EN 257: Applied Stochastic Processes
 Problem Set 4

Douglas Lanman
dlanman@brown.edu
21 March 2007

Problem 6.12

Let the probability space (Ω, \mathcal{F}, P) be given as follows:

$$
\begin{aligned}
\Omega & =\{a, b, c\} \\
\mathcal{F} & =\text { all subsets of } \Omega, \\
P[\{\zeta\}] & =1 / 3 \text { for each outcome } \zeta .
\end{aligned}
$$

Let the random sequence $X[n]$ be defined as follows:

$$
\begin{aligned}
X[n, a] & =3 \delta[n], \\
X[n, b] & =u[n-1], \\
X[n, c] & =\cos (\pi n / 2) .
\end{aligned}
$$

(a) Find the mean function $\mu_{X}[n]$.
(b) Find the correlation function $R_{X X}[m, n]$.
(c) Are $X[1]$ and $X[0]$ independent? Why?

Part (a)

Recall, from page 319 in [4], that the mean function of a random sequence $X[n]$ is given by

$$
\begin{equation*}
\mu_{X}[n] \triangleq E\{X[n]\}=\sum_{i=1}^{m} x_{i} P\left\{X[n]=x_{i}\right\} \tag{1}
\end{equation*}
$$

where we have assumed for this problem that $X[n]$ is a discrete random variable that takes on the values $\left\{x_{i}\right\}$, for $i=1, \ldots, m$. From the problem statement we observe that the mean function $\mu_{X}[n]$ can be written as the sum of two periodic functions (i.e., one defined for $n \geq 1$, another for $n<0$, and a unique value at the origin $n=0$). This observation will be made more concrete shortly; first, let's begin by determining the value of $\mu_{X}[0]$. From the problem statement we have the following values for $X[0, \zeta]$ with $\zeta \in\{a, b, c\}$.

$$
\begin{aligned}
X[0, a] & =3 \\
X[0, b] & =0 \\
X[0, c] & =1
\end{aligned}
$$

Since the simple events $\{a, b, c\}$ are mutually exclusive and have equal probability $P[\{\zeta\}]=1 / 3$, then we conclude that $P\{X[0]=x\}$ is given by

$$
P\{X[0]=x\}= \begin{cases}1 / 3, & \text { for } x=\{0,1,3\} \\ 0, & \text { otherwise }\end{cases}
$$

Substituting into Equation 1, we find that the mean function has the following value at $n=0$.

$$
\mu_{X}[0]=\sum_{i=1}^{3} x_{i} P\left\{X[0]=x_{i}\right\}=0 \cdot \frac{1}{3}+1 \cdot \frac{1}{3}+3 \cdot \frac{1}{3}=\frac{4}{3}
$$

By observation we conclude that there are six unique cases (i.e., probability mass functions $P\{X[n]=$ $\left.x_{i}\right\}$ for $\left.\mu_{X}[n]\right)$. The following table summarizes the derivation and domain of each. (Note that Case 2 and Case 7 actually describe the same underlying distribution).

Case	Domain	$X[n, \zeta]$	$P_{X}(x)=P\left\{X[n]=x_{i}\right\}$	$\mu_{X}[n]$
1	$n=\{0\}$	$\begin{aligned} & X[n, a]=3 \\ & X[n, b]=0 \\ & X[n, c]=1 \end{aligned}$	$P_{X}(x)= \begin{cases}1 / 3, & x=\{0,1,3\} \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=\frac{4}{3}$
2	$n=\{1,3,5, \ldots\}$	$\begin{aligned} & X[n, a]=0 \\ & X[n, b]=1 \\ & X[n, c]=0 \end{aligned}$	$P_{X}(x)= \begin{cases}2 / 3, & x=0 \\ 1 / 3, & x=1 \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=\frac{1}{3}$
3	$n=\{2,6,10, \ldots\}$	$\begin{aligned} & X[n, a]=0 \\ & X[n, b]=1 \\ & X[n, c]=-1 \end{aligned}$	$P_{X}(x)= \begin{cases}1 / 3, & x=\{-1,1,0\} \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=0$
4	$n=\{4,8,12, \ldots\}$	$\begin{aligned} & X[n, a]=0 \\ & X[n, b]=1 \\ & X[n, c]=1 \end{aligned}$	$P_{X}(x)= \begin{cases}2 / 3, & x=1 \\ 1 / 3, & x=0 \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=\frac{2}{3}$
5	$n=\{\ldots,-5,-3,-1\}$	$\begin{aligned} & X[n, a]=0 \\ & X[n, b]=0 \\ & X[n, c]=0 \end{aligned}$	$P_{X}(x)= \begin{cases}1, & x=0 \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=0$
6	$n=\{\ldots,-10,-6,-2\}$	$\begin{aligned} X[n, a] & =0 \\ X[n, b] & =0 \\ X[n, c] & =-1 \end{aligned}$	$P_{X}(x)= \begin{cases}2 / 3, & x=0 \\ 1 / 3, & x=-1 \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=-\frac{1}{3}$
7	$n=\{\ldots,-12,-8,-4\}$	$\begin{aligned} & X[n, a]=0 \\ & X[n, b]=0 \\ & X[n, c]=1 \end{aligned}$	$P_{X}(x)= \begin{cases}2 / 3, & x=0 \\ 1 / 3, & x=1 \\ 0, & \text { otherwise }\end{cases}$	$\mu_{X}[n]=\frac{1}{3}$

