EN 257: Applied Stochastic Processes Problem Set 2

Douglas Lanman
dlanman@brown.edu
9 February 2007

Problem 3.16

The objective is to generate numbers from the pdf shown in Figure P3.16 on page 164 in [3]. All that is available is a random number generator that generates numbers uniformly in $(0,1)$. Explain what procedure you would use to meet the objective.

If we assume that $f(x)$ is symmetric about $x=0$ and is composed of two linear segments on $-1 \leq x<0$ and $0 \leq x<1$, then the resulting triangle must have unit area (by Equation 2.4-3 on page 66 in [3]). It directly follows that the pdf $f_{X}(x)$ must have the following form.

$$
f_{X}(x)= \begin{cases}0, & \text { for } x<-1 \tag{1}\\ 1-x, & \text { for }-1 \leq x<0 \\ x-1, & \text { for } 0 \leq x<1 \\ 0, & \text { for } x \geq 1\end{cases}
$$

Now recall that the PDF $F_{X}(x)$ is defined in terms of $f_{X}(x)$ as follows.

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(\xi) d \xi \tag{2}
\end{equation*}
$$

Applying Equation 2 to Equation 1 (and solving the resulting integrals) yields in the following expression for the PDF $F_{X}(x)$.

$$
F_{X}(x)= \begin{cases}0, & \text { for } x<-1 \tag{3}\\ \frac{x^{2}}{2}+x+\frac{1}{2}, & \text { for }-1 \leq x<0 \\ -\frac{x^{2}}{2}+x+\frac{1}{2}, & \text { for } 0 \leq x<1 \\ 1, & \text { for } x \geq 1\end{cases}
$$

At this point we recall the following procedure for generating a r.v. X with $\operatorname{PDF} F_{X}(x)$ from a uniform r.v. Y. As stated on page 125 in [3], "...given a uniform r.v. Y, the transformation $X=F_{X}^{-1}(Y)$ will generate a r.v. with PDF $F_{X}(x)$ ". Note that $F_{X}^{-1}(y)$ denotes the inverse function, such that $F_{X}^{-1}\left(F_{X}(x)\right)=x$ [4]. From the plot of $F_{X}(x)$ shown in Figure 1(b), it is apparent that $F_{X}(x)$ maps $x \in \mathbb{R}$ onto the open interval $(0,1)$. As a result we only require a closed-form expression for the inverse $\operatorname{PDF} F_{X}^{-1}(y)$ for $y \in(0,1)$. Application of the quadratic formula gives the following inverse functions.

$$
\begin{align*}
y=\frac{x^{2}}{2}+x+\frac{1}{2}, \text { for }-1 \leq x<0 \quad & \Rightarrow \quad \sqrt{2 y}-1, \text { for } 0 \leq y<\frac{1}{2} \tag{4}\\
y & =-\frac{x^{2}}{2}+x+\frac{1}{2}, \text { for } 0 \leq x<1 \quad \tag{5}
\end{align*} \quad \Rightarrow \quad 1-\sqrt{2-2 y}, \text { for } \frac{1}{2} \leq y<1
$$

Figure 1: Generating a r.v. X with pdf $f_{X}(x)$ from a uniform r.v. Y. (a) The desired pdf $f_{X}(x)$. (b) The corresponding PDF $F_{X}(x)$. (c) The inverse $\operatorname{PDF} F_{X}^{-1}(y)$. (d) The empirical pdf using 10^{6} samples (i.e., the normalized histogram shown in red) and the desired pdf $f_{X}(x)$ (shown in blue).

Combining Equation 4 and Equation 5 gives the following solution for the inverse $\operatorname{PDF} F_{X}^{-1}(y)$.

$$
F_{X}^{-1}(y)= \begin{cases}\sqrt{2 y}-1, & \text { for } 0<y<\frac{1}{2} \tag{6}\\ 1-\sqrt{2-2 y}, & \text { for } \frac{1}{2} \leq y<1\end{cases}
$$

In conclusion, we propose the following algorithm for generating a r.v. X with $\operatorname{pdf} f_{X}(x)$, as defined by Equation 1, from a uniform r.v. Y.

