EN 202: Problem Set 5

Douglas R. Lanman
8 March 2006

Problem 1

Classify each of the following equations as elliptic, parabolic, or hyperbolic. Find and sketch
the characteristics (where they exist).

2Ugy + 2Uyy + 3y, =0

Ugy + 2Upy + Uyy = 0

XUy — Uyy = 0

o T

TUgg + Uyy =0

Recall from class on 2/24/06 that a general linear second-order PDE can be expressed as
AUgy + DUgy + ClUyy + dug +euy + fu=g

where {a,b,c,d, e, f, g} can all depend on x and y. As was shown in class, the characteristics,
in the form y(x), are given by the solution(s) to the following ODE

d2
ol b =0 (1)

Further recall that a second-order PDE is classified according to the value of its discriminant
as follows.

b> — 4ac > 0: hyperbolic
b* — 4ac = 0: parabolic
b? — 4ac < 0: elliptic

Part (a)
For this problem we have {a = 2,0 = 2,¢ = 3}. We begin by classifying the PDE as follows.

b? — 4ac = —20 < 0 = elliptic (2)

Since this PDE is elliptic, there can be no real characteristics. We can prove this by substi-

tuting into Equation 1.

dy2 dy
22 —2-24+3=0
dx dx *

Applying the quadratic formula to solve for dy/dz, we find

dy 2++/-20 1
—=————=— (1% 5)
dx 4 2 ( 5
Integrating this expression with respect to x, we obtain the solution for the characteristics

1 1
characteristics: y = 3 <1 + ’L\/g> r+&and y = 3 (1 — Z\/§> x+n (3)

for arbitrary complex-valued constants {£,n}. Note that, since these characteristics are
complex-valued, we cannot sketch them in R2.
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(a) characteristics for part (b) (b) characteristics for part (c) (c) characteristics for part (d)

Figure 1: Sketch of characteristics found in Problem 1. For subfigures (b) and (c), there are
two sets of characteristics shown in red and blue, respectively.

Part (b)
For this problem we have {a = 1,0 = 2,¢ = 1}. We begin by classifying the PDE as follows.

b? — 4ac = 0 = parabolic (4)

Since this PDE is parabolic, we expect a single set of characteristics. We can prove this by
substituting into Equation 1.

dy? dy
— —2—=41=0
dz dz -
Applying the quadratic formula to solve for dy/dx, we find
dy
A
dz

Integrating this expression with respect to x, we obtain the solution for the characteristics

‘characteristics: y=x+mn, forneR (5)

In conclusion, we find a single set of characteristics indexed by the parameter n. This family
of lines is sketched in Figure 1(a).

Part (c)

For this problem we have {a = €?*,b = 0,¢ = —1}. We begin by classifying the PDE as
follows.

b? — dac = 4e** > 0,Vx = hyperbolic (6)

Since this PDE is hyperbolic, we expect two sets of characteristics. We can prove this by
substituting into Equation 1.

dy?
2x
— —1=0
¢ dx
Applying the quadratic formula to solve for dy/dz, we find
dy
e
dx c
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Integrating this expression with respect to x, we obtain the solution for the characteristics

characteristics: y = e *+&and y=—e*+1n (7)

for arbitrary real-valued constants {£,n}. In conclusion, we find two sets of characteristics.
These two families of lines are sketched in Figure 1(b). Note that, in the figure, the blue
lines represent the characteristics indexed by & and the red lines represent those indexed by

n.

