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Problem 4.28

Compute the Chernoff bound on P [X ≥ a] where X is a random variable that satisfies the expo-
nential law fX(x) = λe−λxu(x).

Recall, from Equation 4.6-4 on page 214 in [3], that the Chernoff bound for a continuous random
variable X is given by

P [X ≥ a] ≤ argmin
t>0

{
e−atθX(t)

}
, (1)

where θX(t) is the moment-generating function

θX(t) , E[etX ] =
∫ ∞

−∞
etxfX(x)dx (2)

as defined by Equation 4.5-1 on page 211. Let’s begin by finding the moment-generating function
for an exponential random variable X. Substituting for fX(x) in Equation 2 gives the following
expression.

θX(t) = λ

∫ ∞

0
etxe−λxdx =

λ

λ− t
, for 0 < t < λ (3)

Note that the integral in Equation 3 has a finite value only if t < λ and, since t > 0, we conclude
0 < t < λ. Substituting this result into Equation 1 gives the following form for the Chernoff bound.

P [X ≥ a] ≤ argmin
0<t<λ

{
λe−at

λ− t

}

In general, the minimum of the right-hand argument will occur where the first derivative, with
respect to t, equals zero.

d

dt

{
λe−at

λ− t

}
=

[1− a(λ− t)] e−at

(λ− t)2
= 0 ⇒ t = λ− 1

a

Since t must also satisfy the additional constraint 0 < t < λ, we conclude that the Chernoff bound
for an exponential random variable X has the following form (for all λ > 0).

P [X ≥ a] ≤
{

aλe1−aλ, for a > 1
λ

1, for 0 < a ≤ 1
λ

1
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Problem 5.6

Let Xi, for i = 1, . . . , n, be n mutually orthogonal random vectors. Show that

E




∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

 =

n∑

i=1

E
[
‖Xi‖2

]
, (4)

by using the the definition ‖X‖2 , XTX.

Let’s begin by expanding the argument of the right-hand side of Equation 4 using the identity
‖X‖2 , XTX.

E




∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

 = E




(
n∑

i=1

Xi

)T



n∑

j=1

Xj







Note that the argument of the expected value operator E can be written as follows.

(
n∑

i=1

Xi

)T



n∑

j=1

Xj


 =

(
n∑

i=1

XT
i

)


n∑

j=1

Xj


 =

n∑

i=1

n∑

j=1

XT
i Xj

Substituting this result into the previous expression yields the following.

E




∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

 = E




n∑

i=1

n∑

j=1

XT
i Xj




Recall that the expected value operator E is linear. As a result, we have

E




∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

 =

n∑

i=1

n∑

j=1

E
[
XT

i Xj

]
.

To proceed, we recall that Xi, for i = 1, . . . , n, are n mutually orthogonal random vectors. We can
express this orthogonality condition as

XT
i Xj =

(
XT

i Xi

)
δij ,

{
XT

i Xi, for i = j
0, otherwise

where δij is the familiar Kronecker delta function. Substituting this result into the previous ex-
pression, and recalling that ‖X‖2 , XTX, yields the desired relationship.

∴ E




∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

 =

n∑

i=1

E
[
XT

i Xi

]
=

n∑

i=1

E
[
‖Xi‖2

]

(QED)
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Problem 5.16

Two jointly Normal random variables X1 and X2 have a joint pdf given by

fX1X2(x1, x2) =
2

π
√

7
exp

[
−8

7

(
x2

1 +
3
2
x1x2 + x2

2

)]
. (5)

Find a nontrivial transformation A in
(

Y1

Y2

)
= A

(
X1

X2

)

such that Y1 and Y2 are independent. Compute the joint pdf of Y1 and Y2.

