Texture Synthesis and Manipulation Progress Report

Douglas Lanman EN 256: Computer Vision 20 November 2006

- Review of Texture Synthesis
- Patch-based Synthesis using Image Quilting
- Texture Transfer and Manipulation
- Revised Project Goals and Timeline

What is Texture Synthesis?

The Texture Synthesis Problem:

 Given a finite texture sample, synthesize additional samples which appear (to a human observer) to be generated from the same underlying stochastic process.

Characteristics of Natural Textures

Locality and Stationarity of Random Processes

Stochastic vs. Regular Textures

Douglas Lanman

Pixel-based Texture Synthesis

Pixel-based Synthesis Procedure [Wei and Levoy '00]

- Assume a Markov Random Field (i.e., local and stationary process)
- Rather than estimating conditional density, simply sample image
- Starting from a set of initial seed values, search the input texture for similar neighborhoods and assign randomly from this set

Pixel-based Texture Synthesis Methods

Input Sample	Wei and Levoy	Ashikhmin	Hertzmann et al.

Limitations and Failure Modes

"Garbage"	Verbatim Copying	Blurring

Patch-based Texture Synthesis

Patch-based Synthesis Procedure [Efros and Freeman '01]

- Pixel-based methods result in correlated neighboring pixels
- To accelerate synthesis, simply assign patches rather than pixels
- Starting from an initial patch, search the input texture for similar neighborhoods and assign next patch randomly from this set

Patch-based Texture Synthesis Results

Input Sample	Image Quilting	Graphcut Texture
C L L L L L L L L L L L L L L L L L L L		
		K K K K K K K K K K K K K K K K K K K

Outline

- Review of Texture Synthesis
- Texture Synthesis using Image Quilting
 - Implementation Details
 - MATLAB Demo
 - Performance Analysis
 - Comparison to Pixel-based Methods
- Texture Transfer and Manipulation

Revised Project Goals and Timeline

Overview of Image Quilting

Random Placement

Constrained Overlap

Minimal Error Cut

Image Quilting Procedure [Efros and Freeman '01]

- Append blocks to initial seed so that region of overlap is similar
- Define boundary by minimum cost path through overlap error

Initialization and Constrained Overlap

Image Quilting Procedure

- Define similarity using L_2 -norm applied to every pixel/color in block
- Optimize overlap region using minimum error boundary cut

Finding the Optimal Boundary Cut

Current Block

Source Block

Case I: Overlapping Columns

- Evaluate overlap error using L₂-norm applied to blocks
- Recursively compute path cost matrix using greedy algorithm (bottom-to-top along rows)

 $E_{i,j} = e_{i,j} + \min(E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1})$

 Trace cost matrix from top-tobottom (starting at minimumcost element in the first row)

Finding the Optimal Boundary Cut

Current Block

Source Block

Case II: Overlapping Rows

- Evaluate overlap error using L₂-norm applied to blocks
- Recursively compute path cost matrix using greedy algorithm (right-to-left along rows)

 $E_{i,j} = e_{i,j} + \min(E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1})$

 Trace cost matrix from left-toright (starting at minimum-cost element in the first column)

Overlap Error

Handling "L-shaped" Overlap Regions

Current Block

Source Block

Case III: "L-shaped" Regions

- Evaluate overlap error using L₂-norm applied to blocks
- Recursively compute path cost matrices using greedy method
- Determine starting pixel using overlapping costs in "corner"
- Trace cost matrix from left-toright and top-to-bottom (from minimum-cost element)

Overlap Error

MATLAB Demo

Performance Analysis

Input Image

Synthesized Textures

Image Quilting Parameter Tuning

- Only two parameters: (1) block size and (2) width of overlap edge
- Block size must be large enough to capture relevant structures, yet small enough to allow sufficient samples within the source texture
- [Efros and Freeman '01] use overlaps equal to 1/6 of the block size

Comparison for Near-Regular Textures

Comparison for Stochastic Textures

Comparison for Weakly Homogeneous Textures

Outline

- Review of Texture Synthesis
- Texture Synthesis using Image Quilting
- Texture Transfer and Manipulation
 - Implementation Details
 - Performance Analysis
- Revised Project Goals and Timeline

Overview of Texture Transfer

Texture Transfer [Efros and Freeman '01]

Image Analogies [Hertzmann et al. '01]

Douglas Lanman

Texture Transfer using Image Quilting

Blurred Luminance

Target Image

Texture Transfer Result

From an initial patch, search source texture and luminance map for similar neighborhoods and assign next patch randomly from this set

Additional Texture Transfer Example

Source Image

Blurred Luminance

Target Image

Texture Transfer Result

From an initial patch, search source texture and luminance map for similar neighborhoods and assign next patch randomly from this set

- Review of Texture Synthesis
- Patch-based Synthesis using Image Quilting
- Texture Transfer and Manipulation
- Revised Project Goals and Timeline

Revised Project Goals and Timeline

Proposed and Completed Primary Goals (for Progress Report)

- Implement patch-based texture synthesis using Image Quilting
- Use texture transfer to allow user-controlled synthesis
- Evaluate regular, stochastic, and weakly-homogeneous samples
- Compare results to existing methods using available implementations

Secondary Goals (for Final Report)

- Implement graphcut-based texture synthesis
- Extend texture transfer to allow patch-based image analogies
- Evaluate feature matching and texture deformation
- Examine extensions for inpainting and retouching
- Apply texture synthesis to surface completion problem

Feature Matching and Image Deformation

References

"Early" Approaches: Texture Analysis and Psychophysics

- 1. D.J. Heeger and J.R. Bergen, "Pyramid-Based Texture Analysis/Synthesis", SIGGRAPH '95.
- 2. J.S. De Bonet, "Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images", SIGGRAPH '97.

Pixel-based Texture Synthesis

- 3. A.A. Efros and T.K. Leung, "Texture Synthesis by Non-parametric Sampling", ICCV, 1998.
- 4. L. Wei and M. Levoy, "Fast Texture Synthesis using Tree-structured Vector Quantization", SIGGRAPH '00.
- 5. M. Ashikhmin, "Synthesizing Natural Textures", Interactive 3D Graphics (I3D), 2001.
- 6. A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D.H. Salesin, "Image Analogies", SIGGRAPH '01.

Patched-based Texture Synthesis

- 7. Y. Xu, B. Guo, and H. Shum, "Chaos Mosaic: Fast and Memory Efficient Texture Synthesis", Microsoft Research Technical Report, MSR-TR-2000-32, 2000.
- 8. A.A. Efros and W. Freeman, "Image Quilting for Texture Synthesis and Transfer", SIGGRAPH '01.
- 9. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, "Graphcut Textures: Image and Video Synthesis Using Graph Cuts", SIGGRAPH '03.
- 10. Q. Wu and Y. Yu, "Feature Matching and Deformation for Texture Synthesis", SIGGRAPH '04.

