
ENGN 2911 I: 3D Photography and Geometry Processing

Assignment 2: Structured Light for 3D Scanning

Instructor: Gabriel Taubin∗

Assignment written by: Douglas Lanman†

26 February 2009

Figure 1: Structured Light for 3D Scanning. From left to right: a structured light scanning system
containing a pair of digital cameras and a single projector, two images of an object illuminated by
different bit planes of a Gray code structured light sequence, and a reconstructed 3D point cloud.

Introduction

The goal of this assignment is to build a 3D scanner using one or more digital cameras and a single
projector. While the “desktop scanner” [2] implemented in the previous assignment is inexpensive,
it has limited practical utility. The scanning process requires manual manipulation of the stick, and
the time required to sweep the shadow plane across the scene limits the system to reconstructing
static objects. Manual translation can be eliminated by using a digital projector to sequentially
display patterns (e.g., a single stipe translated over time). Furthermore, various structured light
illumination sequences, consisting of a series of projected images, can be used to efficiently solve
for the camera pixel to projector column (or row) correspondences.

In this assignment you will be directly extending the algorithms and software developed in the
previous homework. Similar to the “desktop scanner”, reconstruction will be accomplished using
ray-plane triangulation. The key difference is that correspondences will now be established by
decoding certain structured light sequences. We have provided a variety of data sets to compare
the performance and assess the limitations of each sequence.

1 Data Capture

This assignment does not require you to construct the actual scanning apparatus. Instead, we
have provided you with multiple test sequences collected using our implementation. As shown
in Figure 1, the system contains a single Mitsubishi XD300U DLP projector and a pair of Point
∗taubin@mesh.brown.edu
†dlanman@brown.edu

1



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

Figure 2: Structured light illumination sequences. (Top row, left to right) The first four bit planes
of a binary encoding of the projector columns, ordered from most to least significant bit. (Bottom
row, left to right) The first four bit planes of a Gray code sequence encoding the projector columns.

Grey GRAS-20S4M/C Grasshopper video cameras. The projector and cameras are positioned to
provide sufficient reconstruction baselines for ray-plane triangulation. The projector is capable of
displaying 1024×768 24-bit RGB images at 50-85 Hz [3]. The cameras capture 1600×1200 24-bit
RGB images at up to 30 Hz [5]. The data capture was implemented in Matlab. The cameras
were controlled using custom wrappers for the FlyCapture SDK [6], and fullscreen control of the
projector was achieving using the Psychophysics Toolbox [8]. Data collection will be demonstrated
in class, and we encourage students to bring their own objects to add to the test database.

The primary benefit of introducing the projector is to eliminate the mechanical motion required
in “swept-plane” scanning systems (e.g., laser striping or the “desktop scanner” from the previous
assignment). Assuming minimal lens distortion, the projector can be used to display a single column
(or row) of white pixels translating against a black background; thus, 1024 (or 768) images would
be required to assign the correspondences between camera pixels and projector columns (or rows)
in our system. After establishing the correspondences and calibrating the system, a 3D point cloud
could be reconstructed using ray-plane triangulation. However, a simple swept-plane sequence does
not fully exploit the projector. Since we are free to project arbitrary 24-bit color images, one would
expect there to exist a sequence of coded patterns, besides a simple translation of a single stripe,
that allow the camera-projector correspondences to be assigned in relatively few frames. In general,
the identity of each plane can be encoded spatially (i.e., within a single frame) or temporally (i.e.,
across multiple frames), or with a combination of both spatial and temporal encodings. There are
benefits and drawbacks to each strategy. For instance, purely spatial encodings allow a single static
pattern to be used for reconstruction, enabling dynamic scenes to be captured. Alternatively, purely
temporal encodings are more likely to benefit from redundancy, reducing reconstruction artifacts.
A comprehensive assessment of such codes was presented by Salvi et al. [10].

In this assignment we will focus on purely temporal encodings. While such patterns are not
well-suited to scanning dynamic scenes, they have the benefit of being easy to decode and are
robust to surface texture variation, producing accurate reconstructions for static objects (with the
normal prohibition of transparent or other problematic materials). A simple binary structured light
sequence was first proposed by Posdamer and Altschuler [7] in 1981. As shown in Figure 2, the
binary encoding is simply a sequence of binary images in which each frame represents a single bit
plane of the binary representation of the integer indices for the projector columns (or rows). For

2



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

Bin2Gray(B)
1 n← length[B]
2 G[1]← B[1]
3 for i← 2 to n
4 do G[i]← B[i− 1] xor B[i]
5 return G

Gray2Bin(G)
1 n← length[G]
2 B[1]← G[1]
3 for i← 2 to n
4 do B[i]← B[i− 1] xor G[i]
5 return B

Table 1: Pseudocode for converting between binary and Gray codes. (Left) Bin2Gray accepts an
n-bit Boolean array, encoding a decimal integer, and returns the Gray code G. (Right) Conversion
from a Gray to a binary sequence is accomplished using Gray2Bin.

example, column 546 has a binary representation of 1000100010 (ordered from the most to the least
significant bit). Similarly, column 546 of the binary structured light sequence has an identical bit
sequence, with each frame displaying the next bit.

