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Problem 3.16

The objective is to generate numbers from the pdf shown in Figure P3.16 on page 164 in [3]. All
that is available is a random number generator that generates numbers uniformly in (0, 1). Explain
what procedure you would use to meet the objective.

If we assume that f(z) is symmetric about * = 0 and is composed of two linear segments on
—1 <z <0and 0 <z <1, then the resulting triangle must have unit area (by Equation 2.4-3 on
page 66 in [3]). It directly follows that the pdf fx(z) must have the following form.

0, for x < —1
l—z, for —1<2z<0

Ix(@) = r—1, for0<z<1 (1)
0, forz >1

Now recall that the PDF Fx(z) is defined in terms of fx(z) as follows.
Fa()= [ (e )

Applying Equation 2 to Equation 1 (and solving the resulting integrals) yields in the following
expression for the PDF Fx (z).

0, forx < —1
x? 1
4+ 5, for —1<x<0
FX(.’E): 2$2 21 (3)
-5 +x+s3, for0<z<1
1, forx > 1

At this point we recall the following procedure for generating a r.v. X with PDF Fx(z) from
a uniform r.v. Y. As stated on page 125 in [3], “..given a uniform r.v. Y, the transformation
X = F'(Y) will generate a r.v. with PDF Fx(z)”. Note that F5;'(y) denotes the inverse function,
such that Fy!'(Fx(x)) = x [4]. From the plot of Fx(z) shown in Figure 1(b), it is apparent that
Fx(z) maps = € R onto the open interval (0,1). As a result we only require a closed-form expression
for the inverse PDF Fy L(y) for y € (0,1). Application of the quadratic formula gives the following
inverse functions.

2
1 1
y:%+x+§,for—1§x<0 = V-l for0<y<g (4)
x? 1 1
y:—?+x+§,for03x<1 = 1—\/ﬁ,for§§y<1 (5)



EN 257: Applied Stochastic Processes Problem Set 2 Douglas Lanman

-1 0 1 2 -2 -1 0 1 2

y x
(c) Fx'(y) (d) fx(xz) vs. empirical histogram

Figure 1: Generating a r.v. X with pdf fx(z) from a uniform r.v. Y. (a) The desired pdf fx(z).
(b) The corresponding PDF Fx (z). (c) The inverse PDF F5'(y). (d) The empirical pdf using 10°
samples (i.e., the normalized histogram shown in red) and the desired pdf fx(z) (shown in blue).

Combining Equation 4 and Equation 5 gives the following solution for the inverse PDF F'y L(¥).

3 V2y —1, for 0 <y < %
Fxl(y)Z{ 2 (6)

1-y2=2y, fori<y<]l

In conclusion, we propose the following algorithm for generating a r.v. X with pdf fx(z), as
defined by Equation 1, from a uniform r.v. Y.

1. Generate N random samples y;, for i =0,..., N, of the r.v. Y which is uniform on (0, 1).
2. Transform each sample such that x; = Fy Y(y,), for F )zl(y) as defined by Equation 6.

This procedure was implemented using the MATLAB function probl.m (attached at the end of this

write-up). As shown in Figure 1(d), the histogram of 10° transformed samples closely approximates
the desired pdf fx(x).
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Problem 3.19

Let X and Y be independent, continuous r.v.’s. Let Z = min(X,Y). (a) Compute Fz(z) and
fz(z). (b) Sketch the result if X and Y are uniform r.v.’s in (0,1). (c) Sketch the result for

fx(@) = fy(z) = aexp(—az) - u(z).

Part (a)
Note that the probability distribution function Fz(z) of Z = min(X,Y") can be expressed as follows.
Fz(z) = Pmin(X,Y) <z =1—-P[X > 2, Y > 7]

In other words, the region of interest is R?\ {X > 2,Y > 2} (i.e., the entire real plane except where
X and Y are greater than z). Since X and Y are independent, we can write

Fz(2)=1-P[X >2]P[Y >z]=1—(1-P[X <z])(1-P[Y < z])
=1— (1— Fx(2))(1 - Fy(2)) = Fx(2) + Fy(2) — Fx(2)Fy (),

were Fx(z) = P|X < z|. Finally, we differentiate Fz(z) with respect to z to obtain the probability
density function fz(z).