1. Generate N random samples y_{i}, for $i=0, \ldots, N$, of the r.v. Y which is uniform on $(0,1)$.
2. Transform each sample such that $x_{i}=F_{X}^{-1}\left(y_{i}\right)$, for $F_{X}^{-1}(y)$ as defined by Equation 6.

This procedure was implemented using the Matlab function prob1.m (attached at the end of this write-up). As shown in Figure 1(d), the histogram of 10^{6} transformed samples closely approximates the desired pdf $f_{X}(x)$.

Problem 3.19

Let X and Y be independent, continuous r.v.'s. Let $Z=\min (X, Y)$. (a) Compute $F_{Z}(z)$ and $f_{Z}(z)$. (b) Sketch the result if X and Y are uniform r.v.'s in $(0,1)$. (c) Sketch the result for $f_{X}(x)=f_{Y}(x)=\alpha \exp (-\alpha x) \cdot u(x)$.

Part (a)

Note that the probability distribution function $F_{Z}(z)$ of $Z=\min (X, Y)$ can be expressed as follows.

$$
F_{Z}(z)=P[\min (X, Y) \leq z]=1-P[X>z, Y>z]
$$

In other words, the region of interest is $\mathbb{R}^{2} \backslash\{X>z, Y>z\}$ (i.e., the entire real plane except where X and Y are greater than z). Since X and Y are independent, we can write

$$
\begin{aligned}
F_{Z}(z) & =1-P[X>z] P[Y>z]=1-(1-P[X \leq z])(1-P[Y \leq z]) \\
& =1-\left(1-F_{X}(z)\right)\left(1-F_{Y}(z)\right)=F_{X}(z)+F_{Y}(z)-F_{X}(z) F_{Y}(z),
\end{aligned}
$$

were $F_{X}(x)=P[X \leq x]$. Finally, we differentiate $F_{Z}(z)$ with respect to z to obtain the probability density function $f_{Z}(z)$.

$$
\begin{align*}
F_{Z}(z) & =F_{X}(z)+F_{Y}(z)-F_{X}(z) F_{Y}(z) \tag{7}\\
f_{Z}(z) & =f_{X}(z)+f_{Y}(z)-f_{X}(z) F_{Y}(z)-F_{X}(z) f_{Y}(z)
\end{align*}
$$

Part (b)

First, we recall that the $\operatorname{PDF} F_{X}(x)$ of a uniform r.v. X in $(0,1)$ can be expressed using Equation $2.3-3$ on page 64 in [3].

$$
F_{X}(x)= \begin{cases}0, & \text { for } x \leq 0 \tag{8}\\ x, & \text { for } 0<x \leq 1 \\ 1, & \text { for } x>1\end{cases}
$$

Similarly, the pdf $f_{X}(x)$ is given by Equation 2.4-17 on page 72.

$$
f_{X}(x)= \begin{cases}1, & \text { for } 0<x \leq 1 \tag{9}\\ 0, & \text { otherwise }\end{cases}
$$

Substituting Equations 8 and 9 into Equation 7 yields the desired expressions.

$$
f_{Z}(z)=\left\{\begin{array}{ll}
-2 z+2, & \text { for } 0<z \leq 1 \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad F_{Z}(z)= \begin{cases}0, & \text { for } z \leq 0 \\
-z^{2}+2 z, & \text { for } 0<z \leq 1 \\
1, & \text { for } z>1\end{cases}\right.
$$

Plots of $f_{Z}(z)$ and $F_{Z}(z)$ are shown in Figure 2.

Figure 2: Plots of $f_{Z}(z)$ and $F_{Z}(z)$ derived in part (b) of Problem 3.19.

Figure 3: Plots of $f_{Z}(z)$ and $F_{Z}(z)$ derived in part (c) of Problem 3.19.