From the tabulated cases we conclude that the mean function $\mu_{X}[n]$ has the following solution.

$$
\mu_{X}[n]= \begin{cases}4 / 3, & \text { for } n=0 \\ 2 / 3, & \text { for }\{n \geq 4 \text { and } \bmod (n, 4)=0\} \\ 1 / 3, & \text { for }\{n \geq 1 \text { and } \bmod (n+1,2)=0\} \text { or }\{n \leq-4 \text { and } \bmod (n, 4)=0\} \\ 0, & \text { for }\{n \geq 2 \text { and } \bmod (n+2,4)=0\} \text { or }\{n \leq-1 \text { and } \bmod (n-1,2)=0\} \\ -1 / 3, & \text { for }\{n \leq-2 \text { and } \bmod (n-2,4)=0\}\end{cases}
$$

Note that, for generality, we have expressed the mean function in terms of the common residue of $m(\bmod n) \triangleq \bmod (m, n)$.

Part (b)

We begin by reviewing the basic properties of the autocorrelation function $R_{X X}[m, n]$ and autocovariance function $K_{X X}[m, n]$, as defined for the discrete-valued random sequence $X[n]$. Recall, from pages 319 and 320 in [4], that $R_{X X}[m, n]$ and $K_{X X}[m, n]$ have the following forms for the random sequence $X[n]$.

$$
R_{X X}[m, n] \triangleq E\left\{X[m] X^{*}[n]\right\}
$$

$$
\begin{equation*}
K_{X X}[m, n] \triangleq E\left\{\left(X[m]-\mu_{X}[m]\right)\left(X[n]-\mu_{X}[n]\right)^{*}\right\} \tag{2}
\end{equation*}
$$

In addition, we recall the following familiar relationship between the two functions.

$$
\begin{equation*}
R_{X X}[m, n]=K_{X X}[m, n]+\mu_{X}[m] \mu_{X}^{*}[n] \tag{3}
\end{equation*}
$$

Since $\mu_{X}[n]$ is not constant, we conclude that $X[n]$ is not a stationary random sequence. As a result, we do not expect the autocorrelation function $R_{X X}[m, n]$ to be shift-invariant. Due to this complexity, we elect to evaluate the autocovariance function $K_{X X}[m, n]$ instead and apply Equation 3 to obtain $R_{X X}[m, n]$ using the previously-determined mean function. As we'll argue in Part (c), since $X[m]$ and $X[n]$ are independent for $m \neq n$, the autocovariance matrix will be diagonal such that

$$
K_{X X}[m, n]=\sigma_{X}^{2}[n] \delta[m-n]= \begin{cases}E\left\{\left|X[n]-\mu_{X}[n]\right|^{2}\right\}, & \text { for } m=n \\ 0, & \text { for } m \neq n\end{cases}
$$

where $\delta[m-n]$ is the discrete-time impulse and $\sigma_{X}^{2}[n]$ is the variance of the random variable $X[n]$. Using the probability mass functions tabulated in Part (a), we can evaluate $\sigma_{X}^{2}[n]$ using the following expression.

$$
\sigma_{X}^{2}[n]=E\left\{\left|X[n]-\mu_{X}[n]\right|^{2}\right\}=\sum_{i=1}^{m}\left|x_{i}-\mu_{X}[n]\right|^{2} P\left\{X[n]=x_{i}\right\}
$$