This problem can be solved by applying the method outlined in Example 5.6-2 on pages 274-276
of [3]. First, we recall that two zero-mean jointly Normal random variables X1 and X2 have a joint
pdf given by

fX1X2(x1, x2) =
1

2π[det(K)]1/2
exp

(
−1

2
(xTK−1x)

)
, (6)

for x , (x1, x2)T and K an arbitrary 2×2 positive definite covariance matrix. As demonstrated in
the example, we notice that the quadratic in the exponent of Equation 5 can be written as follows.

ax2
1 + (b + c)x1x2 + dx2

2 = xT

[
a b
c d

]
x

Comparing Equations 5 and 6, we find the following constraints on the covariance matrix K.

(xTK−1x) = xT

[
a b
c d

]
x =

16
7

x2
1 +

24
7

x1x2 +
16
7

x2
2 and det(K) =

7
16

Recall that, for real X1 and X2, both the covariance matrix and its inverse are real symmetric
matrices. As a result, we must have b = c in the previous expression. We conclude, by inspection,
that the covariance matrix and its inverse are given by the following expressions.

K =
1
4

[
4 −3
−3 4

]
and K−1 =

4
7

[
4 3
3 4

]

At this point we follow a modified version of the approach outlined in Example 5.6-2. We begin
by finding the eigenvalues {λ1, λ2} of the covariance matrix K.

det(K− λI) = 0 ⇒ λ2 − 2λ +
7
16

= 0 ⇒ {λ1 =
7
4
, λ2 =

1
4
}

Next, we obtain the eigenvectors {φ1, φ2} of K as follows.

(K− λ1I)φ1 = 0 with ‖φ1‖ = 1 ⇒ φ1 = (−1/
√

2, 1/
√

2)T

(K− λ2I)φ2 = 0 with ‖φ2‖ = 1 ⇒ φ2 = (1/
√

2, 1/
√

2)T

Now we define a similarity transformation A = UT , whose rows are the scaled eigenvectors of K,
which diagonalizes the covariance matrix as follows.

A =
[ −1 1

1 1

]
⇒ AKA−1 =

1
4

[
7 0
0 1

]
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Note that in the previous expression, we are free to scale A by an arbitrary real constant since, for
this problem, we are not required to “whiten” the covariance matrix (i.e., simply diagonalizing it
is sufficient). In conclusion, Y1 and Y2 could have the following dependence on X1 and X2.

Y1 = X2 −X1

Y2 = X1 + X2

To complete our analysis, we recall that the joint pdf of a function of two random variables is
given by

fY1Y2(y1, y2) =
n∑

i=1

fX1X2(xi)/|Ji|, (7)

where xi , (x(i)
1 , x

(i)
2 )T , for i = 1, . . . , n, are the n solutions to y−Ax = 0, and Ji is the associated

Jacobian [3]. For the previous value of A, there is only the following solution x = (x1, x2)T to
y −Ax = 0.

x1 =
y2 − y1

2

x2 =
y1 + y2

2

Furthermore, for y1 = g(x1, x2) = x2 − x1 and y2 = h(x1, x2) = x1 + x2, the associated Jacobian
has the following form.

|J | =
∣∣∣∣det

(
∂g/∂x1 ∂g/∂x2

∂h/∂x1 ∂h/∂x2

)∣∣∣∣ = 2

Substituting these results into Equation 7 gives the following form for the joint pdf of Y1 and Y2.

fY1Y2(y1, y2) =
1
2
fX1X2

(
y2 − y1

2
,
y1 + y2

2

)

Substituting Equation 5 for fX1X2(x1, x2) gives the following solution for the joint pdf.

fY1Y2(y1, y2) =

[
1√
2πσ2

1

exp
(
− y2

1

2σ2
1

)]
·
[

1√
2πσ2

2

exp
(
− y2

2

2σ2
2

)]
, for σ1 =

√
7
2

and σ2 =

√
1
2

In conclusion, we find that the similarity transformation A has diagonalized the covariance matrix
K such that fY1Y2(y1, y2) is the product of two univariate Normal distributions.
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Problem 5.17

Show that if X = (X1, . . . , Xn)T has mean µ = (µ1, . . . , µn)T and covariance

K = {Kij}n×n,

then the scalar random variable Y given by

Y , p1X1 + . . . + pnXn (8)

has mean

E[Y ] =
n∑

i=1

piµi (9)

and variance

σ2
Y =

n∑

i=1

n∑

j=1

pipjKij . (10)

This problem examines the mean and variance of a linear combination of random variables Xi,
for i = 1, . . . , n. Let’s begin by proving that the mean of the linear combination is a weighted
combination of the mean of each input variable Xi of the form given in Equation 9. First, we note
that the expectation of Y can be written in the following form by substituting Equation 8.

