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Problem 1

Find the general solution to:

ux + uy = f(x, y), u(x, 0) = 0
where f is a function defined for y ≥ 0, −∞ ≤ x ≤ ∞

As discussed in class on 1/27/06, this is a nonhomogeneous constant-coefficient partial dif-
ferential equation (PDE) of the form aux + buy = f(x, y), where a = b = 1. In particular,
this question asks us to solve the Cauchy problem – one which is defined on the entire real
line. Using the method presented in class, it is a straightforward process to determine the
general solution u(x, y). First, notice that the PDE can be expressed as a constraint on the
component of the gradient in the direction of the vector v, defined as follows

v =

[
a
b

]
=

[
1
1

]

Similarly, the gradient of u is given by

∇u =

[
ux

uy

]

As a result, we can restate the PDE as v · ∇u = f(x, y). This motivates the change of
coordinates presented in class

x̄(ξ, η) ≡ aξ − bη = ξ − η (1)

ȳ(ξ, η) ≡ bξ + aη = ξ + η (2)

Applying the chain rule, we find the following relationship

ū(ξ, η) = u(x̄, ȳ)

∂ū

∂ξ
=

∂u

∂x

∂x̄

∂ξ
+

∂u

∂y

∂ȳ

∂ξ
= ux + uy = f(x, y)

It is apparent that the change of basis has been particularly advantageous – converting our
PDE to an ODE in ξ (along the characteristic lines of constant η). As a result we have

ūξ = f̄ , where f̄(ξ, η) = f(x̄, ȳ)

We can integrate both sides of this expression to obtain the general form of the solution

ū(ξ, η) = φ(η) +

∫ ξ

0

f̄(z, η)dz (3)
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Notice that we have not yet applied the initial condition u(x, 0) = 0, which defines the curve
Γ. In order to apply this condition, we must transform it from (x, y)-coordinates to (ξ, η)-
coordinates. Along the curve Γ, y = 0 and, substituting into Equation 2, we have ξ = −η.
We can apply this result to Equation 3 to obtain a solution for φ(η).

ū(−η, η) = 0 = φ(η) +

∫ −η

0

f̄(z, η)dz ⇒ φ(η) = −
∫ −η

0

f̄(z, η)dz (4)

Combining Equations 3 and 4 we obtain the general solution

ū(ξ, η) =

∫ ξ

0

f̄(z, η)dz −
∫ −η

0

f̄(z, η)dz

As a final step we must determine the transformation to convert from (ξ, η)-coordinates to
(x, y)-coordinates. This can be done as follows. First, let

(
1 −1
1 1

)(
ξ
η

)
=

(
x
y

)

now multiply by the left inverse of the matrix to obtain
(

ξ
η

)
=

1

2

(
1 1

−1 1

)(
x
y

)

In conclusion, we find the general solution is given in the (ξ, η) coordinate system as follows
(with the coordinate transform back to the (x, y) system as provided).

ū(ξ, η) =

∫ ξ

0

f̄(z, η)dz −
∫ −η

0

f̄(z, η)dz

ξ =
x + y

2
, η =

y − x

2

(5)

Problem 2

For Problem 1, find the solution for the following functions f . In each case, make a single
graph showing f as a function of x for f(x, 0), f(x, 1), f(x, 2), f(x, 3), and f(x, 4). Make a
second graph showing u as a function of x for u(x, 0), u(x, 1), u(x, 2), u(x, 3), and u(x, 4).
Comment on the differences in the nature of the solutions.

(a) f(x, y) = e
1
2 (x−y)2

(b) f(x, y) = e
1
2 (x+y)2

Part (a)

To apply Equation 5 we must first transform f(x, y) to the (ξ, η) coordinate system using
Equations 1 and 2.

f̄(ξ, η) = e
1
2
(x̄−ȳ)2 = e

1
2
[(ξ−η)−(ξ+η)]2 = e2η2
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Now we can substitute for f̄(ξ, η) in Equation 5.

ū(ξ, η) =

∫ ξ

0

e2η2

dz −
∫ −η

0

e2η2

dz

Note that, in both cases, the integrand is independent of the argument of integration (and
can be brought outside the integral).