Part (d)
For this problem we have {a = z,b = 0,c = 1}. We begin by classifying the PDE as follows.

elliptic for x > 0
b* — 4ac = —4x = { parabolic for z =0 (8)
hyperbolic for < 0

Notice that the discriminant is a function of z. As a result, the classification of the PDE
varies by region. Regardless, we can solve for the characteristics as before. Substituting into

Equation 1 we find
dy?
—= 4+1=0
z I +

Applying the quadratic formula to solve for dy/dz, we find

@ B ++v/—4x B

1
+ix72
dx 2z “

Integrating this expression with respect to x, we obtain the solution for the characteristics

characteristics: y = £(2i)v/z + C (9)

for an arbitrary, possibly complex-valued, constant C'. Notice that, in the elliptic region
(x > 0), the characteristics will be complex-valued. For z = 0, the solutions are given by
the set of all lines parallel to the xz-axis. Finally, in the hyperbolic region (z < 0), there are
two sets of real-valued characteristics given by

y:2\/m+§andy:—2\/m+77

for arbitrary real-valued constants {¢,n}. These two families of lines are sketched in Figure
1(c). Note that, in the figure, the blue lines represent the characteristics indexed by 7 and
the red lines represent those indexed by €.
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Problem 2

Consider the initial value problem:

12U — Uy — Uyy = 0, u(z,0) = up(x), uy(z,0) = vy(z), for —oo <z < 00

a. Show that £ = x + 3y, n = x — 4y are characteristic coordinates.
b. Using the characteristic coordinates, find the general solution to the IVP.

c. Ilustrate your answer for u(z,0) = ug(z) = e~ 2%, uy(x,0) = vo(z) =0

Part (a)

We can proceed as in Problem 1 by solving for the characteristics using Equation 1. For this
problem, we have {a = 12,b = —1,c = —1}. Note that the discriminant ? —4ac = 49 > 0, so
this is a hyperbolic PDE. As a result, there should be two sets of characteristics. Substituting
into Equation 1 we find

dy? dy
12— +—=—-1=0
dx * dx
Applying the quadratic formula to solve for dy/dz, we obtain
dy —1+7
dr 24

Integrating this expression with respect to x gives the solution for the characteristics

—1+7
y—( o >$—|—C’

for an arbitrary real-valued constant C. If we consider the positive and negative terms
separately, we find

1 1
yzzx—i-C'l andy:—§x+C’2

Rearranging terms gives

1 1
:>—Z—l:c—|—y=C’1 andgsc—l—y:C’Q

Multiplying the first equation by —4 and the second by 3 gives
=1 —4y = C] and z + 3y = C}

Note that, since {C, C%} are arbitrary real-valued constants, we can express the character-
istics in the desired form

’characteristics: E=r+4+3yandn=x—4y (10)

for ¢ = C} and n = C]. (QED)
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Part (b)

As discussed in class on 2/24/06, we can use the characteristic coordinates to find the
general solution to the IVP. First, note that the general solution u(x,y) can be written using
characteristic coordinates in the familiar form U(&,n) = w(z(&,n),y(&,n)). We can apply
the chain rule to obtain a PDE in (£, n)-coordinates. First, consider u,.
d d¢ dn
. =—U(,n) =1, Up—
Uz = - U(&n) = Ug o + Uy
Notice that we have applied the result that d¢/dx = 1 and dn/dx = 1, obtained by differen-
tiating the expressions found in Part (a). Next, consider u,,.
d2 d¢ dn d¢ dn
wr = Uee— + Uep— + U, U,
u U, n) = £§d$+ §nd$+ (o + (L™
= Ugg = Uge + 2Ugy + Uy

Ug—l—Un

The mixed derivative term u,, is given by the following expression.

d? d¢ d§ dn
Ugy = dxdyU(f,n) Uggd +U§nd +U7, d +Um)dy
= Ugy = 3U§§ — U§77 — 4U7777
Notice that we have applied the result that d¢/dy = 3 and dn/dy = —4, obtained by

differentiating the expressions found in Part (a). Similarly, u, is given by the following
expression.

df d
Finally, we can evaluate u,,.
d2 d¢ dn d¢ dn
Uyy U(&,n) = (Uﬁﬁd + Uénd ) 4 (Unfd + Unnd
Substituting d¢/dy = 3 and dn/dy = —4, we find

d?
Uyy = d_yQU(fa 1) = e — 24Ugy + 16Uy,

At this point we can substitute back into the original PDE to obtain a PDE in (§,n)-
coordinates.
12upp — Ugy — Uyy =0