Part (c)

To begin our analysis we note that, for $f_{X}(x)=\alpha \exp (-\alpha x) \cdot u(x), X$ is an exponential random variable. Given the pdf $f_{X}(x)$, the PDF $F_{X}(x)$ can be obtained by integration.

$$
F_{X}(x)=\int_{-\infty}^{x} f(\xi) d \xi=\left\{\begin{array}{ll}
\alpha \int_{0}^{x} e^{-\alpha \xi} d \xi, & \text { for } x \geq 0 \\
0, & \text { for } x<0
\end{array}= \begin{cases}1-e^{-\alpha x}, & \text { for } x \geq 0 \\
0, & \text { for } x<0\end{cases}\right.
$$

Substituting for $f_{X}(x)$ and $F_{X}(x)$ in Equation 7 yields the desired expressions.

$$
f_{Z}(z)=\left\{\begin{array}{ll}
2 \alpha e^{-2 \alpha z}, & \text { for } z \geq 0 \\
0, & \text { for } z<0
\end{array} \quad \text { and } \quad F_{Z}(z)= \begin{cases}1-e^{-2 \alpha z}, & \text { for } z \geq 0 \\
0, & \text { for } z<0\end{cases}\right.
$$

Plots of $f_{Z}(z)$ and $F_{Z}(z)$ are shown in Figure 3.

Problem 3.28

(a) Compute the joint pdf of

$$
\begin{aligned}
Z \triangleq g(X, Y) & =X^{2}+Y^{2} \\
W \triangleq h(X, Y) & =X
\end{aligned}
$$

when

$$
\begin{equation*}
f_{X Y}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\left[\left(x^{2}+y^{2}\right) / 2 \sigma^{2}\right]} \tag{10}
\end{equation*}
$$

(b) Compute $f_{Z}(z)$ from your results.

Part (a)

First, we note that this problem is primarily instructive since direct methods exist (e.g., Example 3.3-8 on page 149 in [3]). As described, this problem demonstrates the use of an auxiliary random variable $W \triangleq X$ to determine $f_{Z}(z)$ from the joint pdf $f_{Z W}(z, w)$. We begin our analysis by observing that the equations

$$
\begin{array}{r}
z-g(x, y)=0 \\
w-h(x, y)=0
\end{array}
$$

have two real roots, for $|w| \leq \sqrt{z}$ and $z \geq 0$, given by

$$
\begin{array}{ll}
x_{1}=\phi_{1}(z, w)=w & x_{2}=\phi_{2}(z, w)=w \\
y_{1}=\varphi_{1}(z, w)=\sqrt{z-w^{2}} & y_{2}=\varphi_{2}(z, w)=-\sqrt{z-w^{2}} \tag{11}
\end{array}
$$

At this point we recall that $f_{Z W}(z, w)$ can be obtained directly from $f_{X Y}(x, y)$ using the methods outlined in Section 3.4 in [3]. From that section we note that the joint pdf can be expressed as

$$
\begin{equation*}
f_{Z W}(z, w)=\sum_{i=1}^{n} f_{X Y}\left(x_{i}, y_{i}\right)\left|\tilde{J}_{i}\right| \tag{12}
\end{equation*}
$$

where $\left|\tilde{J}_{i}\right|$ is the magnitude of the Jacobian transformation such that

$$
\left|\tilde{J}_{i}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
\partial \phi_{i} / \partial z & \partial \phi_{i} / \partial w \tag{13}\\
\partial \varphi_{i} / \partial z & \partial \varphi_{i} / \partial w
\end{array}\right)\right|
$$

and n is the number of solutions to the equations $z=g(x, y)$ and $w=h(x, y)$. Substituting Equation 11 into Equation 13 gives the following Jacobian magnitutdes.

$$
\begin{align*}
& \left|\tilde{J}_{1}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
\frac{1}{2 \sqrt{z-w^{2}}} & \frac{-w}{\sqrt{z-w^{2}}}
\end{array}\right)\right|=\frac{1}{2 \sqrt{z-w^{2}}} \tag{14}\\
& \left|\tilde{J}_{2}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
\frac{-1}{2 \sqrt{z-w^{2}}} & \frac{w}{\sqrt{z-w^{2}}}
\end{array}\right)\right|=\frac{1}{2 \sqrt{z-w^{2}}} \tag{15}
\end{align*}
$$

