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Problem 1

For each of the following functions u0(x), construct solutions to the initial value problem

(1 + ku)ux + uy = 0, y ≥ 0

u(x, 0) = u0(x) is a given function for −∞ ≤ x ≤ ∞
Draw the characteristics in the (x, y)-plane. If you find the wave-breaking phenomenon
arising, determine the time and place of the initial break appearance and find a solution
containing a shockwave.

For this first problem, consider u0(x), for k ≥ 0 and ε > 0, given by

u0(x) =





1, x ≥ ε
x
ε
, 0 < x < ε

0, x ≤ 0

As discussed in class on 2/17/06, this problem focuses on the solution of a quasilinear first-
order PDE. Note that our initial curve Γ is the line y = 0. As a result, we can parameterize
it as

x̄(0, η) = x0(η) = η

ȳ(0, η) = y0(η) = 0

In addition, we define the vector field v(ξ, η) as

v(ξ, η) =

[
x̄ξ(ξ, η)
ȳξ(ξ, η)

]
=

[
1 + kU(ξ, η)

1

]

As usual, the PDE becomes an ODE along the characteristics such that v ·∇u = 0. Applying
the chain rule, we find Uξ(ξ, η) = 0. We can integrate this ODE with respect to ξ to determine
U(ξ, η) = φ(η). Notice that, along Γ, U(0, η) = u0(η). Applying this initial condition, we
have

U(ξ, η) = u0(η), for −∞ ≤ η ≤ ∞ (1)

Substituting this result into our expression for v(ξ, η) we find

v(ξ, η) =

[
x̄ξ(ξ, η)
ȳξ(ξ, η)

]
=

[
1 + ku0(η)

1

]
(2)

At this point, we require an explicit form of the characteristics. First, consider the solution
to the ODE ȳξ(ξ, η) = 1. Integrating with respect to ξ, we find ȳ = ξ + φ(η). Applying the
initial value on Γ, where y0(η) = 0 and ξ = 0, we find φ(η) = 0. Next, consider the solution to
the ODE x̄ξ(ξ, η) = 1+ku0(η). Integrating with respect to ξ, we find x̄ = [1+ku0(η)]ξ+ψ(η).
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(a) plot of characteristics in each region
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(b) plot of solution u(x, y) for several times y

Figure 1: Characteristics and solution found in Problem 1 (for k = 2 and ε = 3).

Using the initial value on Γ, where x0(η) = η and ξ = 0, we find ψ(η) = η. Combining these
results with Equation 1, we obtain the following solution to the PDE given by a parametric
surface in the (x, y, u)-space, with tracing parameters (ξ, η).

x̄(ξ, η) = [1 + ku0(η)]ξ + η

ȳ(ξ, η) = ξ

U(ξ, η) = u0(η), for −∞ ≤ η ≤ ∞
(3)

We can substitute y for ξ to find a parametrization of the characteristics in η

x = [1 + ku0(η)]y + η, for −∞ ≤ η ≤ ∞ (4)

At this point, we must evaluate the characteristics (and solution) within each region given
by u0(η).

Region I: η ≤ 0, u0(η) = 0

Substituting u0(η) = 0 into Equation 4, we find that the characteristics are given by

x = y + η ⇒ η = x− y

Similarly, the solution within Region I must be

uI(x, y) = 0, for x ≤ y

Note that the characteristics for Region I are sketched in red in Figure 1(a).

Region II: 0 < η < ε, u0(η) = η
ε

Substituting u0(η) = η
ε

into Equation 4, we find that the characteristics are given by

x =

(
1 +

kη

ε

)
y + η ⇒ η =

ε(x− y)

ky + ε
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Similarly, the solution within Region II must be

uII(x, y) =
x− y

ky + ε
, for 0 <

ε(x− y)

ky + ε
< ε

Note that the characteristics for Region III are sketched in green in Figure 1(a).

Region III: η ≥ ε, u0(η) = 1

Substituting u0(η) = 1 into Equation 4, we find that the characteristics are given by

x = (1 + k)y + η ⇒ η = x− (1 + k)y

Similarly, the solution within Region III must be

uIII(x, y) = 1, for x− (1 + k)y ≥ ε

Note that the characteristics for Region III are sketched in blue in Figure 1(a).

