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1 Boosting

Problem 1

In this problem we will derive a few of the properties of the Adaptive Boosting (AdaBoost) algo-
rithm. As presented in the provided pseudocode, Zm denotes the sum of the weights W

(m)
i at the

beginning of iteration m + 1. Begin by showing that the choice of the weighting coefficients αm

minimizes Zm. Furthermore, show that Zm is monotonically decreasing as a function of m.

From the provided pseudocode we have the following definitions for the normalization Zm and
weights W

(m)
i after iteration m

Zm =
N∑

i=1

W
(m)
i (1)

W
(m)
i = W

(m−1)
i e−αmyihm(xi), (2)

where the initial weights are defined to be W
(0)
i = 1/N . Combining these expressions gives the

following form for the normalization Zm after iteration m.

Zm =
N∑

i=1

W
(m−1)
i e−αmyihm(xi) (3)

For this problem we assume that the set of training examples {(xi, yi)} are drawn from two classes
such that yi = ±1. For such two-class classifcation problems, the form of yihm(xi) is particularly
simple; if an example is correctly classified, then yihm(xi) = 1. If an example is misclassified, then
yihm(xi) = −1. As a result, Equation 3 can be decomposed as

Zm = W
(m−1)
+ e−αm + W

(m−1)
− eαm , (4)

where the weighting coefficients W
(m−1)
+ and W

(m−1)
− are defined as

W
(m−1)
+ ,

∑

i∈{hm(xi)=yi}
W

(m−1)
i =

1
2

N∑

i=1

(1 + yihm(xi))W
(m−1)
i (5)

W
(m−1)
− ,

∑

i∈{hm(xi) 6=yi}
W

(m−1)
i =

1
2

N∑

i=1

(1− yihm(xi))W
(m−1)
i . (6)

Note that W
(m−1)
+ corresponds to the sum of the weights for the correctly-classified examples,

whereas W
(m−1)
− corresponds to the sum of the weights for the misclassified examples. Also note
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that Zm−1 =
∑N

i=1 W
(m−1)
i = W

(m−1)
+ + W

(m−1)
− . At this point, we observe that the minimum (or

maximum) of Zm must occur where the derivative with respect to αm equals zero. Equating the
first partial derivative of Equation 4 with zero, we find

∂Zm

∂αm
=

∂

∂αm

{
W

(m−1)
+ e−αm + W

(m−1)
− eαm

}
= −W

(m−1)
+ e−αm + W

(m−1)
− eαm = 0

⇒ αm =
1
2

log

(
W

(m−1)
+

W
(m−1)
−

)
. (7)

Now we turn our attention to the form of αm provided in the pseudocode. Recall that αm is defined
in terms of the weighted training error εm such that

αm =
1
2

log
(

1− εm

εm

)
(8)

εm =
1
2

(
1−

N∑

i=1

W
(m−1)
i

Zm−1
yihm(xi)

)
. (9)

Applying Equations 1 and 6 to Equation 9 gives the following form for the weighted training error.

εm =
1

2Zm−1

(
Zm−1 −

N∑

i=1

W
(m−1)
i yihm(xi)

)
=

1
2Zm−1

(
N∑

i=1

W
(m−1)
i −

N∑

i=1

W
(m−1)
i yihm(xi)

)

⇒ εm =
1

Zm−1

(
1
2

N∑

i=1

(1− yihm(xi))W
(m)
i

)
=

W
(m−1)
−

Zm−1

Substituting this expression for εm into Equation 8 gives the following form for αm.

αm =
1
2

log
(

1− εm

εm

)
=

1
2

log

(
Zm−1 −W

(m−1)
−

W
(m−1)
−

)
=

1
2

log

(
W

(m−1)
+

W
(m−1)
−

)

Since this expression is identical to that obtained by minimizing Zm with respect to αm (i.e.,
Equation 7), we conclude that αm in the AdaBoost pseudocode (i.e., Equation 8) minimizes Zm.

To prove that Zm is monotonically decreasing as a function of m, we begin by substituting
Equation 7 into Equation 4.

Zm = W
(m−1)
+ exp

{
−1

2
log

(
W

(m−1)
+

W
(m−1)
−

)}
+ W

(m−1)
− exp

{
1
2

log

(
W

(m−1)
+

W
(m−1)
−

)}

= W
(m−1)
+

√√√√W
(m−1)
−

W
(m−1)
+

+ W
(m−1)
−

√√√√W
(m−1)
+

W
(m−1)
−

= 2
√

W
(m−1)
+ W

(m−1)
−

Substituting for Zm−1 and εm reduces this expression to the following form.