E[Y ] = E

[
n∑

i=1

piXi

]

Since the expected value operator E is linear, we can simplify this expression as

E[Y ] =
n∑

i=1

piE [Xi] ,

where {pi}, for i = 1, . . . , n, are fixed constants. Finally, we recall that the expectation of Xi is µi.
As a result, we conclude that Equation 9 is valid.

∴ E[Y ] =
n∑

i=1

piµi

At this point, we turn our attention to proving Equation 10. Recall that σ2
Y is the variance of

the random variable Y , which has the following well-known definition [3].

σ2
Y = Var[Y ] , E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2

Substituting Equations 8 and 9 into this expression gives the following result.

σ2
Y = E




(
n∑

i=1

piXi

)2

−

(
n∑

i=1

piµi

)2

(11)

5
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As an aside, we note that the square of a summation can be written in the following form.

(
n∑

i=1

piXi

)2

=

(
n∑

i=1

piXi

)
·



n∑

j=1

pjXj


 =

n∑

i=1

n∑

j=1

pipjXiXj (12)

Substituting Equation 12 into Equation 11 gives

σ2
Y = E




n∑

i=1

n∑

j=1

pipjXiXj


−

n∑

i=1

n∑

j=1

pipjµiµj .

Once again, we note that the expectation is linear and {pi}, for i = 1, . . . , n, are fixed constants.
As a result, the previous expression has the following simple form.

σ2
Y =

n∑

i=1

n∑

j=1

pipjE [XiXj ]−
n∑

i=1

n∑

j=1

pipjµiµj

=
n∑

i=1

n∑

j=1

pipj (E [XiXj ]− µiµj) (13)

Now we expand the expectation of XiXj as

E[XiXj ] = E[{(Xi − µi) + µi} {(Xj − µj) + µj}]
= E[(Xi − µi)(Xj − µj)] + µiE[Xj − µj ] + µjE[Xi − µi] + µiµj

= E[(Xi − µi)(Xj − µj)] + µiµj , (14)

since E[Xi−µi] = E[Xi]−µi = 0. Substituting Equation 14 into Equation 13 yields the following.

σ2
Y =

n∑

i=1

n∑

j=1

pipjE[(Xi − µi)(Xj − µj)]

At this point, we recall that the elements of the covariance matrix are given by

Kij , E[(Xi − µi)(Xj − µj)].

In conclusion, we find that Equation 10 is also valid.

∴ σ2
Y =

n∑

i=1

n∑

j=1

pipjKij

(QED)
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Problem 5.22

Let X1 and X2 be two zero-mean jointly Normal random variables with covariance matrix

KX =
[

2 −1.5
−1.5 2

]
. (15)

Find a whitening transformation for X = (X1, X2)
T . Write a Matlab program to show a scatter

diagram of x2 versus x1 (i.e., the realizations of X2 and X1). Make a similar plot for the whitened
variables as well. Choose between a hundred and a thousand realizations.

Recall, from pages 257 and 259 in [3], that the whitening transformation D is a linear transformation
of a random vector X that reduces the covariance matrix to an identity matrix. Written in matrix-
vector form, the whitening transformation is given by

Y = DX, where KY =
[

1 0
0 1

]
, I.

In order to find D, we follow the procedure described in Example 5.6-1 on pages 273 and 274. First,
we begin by finding the eigenvalues {λ1, λ2} of the covariance matrix KX.

det(KX − λI) = 0 ⇒ λ2 − 4λ +
7
4

= 0 ⇒ {λ1 =
7
2
, λ2 =

1
2
}

Next, we obtain the eigenvectors {φ1, φ2} of KX as follows.

