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Problem 3.16

The objective is to generate numbers from the pdf shown in Figure P3.16 on page 164 in [3]. All
that is available is a random number generator that generates numbers uniformly in (0, 1). Explain
what procedure you would use to meet the objective.

If we assume that f(x) is symmetric about x = 0 and is composed of two linear segments on
−1 ≤ x < 0 and 0 ≤ x < 1, then the resulting triangle must have unit area (by Equation 2.4-3 on
page 66 in [3]). It directly follows that the pdf fX(x) must have the following form.

fX(x) =





0, for x < −1
1− x, for − 1 ≤ x < 0
x− 1, for 0 ≤ x < 1
0, for x ≥ 1

(1)

Now recall that the PDF FX(x) is defined in terms of fX(x) as follows.

FX(x) =
∫ x

−∞
fX(ξ)dξ (2)

Applying Equation 2 to Equation 1 (and solving the resulting integrals) yields in the following
expression for the PDF FX(x).

FX(x) =





0, for x < −1
x2

2 + x + 1
2 , for − 1 ≤ x < 0

−x2

2 + x + 1
2 , for 0 ≤ x < 1

1, for x ≥ 1

(3)

At this point we recall the following procedure for generating a r.v. X with PDF FX(x) from
a uniform r.v. Y . As stated on page 125 in [3], “...given a uniform r.v. Y , the transformation
X = F−1

X (Y ) will generate a r.v. with PDF FX(x)”. Note that F−1
X (y) denotes the inverse function,

such that F−1
X (FX(x)) = x [4]. From the plot of FX(x) shown in Figure 1(b), it is apparent that

FX(x) maps x ∈ R onto the open interval (0, 1). As a result we only require a closed-form expression
for the inverse PDF F−1

X (y) for y ∈ (0, 1). Application of the quadratic formula gives the following
inverse functions.

y =
x2

2
+ x +

1
2
, for − 1 ≤ x < 0 ⇒

√
2y − 1, for 0 ≤ y <

1
2

(4)

y = −x2

2
+ x +

1
2
, for 0 ≤ x < 1 ⇒ 1−

√
2− 2y, for

1
2
≤ y < 1 (5)
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(d) fX(x) vs. empirical histogram

Figure 1: Generating a r.v. X with pdf fX(x) from a uniform r.v. Y . (a) The desired pdf fX(x).
(b) The corresponding PDF FX(x). (c) The inverse PDF F−1

X (y). (d) The empirical pdf using 106

samples (i.e., the normalized histogram shown in red) and the desired pdf fX(x) (shown in blue).

Combining Equation 4 and Equation 5 gives the following solution for the inverse PDF F−1
X (y).

F−1
X (y) =

{ √
2y − 1, for 0 < y < 1

2

1−√2− 2y, for 1
2 ≤ y < 1

(6)

In conclusion, we propose the following algorithm for generating a r.v. X with pdf fX(x), as
defined by Equation 1, from a uniform r.v. Y .

1. Generate N random samples yi, for i = 0, . . . , N , of the r.v. Y which is uniform on (0, 1).

2. Transform each sample such that xi = F−1
X (yi), for F−1

X (y) as defined by Equation 6.

This procedure was implemented using the Matlab function prob1.m (attached at the end of this
write-up). As shown in Figure 1(d), the histogram of 106 transformed samples closely approximates
the desired pdf fX(x).
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Problem 3.19

Let X and Y be independent, continuous r.v.’s. Let Z = min(X, Y ). (a) Compute FZ(z) and
fZ(z). (b) Sketch the result if X and Y are uniform r.v.’s in (0, 1). (c) Sketch the result for
fX(x) = fY (x) = α exp(−αx) · u(x).

Part (a)

Note that the probability distribution function FZ(z) of Z = min(X,Y ) can be expressed as follows.

FZ(z) = P [min(X, Y ) ≤ z] = 1− P [X > z, Y > z]

In other words, the region of interest is R2 \{X > z, Y > z} (i.e., the entire real plane except where
X and Y are greater than z). Since X and Y are independent, we can write

FZ(z) = 1− P [X > z]P [Y > z] = 1− (1− P [X ≤ z]) (1− P [Y ≤ z])
= 1− (1− FX(z))(1− FY (z)) = FX(z) + FY (z)− FX(z)FY (z),

were FX(x) = P [X ≤ x]. Finally, we differentiate FZ(z) with respect to z to obtain the probability
density function fZ(z).

FZ(z) = FX(z) + FY (z)− FX(z)FY (z)

fZ(z) = fX(z) + fY (z)− fX(z)FY (z)− FX(z)fY (z)
(7)

Part (b)

First, we recall that the PDF FX(x) of a uniform r.v. X in (0, 1) can be expressed using Equation
2.3-3 on page 64 in [3].

