the missing code for the component parameter updates in mstep.m.

Let’s begin by introducing the set of binary indicator variables zi = (zi1, . . . , zik)T , where

zic =
{

1 if yi = c,
0 otherwise.

At this point, we recall that Bayes’ Theorem is given by

Pr(Ei |B) =
Pr(Ei ∩B)

Pr(B)
=

Pr(Ei) Pr(B |Ei)∑k
j=1 Pr(Ej) Pr(B |Ej)

,

where E1, E2, . . . , Ek are mutually disjoint sets such that
⋃k

i=1 Ei = E [5]. We can apply Bayes’
Theorem to derive the desired expression for the posterior probability p(zic|xi; θ,p) as follows.

p(zic|xi; θ,p) =
p(zic)p(xi|θc)∑k

j=1 p(zij)p(xi|θj)
=

pcp(xi|θc)∑k
j=1 pjp(xi|θj)

, with p(x|θi) =
d∏

j=1

θ
xj

ij (1− θij)1−xj (11)

(a) Sample of the MNIST handwritten data set (b) Class averages for digitTrain

Figure 7: Samples and class averages obtained from a subset of the MNIST data set.
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(a) p1 = 0.136 (b) p2 = 0.128 (c) p3 = 0.092 (d) p4 = 0.091

(e) p5 = 0.082 (f) p6 = 0.081 (g) p7 = 0.077 (h) p8 = 0.076

(i) p9 = 0.074 (j) p10 = 0.063 (k) p11 = 0.054 (l) p12 = 0.046

Figure 8: The 12 components θc and their mixing probabilities pc for the Bernoulli mixture model,
as estimated by applying the EM algorithm to the training data in digitDataBinary.mat.

Note that this expression is equivalent to the one derived in class on 11/1/06, as well that on page
446 in [2]. To complete our discussion of the basic EM algorithm for Bernoulli mixture models, we
note that the following update equations were provided for the M-step.

p(t+1)
c =

N
(t)
c

N
and θ(t+1)

c =
1

N
(t)
c

N∑

i=1

xip(zic|xi; θ(t),p(t)), with N (t)
c =

N∑

i=1

p(zic|xi; θ(t),p(t)) (12)

The general EM algorithm for Bernoulli mixtures was implemented using runem.m. The E-
step, given by Equation 11, was implemented on line 18 of estep.m. The M-Step, defined by
Equation 12, was implemented on lines 13-25 of mstep.m. The subroutines logLikelihood.m and
conditional.m were used to compute the log-likelihood given by the logarithm of Equation 10.

Part 2: Run your implementation of the EM algorithm on digitTrain using k = 12 components.
Plot the resulting Bernoulli mixture parameters θc for each component. Briefly discuss the results.

The Matlab routine prob5.m was used to estimate the Bernoulli mixture model using the training
data in digitDataBinary.mat. The resulting components are shown in Figure 8. In comparison
to the simple class averages shown in Figure 7(b), the Bernoulli mixture model represents a greater
degree of variation within the underlying training data. For instance, from the training data excerpt
shown in Figure 7(a), it is apparent that the first two components of the mixture model capture the
two prominent styles for the number one: vertical and slanted. In conclusion, we find that the EM
algorithm has provided an effective unsupervised learning method for discovering both the types
of numerals present in the handwriting samples, as well as their major variants.
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Problem 6

Part 1: Write a Matlab function that performs Bayesian Information Criterion (BIC) model
selection with Bernoulli mixture EM. Using this function, apply the EM algorithm separately to
the training data for each digit class from 1 to 4. Let θc = {θc1, . . . , θck} and pc = {pc1, . . . , pck}
be the estimated mixture parameters for class c, where k is the number of mixture components
selected based on BIC. Plot the resulting Bernoulli parameters θc for each class-specific mixture.

Rather than explicitly selecting the number of mixture components, as was done in Problem 5, we
can choose the mixture model which maximizes the Bayesian Information Criterion (BIC) given by

BIC(θ, XN ) , log p(XN ; θ)− π(θ)
2

log N, (13)

where π(θ) is the number of free parameters in the model. As described in [3], the Bernoulli mixture
model (BMM) satisfies

πBMM (θ) = k(d + 1)− 1, (14)

where each dimension has k free parameters (one for each mixture component) and the mixing
probabilities yield an additional k − 1 free parameters (since the normalization requirement can
always be used to eliminant one mixing probability).

The Matlab routine prob6.m was used to implement BIC model selection for the training data
in digitDataBinary.mat. The main section implementing model selection is on lines 50-100. Note
that Equations 13 and 14 are implemented on line 72 of prob6.m. The resulting plots of BIC
scores and log-likelihoods are shown in Figure 9. Note that, without the penalty term due to model
complexity, the log-likelihood does not appear to saturate. If we consider the BIC scores, however,
it is apparent that the selection criterion leads to an optimal model corresponding to the where
the BIC score begins decreasing (denoted by black circles in Figure 9). For the provided training
data, we report the following number of mixture components: k1 = 4, k2 = 8, k3 = 7, andk4 = 7.
The corresponding plots of the Bernoulli mixture components are shown in Figures 10-13.
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Figure 9: Illustration of BIC model selection. The BIC and log-likelihood are denoted as solid and
dashed lines, respectively. The selected number of mixture components are shown as black circles.
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(a) p1 = 0.277 (b) p2 = 0.273 (c) p3 = 0.232 (d) p4 = 0.218

Figure 10: The 4 components θc and their mixing probabilities pc for the Bernoulli mixture model,
as found by applying BIC model selection to the first digital class in digitDataBinary.mat.