This leads to the following expression for the autocorrelation function $R_{X X}[m, n]$ in terms of the mean function $\mu_{X}[n]$ and the variance function $\sigma_{X}^{2}[n]$.

$$
\begin{gathered}
\quad R_{X X}[m, n]=\sigma_{X}^{2}[n] \delta[m-n]+\mu_{X}[m] \mu_{X}[n] \\
\sigma_{X}^{2}[n]= \begin{cases}14 / 9, & \text { for } n=0 \\
2 / 3, & \text { for }\{n \geq 2 \text { and } \bmod (n+2,4)=0\} \\
2 / 9, & \text { for }\{n \geq 1 \text { and } \bmod (n+2,4) \neq 0\} \text { or }\{n \leq-2 \text { and } \bmod (n, 2)=0\} \\
0, & \text { for }\{n \leq-1 \text { and } \bmod (n-1,2)=0\}\end{cases}
\end{gathered}
$$

Part (c)

We begin by recalling that it is a necessary, but not sufficient condition, that the covariance $K_{X X}[m, n]$ be equal to zero if two random variables $X[n]$ and $X[m]$ are independent. Using the results from Part (b), we conclude that $K_{X X}[0,1]=0$; as a result, we cannot deny that $X[0]$ and $X[1]$ are dependent based solely on their correlation. (Neither can we conclude that they are necessarily independent.) To resolve this ambiguity we note that the random variables $X[0]$ and $X[1]$ must be independent, since they are generated by independent random processes. That is, to generate a sample of $X[0]$, we first must uniformly select an event $\zeta \in\{a, b, c\}$. Afterwards, we will evaluate the deterministic function corresponding to each event. A simple, and most-importantly independent, selection procedure must be applied to generate a sample of $X[1]$. Since the sampling occurs independently, knowledge of $X[0]$ does not alter out expectation of the value of $X[1]$. As a result we conclude that $X[0]$ and $X[1]$ are independent random variables.

Problem 6.13

Consider a random sequence $X[n]$ as the input to a linear filter with impulse response

$$
h[n]= \begin{cases}1 / 2, & n=\{0,1\} \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

Denote the output random sequence $Y[n]$, for each outcome ζ, as

$$
Y[n, \zeta]=\sum_{k=-\infty}^{\infty} h[k] X[n-k, \zeta]
$$

Assume the filter runs for all time (i.e., $-\infty<n<\infty$) and that we are given the mean function of the input $\mu_{X}[n]$ and the autocorrelation function of the input $R_{X X}\left[n_{1}, n_{2}\right]$.
(a) Find the mean function of the output $\mu_{Y}[n]$.
(b) Find the output autocorrelation function $R_{Y Y}\left[n_{1}, n_{2}\right]$.
(c) Write the output autocovariance function $K_{Y Y}\left[n_{1}, n_{2}\right]$ using answers from parts (a) and (b).
(d) Now assume that the input $X[n]$ is a Gaussian random sequence. Write the joint pdf of the output $f_{Y}\left(y_{1}, y_{2} ; n_{1}, n_{2}\right)$ at two arbitrary times $n_{1} \neq n_{2}$ in terms of $\mu_{Y}[n]$ and $K_{Y Y}\left[n_{1}, n_{2}\right]$.

Part (a)

Recall, from Section 6.3 in [4], that the output mean function $\mu_{Y}[n]$ can be obtained as follows.

$$
\begin{align*}
\mu_{Y}[n] & =E\{Y[n, \zeta]\}=E\left\{\sum_{k=-\infty}^{\infty} h[k] X[n-k, \zeta]\right\} \\
& =\sum_{k=-\infty}^{\infty} h[k] E\{X[n-k, \zeta]\}=\sum_{k=-\infty}^{\infty} h[k] \mu_{X}[n-k] \tag{5}
\end{align*}
$$

Substituting Equation 4 into Equation 5 gives the following solution for the output mean function.

$$
\begin{equation*}
\mu_{Y}[n]=\frac{1}{2}\left(\mu_{X}[n]+\mu_{X}[n-1]\right) \tag{6}
\end{equation*}
$$

Part (b)

Recall, from Equation 6.3-7 on page 344 in [4], that the output autocorrelation function $R_{Y Y}\left[n_{1}, n_{2}\right.$] for a linear system with time-variant impulse response $h[n, k]$ is given by the following expression.

$$
R_{Y Y}\left[n_{1}, n_{2}\right]=\sum_{k=-\infty}^{\infty} h\left[n_{1}, k\right]\left(\sum_{l=-\infty}^{\infty} h^{*}\left[n_{2}, l\right] R_{X X}[k, l]\right)
$$