FX(x) =





0, for x ≤ 0
x, for 0 < x ≤ 1
1, for x > 1

(8)

Similarly, the pdf fX(x) is given by Equation 2.4-17 on page 72.

fX(x) =
{

1, for 0 < x ≤ 1
0, otherwise

(9)

Substituting Equations 8 and 9 into Equation 7 yields the desired expressions.

fZ(z) =
{ −2z + 2, for 0 < z ≤ 1

0, otherwise
and FZ(z) =





0, for z ≤ 0
−z2 + 2z, for 0 < z ≤ 1
1, for z > 1

Plots of fZ(z) and FZ(z) are shown in Figure 2.
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Figure 2: Plots of fZ(z) and FZ(z) derived in part (b) of Problem 3.19.
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Figure 3: Plots of fZ(z) and FZ(z) derived in part (c) of Problem 3.19.

Part (c)

To begin our analysis we note that, for fX(x) = α exp(−αx) · u(x), X is an exponential random
variable. Given the pdf fX(x), the PDF FX(x) can be obtained by integration.

FX(x) =
∫ x

−∞
f(ξ)dξ =

{
α

∫ x
0 e−αξdξ, for x ≥ 0

0, for x < 0
=

{
1− e−αx, for x ≥ 0
0, for x < 0

Substituting for fX(x) and FX(x) in Equation 7 yields the desired expressions.

fZ(z) =
{

2αe−2αz, for z ≥ 0
0, for z < 0

and FZ(z) =
{

1− e−2αz, for z ≥ 0
0, for z < 0

Plots of fZ(z) and FZ(z) are shown in Figure 3.
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Problem 3.28

(a) Compute the joint pdf of

Z , g(X, Y ) = X2 + Y 2

W , h(X, Y ) = X

when
fXY (x, y) =

1
2πσ2

e−[(x2+y2)/2σ2]. (10)

(b) Compute fZ(z) from your results.

Part (a)

First, we note that this problem is primarily instructive since direct methods exist (e.g., Example
3.3-8 on page 149 in [3]). As described, this problem demonstrates the use of an auxiliary random
variable W , X to determine fZ(z) from the joint pdf fZW (z, w). We begin our analysis by
observing that the equations

z − g(x, y) = 0
w − h(x, y) = 0

have two real roots, for |w| ≤ √
z and z ≥ 0, given by

x1 = φ1(z, w) = w x2 = φ2(z, w) = w

y1 = ϕ1(z, w) =
√

z − w2 y2 = ϕ2(z, w) = −√z − w2.
(11)

At this point we recall that fZW (z, w) can be obtained directly from fXY (x, y) using the methods
outlined in Section 3.4 in [3]. From that section we note that the joint pdf can be expressed as

fZW (z, w) =
n∑

i=1

fXY (xi, yi)|J̃i|, (12)

where |J̃i| is the magnitude of the Jacobian transformation such that

|J̃i| =
∣∣∣∣det

(
∂φi/∂z ∂φi/∂w
∂ϕi/∂z ∂ϕi/∂w

)∣∣∣∣ (13)

and n is the number of solutions to the equations z = g(x, y) and w = h(x, y). Substituting
Equation 11 into Equation 13 gives the following Jacobian magnitutdes.

|J̃1| =
∣∣∣∣∣det

(
0 1
1

2
√

z−w2
−w√
z−w2

)∣∣∣∣∣ =
1

2
√

z − w2
(14)

|J̃2| =
∣∣∣∣∣det

(
0 1
−1

2
√

z−w2
w√

z−w2

)∣∣∣∣∣ =
1

2
√

z − w2
(15)

Before we proceed, we observe that Equation 10 can be expressed as a function of z, such that

fXY (z) =
1

2πσ2
e−z/2σ2

. (16)
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Substituting Equations 14-16 into Equation 12 gives

fZW (z, w) =
{

fXY (z)|J̃1|+ fXY (z)|J̃2|, for |w| ≤ √
z and z ≥ 0

0, otherwise,

which yields the desired expression for the joint pdf fZW (z, w).

fZW (z, w) =

{
1

2πσ2
√

z−w2
e−z/2σ2

, for |w| ≤ √
z and z ≥ 0

0, otherwise

Part (b)

Given the joint pdf fZW (z, w), we can obtain the marginal pdf fZ(z) as follows.

fZ(z) =
∫ ∞

−∞
fZW (z, w)dw.

Substituting the result from part (b), we find

fZ(z) =
1

2πσ2
e−z/2σ2

[∫ √
z

−√z

dw√
z − w2

]
u(z).