Fz(z) = Fx(2) + Fy(2) — Fx(2)Fy(2)
fz(2) = fx(2) + fy(2) = fx(2)Fy (2) — Fx(2)fy(2)

(7)

Part (b)

First, we recall that the PDF Fx(x) of a uniform r.v. X in (0,1) can be expressed using Equation
2.3-3 on page 64 in [3].

0, forz <0
Fx(z)=q z, for0<z<1 (8)
1, forxz>1

Similarly, the pdf fx(z) is given by Equation 2.4-17 on page 72.

1, forO0<z<1
Ix(@) = { 0, otherwise (9)

Substituting Equations 8 and 9 into Equation 7 yields the desired expressions.

0 for 2 <0
J— < ) —
fz(2) = { 0 2242, f)(‘)cl;lgr;i;e_ ! and Fy(z)={ —22+4+2z for0<z<1
’ 1, for z > 1

Plots of fz(z) and Fz(z) are shown in Figure 2.
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Figure 3: Plots of fz(z) and Fz(z) derived in part (c) of Problem 3.19.
Part (c)

To begin our analysis we note that, for fx(z) = aexp(—ax) - u(z), X is an exponential random
variable. Given the pdf fx(z), the PDF Fx(z) can be obtained by integration.

" foafye%ds, forz>0 [ 1—e* forz>0
FX(x)_/oof(Qdf_{o, forz<0 |0, for z < 0

Substituting for fx(z) and Fx(x) in Equation 7 yields the desired expressions.

1—e 2% forz>0

272 for 2 >0 _
f2(2) = { 0, for 2 <0 and - Fy(z) = { 0, for 2 <0

Plots of fz(z) and Fz(z) are shown in Figure 3.
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Problem 3.28
(a) Compute the joint pdf of

Z2g(X,Y)=X%2+Y?
WEhX,Y)=X

when

1 (22 402) /202
fXY(xyy)Zﬁe (=" +y)/207] (10)

(b) Compute fz(z) from your results.

Part (a)

First, we note that this problem is primarily instructive since direct methods exist (e.g., Example
3.3-8 on page 149 in [3]). As described, this problem demonstrates the use of an auziliary random
variable W 2 X to determine fz(z) from the joint pdf fzw(z,w). We begin our analysis by
observing that the equations

z—g(x,y) =0
w—h(a:,y):0

have two real roots, for |w| < \/z and z > 0, given by

T = ¢1(z,w) = w T = ¢2(z,w) = w

y1 = p1(z,w) = Vz —w? Y = pa(z,w0) = —/z —w?. (11)

At this point we recall that fzy (z,w) can be obtained directly from fxy (z,y) using the methods
outlined in Section 3.4 in [3]. From that section we note that the joint pdf can be expressed as

faw (zw) = fxy (i, vl Jil, (12)
i=1

where |.J;| is the magnitude of the Jacobian transformation such that

| (G2 000

and n is the number of solutions to the equations z = g(z,y) and w = h(z,y). Substituting
Equation 11 into Equation 13 gives the following Jacobian magnitutdes.

il =|det [ ¥ ! ! (14)
= (§] —w = —
' 2\/Z17w2 Vz—w? 2vVz — w?

ol = |det [0 ; ! (15)
2| = |de -1 = —
Now? \/;fwz 2vz — w?
Before we proceed, we observe that Equation 10 can be expressed as a function of z, such that
1
fxy(z) = —=e /%7, (16)

- 2702

5
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Substituting Equations 14-16 into Equation 12 gives

Fow (z,w) = ny(z)|j1| + ny(z)|j2|, for jw| <z and z >0
2w 0, otherwise,

which yields the desired expression for the joint pdf fzw (z,w).

e=#/2*  for |w| < /z and z > 0

1
fZW(zaw) — { 2ma 2/ z—w?