Zm = 2 Zm−1

√√√√
(

Zm−1 −W
(m−1)
−

Zm−1

)(
W

(m−1)
−

Zm−1

)
=

(
2
√

(1− εm)εm

)
Zm−1

Recall that the weighted training error must satisfy 0 ≤ εm < 1/2. As a result, the coefficient
of Zm−1 in the previous expression satisfies 0 ≤ 2

√
(1− εm)εm < 1 and we conclude the Zm is

monotonically decreasing.
∴ Zm < Zm−1 for εm < 1/2

(QED)
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Problem 2

In the previous problem we established that Zm is monotonically decreasing and that AdaBoost
chooses an αm for which the decrease is fastest. Now show that the training error (i.e., the average
number of misclassified training samples) of the combined classifier

HM (x) =
M∑

m=1

αmhm(x)

ŷM (x) = sign (HM (x))

is bounded from above by ZM .

Recall that the test error LN (i.e., empirical loss) can be defined in terms of the 0/1 loss as

LN , 1
N

N∑

i=1

L0/1 (yi, ŷM (xi)) , where L0/1(y, ŷ) ,
{

0 if y = ŷ,
1 otherwise.

From class on 11/22/06 and pages 659-661 of [2], we observe that the empirical loss can be bounded
from above using the exponential loss function Lexp.

LN ≤ 1
N

N∑

i=1

Lexp (yi,HM (xi)) =
1
N

N∑

i=1

e−yiHM (xi) (10)

To show that the right-hand side of this expression is proportional to ZM , let’s “unroll” the recursive
definition of Zm given in Problem 1. Recall that W

(0)
i = 1/N and Z0 =

∑N
i=1 W

(0)
i = 1; substituting

for W
(0)
i in Equation 2 gives the following expressions for W

(1)
i and Z1.

W
(1)
i =

1
N

e−α1yih1(xi) ⇒ Z1 =
1
N

N∑

i=1

e−α1yih1(xi)

Continuing to the next iteration, we obtain the following forms for W
(2)
i and Z2.

W
(2)
i =

1
N

e−yi(α1h1(xi)+α2h2(xi)) ⇒ Z2 =
1
N

N∑

i=1

e−yi(α1h1(xi)+α2h2(xi))

By induction, we conclude that the “unrolled” expressions for W
(M)
i and ZM are as follows.

W
(M)
i =

{
1
N exp

(
−yi

∑M
m=1 αmhm(xi)

)
if M > 1

1
N if M = 1

=
{

1
N e−yiHM (xi) if M > 1

1
N if M = 1

⇒ ZM =
{

1
N

∑N
i=1 e−yiHM (xi) if M > 1

1 if M = 1
(11)

Substituting Equation 11 into Equation 10 proves the test error LN is bounded from above by ZM .

∴ LN ≤ ZM

(QED)
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2 Hidden Markov Models

Problem 3

In the following problems we will examine the application of Hidden Markov Models (HMM) to
speech recognition. We will begin by implementing the forward-backward algorithm required by the
EM procedure for training an M state HMM with N observations. Write the function fwdback.m
with the signature

[alpha, beta, gamma, loglik] = fwdback(p0,P,px),

where p0 is the M×1 vector of initial state probabilities p0(s), P is the M×M matrix of transition
probabilities p(s → s′), and px is the M×N matrix of emission probabilities p(xt|st = s). Note that
the output arguments alpha, beta, and gamma are M×N matrices defining the forward, backward,
and posterior probabilities, respectively. Finally, loglik is the log-likelihood for the HMM defined
by the function inputs.

Let’s begin by briefly reviewing the forward-backward algorithm, as presented in class on 12/4/06
and in Section 13.2 of [2]. Most importantly, recall that the forward and backward probabili-
ties are defined recursively and must be normalized to prevent arithmetic underflow in practical
implementations. As a result, our implementation will use the scaled probabilities defined as

α̂1(s) = p0(s)p(x1|s1 = s)/c1

α̂t(s) =
1
ct

[
M∑

s′=1

α̂t−1(s′)p(s′ → s)

]
p(xt|st = s)

β̂N (s) = 1

β̂t(s) =
1

ct+1

M∑

s′=1

p(s → s′)p(xt+1|st+1 = s′)β̂t+1(s′)