To complete our derivation, we note that the remaining integral can be solved by a change of
variables. If we let w , √

z sin θ, then dw =
√

z cos θdθ and
√

z − w2 =
√

z cos θ. As a result, we
find ∫ √

z

−√z

dw√
z − w2

=
∫ π/2

−π/2
dθ = π.

In conclusion, we obtain the following solution for the marginal pdf fZ(z).

fZ(z) =
1

2σ2
e−z/2σ2

u(z)

Note that this result is identical to that obtained using direct methods in Example 3.3-8.
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Problem 4.44

Let Xi for i = 1, . . . , 4 be four zero-mean Gaussian random variables. Use the joint characteristic
function to show that

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X2X3]E[X1X4]. (17)

Recall from Equation 4.7-12 on page 222 in [3] that the joint characteristic function is given by

ΦX1...XN
(ω1, . . . , ωN ) = E

[
exp

(
j

N∑

i=1

ωiXi

)]
,

for N random variables X1, . . . , XN . From Equation 4.7-14 and 5.7-5, we also recall that the joint
characteristic function can be used to obtain the joint moments as follows.

E[Xk1
1 . . . XkN

N ] = (−j)k1+...+kN
∂k1+...+kN ΦX1...XN

(ω1, . . . , ωN )

∂ωk1
1 . . . ∂ωkN

N

∣∣∣∣∣
ω1=...=ωN=0

(18)

For this problem we have N = 4 and k1 = . . . = k4 = 1. As a result, substituting Equation 18 into
Equation 17 gives the following equality in terms of the joint characteristic functions.

Φ(1,1,1,1)
X1X2X3X4

(0, 0, 0, 0) = Φ(1,1)
X1X2

(0, 0)Φ(1,1)
X3X4

(0, 0)+

Φ(1,1)
X1X3

(0, 0)Φ(1,1)
X2X4

(0, 0) + Φ(1,1)
X2X3

(0, 0)Φ(1,1)
X1X4

(0, 0) (19)

Notice that we have simplified the previous expression by using the following shorthand notation.

Φ(k1,...,kN )
X1...XN

(0, . . . , 0) , ∂k1+...+kN ΦX1...XN
(ω1, . . . , ωN )

∂ωk1
1 . . . ∂ωkN

N

∣∣∣∣∣
ω1=...=ωN=0

At this point, we require a closed-form expression for the joint characteristic function of two or
more zero-mean Gaussian random variables. Conveniently, this has already been derived in Section
5.7 in [3]. Following the derivation of Equation 5.7-20 we obtain the following joint characteristic
function for two zero-mean Gaussian random variables Xi and Xj .

ΦXiXj (ωi, ωj) = e−
1
2
ωT Kω, for K =

(
Kii Kij

Kji Kjj

)
and ω =

(
ωi

ωj

)
(20)

Similarly, for four zero-mean Gaussian random variables X1, . . . , X4, we have

ΦX1X2X3X4(ω1, ω2, ω3, ω4) = e−
1
2
ωT Kω, for K =




K11 . . . K14
...

. . .
...

K41 . . . K44


 and ω =




ω1
...
ω4


 . (21)

Substituting Equation 20 into Equation 18 gives the following expression for the joint moment
E[XiXj ].

E[XiXj ] = − ∂2ΦXiXj (ωi, ωj)
∂ωi∂ωj

∣∣∣∣∣
ωi=ωj=0

=
1
2
(Kij + Kji) = Kij (22)
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Note that in the previous expression we have applied the result that the covariance matrix is
symmetric (i.e., Kij = Kji). As a result, we conclude that E[XiXj ] = Kij ; this result is expected
since, from the definition of the joint moment in Equation 5.3-2, the covariance and correlation are
identical for µ = 0. Substituting the result from Equation 22 into Equation 17 gives the following
expression for the joint moment of four zero-mean Gaussian random variables.

E[X1X2X3X4]
?= K12K34 + K13K24 + K23K14 (23)

All that remains is to demonstrate that the left-hand and right-hand sides of Equation 23 are
equivalent. To proceed, we substitute Equation 21 into Equation 18 to obtain the following result.

E[X1X2X3X4] =
∂4e−

1
2
ωT Kω

∂ω1∂ω2∂ω3∂ω4

∣∣∣∣∣
ω1=...=ω4=0

, for K =




K11 . . . K14
...

. . .
...

K41 . . . K44


 and ω =




ω1
...
ω4




Evaluating the first partial derivative with respect to ω1 gives the following result.

