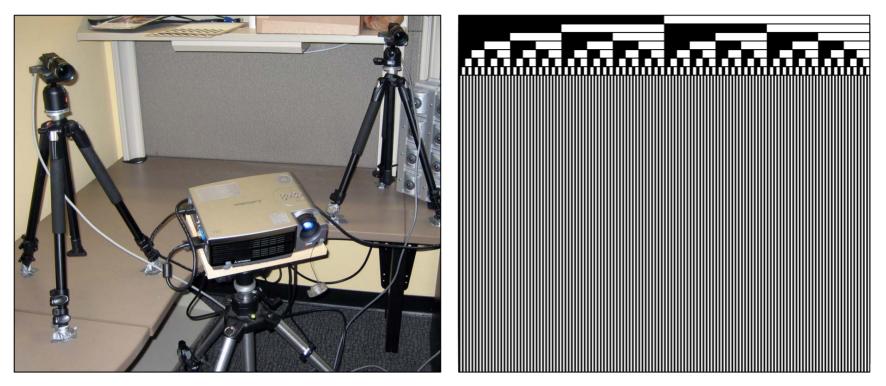

Structured Light for 3D Scanning Implementation Details

Douglas Lanman EN 292-34: 3D Photography May 15, 2007



3D Reconstruction using Structured Light [Inokuchi 1984]

- Recover 3D depth for each pixel using ray-plane intersection
- Determine correspondence between camera pixels and projector planes by projecting a temporally-multiplexed binary image sequence
- Each image is a bit-plane of the Gray code for each projector row/column

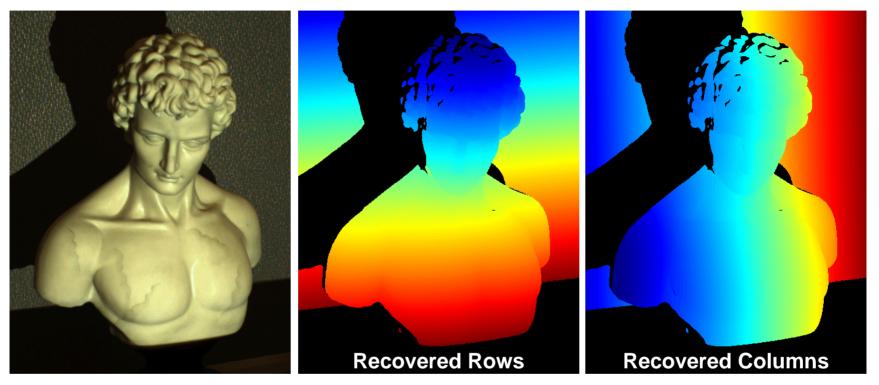


Binary Image Sequence

- Each image is a bit-plane of the binary code for each projector row/column
- Minimum of 10 images to encode 1024 columns or 768 rows
- In practice, 20 images are used to encode 1024 columns or 768 rows
- Projector/camera(s) must be roughly synchronized

Gray Code Image Sequence

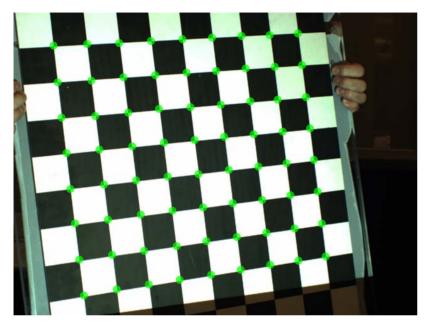
- Each image is a bit-plane of the Gray code for each projector row/column
- Requires same number of images as a binary image sequence, but has better performance in practice

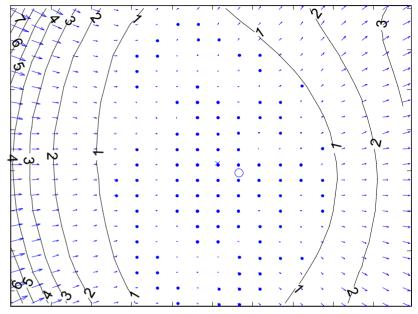

Bin2Gray(B,G)

 $G \leftarrow B$

3

- 2 for $i \leftarrow n-1$ downto 0
 - $G[i] \leftarrow B[i+1] \text{ xor } B[i]$

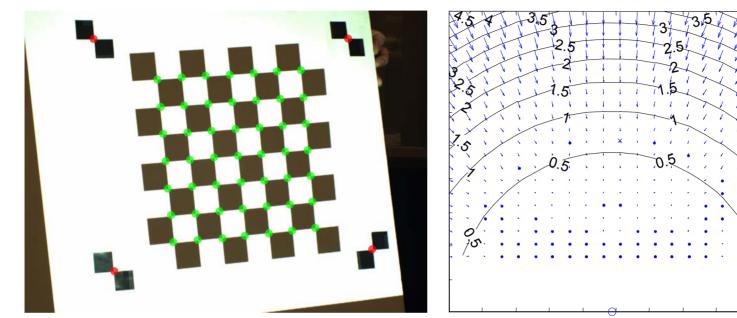



3D Reconstruction using Structured Light [Inokuchi 1984]