Before we proceed, we observe that Equation 10 can be expressed as a function of z, such that

$$
\begin{equation*}
f_{X Y}(z)=\frac{1}{2 \pi \sigma^{2}} e^{-z / 2 \sigma^{2}} \tag{16}
\end{equation*}
$$

Substituting Equations 14-16 into Equation 12 gives

$$
f_{Z W}(z, w)= \begin{cases}f_{X Y}(z)\left|\tilde{J}_{1}\right|+f_{X Y}(z)\left|\tilde{J}_{2}\right|, & \text { for }|w| \leq \sqrt{z} \text { and } z \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

which yields the desired expression for the joint pdf $f_{Z W}(z, w)$.

$$
f_{Z W}(z, w)= \begin{cases}\frac{1}{2 \pi \sigma^{2} \sqrt{z-w^{2}}} e^{-z / 2 \sigma^{2}}, & \text { for }|w| \leq \sqrt{z} \text { and } z \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Part (b)

Given the joint pdf $f_{Z W}(z, w)$, we can obtain the marginal pdf $f_{Z}(z)$ as follows.

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Z W}(z, w) d w
$$

Substituting the result from part (b), we find

$$
f_{Z}(z)=\frac{1}{2 \pi \sigma^{2}} e^{-z / 2 \sigma^{2}}\left[\int_{-\sqrt{z}}^{\sqrt{z}} \frac{d w}{\sqrt{z-w^{2}}}\right] u(z)
$$

To complete our derivation, we note that the remaining integral can be solved by a change of variables. If we let $w \triangleq \sqrt{z} \sin \theta$, then $d w=\sqrt{z} \cos \theta d \theta$ and $\sqrt{z-w^{2}}=\sqrt{z} \cos \theta$. As a result, we find

$$
\int_{-\sqrt{z}}^{\sqrt{z}} \frac{d w}{\sqrt{z-w^{2}}}=\int_{-\pi / 2}^{\pi / 2} d \theta=\pi
$$

In conclusion, we obtain the following solution for the marginal pdf $f_{Z}(z)$.

$$
f_{Z}(z)=\frac{1}{2 \sigma^{2}} e^{-z / 2 \sigma^{2}} u(z)
$$

Note that this result is identical to that obtained using direct methods in Example 3.3-8.

Problem 4.44

Let X_{i} for $i=1, \ldots, 4$ be four zero-mean Gaussian random variables. Use the joint characteristic function to show that

$$
\begin{equation*}
E\left[X_{1} X_{2} X_{3} X_{4}\right]=E\left[X_{1} X_{2}\right] E\left[X_{3} X_{4}\right]+E\left[X_{1} X_{3}\right] E\left[X_{2} X_{4}\right]+E\left[X_{2} X_{3}\right] E\left[X_{1} X_{4}\right] \tag{17}
\end{equation*}
$$

Recall from Equation 4.7-12 on page 222 in [3] that the joint characteristic function is given by

$$
\Phi_{X_{1} \ldots X_{N}}\left(\omega_{1}, \ldots, \omega_{N}\right)=E\left[\exp \left(j \sum_{i=1}^{N} \omega_{i} X_{i}\right)\right],
$$

for N random variables X_{1}, \ldots, X_{N}. From Equation 4.7-14 and 5.7-5, we also recall that the joint characteristic function can be used to obtain the joint moments as follows.

$$
\begin{equation*}
E\left[X_{1}^{k_{1}} \ldots X_{N}^{k_{N}}\right]=\left.(-j)^{k_{1}+\ldots+k_{N}} \frac{\partial^{k_{1}+\ldots+k_{N}} \Phi_{X_{1} \ldots X_{N}}\left(\omega_{1}, \ldots, \omega_{N}\right)}{\partial \omega_{1}^{k_{1}} \ldots \partial \omega_{N}^{k_{N}}}\right|_{\omega_{1}=\ldots=\omega_{N}=0} \tag{18}
\end{equation*}
$$

For this problem we have $N=4$ and $k_{1}=\ldots=k_{4}=1$. As a result, substituting Equation 18 into Equation 17 gives the following equality in terms of the joint characteristic functions.