0, otherwise

Part (b)

Given the joint pdf fzw (z,w), we can obtain the marginal pdf fz(z) as follows.

fz(2) = /OO fzw(z,w)dw.

— 00

Substituting the result from part (b), we find

T dw
fo(2) = g e l/ d ]%).

202 i Vz—w?

To complete our derivation, we note that the remaining integral can be solved by a change of
variables. If we let w £ \/zsinf, then dw = \/zcosfdf and vz — w? = \/zcosf. As a result, we

find /7 p
/ _dw / o = .
—vEvz—w?r  Jopp

In conclusion, we obtain the following solution for the marginal pdf fz(z).

1

f2(2) = 55 ¢ u(z)

Note that this result is identical to that obtained using direct methods in Example 3.3-8.
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Problem 4.44

Let X; for ¢ = 1,...,4 be four zero-mean Gaussian random variables. Use the joint characteristic
function to show that

E[X1X2X3X4] = E[XlXQ]E[X3X4] + E[Xng]E[X2X4] + E[XQXg]E[X1X4]. (17)

Recall from Equation 4.7-12 on page 222 in [3] that the joint characteristic function is given by

N
exp (jZWiXi>] ;
=1

for N random variables X1,..., Xy. From Equation 4.7-14 and 5.7-5, we also recall that the joint
characteristic function can be used to obtain the joint moments as follows.

Px,. .xy(wi,...,wN)=F

oFitthn g .
BIxXh . XAN] = (et XX (1 on) (18)
awl ce a(’(‘}N wi1=...=wn=0

For this problem we have N =4 and k1 = ... = k4 = 1. As a result, substituting Equation 18 into

Equation 17 gives the following equality in terms of the joint characteristic functions.

(1,1,1,1) _ LD (1,1)
Dy, s x,(0,0,0,0) = @5 (0,0)P! %, (0,0)+
1,1 1,1 1,1 1,1

oG (0,024 (0,00 + @4 (0,000, (0,0) (19)

Notice that we have simplified the previous expression by using the following shorthand notation.

krk) 0) 2 it Fhn gy x (Wi, wN)
X1..XN yrtty - b k1 o kn
(.Ul e CUN

wi=...=wn=0

At this point, we require a closed-form expression for the joint characteristic function of two or
more zero-mean Gaussian random variables. Conveniently, this has already been derived in Section
5.7 in [3]. Following the derivation of Equation 5.7-20 we obtain the following joint characteristic
function for two zero-mean Gaussian random variables X; and Xj;.

N U 4 ° % ([ Ki Kij [ wi
Dy, x;(wi,wj) =e 2 , for K = <sz’ K > and w = <wj > (20)
Similarly, for four zero-mean Gaussian random variables Xy, ..., X4, we have
K1 ... Kua w1
1
(I)X1X2X3X4(W1,WQ,LU3,LU4) = eiﬁwTKw, for K = IR and w = . (21)
Ky ... Ky w4y

Substituting Equation 20 into Equation 18 gives the following expression for the joint moment

E[X;X;].

82<I>Xl,xj(wi,wj) _ 1
8&17;6(,(}]' N 5

w;i=w;=0

ElX;X;] = —

(Kij + Kj;) = Ky (22)
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Note that in the previous expression we have applied the result that the covariance matrix is
symmetric (i.e., K;; = Kj;). As a result, we conclude that E[X;X;] = Kj;; this result is expected
since, from the definition of the joint moment in Equation 5.3-2, the covariance and correlation are
identical for p = 0. Substituting the result from Equation 22 into Equation 17 gives the following
expression for the joint moment of four zero-mean Gaussian random variables.

?
E[X1XoX3Xy] = K12K34 + K13Ko4 + Ko3K14 (23)

All that remains is to demonstrate that the left-hand and right-hand sides of Equation 23 are
equivalent. To proceed, we substitute Equation 21 into Equation 18 to obtain the following result.