(a) p1 = 0.139 (b) p2 = 0.139 (c) p3 = 0.136 (d) p4 = 0.132

(e) p5 = 0.130 (f) p6 = 0.122 (g) p7 = 0.104 (h) p7 = 0.098

Figure 11: The 8 components θc and their mixing probabilities pc for the Bernoulli mixture model,
as found by applying BIC model selection to the second digital class in digitDataBinary.mat.

(a) p1 = 0.178 (b) p2 = 0.170 (c) p3 = 0.168 (d) p4 = 0.144

(e) p5 = 0.122 (f) p6 = 0.113 (g) p7 = 0.106

Figure 12: The 7 components θc and their mixing probabilities pc for the Bernoulli mixture model,
as found by applying BIC model selection to the third digital class in digitDataBinary.mat.
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(a) p1 = 0.223 (b) p2 = 0.174 (c) p3 = 0.136 (d) p4 = 0.122

(e) p5 = 0.117 (f) p6 = 0.116 (g) p7 = 0.113

Figure 13: The 7 components θc and their mixing probabilities pc for the Bernoulli mixture model,
as found by applying BIC model selection to the fourth digital class in digitDataBinary.mat.

(a) (b) (c) (d)

Figure 14: ML estimates of the digit class-conditionals modeled as a single Bernoulli distribution.

Part 2: Now write down the expression of the optimal Bayes classifier, under the assumption
that the estimated mixture model is accurate (and assuming equal priors for each digit class).
Implement this classifier in Matlab. In addition, construct a “baseline” classifier that models each
class-conditional as a single Bernoulli distribution. Report the test error obtained with these two
classifiers on digitTest and briefly explain the results.

First, recall from Problem 3 in Problem Set 2, that the ML estimator for a Bernoulli random variable
X is given by θ̂ = 1

N

∑N
i=1 xi, where p(X|θ) = θX(1 − θ)1−X . Generalizing to d dimensions, we

have p(x|θi) =
∏d

i=1 θxi
i (1− θi)1−xi and the corresponding ML estimator is given by

θ̂i =
1
N

N∑

j=1

xij , for i = {1, . . . , d}. (15)

In other words, in order to estimate the “baseline” model with a single Bernoulli component, we
simply average the observations in each class. The resulting distributions are tabulated it Figure 14.

At this point we recall, from class on 9/20/06, that the optimal Bayes classifier is given by

h∗(x) = argmax
c

{log pc(x) + log Pc} . (16)
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From Equation 10 we also know that, for the Bernoulli mixture model, we have

p(x|θc,pc) =
k∑

i=1

pcip(x|θci)

Substituting this expression into Equation 16 and assuming the priors are equal (i.e., Pc = 1/4),
we obtain the following expression for the optimal Bayes classifier for the Bernoulli mixture model.

h∗BMM (x|θ,p) = argmax
c

{log p(x|θc,pc)− log 4} (17)

Similarly, if we substitute the estimates obtained in Equation 15, then we obtain the following
form for the optimal Bayes classifier in the “baseline” case (i.e., where we have a single mixture
component with probability pc = 1).

h∗baseline(x|θ) = argmax
c

{log p(x|θ)− log 4} (18)

The classifiers in Equations 17 and 18 were implemented in prob6.m on lines 155-211 and lines
214-240, respectively. Each classifier was evaluated using the test data in digitDataBinary.mat;
the results are tabulated below.

Test Data Single Bernoulli Distribution Error Bernoulli Mixture Model Error
All Classes 6.35% 2.90%

Class 1 6.00% 3.00%
Class 2 11.6% 4.00%
Class 3 5.40% 2.20%
Class 4 2.40% 2.40%

First, note that the baseline results are similar to those we obtained using linear logistic regres-
sion in Problem 9 of Problem Set 2. Once again, we find that digit 2 is the most difficult to classify.
For the baseline classifier, we report an overall error rate of 6.35%. Not surprisingly, we find that
the Bernoulli mixture model significantly outperforms the baseline model – with an overall error
rate of 2.9%. This improvement can be directly attributed to the quality of the models represented
in Figure 10-13 compared to those in Figure 14. As with logistic regression, we find that a single
Bernoulli distribution cannot separate the digit classes robustly. That is, many pixels share high
likelihoods across the classes, whereas the mixture model is capable of distinguishing the variations
within a class and, as a result, achieves better classification results. In conclusion, we find that
unsupervised learning has benefits for both clustering and classification tasks.
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