= 12 (Uge + 2Ugy + Uyyyy) — (3Uge — Ugyy — 4U,,) — (9Uge — 24U, + 16U,,) =0
Simplifying, we find

Uey = 0=U(&n) = g(&) + h(n) = ulz,y) = g(z + 3y) + h(z — 4y)

Note that, since the mixed derivative is equal to zero, the solution can be composed of two
independent terms (see class notes on 2/27/06). We can proceed by substituting for the

initial conditions on I'.
u(z,0) = g(z) + h(x) = uo() (11)
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u(x,y)

u(x, 0)
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(a) solution surface for y > 0 (b) plot of u(x,y) for several times y

Figure 2: Ilustration of solution u(z,y) found in Problem 2.

uy(z,y) = 3¢'(x + 3y) — 41’ (x — 4y)
= u,(z,0) = 3¢'(x) — 40 (z) = vy(x)

Integrating this expression with respect to x gives

x

3g(x) —4h(x) = / v(s)ds + C, for C € R (12)

—00

Combining Equations 11 and 12, we can obtain expressions for g(z,y) and h(x,y).

gla) = quo(e) + 3 [ wls)ds+C

h(z) = %uo(x) - %/_x v(s)ds — C

Finally, we can substitute back into the expression for u(z,y) obtained previously.

z+3y

vo(s)ds + c} + Euo(l’ I / (s c}

u(z,y) = Euo(ﬂc +3y) + %/ 7)

— 00
Notice that the constant term C' cancels out. In addition, the integrals can be combined,
yielding the general solution to the IVP.

() = Euo(x +3y) + guo(x _ 4y)} + ; / : " o(s)ds (13)

Part (c)

Notice, for the initial conditions ug(x) = e~2"" and vo(z) = 0, the integrand is zero. Substi-
tuting into Equation 13, we find the solution to this specific IVP.

4
U(ZL’, y) = ?6

—1(z+3y)? + §e_%(1’_4y)2 (14)
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The solution surface u(z,y) is illustrated in Figure 2(a) for y > 0. In addition, the solution
is plotted for several instants in time y in Figure 2(b).

Problem 3

An initial value problem for Problem 1(c) above is e**u,, — u,, = 0 with u(x,0) = ug(x)
and wu,(z,0) = 0, for —oo < x < oo. Use the characteristics to transform the PDE into
an equation for U(£,n). You need not solve the equation or find a solution to this
IVP.

2

Recall from Problem 1(c) that the characteristics are given by

y=—e"+& y=e"+n, for {{,n} €R

=>E=y+te n=y—e" (15)
From the characteristics we have

d§ /S
—=—c ", —=1

dx dy

dnp — _, dn

—=c " — =1

dx dy

We can apply these results to evaluate the derivatives of u(x,y) using the chain rule.
First, consider u,.

d dg dnp _ _
. =—UEn) =U—+U,—=¢e"(U,—-U,
U d (& mn) . + "y e " (Uy £)
Differentiating this result with respect to x gives
d? o - dg dn dg dn
Uew = 3 Ug,n) =—e " (Uy—Ug) te <Un£% + Unn% - U&% - U@?%)

= Ugp = € (Ue = Uy) + €2 (Uge — 2Uey + Uyyy)

Next, we can evaluate the y derivatives.

d d§ dn
Uy = @U(&U) = de_y + Und_y =Ue+ U,

Differentiating this result with respect to y gives

e de d d¢

U dn
Uyy = d—yﬂ(&n) = U&,@ + Uﬁnd_y + Un&@

+ Um,@

= Uge + 2U¢y + Uy
Substituting into the original PDE, we obtain the following equation for U (&, ).
Mgy — Uy = €2 [T (Ug — Uy) + €72 (Uge — 2Ugy + Uyy)] — Uge — 2Ugy — Uy = 0

Simplifying, we obtain
e (Ue = Uy) = 4Us
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We can solve for e* using the characteristics given in Equation 15.