Considering the projector-camera arrangement as a communication system, then a key question
immediately arises; what binary sequence is most robust to the known properties of the channel
noise process? At a basic level, we are concerned with assigning an accurate projector column/row
to camera pixel correspondence, otherwise triangulation artifacts will lead to large reconstruction
errors. Gray codes were first proposed as one alternative to the simple binary encoding by Inokuchi
et al. [4] in 1984. The reflected binary code was introduced by Frank Gray in 1947 [11]. As shown
in Figure 2, the Gray code can be obtained by reflecting, in a specific manner, the individual bit-
planes of the binary code. Pseudocode for converting between binary and Gray codes is provided
in Table 1. For example, column 546 has a Gray code representation of 1100110011, as given
by Bin2Gray. The key property of the Gray code is that two neighboring code words (e.g.,
neighboring columns in the projected sequence) only differ by one bit (i.e., adjacent codes have a
Hamming distance of one). As a result, the Gray code structured light sequence tends to be more
robust to decoding errors than a simple binary encoding.

What to turn in: Implement a function named bincode to generate a binary structured light
sequence. The inputs to this function should be the width w and height h of the projected image.
The output should be a sequence of 2dlog2 we + 2dlog2 he + 2 uncompressed images; the first two
images should consist of an all white and an all black image, respectively. The next 2dlog2 we images
should contain the bit planes of the binary sequence encoding the projector columns, interleaved
with the binary inverse of each bit plane (to assist in decoding). The last 2dlog2 he images should
contain a similar encoding for the projector rows. Implement a similar function named graycode
to generate the Gray code structured light sequence. Use your program to generate binary and
Gray encodings for a projector with a resolution of 640×480.

2 Image Processing

The algorithms used to decode the structured light sequences described in the previous section
are relatively straightforward. For each camera we must decide whether a given pixel is directly
illuminated by the projector in each displayed image. If it is illuminated in any given frame,
then the corresponding code bit is set high, otherwise it is set low. The decimal integer index of
the corresponding projector column (or row) can then be recovered by decoding the received bit
sequences for each camera pixel. In order to determine whether a given pixel is illuminated, we
must assign a threshold. For instance, 2dlog2 we+ 2 images could be used to encode the projector

3



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

Figure 3: Decoding structured light illumination sequences. (Left) Camera image captured while
projecting an all white frame. Note the shadow cast on the background plane, prohibiting re-
construction in this region. (Middle) Typical decoding results for a Gray code structured light
sequence, with projector row and camera pixel correspondences represented using a jet colormap
in Matlab. Points that cannot be assigned a correspondence with a high confidence are shown in
black. (Right) Similar decoding results for projector column correspondences.

columns, with the additional two images consisting of all white and all black frames. The average
intensity of the all white and all black frames could be used to assign a per-pixel threshold; the
individual bit planes of the projected sequence could then be decoded by comparing the received
intensity to the threshold.

In practice, a single fixed per-pixel threshold results in decoding artifacts. For instance, cer-
tain points on the surface may only receive indirect illumination that is scattered from directly-
illuminated points. In certain circumstances the scattered light may led to a bit error, in which an
unilluminated point appears illuminated due to scattered light. Depending on the specific struc-
tured light sequence, such bit errors may produce significant reconstruction errors in the 3D point
cloud. One solution is to project each bit plane and its inverse, as was done in Section 1. While
2dlog2 we frames are now required to encode the projector columns, the decoding process is less
sensitive to scattered light, since a variable per-pixel threshold can be used. Specifically, we can
determine whether a bit is high or low depending on whether a projected bit-plane or its inverse is
brighter at a given pixel. Typical decoding results are shown in Figure 3.

As with any communication system, the design of structured light sequences must account
for anticipated artifacts introduced by the communication channel. In a typical projector-camera
system, decoding artifacts can be introduced from a wide variety of sources, including projector
or camera defocus, scattering of light from the surface, and temporal variation in the scene (e.g.,
varying ambient illumination or a moving object). We have provided a variety of data sets for
testing your decoding algorithms. In particular, the man sequence has been captured using both
binary and Gray code structured light sequences. Furthermore, both codes have been applied when
the projector is focused and defocused at the average depth of the sculpture. We encourage you to
study the decoding artifacts produced under these circumstances in your analysis.