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the previous equation as follows.

$$
R_{Y Y}\left[n_{1}, n_{2}\right]=\sum_{k=-\infty}^{\infty} h\left[n_{1}-k\right]\left(\sum_{l=-\infty}^{\infty} h\left[n_{2}-l\right] R_{X X}[k, l]\right)
$$

Substituting Equation 4, we find the following solution for the output autocorrelation function.

$$
R_{Y Y}\left[n_{1}, n_{2}\right]=\frac{1}{4}\left(R_{X X}\left[n_{1}, n_{2}\right]+R_{X X}\left[n_{1}-1, n_{2}\right]+R_{X X}\left[n_{1}, n_{2}-1\right]+R_{X X}\left[n_{1}-1, n_{2}-1\right]\right)
$$

Part (c)

This problem is similar to part (b). First we recall, from Equation 6.3-11, that the output autocovariance function $K_{Y Y}\left[n_{1}, n_{2}\right]$ for a linear system with time-variant impulse response $h[n, k]$ is given by the following expression.

$$
K_{Y Y}\left[n_{1}, n_{2}\right]=\sum_{k=-\infty}^{\infty} h\left[n_{1}, k\right]\left(\sum_{l=-\infty}^{\infty} h^{*}\left[n_{2}, l\right] K_{X X}[k, l]\right)
$$

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the previous equation as follows.

$$
K_{Y Y}\left[n_{1}, n_{2}\right]=\sum_{k=-\infty}^{\infty} h\left[n_{1}-k\right]\left(\sum_{l=-\infty}^{\infty} h\left[n_{2}-l\right] K_{X X}[k, l]\right)
$$

Substituting Equation 4, we find the following solution for the output autocovariance function $K_{Y Y}\left[n_{1}, n_{2}\right]$ in terms of the input autocovariance function $K_{X X}\left[n_{1}, n_{2}\right]$.

$$
K_{Y Y}\left[n_{1}, n_{2}\right]=\frac{1}{4}\left(K_{X X}\left[n_{1}, n_{2}\right]+K_{X X}\left[n_{1}-1, n_{2}\right]+K_{X X}\left[n_{1}, n_{2}-1\right]+K_{X X}\left[n_{1}-1, n_{2}-1\right]\right)
$$

To complete our derivation we need to find an expression linking the input autocovariance $K_{X X}\left[n_{1}, n_{2}\right]$ with the input mean $\mu_{X}[n]$ and input autocorrelation $R_{X X}\left[n_{1}, n_{2}\right]$. Recall that Equation 6.1-13 on page 320 in [4] gives precisely this relationship.

$$
K_{X X}\left[n_{1}, n_{2}\right]=R_{X X}\left[n_{1}, n_{2}\right]-\mu_{X}\left[n_{1}\right] \mu_{X}^{*}\left[n_{2}\right]
$$

Substituting this expression into the previous result gives the output autocovariance $K_{Y Y}\left[n_{1}, n_{2}\right]$ as a function of $\mu_{X}[n]$ and $R_{X X}\left[n_{1}, n_{2}\right]$.

$$
\begin{aligned}
K_{Y Y}\left[n_{1}, n_{2}\right]=\frac{1}{4}(& R_{X X}\left[n_{1}, n_{2}\right]+R_{X X}\left[n_{1}-1, n_{2}\right]+R_{X X}\left[n_{1}, n_{2}-1\right]+R_{X X}\left[n_{1}-1, n_{2}-1\right]- \\
& \left.\mu_{X}\left[n_{1}\right] \mu_{X}^{*}\left[n_{2}\right]-\mu_{X}\left[n_{1}-1\right] \mu_{X}^{*}\left[n_{2}\right]-\mu_{X}\left[n_{1}\right] \mu_{X}^{*}\left[n_{2}-1\right]-\mu_{X}\left[n_{1}-1\right] \mu_{X}^{*}\left[n_{2}-1\right]\right)
\end{aligned}
$$

Finally, we note that the solutions to parts (a) and (b) can be substituted to simply this expression. This yields an equivalent solution for the output autocovariance function $K_{Y Y}\left[n_{1}, n_{2}\right]$ in terms of $\mu_{Y}[n]$ and $R_{Y Y}\left[n_{1}, n_{2}\right]$.

