Texture Synthesis and Manipulation Final Report

Douglas Lanman EN 256: Computer Vision 18 December 2006

Outline

- Brief Review and Introduction to Inpainting
- Exemplar-based Image Inpainting
- Image Editing Results
- Conclusions and Future Work

Texture Synthesis Review

Current Block Source Block

Image Quilting Texture Synthesis [Efros and Freeman '01]

- Starting from an initial patch, search the input texture for similar neighborhoods and assign next patch randomly from this set
- Define similarity using L_2 -norm applied to every pixel/color in block
- Optimize overlap region using minimum error boundary cut
- Synthesize in raster scan order until complete

Applications of Texture Synthesis

Image Inpainting (e.g., scratch removal)

Non-periodic Texture Mapping

Texture Analysis and Classification

Texture Modification

Douglas Lanman

Overview of Image Inpainting

Professional Restoration

Image Inpainting

Image Inpainting [Bertalmío et al. SIGGRAPH '00]

- Attempt to follow professional inpainting procedures
- Basic idea is to smoothly propagate information along isophotes
- Only successfully fills thin regions (e.g., scratches and small gaps)

Overview of Image Inpainting

Professional Restoration

Image Inpainting

Image Inpainting [Bertalmío et al. SIGGRAPH '00]

- Attempt to follow professional inpainting procedures
- Basic idea is to smoothly propagate information along isophotes
- Only successfully fills thin regions (e.g., scratches and small gaps)

Image Inpainting using Texture Synthesis

Exemplar-based Image Inpainting

Fragment-based Image Completion

Fragment-based Completion [Drori et al. SIGGRAPH '03]

- Attempts to synthesis missing regions from coarse-to-fine scale
- Assign fragments (i.e., circular regions) with higher confidence

Exemplar-based Inpainting [Criminisi et al. CVPR 2003]

Combines patch-based texture synthesis with Bertalmío's inpainting

Image Inpainting using Texture Synthesis

Exemplar-based Image Inpainting

Fragment-based Image Completion

Fragment-based Completion [Drori et al. SIGGRAPH '03]

- Attempts to synthesis missing regions from coarse-to-fine scale
- Assign fragments (i.e., circular regions) with higher confidence

Exemplar-based Inpainting [Criminisi et al. CVPR 2003]

Combines patch-based texture synthesis with Bertalmío's inpainting

Outline

- Brief Review and Introduction to Inpainting
- Exemplar-based Image Inpainting
- Image Editing Results
- Conclusions and Future Work

Overview of Exemplar-based Inpainting

Exemplar-based Image Inpainting [Criminisi et al. 2003]

- Observed that patch-based synthesis is effective if order is optimized
- Select next patch based on completed area and isophote strength

$$P(\mathbf{p}) = C(\mathbf{p})D(\mathbf{p}) \qquad C(\mathbf{p}) = \frac{\sum_{\mathbf{q}\in\Psi_{\mathbf{p}}\cap(\mathcal{I}-\Omega)}C(\mathbf{q})}{|\Psi_{\mathbf{p}}|} \quad D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp}\cdot\mathbf{n}_{\mathbf{p}}|}{\alpha}$$

Overview of Exemplar-based Inpainting

Exemplar-based Image Inpainting [Criminisi et al. 2003]

- Observed that patch-based synthesis is effective if order is optimized
- Select next patch based on completed area and isophote strength

$$P(\mathbf{p}) = C(\mathbf{p})D(\mathbf{p}) \qquad C(\mathbf{p}) = \frac{\sum_{\mathbf{q}\in\Psi_{\mathbf{p}}\cap(\mathcal{I}-\Omega)}C(\mathbf{q})}{|\Psi_{\mathbf{p}}|} \quad D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp}\cdot\mathbf{n}_{\mathbf{p}}|}{\alpha}$$

Overview of Exemplar-based Inpainting

Exemplar-based Image Inpainting [Criminisi et al. 2003]

- Observed that patch-based synthesis is effective if order is optimized
- Select next patch based on completed area and isophote strength

$$P(\mathbf{p}) = C(\mathbf{p})D(\mathbf{p}) \qquad C(\mathbf{p}) = \frac{\sum_{\mathbf{q}\in\Psi_{\mathbf{p}}\cap(\mathcal{I}-\Omega)}C(\mathbf{q})}{|\Psi_{\mathbf{p}}|} \quad D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp}\cdot\mathbf{n}_{\mathbf{p}}|}{\alpha}$$

The Importance of the Filling Order

"Onion Peel" Order

Exemplar-based Inpainting

- Naïve inpainting solutions use the "onion peel" order
- Criminisi et al. observed that greedy priority-based selection is better
- Requires balancing the isophote vs. confidence driving terms