- w871
E—nN=2e"=2e"=>"——=¢€"=——
2 §—1

Substituting this result into the PDE, we obtain the following equation for U (&, )

2(§ = n)Ugy = Ue = U, (16)

Problem 4

The equation in Problem 1(b), uz, + 2uyy + uy, = 0 has initial conditions u(z,z) = 22,
up(z, ) =0, for —oo < z < 0o. Does this IVP have a solution? Explain your answer.

Similar to a first-order PDE; if the characteristics of a linear second-order PDE are anywhere
tangent to a characteristic, then we expect no solution in general (see class notes on 2/24/06).
As a result, we begin our analysis by discussing the characteristic coordinates found in
Problem 1(b).

Recall that this is an elliptic PDE with a single set of characteristics given by y = x + 7
for n € R. Notice that the initial curve I' is given by the line y = z. As a result, I' is
a characteristic (i.e., the one indexed by n = 0). Recall from Problem 4 in [1], when T is
coincident with a characteristic there are only two outcomes: (1) either there is no solution to
the IVP or (2) there are infinitely many solutions — depending on the initial value prescribed
on I'. As a result, by examining the characteristics alone, we have a hint that there could
be no solution to this problem!

To proceed, we'll follow the derivation presented in class on 2/24/06. First, note that
the initial value curve I' (given by y = z) can be parameterized as follows.

zo(n) =n, yo(n) =1

The normal vector n(n) to I' is given by
Yo(n) 1 ]
n(n) = ; =
() { —Z0(n) } { -1
Similarly, the gradient of u is given by
E
Uy

As a result, the normal derivative (denoted g—ﬁ =n- Vu) is given by

Uy — Uy = Up(x,2) =0 (17)
Since this condition applies everywhere along I' we can substitute u(z, ) = 2.

uy(z, ) —uy(z, ) =20 =0
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As a result, we find that the initial conditions, u(x,z) = z? and u,(z,z) = 0, are only
consistent for (x,y) = (0,0) (i.e., at the origin). As a result, no solution exists to this
IVP.

As an alternate proof, we can evaluate the condition presented in class on 2/24/06 that
must hold for a solution to a second-order linear PDE initial value problem to exist.

a b ¢ T I
To Yo O Ugy | = | Do (18)
0 -1.'0 yO uyy QO

Recall that this expression encapsulates all of the constraints on the solution w. In addition,
for a solution to exist, we showed that

a b ¢
det | 29 90 0 | #0= ays — bigyo + cig # 0
0 Zo %o

That is, the constraint equations must be linearly independent. For this problem, {a =
1,b=2,¢ =1} and, as shown previously, &g = o = 1. As a result, we find

ays — bigyo +cig=1—2+1=0

In conclusion, the constraint equations given by Equation 18 are not linearly independent
and, as a result, no solution exists to this IVP.

Problem 5

Consider the equation g, — uy, + u, +u, = 0. Using characteristics { = x +y, n =2 — v,
derive the general solution to the PDE:

U(&,n) =e2g(&) + h(n)
= u(z,y) = eV 2g(x +y) + h(z — y)

Here ¢(¢) and h(n) are arbitrary functions. Verify that this general solution satisfies the
PDE.

Notice that the characteristic coordinates can be inverted as follows.

_&+tnm ng—n
2 2

As a result, we can express the general solution in (£, n)-coordinates as u(z,y) = U(,n).
As was done in Problem 2, we can evaluate the derivatives of U(§,n) to obtain a PDE in
(&, m)-coordinates.
To begin our analysis, note that the following derivatives can be directly obtained from
the characteristics
d¢ d¢ dn . dn

— =1, —==1,-

= =—1 1
dx dy " dx " dy (19)

9
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We can apply these expressions to evaluate u, using the chain rule.