(KX − λ1I)φ1 = 0 with ‖φ1‖ = 1 ⇒ φ1 = (1/
√

2,−1/
√

2)T

(KX − λ2I)φ2 = 0 with ‖φ2‖ = 1 ⇒ φ2 = (1/
√

2, 1/
√

2)T

At this point, we recall from page 273 that the whitening transformation is given by

D = ZUT , where Z =

[
λ
−1/2
1 0
0 λ

−1/2
2

]

and U is the matrix whose columns are the eigenvectors of KX. Substituting the previous results
into this expression gives the following form for the whitening transformation D.

D =

[
1√
7

0
0 1

][
1 −1
1 1

]
=

[
1√
7

− 1√
7

1 1

]

The whitening transformation is demonstrated using the attached Matlab script prob5.m.
Note that there are two applications of D. First, we can apply D−1 (i.e., the inverse whitening
transformation) to a random vector Y (with a covariance matrix equal to the identity matrix) to
create a new random vector X with covariance matrix KX. This procedure is applied on lines 20-28
of prob5.m. In addition, we note that the built-in Matlab function mvnrnd can be used to directly
generate correlated samples from a bivariate Normal distribution. Afterwards, we can apply D to
transform to uncorrelated samples Y. This procedure is applied on lines 30-33 of prob5.m. The
resulting scatter plots of X and Y are shown in Figure 1.

7
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(a) 1,000 samples of random variable Y
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(b) 1,000 samples of random variable X

Figure 1: Whitening transformation. (a) 1,000 uncorrelated samples of a bivariate Normal distrib-
ution with identity covariance. (b) 1,000 samples of a bivariate Normal distribution with covariance
KX, given in Equation 15, produced by applying the inverse whitening transformation D−1 to Y.

Problem 5.23

Let Yk =
∑n

j=1 akjXj , for k = 1, . . . , n, where {akj} ∈ R, the matrix A = {akj}n×n is nonsingular,
and the {Xj}, for j = 1, . . . , n, are random variables. Let B = A−1. Show that the pdf of Y,
fY(y1, . . . , yn) is given by

fY(y1, . . . , yn) = | detB|fX(x∗1, . . . , x
∗
n), where x∗i =

n∑

k=1

bikyk for i = 1, . . . , n.

In this problem we will derive the pdf for a linear transformation of a random vector. First,
consider the random vector Y = (y1, . . . , yn)T that is a linear transformation of the random vector
X = (x1, . . . , xn)T such that Yk =

∑n
j=1 akjXj . Written as a matrix-vector product, we have

Y = AX, where A =




a11 . . . a1n
...

. . .
...

an1 . . . ann


 .

Recall, from Equation 7 and Equation 3.4-11 on page 156 in [3], that the joint pdf fY(y1, . . . , yn)
of a function of a random vector X is given by

fY(y1, . . . , yn) =
m∑

i=1

|J̃i|fX(xi), (16)

where xi , (x(i)
1 , . . . , x

(i)
n )T , for i = 1, . . . , m, are the m solutions to y − Ax = 0, and J̃i is the

associated Jacobian defined on the inverse mapping. Since A is nonsingular, then we can apply the

8
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the right inverse, given by B = A−1, to obtain a closed-form expression for the the only solution
x∗ to y −Ax = 0.

X∗ = BY, where B =




b11 . . . b1n
...