$$
\begin{align*}
& \Phi_{X_{1} X_{2} X_{3} X_{4}}^{(1,1,1,1)}(0,0,0,0)=\Phi_{X_{1} X_{2}}^{(1,1)}(0,0) \Phi_{X_{3} X_{4}}^{(1,1)}(0,0)+ \\
& \quad \Phi_{X_{1} X_{3}}^{(1,1)}(0,0) \Phi_{X_{2} X_{4}}^{(1,1)}(0,0)+\Phi_{X_{2} X_{3}}^{(1,1)}(0,0) \Phi_{X_{1} X_{4}}^{(1,1)}(0,0) \tag{19}
\end{align*}
$$

Notice that we have simplified the previous expression by using the following shorthand notation.

$$
\left.\Phi_{X_{1} \ldots X_{N}}^{\left(k_{1}, \ldots, k_{N}\right)}(0, \ldots, 0) \triangleq \frac{\partial^{k_{1}+\ldots+k_{N}} \Phi_{X_{1} \ldots X_{N}}\left(\omega_{1}, \ldots, \omega_{N}\right)}{\partial \omega_{1}^{k_{1}} \ldots \partial \omega_{N}^{k_{N}}}\right|_{\omega_{1}=\ldots=\omega_{N}=0}
$$

At this point, we require a closed-form expression for the joint characteristic function of two or more zero-mean Gaussian random variables. Conveniently, this has already been derived in Section 5.7 in [3]. Following the derivation of Equation $5.7-20$ we obtain the following joint characteristic function for two zero-mean Gaussian random variables X_{i} and X_{j}.

$$
\Phi_{X_{i} X_{j}}\left(\omega_{i}, \omega_{j}\right)=e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}, \text { for } \mathbf{K}=\left(\begin{array}{ll}
K_{i i} & K_{i j} \tag{20}\\
K_{j i} & K_{j j}
\end{array}\right) \text { and } \omega=\binom{\omega_{i}}{\omega_{j}}
$$

Similarly, for four zero-mean Gaussian random variables X_{1}, \ldots, X_{4}, we have

$$
\Phi_{X_{1} X_{2} X_{3} X_{4}}\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)=e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega} \text {, for } \mathbf{K}=\left(\begin{array}{lll}
K_{11} & \ldots & K_{14} \tag{21}\\
\vdots & \ddots & \vdots \\
K_{41} & \ldots & K_{44}
\end{array}\right) \text { and } \omega=\left(\begin{array}{l}
\omega_{1} \\
\vdots \\
\omega_{4}
\end{array}\right) \text {. }
$$

Substituting Equation 20 into Equation 18 gives the following expression for the joint moment $E\left[X_{i} X_{j}\right]$.

$$
\begin{equation*}
E\left[X_{i} X_{j}\right]=-\left.\frac{\partial^{2} \Phi_{X_{i} X_{j}}\left(\omega_{i}, \omega_{j}\right)}{\partial \omega_{i} \partial \omega_{j}}\right|_{\omega_{i}=\omega_{j}=0}=\frac{1}{2}\left(K_{i j}+K_{j i}\right)=K_{i j} \tag{22}
\end{equation*}
$$

Note that in the previous expression we have applied the result that the covariance matrix is symmetric (i.e., $K_{i j}=K_{j i}$). As a result, we conclude that $E\left[X_{i} X_{j}\right]=K_{i j}$; this result is expected since, from the definition of the joint moment in Equation 5.3-2, the covariance and correlation are identical for $\mu=0$. Substituting the result from Equation 22 into Equation 17 gives the following expression for the joint moment of four zero-mean Gaussian random variables.

$$
\begin{equation*}
E\left[X_{1} X_{2} X_{3} X_{4}\right] \stackrel{?}{=} K_{12} K_{34}+K_{13} K_{24}+K_{23} K_{14} \tag{23}
\end{equation*}
$$

All that remains is to demonstrate that the left-hand and right-hand sides of Equation 23 are equivalent. To proceed, we substitute Equation 21 into Equation 18 to obtain the following result.