E[X1X2X3X4] =
∂3

∂ω2∂ω3∂ω4

{
∂ e−

1
2
ωT Kω

∂ω1

∣∣∣∣∣
ω1=0

}∣∣∣∣∣
ω2=...=ω4=0

=
∂3

∂ω2∂ω3∂ω4

{
−(K12ω2 + K13ω3 + K14ω4)e−

1
2
ωT Kω

}∣∣∣∣
ω2=...=ω4=0

Note that in the previous expression we have assumed that ω is now given by ω = (0, ω2, ω3, ω4)T .
Continuing, we can now evaluate the partial derivative with respect to ω2.

E[X1X2X3X4] = − ∂2

∂ω3∂ω4

{
∂ (K12ω2 + K13ω3 + K14ω4)e−

1
2
ωT Kω

∂ω2

∣∣∣∣∣
ω2=0

}∣∣∣∣∣
ω3=ω4=0

=
∂2

∂ω3∂ω4

{
[(K13ω3 + K14ω4)(K23ω3 + K24ω4)−K12] e−

1
2
ωT Kω

}∣∣∣∣
ω3=ω4=0

As before, we have reduced ω to be ω = (0, 0, ω3, ω4)T . Next, we evaluate the partial derivative
with respect to ω3.

E[X1X2X3X4] =
∂

∂ω4

{
∂ [(K13ω3 + K14ω4)(K23ω3 + K24ω4)−K12] e−

1
2
ωT Kω

∂ω3

∣∣∣∣∣
ω3=0

}∣∣∣∣∣
ω4=0

=
∂

∂ω4

{[
(K12K34 + K13K24 + K23K14)ω4 −K14K24K34ω

3
4

]
e−

1
2
K44ω2

4

}∣∣∣∣
ω4=0

To complete our derivation, we evaluate the partial derivative in ω4 to yield the desired result.

E[X1X2X3X4] = K12K34 + K13K24 + K23K14 (24)

Since Equation 23 and Equation 24 agree, we conclude that the following expression will hold for
any four zero-mean Gaussian random variables.

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4] + E[X2X3]E[X1X4]

(QED)
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Problem 4.48

Show that

Wn ,
n∑

i=1


 1

σ


Xi − 1

n

n∑

j=1

Xj







2

(25)

is Chi-square with n− 1 degrees of freedom.

To begin our derivation we first recall that the sample mean estimator µ̂n is defined as

µ̂n , 1
n

n∑

i=1

Xi, (26)

where X1, . . . , Xn are n independent observations of a Normal random variable with unknown mean
µ and variance σ2. Substituting this expression into Equation 25 gives the following result.

Wn =
n∑

i=1

(
Xi − µ̂n

σ

)2

At this point we are free to add and subtract the true mean µ as follows.

Wn =
n∑

i=1

[
(Xi − µ) + (µ− µ̂n)

σ

]2

=
n∑

i=1

(
Xi − µ

σ

)2

+
2
σ2

n∑

i=1

(Xi − µ)(µ− µ̂n) +
1
σ2

n∑

i=1

(µ− µ̂n)2

Note that the quantity (µ − µ̂n) is a constant. As a result, we can further reduce the previous
expression.

Wn =
n∑

i=1

(
Xi − µ

σ

)2

+
2(µ− µ̂n)

σ2

n∑

i=1

(Xi − µ) + n

(
µ− µ̂n

σ

)2

As an aside we also note that
∑n

i=1(Xi−µ) = n(µ̂n−µ). Substituting this result into the previous
expression yields

Wn =
n∑

i=1

(
Xi − µ

σ

)2

− n

(
µ− µ̂n

σ

)2

=
n∑

i=1

[(
Xi − µ

σ

)2

−
(

µ− µ̂n

σ

)2
]

.

Finally, by applying Equation 26, we can reduce Wn to obtain the following simple form for Equa-
tion 25.

Wn =
n∑

i=1

(
Xi − µ

σ

)2

− 1
n

[
n∑

i=1

(
Xi − µ

σ

)]2

(27)

As described on page 234 in [3], if we make n observations of a Normal random variable with
variance σ2 and mean µ, then the random variable Ui , (Xi−µ)/σ is N(0, 1). In addition, we also
know that Zn ,

∑n
i=1 U2

i is Chi-square with n degrees of freedom. Examining Equation 27, we
notice that the first term corresponds identically with this situation. The second term, however, is
simply a sum of standard Normal random variables which is multiplied by 1/n. By the fundamental
properties of Normal random variables, we can conclude that the right-hand side is also a Normal

9
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random variable N(0, 1). In conclusion, Wn is composed of a summation over n − 1 independent
Normal random variables. As a result we can conclude that

Wn ,
n∑

i=1


 1

σ


Xi − 1

n

n∑

j=1

Xj







2

is Chi-square with n− 1 degrees of freedom. (QED)
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