$$
K_{Y Y}\left[n_{1}, n_{2}\right]=R_{Y Y}\left[n_{1}, n_{2}\right]-\mu_{Y}\left[n_{1}\right] \mu_{Y}^{*}\left[n_{2}\right]
$$

Part (d)

Recall, from Definition 6.1-3 on page 323 in [4], that a random sequence $X[n]$ is Gaussian if its $N^{\text {th }}$-order distribution functions are jointly Gaussian for all $N \geq 1$. In other words, if $X[n]$ is a

Gaussian random sequence, then we can express the joint pdf of the input $f_{X}\left(x_{1}, x_{2} ; n_{1}, n_{2}\right)$ at two arbitrary times $n_{1} \neq n_{2}$ as

$$
f_{X}\left(x_{1}, x_{2} ; n_{1}, n_{2}\right)=\frac{1}{2 \pi\left|\mathbf{K}_{X}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mu_{X}\right)^{T} \mathbf{K}_{X}^{-1}\left(\mathbf{x}-\mu_{X}\right)\right)
$$

where the parameters \mathbf{x}, μ_{X}, and \mathbf{K}_{X} are given by

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}, \mu_{X}=\binom{\mu_{X}\left[n_{1}\right]}{\mu_{X}\left[n_{2}\right]}, \text { and } \mathbf{K}_{X}=\left(\begin{array}{cc}
K_{X X}\left[n_{1}, n_{1}\right] & K_{X X}\left[n_{1}, n_{2}\right] \\
K_{X X}\left[n_{2}, n_{1}\right] & K_{X X}\left[n_{2}, n_{2}\right]
\end{array}\right)
$$

At this point we recall the important fact, as given by Theorem 5.6-1, that the linear transformation of a Gaussian random vector produces another Gaussian random vector. As a result, the output random sequence $Y[n]$ will also be a Gaussian random sequence with the following joint pdf.

$$
\begin{gathered}
f_{Y}\left(y_{1}, y_{2} ; n_{1}, n_{2}\right)=\frac{1}{2 \pi\left|\mathbf{K}_{Y}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\mathbf{y}-\mu_{Y}\right)^{T} \mathbf{K}_{Y}^{-1}\left(\mathbf{y}-\mu_{Y}\right)\right), \text { where } \\
\mathbf{y}=\binom{y_{1}}{y_{2}}, \mu_{Y}=\binom{\mu_{Y}\left[n_{1}\right]}{\mu_{Y}\left[n_{2}\right]}, \text { and } \mathbf{K}_{Y}=\left(\begin{array}{cc}
K_{Y Y}\left[n_{1}, n_{1}\right] & K_{Y Y}\left[n_{1}, n_{2}\right] \\
K_{Y Y}\left[n_{2}, n_{1}\right] & K_{Y Y}\left[n_{2}, n_{2}\right]
\end{array}\right)
\end{gathered}
$$

Problem 6.22

Let $W[n]$ be an independent random sequence with constant mean $\mu_{W}=0$ and variance σ_{W}^{2}. Define a new random sequence $X[n]$ as follows:

$$
\begin{aligned}
& X[0]=0 \\
& X[n]=\rho X[n-1]+W[n] \text { for } n \geq 1 .
\end{aligned}
$$

(a) Find the mean value of $X[n]$ for $n \geq 0$.
(b) Find the autocovariance of $X[n]$, denoted as $K_{X X}[m, n]$.
(c) For what values of ρ does $K_{X X}[m, n]$ tend to $G[m-n]$, for some finite-valued function G, as m and n become large? (This situation is known as asymptotic stationarity.)

Part (a)

Let's begin by determining the general form for $X[n]$. Following the derivation presented in class, we can evaluate the first few terms in the sequence directly.

$$
\begin{aligned}
& X[1]=\rho X[0]+W[1] \\
& X[2]=\rho(\rho X[0]+W[1])+W[2]=\rho^{2} X[0]+\rho W[1]+W[2] \\
& X[3]=\rho\left(\rho^{2} X[0]+\rho W[1]+W[2]\right)+W[3]=\rho^{3} X[0]+\rho^{2} W[1]+\rho W[2]+W[3]
\end{aligned}
$$

By inspection, we conclude that the general form for $X[n]$ is given by

$$
X[n]=\rho^{n} X[0]+\sum_{m=1}^{n} \rho^{n-m} W[m],
$$

where $\rho^{n} X[0]$ is the homogeneous solution to $X[n]=\rho X[n-1]$. Substituting the initial condition $X[0]=0$ yields the specific solution for $X[n]$.