$$
E\left[X_{1} X_{2} X_{3} X_{4}\right]=\left.\frac{\partial^{4} e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}}{\partial \omega_{1} \partial \omega_{2} \partial \omega_{3} \partial \omega_{4}}\right|_{\omega_{1}=\ldots=\omega_{4}=0}, \text { for } \mathbf{K}=\left(\begin{array}{lll}
K_{11} & \ldots & K_{14} \\
\vdots & \ddots & \vdots \\
K_{41} & \ldots & K_{44}
\end{array}\right) \text { and } \omega=\left(\begin{array}{l}
\omega_{1} \\
\vdots \\
\omega_{4}
\end{array}\right)
$$

Evaluating the first partial derivative with respect to ω_{1} gives the following result.

$$
\begin{aligned}
E\left[X_{1} X_{2} X_{3} X_{4}\right] & =\left.\frac{\partial^{3}}{\partial \omega_{2} \partial \omega_{3} \partial \omega_{4}}\left\{\left.\frac{\partial e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}}{\partial \omega_{1}}\right|_{\omega_{1}=0}\right\}\right|_{\omega_{2}=\ldots=\omega_{4}=0} \\
& =\left.\frac{\partial^{3}}{\partial \omega_{2} \partial \omega_{3} \partial \omega_{4}}\left\{-\left(K_{12} \omega_{2}+K_{13} \omega_{3}+K_{14} \omega_{4}\right) e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}\right\}\right|_{\omega_{2}=\ldots=\omega_{4}=0}
\end{aligned}
$$

Note that in the previous expression we have assumed that ω is now given by $\omega=\left(0, \omega_{2}, \omega_{3}, \omega_{4}\right)^{T}$. Continuing, we can now evaluate the partial derivative with respect to ω_{2}.

$$
\begin{aligned}
E\left[X_{1} X_{2} X_{3} X_{4}\right] & =-\left.\frac{\partial^{2}}{\partial \omega_{3} \partial \omega_{4}}\left\{\left.\frac{\partial\left(K_{12} \omega_{2}+K_{13} \omega_{3}+K_{14} \omega_{4}\right) e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}}{\partial \omega_{2}}\right|_{\omega_{2}=0}\right\}\right|_{\omega_{3}=\omega_{4}=0} \\
& =\left.\frac{\partial^{2}}{\partial \omega_{3} \partial \omega_{4}}\left\{\left[\left(K_{13} \omega_{3}+K_{14} \omega_{4}\right)\left(K_{23} \omega_{3}+K_{24} \omega_{4}\right)-K_{12}\right] e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}\right\}\right|_{\omega_{3}=\omega_{4}=0}
\end{aligned}
$$

As before, we have reduced ω to be $\omega=\left(0,0, \omega_{3}, \omega_{4}\right)^{T}$. Next, we evaluate the partial derivative with respect to ω_{3}.

$$
\begin{aligned}
E\left[X_{1} X_{2} X_{3} X_{4}\right] & =\left.\frac{\partial}{\partial \omega_{4}}\left\{\left.\frac{\partial\left[\left(K_{13} \omega_{3}+K_{14} \omega_{4}\right)\left(K_{23} \omega_{3}+K_{24} \omega_{4}\right)-K_{12}\right] e^{-\frac{1}{2} \omega^{T} \mathbf{K} \omega}}{\partial \omega_{3}}\right|_{\omega_{3}=0}\right\}\right|_{\omega_{4}=0} \\
& =\left.\frac{\partial}{\partial \omega_{4}}\left\{\left[\left(K_{12} K_{34}+K_{13} K_{24}+K_{23} K_{14}\right) \omega_{4}-K_{14} K_{24} K_{34} \omega_{4}^{3}\right] e^{-\frac{1}{2} K_{44} \omega_{4}^{2}}\right\}\right|_{\omega_{4}=0}
\end{aligned}
$$

To complete our derivation, we evaluate the partial derivative in ω_{4} to yield the desired result.

$$
\begin{equation*}
E\left[X_{1} X_{2} X_{3} X_{4}\right]=K_{12} K_{34}+K_{13} K_{24}+K_{23} K_{14} \tag{24}
\end{equation*}
$$

Since Equation 23 and Equation 24 agree, we conclude that the following expression will hold for any four zero-mean Gaussian random variables.