What to turn in: Implement a function named bindecode to decode the binary structured
light sequences provided in the support code. The input to the function should be the directory

4



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

containing the sequences encoded using your solution from Section 1. The output should be a
pair of unsigned 16-bit grayscale images containing the decoded decimal integers corresponding
to the projector column and row that illuminated each camera pixel (see Figure 3). Use zero to
indicate that a given pixel cannot be assigned a correspondence, and label the projector columns
and rows starting from one. Implement a similar function named graydecode to decode the Gray
code structured light sequences. Turn in a plot of the decoded correspondences for the binary and
Gray code sequences, for both for the focused and defocused cases, for the man sequences. Note
that our implementation of the Gray code is shifted to the left, if the number of columns (or rows)
is not a power of two, such that the projected patterns are symmetric about the center column
(or row) of the image. The specific projected patterns are stored in the /data directory, and the
sample script slDisplay can be used to load and visualize the provided data sets.

3 Calibration

Calibration of the cameras is accomplished using the Camera Calibration Toolbox for Matlab [1],
following the approach used in the previous assignment. A sequence of 15 views of a planar checker-
board pattern, composed of 38mm×38mm squares, is provided in the /calib/cam/v1 directory. Also,
if you decide to apply color calibration, a sequence of images of a planar pattern for all red, blue, and
green projected illumination is also provided. The intrinsic and extrinsic camera calibration param-
eters, in the format specified by the toolbox, are provided in the /calib/cam/v1/Calib Result.mat.

Projector calibration, while not a fully-developed component of the Camera Calibration Toolbox
for Matlab, can be implemented by extending its functionality. In our implementation, we use the
popular method of projector calibration in which projectors are modeled as inverse cameras [9]. We
assume an ideal camera is modeled as a pinhole imaging system, with real-world cameras containing
additional lenses. In this model, a camera is simply a device that measures the irradiance along
incident optical rays. The inverse mapping, from pixels to optical rays, requires calibrating the
intrinsic and extrinsic parameters of the camera, as well as a lens distortion model. A projector
can be seen as the inverse of a camera, in which a certain irradiance is projected along each optical
ray, rather than measured. Once again, an ideal projector can be modeled as a pinhole imaging
system, with real-world projectors containing additional lenses that introduce distortion. A similar
intrinsic model, with a principal point, skew coefficients, scale factors, and focal lengths can be
applied to projectors. As a result, we apply a similar calibration pipeline as used for cameras.

To calibrate a projector, we assume that the user has a calibrated camera. All that is required to
calibrate the projector is a diffuse planar pattern with a small number of printed fiducials located
on its surface. In our design, we used a piece of poster board with four printed checkerboard
corners. As shown in Figure 4, a single image of the printed fiducials is used to recover the implicit
equation of the calibration plane in the camera coordinate system (e.g., using extrinsicDemo from
the previous assignment). A checkerboard pattern is then displayed using the projector. The
3D coordinate for each projected checkerboard corner is then reconstructed. A set of 2D to 3D
correspondences are then used to estimate the intrinsic and extrinsic calibration from multiple
views of the planar calibration object.

In this assignment you are not required to implement projector calibration. We have included 20
images of the projector calibration object in the /calib/proj/v1 directory. The printed fiducials were
horizontally separated by 406mm and vertically separated by 335mm. The camera and projector
calibration can be loaded from /calib/calib results/calib cam proj.mat. Note that the intrinsic and
extrinsic parameters are in the format used in the Camera Calibration Toolbox for Matlab. The
slCalib function can be used to visualize the calibration results.

5



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

Figure 4: Projector calibration. (Left) A planar calibration object with four printed checkerboard
corners is imaged by a camera. A projected checkerboard is displayed in the center of the calibration
plane. The physical and projected corners are manually detected and indicated with red and
green circles, respectively. (Right) The extrinsic camera and projector calibration is visualized
using slCalib. Viewing frusta for the cameras are shown in red and the viewing frustum for the
projector is shown in green. Note that the reconstruction of the first image of a single printed
checkerboard, used during camera calibration, is shown with a red grid, whereas the recovered
projected checkerboard is shown in green. Also note that the recovered camera and projector
frusta correspond to the physical configuration shown in Figure 1.

What to turn in: Implement a function campixel2ray to convert from camera pixel coordinates
to an optical ray expressed in the coordinate system of the first camera. Implement a similar
function projpixel2ray to convert from projector pixel coordinates to an optical ray expressed in
the common coordinate system of the first camera. Finally, implement a pair of functions called
projcol2plane and projrow2plane to convert from projected column and row indices, respectively,
to an implicit parametrization of the plane projected by each projector column and row in the
common coordinate system. Include a plot, possibly extended from slCalib, illustrating your
solution. For extra credit, we encourage you to implement your own projector calibration routines.