_d _ . dg dn
Uy = de(f,n) = Ugdx + U"da: =U; + U,
Next, consider ;.
d? d¢ dn d¢ dn
Ugz = @U(&n) = U&Ed_z + Ufnd_w + Unfd_m + Unn%

= Upy = Ugg + 2U§77 + UUU

Similarly, u, is given by the following expression.

d d¢ dn
uy = —U(f,n) = Ug@‘i‘U —_—

=U;—U
dy ﬁdy 13 n

Finally, we can evaluate u,,.

d? d& dn d& dn
Uyy = d—yQU(&n) = (U&d_y + Uﬁnd_y) - (Unfd_y + Unnd_y>

= Uyy = Uge — 2Ug; + Uy

At this point we can substitute back into the original PDE to obtain a PDE in (§,n)-
coordinates.
Ugpy — Uyy + Uy +uy =0

= (U& + QUEW + Unn) - (UEE - QUEW + Unn) + (UE + Un) + (Uf - Un) =0
Simplifying, we find
1
4U§n+2U§=O:> U§n+§U§=O

This PDE for U(§,n) can be solved using the method presented in class of 1/27/06.

1 U 1

U= —3Ue = 77 = =5
d 1
1 S
~ n(Ue) 5

Integrating both sides of this expression by 7 gives

In(Ug) = —%n +9(6)

where ¢(§) is an arbitrary constant of integration (which in general can depend on the
independent variable £). Exponentiating this expression yields the following result.

U = e~ M/2+9(8) — o1/2,9(8) — e‘"/2g(§)

Notice that we have used the fact that e9¢) is an arbitrary function of ¢ and, as a result,
can be replaced notationally by the general function g(¢).

10
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To complete our analysis, we can integrate by & as follows.
£
Ulem = [ gls)ds+ b

Since ffoo g(s)ds is an arbitrary function of £ it can be replaced, once again, by g(§). In
conclusion, we have demonstrated the desired result. (QED)

U(&,n) =e2g(&) + h(n)
= u(z,y) = eV 2g(x +y) + h(z — y) (20)

Before we verify the PDE in (z,y)-coordinates, let’s verify it in the transformed (£, n)-
coordinate system. Recall that, in this system, the PDE was given by Uy, + %Ug = 0. From

Equation 20 we have
-n/2 1 1 -n/2 1
Us =e "¢ (¢), Ugy = —5¢ q'(€)

Substituting into the PDE we have

1 _ 1 _
5 €) + 5o (€) = 0

While the solution satisfies the PDE in the (£, n)-coordinate system, this is not a full proof.
To compete our analysis, we will substitute the (x, y)-coordinate system solution from Equa-
tion 20 into the original PDE. To begin, let’s compute the necessary derivatives.

1
= —5e T g (x4 y) + e (@ 4 y) + Bz - y)
_ —(z—y)/2 1 / /
= Uy = e 9@ty + g +y) + Mz —y)
Taking the second derivative with respect to x yields
1 1 1
Upy :Z—le’(“y)ﬂg(:c +y) — 567(179)/2g'($ +y) — Qe*(m’y)ﬂg’(:c +y)+...

eG4 y) + B (z — y)

1
=y, = e @Y)/2 [_g(x +y)—d(x+y) +4¢"(x+ y)} + 1 (z —y)

4
Similarly, for the y derivatives, we find
1
uy = se” T (a4 y) + TG (@ y) = Wz - y)
—(z—y)/2 1 / /
= uy =e F9@+y)+g (@ +y)| -z -y
Taking the second derivative with respect to y yields
1 1 1
gy =€ g(r +y) + SeT TG (wty) 4 ST (v y) £

e TG (g 4 y) + B (x — y)

11
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1
=y = ¢ T gzt )+ (@ +ty) '@+ y) |+ 1 (- y)

At this point we can evaluate the PDE wu, —uy, +u, +u,, = 0 directly, however for simplicity
let’s begin by considering the term ug, — w,,.

Upy — Uyy = —26~T92g/ (1 4 y)
In addition, consider the term u, + u,.
Uy + 1ty = 2¢” V2 (1 4+ y)
In conclusion, we find the the general solution for u(z,y) given by Equation 20 satisfies the
PDE (i.e., tgy — uyy + uy +u, = 0). (QED).
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