In conclusion, we find that there is no intersection of the characteristics (i.e., the various
regions are disjoint). As a result, there is no wave-breaking and the solution is given by

u(x, y) =





1, x− (1 + k)y ≥ ε
x−y
ky+ε

, 0 < x−y
ky+ε

< 1

0, x ≤ y

, for −∞ ≤ x ≤ ∞, y ≥ 0 (5)

Problem 2

Evaluate the the limit as ε → 0 for the solution you found in Problem 1. This situtation
corresponds to an initial condition u0(x) equal to the Heaviside step function [3].

From inspecting the plot of u0(x) in the problem statement, it is apparent that u(x, 0) =
u0(x) will initially have a vertical tangent at x = 0 (when y = 0). Unlike Problem 3, however,
we find that this vertical tangent does not give rise to the wave-breaking phenomenon. From
class on 2/22/06 we know that, for y > 0, the “top” of the wave will propagate with velocity
1+k, whereas the “bottom” of the wave will propagate with unit velocity 1. As a result, the
top of the wave will immediately overtake the bottom for y > 0 and the solution for u(x, y)
will be single-valued for y > 0. This result is sketched in Figure 2(b).

We can derive a closed-form expression for the solution u(x, y) by considering the limit
as ε → 0 in Equation 5. If we exclude the vertical tangent at (x, y) = (0, 0), we have

u(x, y) =





1, x− (1 + k)y ≥ 0
x−y
ky

, 0 < x−y
ky

< 1

0, x ≤ y

, for −∞ ≤ x ≤ ∞, y > 0 (6)

So, in conclusion, we find that the solution is very similar to before, except that there is
an initial discontinuity at (x, y) = (0, 0). This singular point is indicated by a red circle in
Figure 2(a).
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(b) plot of solution u(x, y) for several times y

Figure 2: Characteristics and solution found in Problem 2 (for k = 2).

To complete our analysis, we need to obtain expressions for characteristics in each region.
First, notice that in Figure 1(a) that the division between Region II and Region III along
y = 0 is at x = ε. As a result, Region I and Region III will intersect at the origin in the limit
as ε → 0, as shown in Figure 2(a). Similarly, Region II, indicated by the green wedge in
the figure, will consist of a set of characteristics which intersect at the origin. To define the
characteristics in Region II, we can apply the two constraints: (1) characteristics in Region
II are straight lines and (2) characteristics in Region II must intersect the origin. As a result,
at any point (x0, y0) 6= (0, 0) in Region II, the characteristic is given by the line y = ( y0

x0
)x,

for y > 0. The equation for the characteristics in Region I and Region III can be obtained
by taking the limit as ε → 0 for the solutions in Problem 1.

Region I Characteristics: η = x− y, for x ≤ y

Region III Characteristics: η = x− (1 + k)y, for x ≥ (1 + k)y

The characteristics are sketched in Figure 2(a). Once again, Regions I, II, and III are shown
as red, green, and blue lines, respectively.

Problem 3

Consider u0(x), for k ≥ 0, given by

u0(x) =

{
0, x ≥ 0
1, x < 0

To begin our analysis, note that there is a vertical tangent for u(x, 0) = u0(x) located at
x = 0. As a result, we know that the wave-breaking point is given by (x, y) = (0, 0).

wave-breaking point: x = 0, y = 0 (7)

Since there is a wave-breaking point, we seek a weak solution of the PDE containing a shock.
That is, we want a solution that is single-valued throughout −∞ ≤ x ≤ ∞ except at the
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(a) characteristics, breakpoint, and shock
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(b) plot of weak solution u(x, y) for several times y

Figure 3: Characteristics and weak solution found in Problem 3 (for k = 2).

time-varying position of the shock x = s(y). As was done in Problem 1, we proceed by
examining the set of characteristics and solutions within each region defined by the initial
condition u0(x).

Region I: η < 0, u0(η) = 1

Substituting u0(η) = 1 into Equation 4, we find that the characteristics are given by

x = (1 + k)y + η ⇒ η = x− (1 + k)y

Similarly, the solution within Region I must be

uI(x, y) = 1, for x < (1 + k)y

Note that the characteristics for Region I are sketched in red in Figure 3(a).

Region II: η ≥ 0, u0(η) = 0

Substituting u0(η) = 0 into Equation 4, we find that the characteristics are given by

x = y + η ⇒ η = x− y

Similarly, the solution within Region II must be

uII(x, y) = 0, for x ≥ y

Note that the characteristics for Region II are sketched in blue in Figure 3(a).