ū(ξ, η) = e2η2

∫ ξ

0

dz − e2η2

∫ −η

0

dz = (ξ + η)e2η2

At this point, we can apply the transformation to the (x, y) coordinate system (given in
Problem 1) to obtain the solution for u.

u(x, y) = ū

(
x + y

2
,
y − x

2

)
=

(
x + y

2
+

y − x

2

)
exp

[
2

(
y − x

2

)2
]

Simplifying, we obtain

u(x, y) = ye
1
2
(y−x)2 , for y ≥ 0,−∞ ≤ x ≤ ∞ (6)

Plots of f(x, y) and u(x, y) were generated in Mathematica and are shown in Figure 1. The
Mathematica notebook is included at the end of this write-up. Note that, in the figures, the
cases y = {0, 1, 2, 3, 4} are shown in {red, yellow, green, blue, purple}, respectively.

Part (b)

We can proceed as in Part (a); the nonhomogeneous term f(x, y) is written in (ξ, η) coordi-
nates as

f̄(ξ, η) = e
1
2
(x̄+ȳ)2 = e

1
2
[(ξ−η)+(ξ+η)]2 = e2ξ2

Once again, we substitute for f̄(ξ, η) in Equation 5.

ū(ξ, η) =

∫ ξ

0

e2z2

dz −
∫ −η

0

e2z2

dz

Consider the change of variables: α =
√

2z and dα
dz

=
√

2dz. Applying this transformation
to the previous equation we obtain

ū(ξ, η) =
1√
2

∫ √
2ξ

0

eα2

dα− 1√
2

∫ −√2η

0

eα2

dα

From [1] we know that the “imaginary error function” erfi(z) is defined as follows
(√

π

2

)
erfi(z) =

∫ z

0

eτ2

dτ

Substituting this result into the previous equation, we find the following expression

ū(ξ, η) =
1

2

√
π

2

[
erfi(

√
2ξ) + erfi(

√
2η)

]
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(a) Problem 2(a): f(x, y) for y = {0, 1, 2, 3, 4}
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(b) Problem 2(a): u(x, y) for y = {0, 1, 2, 3, 4}

-6 -4 -2 2
x

2

4

6

8

10

fHx,yL

fHx,4L

fHx,3L

fHx,2L

fHx,1L

fHx,0L

(c) Problem 2(b): f(x, y) for y = {0, 1, 2, 3, 4}
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(d) Problem 2(b): u(x, y) for y = {0, 1, 2, 3, 4}

Figure 1: Comparison of f(x, y) and u(x, y) for several values of y.

Notice that we have used the identity: erfi(−z) = −erfi(z). At this point, we can apply the
transformation to the (x, y) coordinate system (given in Problem 1) to obtain the solution
for u.

u(x, y) = ū

(
x + y

2
,
y − x

2

)
=

1

2

√
π

2

[
erfi

(
x + y√

2

)
+ erfi

(
y − x√

2

)]

In conclusion, we find

u(x, y) =
1

2

√
π

2

[
erfi

(
x + y√

2

)
+ erfi

(
y − x√

2

)]
, for y ≥ 0,−∞ ≤ x ≤ ∞ (7)

Plots of f(x, y) and u(x, y) were generated in Mathematica and are shown in Figure 1. The
Mathematica notebook is included at the end of this write-up. Note that, in the figures, the
cases y = {0, 1, 2, 3, 4} are shown in {red, yellow, green, blue, purple}, respectively.
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Comment on Differences

As can be seen in Figure 1, the form of f(x, y) is similar in Parts (a) and (b). In Part (a), the
minimum of f(x, y) is located at x = y; that is, f(x, y) is a shifted version of f(x, 0) which
has moved y units to the right. Similarly, in Part (b) f(x, y) has a minimum at x = −y, so
it corresponds to a “time-reversed” version of the function in Part (a) – if y is considered to
be the time variable.

The effect of “time-reversal” in this case is dramatic. As can be seen in Figure 1(b), for Part
(a) u(x, 0) is the line y = 0, however for y > 0 u(x, y) represents a function which is moving
to the right with a minimum value that is monotonically increasing. In contrast, for Part
(b) the minimum of u(x, y) is always located on x = 0, but the minimum value increases at
a faster rate than in Part (a). This is shown in Figure 1(d). It is important to note that for
y = 0, u(x, 0) = 0 in both Part (a) and Part (b), since this case corresponds to the initial
condition provided in Problem 1.