Estimating Inpainting Boundary Normals

Boundary Normal Estimation Procedure

- Evaluate the distance transform of the current inpainting mask
- Assign boundary normals using gradient of the distance transform
- Use robust gradient operator for improved results
- Repeat procedure for each iteration

Determining Image Isophotes

Isophote Estimation Procedure

- Evaluate the image gradients (using robust operators)
- Select largest gradient within the candidate patch
- Assign isophote using vector orthogonal to largest gradient
- Repeat procedure for each iteration

Illustrative Examples

Connectivity Principle

"Overshooting" Artifacts

Structure Completion

MATLAB Demo

🛃 Exemplar-based Image Inpainting	Exemplar-based Image Inpainting
File Edit View Insert Tools Desktop Window Help	File Edit View Insert Tools Desktop Window Help 😦

Editor - E:\Work\EN 256\Image Inpainting\inpaint.m	Editor - E:\Work\EN 256\Image Inpainting\demo.m		
File Edit Text Go Cell Tools Debug Desktop Window Help 🔹 🛪 🗙	File Edit Text Go Cell Tools Debug Desktop Window Help	XSK	
D 😅 🖩 🐇 🐚 🎕 ∽ ⇔ 👙 👫 🗢 🔶 🐔 📲 🐐 🕼 👘 🗊 🕼 Stack: Base ∨ 🖽 🖽 🗗 🗗 🗖 🗍	D 😂 🖩 🙏 № 🏨 ⇔ ⇔ 🖉 👫 ♠ ಈ 🗲 🖗 📽 🖷 🎕 🕼 🏥 🕼 Stack Base 🗸 🖽 🖽	880	
<pre>1 function [I,C] = inpaint(I,M,S) 2 3 % Define inpainting parameters. 4 - pSize = 4; % half-size of exemplar patches 5 - normalSigma = 1.5; % standard deviation of "normal" filter 6 - isoSigma = 0.5; % standard deviation of "isophote" filter 7 - dataAlpha = 0.15; % normalization for data term 8 - useIsophote = true; % enable/disable isophote data term 9 10 % Define display and animation parameters. 11 - displayFlag = true; % enable/display figures 12 - createMovie = false; % pause on first/last frames of movie 14 - showMask = true; % highlight source region(s) 15 - showSource = false; % display normals and isophotes 17 - showConf = true; % enable/disable confidence image 18 9 % Store patch indices and image dimensions. 20 - pIndex = -pSize;pSize;</pre>	<pre>1 2 % Reset Matlab environment. 3 - clear; clc; 4 5 % Select demo parameters. 6 - imageIndex = 1; % (1 = step function, 2 = texture sample) 7 - maskIndex = 3; % (1 = circle, 2 = double-circle, 3 = square, 4 = crescent) 8 - sourceIndex = 1; % (1 = exclude mask, 2 = circle, 3 = border around mask) 9 - borderSize = 50; % border size (in pixels) for sourceIndex == 3 10 11 12 %************************************</pre>		
21 nrows = size(i,i);	21 - ncols = 120;	~	
j demo.m × inpain ×			
inpaint In 17 Col 23 OVR	script Ln 12 Col 5	9 OVR:	

- Brief Review and Introduction to Inpainting
- Exemplar-based Image Inpainting
- Image Editing Results
- Conclusions and Future Work

Removing Scratches and Small Artifacts

- 9x9 block size (red: user-defined mask, green: source region)
- Source blocks located within 30 pixels of user-defined mask

Removing Scratches and Small Artifacts

- 9x9 block size (red: user-defined mask, green: source region)
- Source blocks located within 30 pixels of user-defined mask

- 17x17 block size (red: user-defined mask, green: source region)
- Source blocks located within 50 pixels of user-defined mask

- 17x17 block size (red: user-defined mask, green: source region)
- Source blocks located within 50 pixels of user-defined mask

- 17x17 block size (red: user-defined mask, green: source region)
- Source blocks located within 60 pixels of user-defined mask

- 17x17 block size (red: user-defined mask, green: source region)
- Source blocks located within 60 pixels of user-defined mask

Completing Image Mosaics

Completing Image Mosaics

Filling Occlusions Due to Image Manipulation

Motion Magnification [Liu et al., SIGGRAPH '05]

Video View Interpolation [Zitnick et al., SIGGRAPH '04]

Filling Occlusions Due to Image Manipulation

Motion Magnification [Liu et al., SIGGRAPH '05]

Video View Interpolation [Zitnick et al., SIGGRAPH '04]

Filling Occlusions Due to Image Manipulation

Motion Magnification [Liu et al., SIGGRAPH '05]

Video View Interpolation [Zitnick et al., SIGGRAPH '04]