- Our implementation uses a total of 42 images
 (2 to measure dynamic range, 20 to encode rows, 20 to encode columns)
- Individual bits assigned by detecting if bit-plane (or its inverse) is brighter
- Decoding algorithm: Gray code \rightarrow binary code \rightarrow integer row/column index

Overview of Projector-Camera Calibration

Estimated Camera Lens Distortion

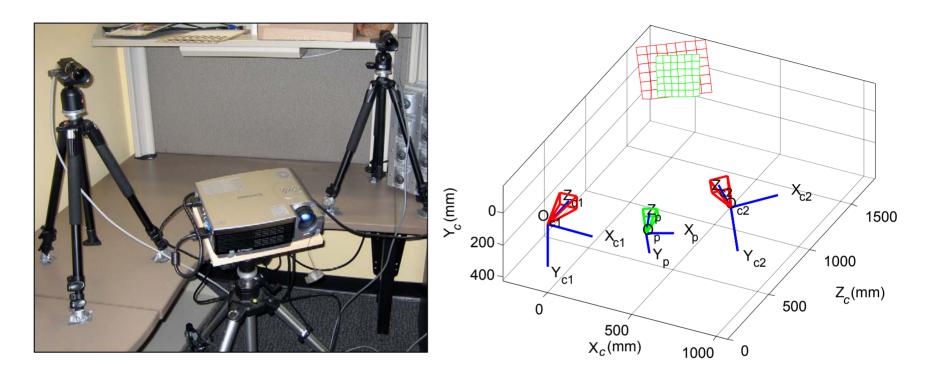

Camera Calibration Procedure

Uses the Camera Calibration Toolbox for Matlab by J.-Y. Bouguet

Normalized Ray	Distorted Ray (4 th -order radial + tangential)	Predicted Image-plane Projection
$\mathbf{x}_{n} = \begin{bmatrix} \mathbf{X}_{c} / \mathbf{Z}_{c} \\ \mathbf{Y}_{c} / \mathbf{Z}_{c} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$	$ \begin{aligned} \mathbf{x}_{d} &= \begin{bmatrix} \mathbf{x}_{d}(1) \\ \mathbf{x}_{d}(2) \end{bmatrix} = \left(1 + \mathrm{kc}(1) \mathbf{r}^{2} + \mathrm{kc}(2) \mathbf{r}^{4} + \mathrm{kc}(5) \mathbf{r}^{6} \right) \mathbf{x}_{n} + \mathrm{dx} \\ \mathrm{dx} &= \begin{bmatrix} 2 \mathrm{kc}(3) \mathrm{x} \mathrm{y} + \mathrm{kc}(4) \left(\mathbf{r}^{2} + 2\mathbf{x}^{2} \right) \\ \mathrm{kc}(3) \left(\mathbf{r}^{2} + 2\mathbf{y}^{2} \right) + 2 \mathrm{kc}(4) \mathrm{x} \mathrm{y} \end{bmatrix} \end{aligned} $	

Overview of Projector-Camera Calibration

Projector Calibration Procedure


Estimated Projector Lens Distortion

- Consider projector as an inverse camera (i.e., maps intensities to 3D rays)
- Observe a calibration board with a set of fidicials in known locations
- Use fidicials to recover calibration plane in camera coordinate system
- Project a checkerboard on calibration board and detect corners
- Apply ray-plane intersection to recover 3D position for each projected corner
- Use Camera Calibration Toolbox to recover intrinsic/extrinsic projector calibration using 2D→3D correspondences with 4th-order radial distortion

7

Overview of Projector-Camera Calibration

Projector-Camera Calibration Results

- Implemented complete toolbox for projector-camera calibration
- Sufficient accuracy for structured lighting applications
- Future version will incorporate final global bundle adjustment

Gray Code Structured Lighting: Results

References

3D Reconstruction using Structured Light

- 1. J. Salvi, J. Pages, and J. Batlle. Pattern Codification Strategies in Structured Light Systems. Pattern Recognition, April 2004.
- 2. S. Inokuchi, K. Sato, and F. Matsuda. Range Imaging System for 3D Object Recognition. *Proceedings of the International Conference on Pattern Recognition*, 1984.

Projector and Camera Calibration Methods

- 3. R. Legarda-Sáenz, T. Bothe, and W. P. Jüptner. Accurate Procedure for the Calibration of a Structured Light System. *Optical Engineering*, 2004.
- 4. R. Raskar and P. Beardsley. A Self-correcting Projector. CVPR 2001.
- 5. S. Zhang and P. S. Huang. Novel Method for Structured Light System Calibration. *Optical Engineering*, 2006.
- 6. J.-Y. Bouguet. Complete Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc.

Visual Hull: Silhouette-based 3D Reconstruction

7. A. Laurentini. The Visual Hull Concept for Silhouette-based Image Understanding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 1994.