Problem 3

Let k be a positive constant. Find the general solution to the initial value problem:

(1 + kx)ux + uy = 0,−∞ ≤ x ≤ ∞, y ≥ 0.
u(x, 0) = u0(x) is a given function for −∞ ≤ x ≤ ∞

As discussed in class on 2/3/06, this is a homogeneous first-order PDE with nonconstant
coefficients of the form aux + buy + cu = f , where {a, b, c, f} are functions of x and y. We
want to solve the Cauchy problem, in which the value of u(x, y) is prescribed on some curve
Γ in R (Note that, in this case, Γ is the entire real line). As discussed in class on 1/30/06,
the solution to this initial value problem will be valid in some region D (possibly empty) of
R that contains Γ. To begin, let’s define the vector field v as

v =

[
a(x, y)
b(x, y)

]
=

[
1 + kx

1

]

Similarly, the gradient of u is given by

∇u =

[
ux

uy

]

As before, we can restate the PDE as v · ∇u = 0. Once again, this equation represents a
constraint on the component of the gradient of u(x, y) which is parallel to v. To proceed, we
want to find a set of curves (i.e. characteristics) {x̄(ξ, η), ȳ(ξ, η)}, with tracing parameter ξ,
such that

{x̄ξ = a(x̄, ȳ) = 1 + kx̄, ȳξ = b(x̄, ȳ) = 1} (8)

Note that, for any fixed η, the curve traced by ξ is everywhere tangent to the vector field
v, by construction. At this point, we want to modify our characteristics such that ξ = 0
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corresponds to the intersection of the characteristic with the initial value curve Γ. That can
be done by choosing

x̄(0, η) = x0(η) = η, for −∞ ≤ η ≤ ∞
ȳ(0, η) = y0(η) = 0

Before we determine the explicit form of the characteristics, let’s solve for the general form
of u. Applying the chain rule we find

U(ξ, η) = u(x̄, ȳ)

∂U

∂ξ
=

∂u

∂x

∂x̄

∂ξ
+

∂u

∂y

∂ȳ

∂ξ
= (1 + kx)ux + uy = 0

Integrating with respect to ξ, we obtain U(ξ, η) = φ(η). At this point, we can apply the
initial condition on Γ to solve for φ(η). Since U(0, η) = u0(η), we find the general solution
to the PDE is given by

U(ξ, η) = u0(η), for −∞ ≤ η ≤ ∞ (9)

To complete our analysis, we must solve Equation 8 to obtain a closed-form expression for
the characteristics. Let’s begin by integrating ȳξ = 1 to obtain

ȳ(ξ, η) =

∫ ξ

0

dz + φ(η) = ξ + φ(η)

If we apply the initial condition ȳ(0, η) = 0 we find φ(η) = 0. In conclusion, the ȳ-component
of the characteristics is given by

ȳ(ξ, η) = ξ

To determine x̄(ξ, η) we can solve the ODE x̄ξ − kx̄ = 1 given in Equation 8. First, note
that the homogeneous solution is given by x̄(ξ, η) = A(η)ekξ. Using the method of “variation
of parameters”, we can obtain the general solution as follows. First, substitute x̄(ξ, η) =
A(ξ, η)ekξ into x̄ξ = 1 + kx̄.

Aξ(ξ, η)ekξ + kA(ξ, η)ekξ = kA(ξ, η)ekξ + 1

⇒ Aξ(ξ, η) = e−kξ

Integrating with respect to ξ, we find

A(ξ, η) =

∫ ξ

0

e−kzdz + φ(η)

⇒ A(ξ, η) =
1

k

(
1− e−kξ

)
+ φ(η)

⇒ x̄(ξ, η) =

(
φ(η) +

1

k

)
ekξ − 1

k

Substituting the initial condition x̄(0, η) = η, we conclude that φ(η) = η. In conclusion, the
characteristics are given by

x̄(ξ, η) =

(
η +

1

k

)
ekξ − 1

k
(10)
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ȳ(ξ, η) = ξ (11)