First, we notice that the characteristics intersect at the wave-breaking point – consistent
with its interpretation as the point where the solution becomes multiple-valued. Also, we
immediately notice that there is a wedge, given by y ≤ x < (1 + k)y and y ≥ 0, where the
characteristics intersect. In this region the solutions uI(x, y) and uII(x, y) both hold. As a
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result, we must introduce a shock S within this wedge which will enforce a single-valued
solution everywhere except on the shock.

In order to derive an expression for the shock, we follow the method presented in class
on 2/17/06. Recall that the primary property of a shock is that it preserves the area A(y)
of the waveform. We can express the area of the solution u(x, y) as follows.

A(y) =

∫ s(y)

−∞
u(x, y)dx +

∫ ∞

s(y)

u(x, y)dx

We can express the constraint that the area doesn’t change as

dA(y)

dy
=

∫ s(y)

−∞
uy(x, y)dx +

∫ ∞

s(y)

uy(x, y)dx + [u−(s(y), y)− u+(s(y), y)]
ds

dy
= 0

Now let us consider the first integral. From the PDE we know that uy = −(1 + ku)ux.

I− = −
∫ s(y)

−∞
uy(x, y)dx =

∫ s(y)

−∞
(1 + ku)uxdx =

∫ s(y)

−∞

∂

∂x
(u +

k

2
u2)dx

⇒ I− = u +
k

2
u2

∣∣∣
x=s(y)

x=−∞
≡ A(u−)

A similar result holds for the second integral. As a result, we arrive at the so-called “jump
condition”

A(u+)− A(u−) = (u+ − u−)
ds

dy
(8)

For this specific problem, we have A(u+) = 0, u+ = 0, and u− = 1. Substituting into
Equation 8, we find

ds

dy
= A(u−) = u− +

k

2
u2
− = 1 +

k

2

We can integrate this ODE to obtain the solution for the shock

s(y) =

(
1 +

k

2

)
y + C, for C ∈ R

Using the wave-breaking point (x, y) = (0, 0) ⇒ s(0) = 0, we find C = 0 and the shock is
given by

shock S : s(y) =

(
1 +

k

2

)
y, for y ≥ 0 (9)

The shock s(y) is shown as a black line is Figure 3(a).
Given the closed-form expression s(y) for the shock, we can define the weak solution

using the solutions for each region.

u(x, y) =

{
0, s(y) < x ≤ ∞
1, −∞ ≤ x < s(y)

, for −∞ ≤ x ≤ ∞, y ≥ 0 (10)

6



Problem Set 4 EN 202 Douglas R. Lanman

-2 2 4 6 8 10
x

1

2

3

4

5

6

y

(a) characteristics, breakpoint, and shock

-2 2 4 6 8
x

0.2

0.4

0.6

0.8

1

uHx,yL

uHx,4L

uHx,3L

uHx,2L

uHx,1L

uHx,0L

(b) plot of weak solution u(x, y) for several times y

Figure 4: Characteristics and weak solution found in Problem 4 (for k = 1).

Problem 4

Consider u0(x), for k = 1, given by

u0(x) =





0, x ≥ 1
−x + 1, 0 < x < 1
x + 1, −1 < x ≤ 0
0, x ≤ −1

The four regions of u0(x) will give rise to differing characteristics and solutions. As a result,
we proceed as before and evaluate the behavior within each region.

Region I: −∞ ≤ η ≤ −1, u0(η) = 0

Substituting u0(η) = 0 into Equation 4 (for k = 1), we find that the characteristics are given
by

x = y + η ⇒ η = x− y

Similarly, the solution within Region I must be

uI(x, y) = 0, for −∞ ≤ x− y ≤ −1

Note that the characteristics for Region I are sketched in orange in Figure 4(a).

Region II: −1 < η ≤ 0, u0(η) = η + 1

Substituting u0(η) = η + 1 into Equation 4 (for k = 1), we find that the characteristics are
given by

x = [1 + (η + 1)]y + η ⇒ η =
x− 2y

y + 1

Similarly, the solution within Region II must be

uII(x, y) =
x− y + 1

y + 1
, for − 1 <

x− 2y

y + 1
≤ 0
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Note that the characteristics for Region II are sketched in green in Figure 4(a).

Region III: 0 < η < 1, u0(η) = 1− η

Substituting u0(η) = 1− η into Equation 4 (for k = 1), we find that the characteristics are
given by

x = [1 + (1− η)]y + η ⇒ η =
x− 2y

1− y

Similarly, the solution within Region III must be

uIII(x, y) =
x− y − 1

y − 1
, for 0 <

x− 2y

1− y
< 1

Note that the characteristics for Region III are sketched in blue in Figure 4(a). Also notice
that the characteristics for Region II intersect those in Region III – indicating the presence
of the wave-breaking phenomenon.