γt(s) = α̂t(s)β̂t(s)

ξt(s, s′) = ctα̂t−1(s)p(xt|st = s′)p(s → s′)β̂t(s′),

where ct is selected such that
∑M

s′=1 α̂t(s) = 1. Recall that the likelihood function is given by the
product of the scaling factors such that the log-likelihood has the following form.

log p(x1, . . . ,xN ) =
N∑

t=1

log ct

The included implementation fwdback.m evaluates the scaled forward-backward algorithm as
defined above. First, on lines 22-25 we ensure that p0 is in column-vector form. On lines 27-34 we
extract the number of states M and number of observations N and allocate storage for the output
matrices. The forward probabilities are evaluated on lines 36-46. Note that the scaling factors
are determined on lines 44 and 45. Next, the backward probabilities are evaluated on lines 48-56
(using the previously-computed scaling factors). Finally, on lines 58-62 we evaluate the posterior
probabilities and the log-likelihood. In conclusion, we have provided a complete implementation of
the forward-backward algorithm for use with any HMM.
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Problem 4

As described in [5], HMMs can be applied to speech recognition by constraining the form of the
transition matrix such that p(i → j) is zero for i > j. The resulting constrained model is known
as a left-right HMM and can be used to represent the coherent parts of speech (i.e., phonemes).
In this situation the path through the states is restricted to subsequent states or remaining in the
same state. Show that if the transition probability p(i → j) is initialized to zero, it will remain
zero after each EM iteration. Explain how this fact can be used to implement left-right HMMs.

Recall from class on 12/1/06 and Section 13.2.1 of [2], that the E-step of the EM algorithm (also
known as the Baum-Welch algorithm) updates the transition probabilities p(i → j) using the pos-
terior transition probabilities ξt(i, j) obtained using the forward-backward algorithm. Specifically,
Equation 13.19 in [2] gives the updated transition probabilities after one EM iteration as follows.

pnew(i → j) =
∑N

t=2 ξt(i, j)∑M
k=1

∑N
t=2 ξt(i, k)

Substituting the expression for ξt(i, j) from Problem 3 obtains the following form for the update.

pnew(i → j) =
∑N

t=2 ctα̂t−1(i)p(xt|st = j)p(i → j)β̂t(j)∑M
k=1

∑N
t=2 ctα̂t−1(i)p(xt|st = k)p(i → k)β̂t(k)

In general the denominator of this expression will be non-zero, however the numerator will be zero
if p(i → j) = 0. That is, if the transition probability p(i → j) is zero, then the posterior transition
probability ξt(i, j) will be zero for all t = 2, . . . , N . As a result, we conclude that if a transition
probability is initialized to zero, it will remain zero after each EM iteration. (QED)

From this analysis we now know that the EM algorithm will not modify transition probabilities
that are initialized to zero. As a result, we can estimate the parameters of a left-right HMM
using the standard Baum-Welch algorithm by initializing the transition matrix A (where element
aij denotes p(i → j)) such that aij = 0 for i > j. More concretely, we should select an upper
triangular transition matrix as follows.

A =




a11 a12 . . . a1M

0 a22 . . . a2M
...

...
. . .

...
0 0 . . . aMM




Since the Baum-Welch iterations will not modify the elements initialized to zero, we find the
transition probabilities p(i → j) = 0 for i > j. In other words, it will never be possible to
transition to a state with a lower index – precisely the condition required in a left-right HMM.
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Problem 5

Building on the previous results, we now turn our attention to applying HMMs to speech recogni-
tion. Specifically, we will build a classifier to distinguish between spoken digits “five” and “nine”.
Using the provided implementation of the Baum-Welch algorithm and your version of fwdback.m,
train a HMM for each of the two digit classes using the included training data. Use M = 5 hidden
states and K = 10 components in the Mixture of Gaussians (MoG) model for each state. Turn in
your classification routine, report your test error, and discuss the results.