. . .
...

bn1 . . . bnn




By inspection, we conclude that the only solution x∗ to y −Ax = 0 is given by

x∗i =
n∑

k=1

bikyk for i = 1, . . . , n. (17)

Substituting this result into Equation 16 gives the following preliminary result.

fY(y1, . . . , yn) = |J̃ |fX(x∗1, . . . , x
∗
n), where x∗i =

n∑

k=1

bikyk for i = 1, . . . , n (18)

At this point, all that remains is to prove that | detB| = |J̃ |. In other words, we need to show
that the Jacobian for the inverse mapping is given by the determinant of B. Recall, from Equation
3.4-10 and Appendix C in [3], that the magnitude of the multi-dimensional Jacobian is given by

|J̃ | =

∣∣∣∣∣∣∣
det




∂φ1(y)/∂y1 . . . ∂φ1(y)/∂yn
...

. . .
...

∂φn(y)/∂y1 . . . ∂φn(y)/∂yn




∣∣∣∣∣∣∣
, (19)

where x∗i = φi(y). Note that we have previously determined the inverse mapping x∗i = φi(y) in
Equation 17. As a result, we can calculate the elements of the Jacobian as follows.

∂φi(y)
∂yj

=
∂

∂yj

n∑

k=1

bikyk = bij

Substituting this result into Equation 19 gives the following expression for the Jacobian of the
inverse mapping.

|J̃ | =

∣∣∣∣∣∣∣
det




b11 . . . b1n
...

. . .
...

bn1 . . . bnn




∣∣∣∣∣∣∣
= | detB|

Substituting this result into Equation 18 gives the desired expression for the pdf fY(y1, . . . , yn) for
a linear transformation Y = AX of a random vector X.

∴ fY(y1, . . . , yn) = | detB|fX(x∗1, . . . , x
∗
n), where x∗i =

n∑

k=1

bikyk for i = 1, . . . , n

(QED)
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Problem 6.1

Prove the chain rule for the probability of the intersection of N events {Ai}, for i = 1, . . . , N . For
example, for N = 3 we have

P [A1 ∩A2 ∩A3] = P [A1]P [A2|A1]P [A3|A1 ∩A2].

Interpret this result for joint probability distributions and joint probability densities.

To begin our analysis, we let P
[⋂N

i=1 Ai

]
denote the probability of the event that {Ai}, for

i = 1, . . . , N , occur simultaneously. In general, we can express this quantity using conditional
probabilities using the so-called chain rule.

P

[
N⋂

i=1

Ai

]
= P [A1]P [A2|A1]P [A3|A1 ∩A2] . . . P

[
AN

∣∣∣
N−1⋂

i=1

Ai

]

In more compact notation, the chain rule is given by the following expression.

P

[
N⋂

i=1

Ai

]
=

N∏

i=1

P


Ai

∣∣∣
i−1⋂

j=1

Aj


 (20)

We note that this equation can be verified by induction. First, consider the probability P [A1∩A2].
Using conditional probabilities we must have

P [A1 ∩A2] = P [A1]P [A2|A1].

Now consider P [A1∩A2∩A3]. Proceeding in an identical manner, and applying the previous result,
we have

P [A1 ∩A2 ∩A3] = P [A1 ∩A2]P [A3|A1 ∩A2] = P [A1]P [A2|A1]P [A3|A1 ∩A2].

By induction we conclude that the general form of the chain rule is given by Equation 20. To
complete our proof, we recall the definition of conditional probability give by Equation 1.6-3 on
page 16 in [3]. For two events A and B, we have

P [A|B] , P [A ∩B]
P [B]

, for P [B] > 0.

Substituting this definition into Equation 20 yields the following result.

P

[
N⋂

i=1

Ai

]
= P [A1]

(
P [A1 ∩A2]

P [A1]

)(
P [A1 ∩A2 ∩A3]

P [A1 ∩A2]

)
· · ·


 P

[⋂N
i=1 Ai

]

P
[⋂N−1

i=1 Ai

]

 = P

[
N⋂

i=1

Ai

]

Since the left-hand and right-hand sides of this expression are identical, we conclude that Equa-
tion 20 is the correct form for the chain rule expressing the intersection of N events.