Region IV: 1 ≤ η ≤ ∞, u0(η) = 0

Substituting u0(η) = 0 into Equation 4 (for k = 1), we find that the characteristics are given
by

x = y + η ⇒ η = x− y

Similarly, the solution within Region IV must be

uIV(x, y) = 0, for 1 ≤ x− y ≤ ∞
Note that the characteristics for Region IV are sketched in red in Figure 4(a). Also notice
that the characteristics for Region II and Region III intersect with those in Region IV –
further indicating the presence of the wave-breaking phenomenon.

From Figure 4(a), it is apparent that the solutions for Regions II, III, and IV are all
valid within the wedge given by y + 1 < x < 2y, y ≥ 1. As a result, we must introduce a
shock S within this wedge which will enforce a single-valued solution everywhere except on
the shock. In order to derive an expression for the shock, we follow the method presented
in Problem 3.

First, we’d like to determine the position and time at which wave-breaking occurs. Recall
from class on 2/22/06 that, for y > 0, the “crest” of the wave will propagate with velocity
1 + k = 2 for k = 1, whereas the “front” of the wave will propagate with unit velocity 1. As
a result, the “crest” of the wave will be located at xcrest(y) = 2y, whereas the “front” will be
located at xfront(y) = y +1. A vertical tangent, corresponding to the point of wave-breaking,
will appear when these two positions are coincident.

⇒ 2y = y + 1 ⇒ y = 1

As a result, the initial time of wave-breaking will be y = 1 and the position will be x = 2.

wave-breaking point: x = 2, y = 1 (11)

Note that this point is shown as a red circle in Figure 4(a). In addition, it is located at the
point where the characteristics first intersect – as typical for the wave-breaking point.
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Now we turn our attention to solving for the shock S. Recall that the “jump condition”
is given by Equation 8

A(u+)− A(u−) = (u+ − u−)
ds

dy

For this example, we have A(u+) = 0 and u+ = 0. Substituting into the previous equation,
we find

A(u−) = u−
ds

dy

Recall from Problem 3 that A(u−) = u−(1 + k
2
u−). As a result, we have

u−
ds

dy
= u−(1 +

k

2
u−) ⇒ ds

dy
= 1 +

k

2
u−

In this case, we want u− = uII(x, y) such that

ds

dy
= 1 +

k

2

(
x− y + 1

y + 1

)

Given that x = s(y) on the shock S, then we must solve the following ODE for the shock
(subject to the initial condition s(1) = 2 given by the wave-breaking point)

ds

dy
= 1 +

k

2

(
s(y)− y + 1

y + 1

)
, s(1) = 2

As suggested in class, I used Mathematica to solve this ODE (see attached notebook at the
end of this write-up). In conclusion, the shock is given by

shock S : s(y) = y − 1 +
√

2(y + 1), for y ≥ 1 (12)

Given the closed-form expression s(y) for the shock, we can define the weak solution using
the solutions for each region. Prior to the wave-breaking at y = 1, we have the solution

u(x, y) =





0, 1 ≤ x− y ≤ ∞
x−y−1

y−1
, 0 < x−2y

1−y
< 1

x−y+1
y+1

, −1 < x−2y
y+1

≤ 0

0, −∞ ≤ x− y ≤ −1

, for −∞ ≤ x ≤ ∞, 0 ≤ y < 1 (13)

After the point of wave-breaking, we have the weak solution given by

u(x, y) =





0, s(y) < x ≤ ∞
x−y+1

y+1
, y − 1 < x < s(y)

0, −∞ ≤ x ≤ y − 1

, for −∞ ≤ x ≤ ∞, y ≥ 1 (14)

The solution u(x, y) is sketched for several times y in Figure 4(b).

9



Problem Set 4 EN 202 Douglas R. Lanman

References

[1] Prof. J. A. Blume. Solution Set 3. http://www.engin.brown.edu/courses/en202/

homework/hw3/hw3s.pdf.

[2] Douglas R. Lanman. Problem Set 3. http://mesh.brown.edu/dlanman/courses/

en202/HW3.pdf.

[3] Eric W. Weisstein. Heaviside step function. http://mathworld.wolfram.com/

HeavisideStepFunction.html.

10