Limitation: Preserving Depth Ordering

Original Image

Desired Solution

Exemplar-based Inpainting

Output Image

Image Completion with Structure Propagation

Original Image

Structure Propagation Approach

- Due to Sun *et al.* (SIGGRAPH '05)
- Augment masked regions with line segments denoting linear structures
- Determine optimal patch placement along lines, then fill regions
- Utilizes Dynamic Programming and/or Belief Propagation

Vertical Completion

Horizontal Completion

Outline

- Brief Review and Introduction to Inpainting
- Exemplar-based Image Inpainting
- Image Editing Results
- Conclusions and Future Work

Review: Image Quilting

Review: Texture Transfer

Blurred Luminance

Target Image

Texture Transfer Result

From an initial patch, search source texture and luminance map for similar neighborhoods and assign next patch randomly from this set

Conclusions and Future Work

Key Accomplishments

- Full implementation of patch-based texture synthesis using Image Quilting
- Complete system for Exemplar-based Image Inpainting

Image Quilting Results

- Evaluated regular, stochastic, and quasi-periodic textures
- Demonstrated texture transfer for controlled synthesis
- Compared results to existing methods

Image Completion Results

- Demonstrated benefits of isophote-driven synthesis
- Evaluated performance for a variety of tasks
 (e.g., object removal, hidden surface completion)

Future Work

- Improved synthesis methods (e.g., graphcut)
- Patched-based Image Analogies
- Feature matching and projective texture deformation
- Hybrid structure and texture completion

References

"Early" Approaches: Texture Analysis and Psychophysics

- 1. D.J. Heeger and J.R. Bergen, "Pyramid-Based Texture Analysis/Synthesis", SIGGRAPH '95.
- 2. J.S. De Bonet, "Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images", SIGGRAPH '97.

Pixel-based Texture Synthesis

- 3. A.A. Efros and T.K. Leung, "Texture Synthesis by Non-parametric Sampling", ICCV, 1998.
- 4. L. Wei and M. Levoy, "Fast Texture Synthesis using Tree-structured Vector Quantization", SIGGRAPH '00.
- 5. M. Ashikhmin, "Synthesizing Natural Textures", Interactive 3D Graphics (I3D), 2001.
- 6. A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D.H. Salesin, "Image Analogies", SIGGRAPH '01.

Patched-based Texture Synthesis

- 7. Y. Xu, B. Guo, and H. Shum, "Chaos Mosaic: Fast and Memory Efficient Texture Synthesis", Microsoft Research Technical Report, MSR-TR-2000-32, 2000.
- 8. A.A. Efros and W. Freeman, "Image Quilting for Texture Synthesis and Transfer", SIGGRAPH '01.
- 9. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, "Graphcut Textures: Image and Video Synthesis Using Graph Cuts", SIGGRAPH '03.
- 10. Q. Wu and Y. Yu, "Feature Matching and Deformation for Texture Synthesis", SIGGRAPH '04.

References

Image Inpainting: Removing Scratches and Small Artifacts

- 11. M. Bertalmío, G. Sapiro, V. Caselles and C. Ballester, "Image Inpainting", SIGGRAPH '00.
- 12. M. Bertalmío, A. Bertozzi, and G. Sapiro, "Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting", CVPR, 2003.
- 13. A. Levin, A. Zomet, and Y. Weiss, "Learning How to Inpaint from Global Image Statistics", ICCV, 2003.

Image Completion: Object Removal and Region Filling

- 14. I. Drori, D. Cohen-Or, and H. Yeshurun, "Fragment-Based Image Completion", SIGGRAPH '03.
- 15. J. Jia and C.-K. Tang, "Image Repairing: Robust Image Synthesis by Adaptive *ND* Tensor Voting", CVPR, 2003.
- 16. A. Criminisi, P. Pérez, and K. Toyama, "Region Filling and Object Removal by Exemplar-Based Image Inpainting", IEEE Transactions on Image Processing, 2004.

Interactive Methods: Image Editing and Completion

- 17. P. Pérez, M. Gangnet, and A. Blake. "Poisson Image Editing", SIGGRAPH '03.
- 18. P. Pérez, M. Gangnet, and A. Blake. "*PatchWorks*: Example-Based Region Tiling for Image Editing", Technical Report, Microsoft Research, MSR-TR-2004-04, 2004.
- 19. J. Sun, L. Yuan, J. Jia, H. Shum, "Image Completion with Structure Propagation", SIGGRAPH '05.

References

Inpainting Applications: Filling Occlusions Due to Image Manipulation

- 20. C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and Richard Szeliski, "High-quality video view interpolation using a layered representation", SIGGRAPH '04.
- 21. C. Liu, A. Torralba, W. Freeman, F. Durand, and E. Adelson, "Motion Magnification", SIGGRAPH '05.