Before presenting the classification results, let’s review the system architecture. As described in
the problem statement, we first transform each training waveform to a Mel Frequency Cepstral
Coefficient (MFCC) representation using a set of Matlab routines by Dan Ellis [4]. (Recall that
the MFCC representation is commonly selected for speech recognition due to its ability to better
mimic the human auditory response than FFT or DCT representations.) After obtaining the MFCC
feature set, we train a left-right HMM for each digit class. Finally, we construct an optimal Bayes
classifier to assign a class label h∗(x) to x using the estimated HMM parameters θc as

h∗(x) = argmax
c

{log p(x|θc) + log Pc} ,

where Pc is the class prior and p(x|θc) is the likelihood of the sample x under the HMM.
The included Matlab script prob5.m implements the proposed speech recognition system. On

lines 21-34 we process each training sample to obtain the MFCC features. On line 37 we use
the provide function trainDigitHmm.m to estimate the HMM parameters using the Baum-Welch
algorithm. (Note that kmeans.m from Problem Set 5 is used to initialize the EM algorithm.) Finally,
we classify each test sample using classifyHMM.m on lines 39-56. We report the following training
and test errors for the speech recognition task.

Training Error Test Error
0% 2.40%

In conclusion, we find that the HMM correctly classified all training samples. In addition, only
2.40% of test samples were misclassified – a significant result considering the relative simplicity of
the left-right HMM. As a result we find that HMMs can be very effective for speech recognition tasks
if sufficient labeled training data is available. Note, however, that a practical speech recognition
system would have to perform several challenging pre-processing tasks in order to exploit this result,
including segmenting individual words from longer sentences.
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Problem 6

In this problem we will generate synthetic speech samples using the HMMs trained in the previous
problem. Write a function hmmSample.m that will generate a sequence of artificial observations
from a HMM with Mixture of Gaussian (MoG) emission models. Generate five sequences for each
digit class. Plot the spectrograms of the synthetic samples and compare to spectrograms generating
using test samples. What can you conclude about the ability of the HMM to capture the perceptual
aspects of the utterances? Are your findings consistent with the classification results?

The procedure for sampling from a HMM is very similar to that required for sampling from mixture
models. As described on page 613 in [2], we begin by randomly selecting an initial state s1 with
probabilities given by the state priors p0(s). Afterwards, we synthesize the first observation x1 using
the emission probabilities p(x1|s1 = s). (For this problem each state will have a Mixture of Gaus-
sians emission model.) Next, we randomly select the next state using the transition probabilities
p(s → s′). This process is repeated until the desired number of observations are obtained.

The proposed sampling procedure was implemented using hmmSample.m. On lines 15-21 we en-
sure that the covariance matrices are symmetric positive semi-definite (in order to use mvnrnd.m to
draw observations from a multivariate Gaussian distribution). Lines 23-38 implement the general
HMM-sampling procedure using the provided functions sample discrete.m and mvnrnd.m. Note
that the output of the sampling procedure will be a synthetic sample in the MFCC representation.
Using the provided function mel2wav.m we convert each synthetic sample to a waveform represen-
tation. Spectrograms for five synthetic and five actual speech samples, for each digit class, are
shown in Figures 1 and 2. In the first column of each figure we display the synthetic spectrograms.
For comparison we display five actual spectrograms in the second column. Finally, we note that
projection and reconstruction from the MFCC representation introduces numerous artifacts. As a
result, the final column in each figure shows the second column spectrograms reconstructed from
their corresponding MFCC representations. In general, we conclude that the MFCC conversion
process “smooths” the spectrums, but otherwise preserves the general features.

Overall, we find that the synthetic samples only roughly correspond with the actual samples. As
with the HMM-based handwriting synthesis presented on page 615 in [2], the generative process only
preserves general characteristics of the waveforms within each class. For example, in Figure 1(m)
we find that the synthetic sample has at least two identifiable states and that, within each state, the
frequency distribution approximately corresponds to the actual samples. In general, these results
can be attributed to the inherent limitations of the HMM. Within any state the emission model
is a simple Mixture of Gaussians which cannot capture temporal variations. As a result, a large
number of hidden states would be required to capture the fine details present in the spectrograms.
We conclude by observing that, while the synthetic samples only roughly approximate the true
spectrograms, this is not inconsistent with the classification results presented in Problem 5. In
particular, the HMMs are effective for determining which of two digit classes is more likely, however
they do not have a sufficient number of hidden states to achieve accurate speech synthesis.
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Figure 1: Comparison of synthetic and recorded spectrograms for the spoken digit “five”. The first
column shows HMM-generated speech, whereas the second shows actual test samples. The third
column shows the test sample spectrograms after reconstructing from their MFCC representations.
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Figure 2: Comparison of synthetic and recorded spectrograms for the spoken digit “nine”. The first
column shows HMM-generated speech, whereas the second shows actual test samples. The third
column shows the test sample spectrograms after reconstructing from their MFCC representations.
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