Notice that, at this point, we’d like to determine in what domain D the coordinate transfor-
mation can be inverted. As was presented in class on 2/1/06, a necessary condition for the
coordinate transformation to be invertible is that the Jacobian determinant is nonzero.

det

(
x̄ξ x̄η

ȳξ ȳη

)
6= 0

From Equation 11 we know that ȳξ = 1 and ȳη = 0, so we have

det

(
x̄ξ x̄η

ȳξ ȳη

)
= −x̄η = ekξ 6= 0, for {k, ξ} ∈ R

So we find that the coordinate transformation is invertible everywhere in the domain of
interest −∞ ≤ x ≤ ∞, y ≥ 0 and is given by

ξ̄(x, y) = y (12)

η̄(x, y) =

(
x +

1

k

)
e−ky − 1

k
(13)

In conclusion, we can substitute for η in Equation 9 to find the general solution for u(x, y).

u(x, y) = u0

[(
x +

1

k

)
e−ky − 1

k

]
, for −∞ ≤ x ≤ ∞, y ≥ 0 (14)

Problem 4

For Problem 3, take k = 1/
√

2π and u0(x) = e−
1
2
x2

(a) Find the solution u(x, y) and make a single graph of u versus x which shows u(x, 0),
u(x, 1), u(x, 2), u(x, 3), and u(x, 4).

(b) Determine the speed and acceleration of the peak as a function of time and as a function
of position.

Part (a)

The specific solution for u(x, y) can be found by substituting for u0(x) and k in Equation
14.

u(x, y) = exp

(
−1

2

[(
x +

√
2π

)
e
− y√

2π −
√

2π
]2

)
, for −∞ ≤ x ≤ ∞, y ≥ 0 (15)

Plots of u(x, y) were generated in Mathematica and are shown in Figure 2. The Mathematica
notebook is included at the end of this write-up. Note that, in the figures, the cases y =
{0, 1, 2, 3, 4} are shown in {red, yellow, green, blue, purple}, respectively.
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Figure 2: Graph of u(x, y) versus x for y = {0,1,2,3,4} for Problem 4(a).

Part (b)

For this problem we are asked to find the speed and acceleration of the peak as a function of
time and position. To begin, we must first determine a closed-form expression for xpeak(y)

(the position of the peak as a function of “time” y). Since u(x, y) = e−
1
2
f(x,y)2 , where

f(x, y) =
(
x +

√
2π

)
e
− y√

2π − √2π, we can differentiate with respect to x to find the peak
(where the x-derivative must be zero).

d

dx

(
e−

1
2
f(x,y)2

)
=

(
e−

1
2
f(x,y)2

)
f(x, y)

d

dx
f(x, y) = 0

⇒ f(x, y) =
(
x +

√
2π

)
e
− y√

2π −
√

2π = 0

Note that this matches our intuition that the peak of a Gaussian function occurs where the
argument to the exponential is equal to zero. Solving for x gives the result

xpeak(y) =
√

2π
(
e

y√
2π − 1

)
(16)

The speed of the peak, as a function of time, is given by the first derivative (with respect to
“time” y) as

ẋpeak(y) =
dxpeak(y)

dy
= e

y√
2π , for y ≥ 0 (17)

Similarly, the acceleration as a function of time is given by the second derivative

ẍpeak(y) =
dxpeak(y)

dy2
=

1√
2π

e
y√
2π , for y ≥ 0 (18)

To determine expressions for the speed and acceleration as a function of peak position, we
can solve Equation 16 for y.

y =
√

2π ln

(
xpeak√

2π
+ 1

)
, for xpeak ≥ 0 and y ≥ 0
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Substituting this expression into Equations 17 and 18, we find the following results. First,
the speed as a function of peak position is given by

ẋpeak(xpeak) =
xpeak√

2π
+ 1, for xpeak ≥ 0 and y ≥ 0 (19)

Second, the acceleration as a function of peak position is given by

ẍpeak(xpeak) =
xpeak

2π
+

1√
2π

, for xpeak ≥ 0 and y ≥ 0 (20)

Problem 5

Solve the initial value problem

yux − xuy = 0
u(x, 0) = u0(x) is a given function for 1

2
≤ x ≤ 1

Sketch the characteristic curves and show the solution’s domain of validity in the (x, y)-plane.