$$
E\left[X_{1} X_{2} X_{3} X_{4}\right]=E\left[X_{1} X_{2}\right] E\left[X_{3} X_{4}\right]+E\left[X_{1} X_{3}\right] E\left[X_{2} X_{4}\right]+E\left[X_{2} X_{3}\right] E\left[X_{1} X_{4}\right]
$$

(QED)

Problem 4.48

Show that

$$
\begin{equation*}
W_{n} \triangleq \sum_{i=1}^{n}\left[\frac{1}{\sigma}\left(X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}\right)\right]^{2} \tag{25}
\end{equation*}
$$

is Chi-square with $n-1$ degrees of freedom.

To begin our derivation we first recall that the sample mean estimator $\hat{\mu}_{n}$ is defined as

$$
\begin{equation*}
\hat{\mu}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{26}
\end{equation*}
$$

where X_{1}, \ldots, X_{n} are n independent observations of a Normal random variable with unknown mean μ and variance σ^{2}. Substituting this expression into Equation 25 gives the following result.

$$
W_{n}=\sum_{i=1}^{n}\left(\frac{X_{i}-\hat{\mu}_{n}}{\sigma}\right)^{2}
$$

At this point we are free to add and subtract the true mean μ as follows.

$$
\begin{aligned}
W_{n} & =\sum_{i=1}^{n}\left[\frac{\left(X_{i}-\mu\right)+\left(\mu-\hat{\mu}_{n}\right)}{\sigma}\right]^{2} \\
& =\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}+\frac{2}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)\left(\mu-\hat{\mu}_{n}\right)+\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\mu-\hat{\mu}_{n}\right)^{2}
\end{aligned}
$$

Note that the quantity $\left(\mu-\hat{\mu}_{n}\right)$ is a constant. As a result, we can further reduce the previous expression.

$$
W_{n}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}+\frac{2\left(\mu-\hat{\mu}_{n}\right)}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)+n\left(\frac{\mu-\hat{\mu}_{n}}{\sigma}\right)^{2}
$$

As an aside we also note that $\sum_{i=1}^{n}\left(X_{i}-\mu\right)=n\left(\hat{\mu}_{n}-\mu\right)$. Substituting this result into the previous expression yields

$$
W_{n}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}-n\left(\frac{\mu-\hat{\mu}_{n}}{\sigma}\right)^{2}=\sum_{i=1}^{n}\left[\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}-\left(\frac{\mu-\hat{\mu}_{n}}{\sigma}\right)^{2}\right] .
$$

Finally, by applying Equation 26, we can reduce W_{n} to obtain the following simple form for Equation 25.

$$
\begin{equation*}
W_{n}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}-\frac{1}{n}\left[\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)\right]^{2} \tag{27}
\end{equation*}
$$

As described on page 234 in [3], if we make n observations of a Normal random variable with variance σ^{2} and mean μ, then the random variable $U_{i} \triangleq\left(X_{i}-\mu\right) / \sigma$ is $N(0,1)$. In addition, we also know that $Z_{n} \triangleq \sum_{i=1}^{n} U_{i}^{2}$ is Chi-square with n degrees of freedom. Examining Equation 27, we notice that the first term corresponds identically with this situation. The second term, however, is simply a sum of standard Normal random variables which is multiplied by $1 / n$. By the fundamental properties of Normal random variables, we can conclude that the right-hand side is also a Normal
random variable $N(0,1)$. In conclusion, W_{n} is composed of a summation over $n-1$ independent Normal random variables. As a result we can conclude that

$$
W_{n} \triangleq \sum_{i=1}^{n}\left[\frac{1}{\sigma}\left(X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}\right)\right]^{2}
$$

is Chi-square with $n-1$ degrees of freedom. (QED)

References

[1] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes (Third Edition). Oxford University Press, 2001.
[2] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[3] Henry Stark and John W. Woods. Probability and Random Processes with Applications to Signal Processing (Third Edition). Prentice-Hall, 2002.
[4] Eric W. Weisstein. Inverse function. http://mathworld.wolfram.com/InverseFunction. html.