Now let’s consider how the chain rule can be applied to better understand the behavior of joint
probability distributions. Recall, from Equation 5.1-1 on page 245 in [3], that the joint probability
distribution function (PDF) FX(x) of a random vector X is given by

FX(x) , P [{X1 ≤ x1} ∩ . . . ∩ {XN ≤ xN}] ,

10
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where x = (x1, . . . , xn)T . Substituting this general form of a joint PDF into Equation 20 yields the
following expression.

FX(x) =
N∏

i=1

P


{Xi ≤ xi}

∣∣∣
i−1⋂

j=1

{Xj ≤ xj}



We note that the right-hand side of this expression is simply the product of a set of conditional
PDF’s, such that

FX(x) =
N∏

i=1

FXi|{Xj}i−1
j=1

(xi|{xj}i−1
j=1). (21)

As a result, we conclude that the chain rule allows one to separate a joint PDF into a product of
conditional PDF’s using Equation 21. For example, for N = 3 we have

FX1X2X3(x1, x2, x3) = FX1(x1)FX2|X1
(x2|x1)FX3|X1X2

(x3|x1, x2).

Finally, we note that the chain rule can also be used to understand the general behavior of joint
probability densities. Recall, from Equation 5.1-4 on page 245 in [3], that the joint probability
density function (pdf) fX(x) of a random vector X is given by

fX(x) , ∂n FX(x)
∂x1 . . . ∂xn

,

where x = (x1, . . . , xn)T . Applying this result to Equation 21 gives the so-called chain rule of
probability from Equation 6.5-1 on page 362 in [3].

fX(x) =
N∏

i=1

fXi|{Xj}i−1
j=1

(xi|{xj}i−1
j=1). (22)

As a result, we conclude that the chain rule allows one to separate a joint pdf into a product of
conditional pdf’s using Equation 22.
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 1 
 2 % EN 257, Problem Set 3, Problem 5.22
 3 %
 4 % Whitening Transformation Demo
 5 %    Applies the inverse of the whitening transformation D
 6 %    to a bivariate Normal random variable (with identity
 7 %    covariance) to generate a sample from a bivariate
 8 %    Normal distribution with user-defined covariance K.
 9 % 
10 % Douglas Lanman, Brown University, Feb. 2007
11 
12 % Reset Matlab environment.
13 
14 
15 % Define number of samples, covariance matrix K, and whitening transform D.
16 % number of random samples
17 % covariance matrix
18 % whitening transform
19 
20 % Generate zero-mean jointly Gaussian samples with idenity covariance.
21 % Note: This simply involves drawing two sets of samples
22 %       from a univariate Gaussian distribution.
23 
24 
25 % Apply the inverse whitening transformation.
26 % Note: This obtains samples with covariance matrix K,
27 %       using the procedure described on page 274.
28 
29 
30 % Generate samples from jointly Normal distribution with covariance K.
31 % Note: This confirms the previous results with {X,Y}.
32 
33 
34 
35 % Display estimated covariance matrices.
36 disp('cov(Y) = '
37 
38 disp('cov(X) = '
39 
40 disp('cov(B) = '
41 
42 disp('cov(A) = '
43 
44 
45 % Display a scatter plot for the uncorrelated samples Y.
46 
47 plot(Y(1,:),Y(2,:),'.'
48 square on
49 set(gca,'LineWidth',1,'FontSize',16,'YDir','normal'
50 set(get(gca,'XLabel'),'FontSize',18,'Interpreter','LaTeX'
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51 set(get(gca,'YLabel'),'FontSize',18,'Interpreter','LaTeX'
52 xlabel('$y_1$'
53 ylabel('$y_2$'
54 
55 % Display a scatter plot for the correlated samples X.
56 
57 plot(X(1,:),X(2,:),'.'
58 square on
59 set(gca,'LineWidth',1,'FontSize',16,'YDir','normal'
60 set(get(gca,'XLabel'),'FontSize',18,'Interpreter','LaTeX'
61 set(get(gca,'YLabel'),'FontSize',18,'Interpreter','LaTeX'
62 xlabel('$x_1$'
63 ylabel('$x_2$'
 