4 Reconstruction

The decoded set of camera and projector correspondences can be used to reconstruct a 3D point
cloud. Several reconstruction schemes can be implemented using the sequences described in Sec-
tion 1. The projector column correspondences can be used to reconstruct a point cloud using
ray-plane triangulation. A second point cloud can be reconstructed using the projector row corre-
spondences. Finally, the projector pixel to camera pixel correspondences can be used to reconstruct
the point cloud using ray-ray triangulation (i.e., by finding the closest point to the optical rays de-
fined by the projector and camera pixels). A simple per-point RGB color can be assigned by
sampling the color of the “all on” camera image for each 3D point. Reconstruction artifacts can
be further reduced by comparing the reconstruction produced by each of these schemes.

What to turn in: Implement a function named slReconstruct to reconstruct 3D point clouds for
the sequences provided in the support code. Describe your reconstruction algorithm, especially any

6



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

Figure 5: Reconstruction results for the man sequence using a focused Gray code.

procedures used to eliminate outliers, improve color accuracy, or otherwise reduce artifacts. Turn
in a VRML file for each data set, containing a single indexed face set with an empty coordIndex
array and a per-vertex color (similar to the VRML files you created in the previous assignment).

5 Post-processing and Visualization

The structured light scanner produces a 3D point cloud. Only points that are both imaged by a
camera and illuminated by a projector can be reconstructed. As a result, a complete 3D model of an
object would typically require merging multiple scans obtained by moving the scanning apparatus
or object (e.g., by using a turntable). These are topics for a later assignment, however we encourage
you to implement your solution so that measurements from multiple cameras, projectors, and 3D
point clouds can be merged in the future. For this assignment we will use point-based rendering to
display the acquired data using any VRML viewer that supports point rendering (see Figure 5).

What to turn in: Use the provided VRML viewer to save images of your reconstructed point
clouds. Turn in at least one reconstructed image, shown from a different viewpoint than any camera
image, for each provided sequence. Use these images to assess the benefits and limitations of the
binary and Gray code structured light sequences. Explain what modifications could be made to
improve the overall performance of the structured light scanner implemented in this assignment.

Submission Instructions

You should submit clear evidence that you have successfully implemented the “structured light
scanner”. In particular, you should submit: (1) an archive named 3DPGP-HW2-Lastname.zip con-
taining your source code without the /calib, /codes, or /data directories, (2) a typeset document
explaining your implementation, and (3) a set of reconstructed point clouds as VRML files. Make
sure to answer the questions posed at the end of each section. If you didn’t use Matlab, please
provide brief compilation instructions. Include a README file with a short description of every file
(except those we provided) in 3DPGP-HW2-Lastname.zip. Final solutions should be emailed to the
instructor at taubin@mesh.brown.edu. Please note that we reserve the right to request a 15 minute
demonstration if the submitted documentation is insufficient to assess your solution.

7



Assignment 2: Structured Light for 3D Scanning ENGN 2911 I (Spring 2009)

References

[1] Jean-Yves Bouguet. Camera calibration toolbox for Matlab. http://www.vision.caltech.
edu/bouguetj/calib_doc/.

[2] Jean-Yves Bouguet and Pietro Perona. 3d photography on your desk. http://www.vision.
caltech.edu/bouguetj/ICCV98/.

[3] Mitsubishi Electric Corp. XD300U user manual. http://www.projectorcentral.com/pdf/
projector_manual_1921.pdf.

[4] S. Inokuchi, K. Sato, and F. Matsuda. Range imaging system for 3-d object recognition. In
Proceedings of the International Conference on Pattern Recognition, 1984.

[5] Point Grey Research, Inc. Grasshopper IEEE-1394b digital camera. http://www.ptgrey.
com/products/grasshopper/index.asp.

[6] Point Grey Research, Inc. Using Matlab with point grey cameras. http://www.ptgrey.com/
support/kb/index.asp?a=4&q=218.

[7] J.L. Posdamer and M.D. Altschuler. Surface measurement by space encoded projected beam
systems. Computer Graphics and Image Processing, 18:1–17, 1982.

[8] Psychophysics Toolbox. http://psychtoolbox.org.

[9] R. Raskar, M. S. Brown, R. Yang, W.-C. Chen, G. Welch, H. Towles, B. Seales, and H. Fuchs.
Multi-projector displays using camera-based registration. In VIS ’99: Proceedings of the con-
ference on Visualization ’99, pages 161–168. IEEE Computer Society Press, 1999.

[10] J. Salvi, J. Pages, and J. Batlle. Pattern codification strategies in structured light systems. In
Pattern Recognition, volume 37, pages 827–849, April 2004.

[11] Wikipedia. Gray code. http://en.wikipedia.org/wiki/Gray_code.

8