Kll K14 w1

846—%wTKw
, for K= | : R and w =

E[X1 X2 X3Xy] =

Ow1 0woOws 0wy
w1=...=ws=0 Ky ... Ky w4

Evaluating the first partial derivative with respect to w; gives the following result.

93 { 867%wTKw }
w1=0

E[X1 X2 X3X4]

- Ow9 0wz 0wy Owq
wo=...=w4=0
63
" OwaOwsdwy {_(Kl2w2 + Ki3ws + K14w4)6_%WTKw}
80128(036&)4 wa=...=w4=0

Note that in the previous expression we have assumed that w is now given by w = (0, ws, w3, ws)? .
Continuing, we can now evaluate the partial derivative with respect to ws.

2 K K K —10TKw
E[X1X2X3X4] — 9 8( 12W2 + K13w3 + 14(,U4)e 2
8&)38&)4 8(,02
w2=0/ lwg3=w,=0
82 _ 1,7
= DD {[(wag + K1gwy) (Kogws + Kogwy) — K] e 2% Kw
o w3z=w4=0

As before, we have reduced w to be w = (0,0,ws,wys)?. Next, we evaluate the partial derivative
with respect to ws.

1,7
0 9 [(K13ws + Kjawa)(Koszws + Kogws) — K] e 29 K@
B[X1X2X3X,] = (M{ [(K13ws + Kiawa)( 2383;}3 2401) — K9] }
UJ3:0 (.U4:O
0 _1
- 87(.4)4 {[(K12K34 +K13K24+K23K14)w4 —K14K24K34u)2] e 2K44w2}
wq=0

To complete our derivation, we evaluate the partial derivative in w4 to yield the desired result.
E[X1X2X3Xy] = K12K34 + K13K24 + Ko3K14 (24)

Since Equation 23 and Equation 24 agree, we conclude that the following expression will hold for
any four zero-mean Gaussian random variables.

| B[X1X2X3X,] = E[X1 X, E[X3X,] + E[X1 X3 E[X,X,] + E[X2X3] B[X X,] |

(QED)
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Problem 4.48
Show that

woey | x-tyx, (25)

is Chi-square with n — 1 degrees of freedom.

To begin our derivation we first recall that the sample mean estimator fi, is defined as

a1l
=1
where X1, ..., X, are n independent observations of a Normal random variable with unknown mean

p and variance o2, Substituting this expression into Equation 25 gives the following result.

n ~ 2
Xi— 10
W, = § i i
=1
At this point we are free to add and subtract the true mean p as follows.

[(Xi — ) + (u —ﬂn)r

W

SA @.
i M: i M:
— —_

<Xia >+QZ )b — fin) Ulz_:ﬂ fin)?

Note that the quantity (@ — fi,) is a constant. As a result, we can further reduce the previous

expression.
X =\ 20— ) o p—pn\?
Wn:;( o > + 0_2 ZI(XZ_,U')JFTL<0_>
1= 1=

As an aside we also note that > | (X; — p) = n(fin, — p). Substituting this result into the previous

expression yields
(X Ty AR VS A ST A
W, = — — ) = - — .
% (57) (%) - x| (% :

Finally, by applying Equation 26, we can reduce W, to obtain the following simple form for Equa-

tion 25. )
L Xi—p\ 1| (X
=3 (R a3 ()
i=1 i=1

As described on page 234 in [3], if we make n observations of a Normal random variable with
variance o2 and mean p, then the random variable U; 2 (X; —u)/o is N(0,1). In addition, we also
know that Z, £ S, U? is Chi-square with n degrees of freedom. Examining Equation 27, we
notice that the first term corresponds identically with this situation. The second term, however, is
simply a sum of standard Normal random variables which is multiplied by 1/n. By the fundamental
properties of Normal random variables, we can conclude that the right-hand side is also a Normal

(27)
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random variable N(0,1). In conclusion, W,, is composed of a summation over n — 1 independent
Normal random variables. As a result we can conclude that

n 1 n
Wo 2 Xi -~ > X
i=1 j=1

is Chi-square with n — 1 degrees of freedom. (QED)

2

=
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