As discussed in class on 2/3/06, this is a homogeneous first-order PDE with nonconstant
coefficients of the form aux + buy + cu = f , where {a, b, c, f} are functions of x and y. We
want to solve the Cauchy problem, in which the value of u(x, y) is prescribed on some curve
Γ in R. As discussed in class on 1/30/06, the solution to this initial value problem will be
valid in some region D (possibly empty) of R that contains Γ. To begin, let’s define the
vector field v as

v =

[
a(x, y)
b(x, y)

]
=

[
y
−x

]

Similarly, the gradient of u is given by

∇u =

[
ux

uy

]

As before, we can restate the PDE as v · ∇u = 0. Once again, this equation represents a
constraint on the component of the gradient of u(x, y) which is parallel to v. To proceed, we
want to find a set of curves (i.e. characteristics) {x̄(ξ, η), ȳ(ξ, η)}, with tracing parameter ξ,
such that

{x̄ξ = a(x̄, ȳ) = ȳ, ȳξ = b(x̄, ȳ) = −x̄} (21)

Note that, for any fixed η, the curve traced by ξ is everywhere tangent to the vector field
v, by construction. At this point, we want to modify our characteristics such that ξ = 0
corresponds to the intersection of the characteristic with the initial value curve Γ. This can
be achieved by choosing

x̄(0, η) = x0(η) = η, for
1

2
≤ η ≤ 1
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(a) domain of validity D for u(x, y)
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(b) characteristic curves for several values of η

Figure 3: Domain of validity and sketch of characteristic curves for Problem 5.

ȳ(0, η) = y0(η) = 0

Before we determine the explicit form of the characteristics, let’s solve for the general form
of u. Applying the chain rule we find

U(ξ, η) = u(x̄, ȳ)

∂U

∂ξ
=

∂u

∂x

∂x̄

∂ξ
+

∂u

∂y

∂ȳ

∂ξ
= yux − xuy = 0

Integrating with respect to ξ, we obtain U(ξ, η) = φ(η). At this point, we can apply the
initial condition on Γ to solve for φ(η). Since U(0, η) = u0(η), we find the general solution
to the PDE is given by

U(ξ, η) = u0(η), for
1

2
≤ η ≤ 1 (22)

To complete our analysis, we must solve Equation 21 to obtain a closed-form expression
for the characteristics. Let’s begin by taking the derivative of x̄ξ with respect to ξ and
substituting for x̄ as follows.

x̄ξξ = ȳξ = −x̄

The general solution of this ODE is given by

x̄(ξ, η) = A(η) sin(ξ) + B(η) cos(ξ)

Applying the initial condition x̄(0, η) = η, we find B(η) = η. Substituting once again into
Equation 21, we find

x̄ξ = ȳ(ξ, η) = A(η) cos(ξ)− η sin(ξ)

Using the initial condition ȳ(0, η) = 0, we find A(η) = 0, so we conclude that the character-
istics are given by

x̄(ξ, η) = η cos(ξ)

ȳ(ξ, η) = −η sin(ξ)
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in the (ξ, η) coordinate system. To visualize the characteristics, we can eliminate ξ as follows.

x̄2 + ȳ2 = η2(cos2(ξ) + sin2(ξ)) = η2

Substituting η =
√

x2 + y2, we find the general solution to the PDE is given by

u(x, y) = u0(
√

x2 + y2), for
1

2
≤

√
x2 + y2 ≤ 1 and x ≥ 0 (23)

Note that the domain of validity D, given by 1
2
≤

√
x2 + y2 ≤ 1, defines the half annulus

with inner radius 1
2

and outer radius 1 in the first and fourth quadrants. This region is shaded
in Figure 3(a). In addition, the characteristic curves are also show within this domain. Note
that, in Figure 3(b), the values of η = {1

2
, 5

8
, 6

8
, 7

8
, 1} correspond to the colors {red, yellow,

green, blue, and purple}, respectively.
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