$$
\begin{equation*}
X[n]=\sum_{m=1}^{n} \rho^{n-m} W[m] \tag{7}
\end{equation*}
$$

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given by the following expression.

$$
\mu_{X}[n] \triangleq E\{X[n]\}
$$

Substituting Equation 7 and exploiting the linearity of the expectation operator, we find

$$
\mu_{X}[n]=E\left\{\sum_{m=1}^{n} \rho^{n-m} W[m]\right\}=\sum_{m=1}^{n} \rho^{n-m} E\{W[m]\}=\sum_{m=1}^{n} \rho^{n-m} \mu_{W}=0 .
$$

As a result, we conclude that the random sequence $X[n]$ is mean-zero for all $n \geq 0$.

$$
\mu_{X}[n]=\mu_{X}=0, \text { for } n \geq 0
$$

Part (b)

Recall, from Equation 6.1-10, that the autocovariance $K_{X X}[m, n]$ is defined as follows.

$$
K_{X X}[m, n] \triangleq E\left\{\left(X[m]-\mu_{X}[m]\right)\left(X[n]-\mu_{X}[n]\right)^{*}\right\}
$$

Substituting Equation 7 and the result $\mu_{X}=0$, we obtain the following expression for $K_{X X}[m, n]$.

$$
\begin{align*}
K_{X X}[m, n] & =E\left\{\left(\sum_{i=1}^{m} \rho^{m-i} W[i]\right)\left(\sum_{j=1}^{n} \rho^{n-j} W[j]\right)^{*}\right\} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \rho^{m-i}\left(\rho^{*}\right)^{n-j} E\left\{W[i] W^{*}[j]\right\} \tag{8}
\end{align*}
$$

At this point, we recall that the variance $\sigma_{W}^{2}[n]$ of $W[n]$ is given by the following expression.

$$
\sigma_{W}^{2}[n]=\operatorname{Var}\{W[n]\} \triangleq E\left\{\left(W[n]-\mu_{W}[n]\right)\left(W[n]-\mu_{W}[n]\right)^{*}\right\}
$$

Since $\mu_{W}[n]=0$, we have

$$
\sigma_{W}^{2}[n]=\sigma_{W}^{2}=E\left\{W[n] W^{*}[n]\right\}, \text { for } n \geq 0
$$

In addition, we recall from Definition 6.1-2 that an independent random sequence is one whose random variables at any times $\left\{n_{1}, n_{2}, \ldots, n_{N}\right\}$ are jointly independent for all positive integers N. As a result, we conclude that $E\left\{W[m] W^{*}[n]\right\}$ is given by the following expression.

$$
E\left\{W[m] W^{*}[n]\right\}= \begin{cases}\sigma_{W}^{2}, & \text { for } m=n \\ 0, & \text { otherwise }\end{cases}
$$

Substituting this result into Equation 8 gives the following expression for $K_{X X}[m, n]$.

$$
K_{X X}[m, n]= \begin{cases}\sum_{i=1}^{n} \rho^{m-i}\left(\rho^{*}\right)^{n-i} \sigma_{W}^{2}, & \text { for } m \geq n \\ \sum_{i=1}^{m} \rho^{m-i}\left(\rho^{*}\right)^{n-i} \sigma_{W}^{2}, & \text { for } m<n\end{cases}
$$

Following the derivation in class, we conclude that these geometric series will converge for $|\rho|<1$, such that the solution for $K_{X X}[m, n]$ is given by the following expression.

$$
K_{X X}[m, n]=\left\{\begin{array}{ll}
{\left[\frac{\rho^{m-n}\left(1-|\rho|^{2 n}\right)}{1-|\rho|^{2}}\right] \sigma_{W}^{2},} & \text { for } m \geq n \\
{\left[\frac{\left(\rho^{*}\right)^{n-m}\left(1-|\rho|^{2 m}\right)}{1-|\rho|^{2}}\right] \sigma_{W}^{2},} & \text { for } m<n
\end{array}, \text { for }|\rho|<1\right.
$$

As an aside, we note that $|\rho|<1$ is a reasonable assumption, since this ensures bounded-input/boundedoutput (BIBO) stability. Also, for $\rho \in \mathbb{R}$, this solution reduces to that found in class.

Part (c)

Finally, we conclude by noticing that $X[n]$ is asymptotically stationary for $|\rho|<1$. That is, in the limit that m and n become large, $K_{X X}[m, n]$ is only a function of the time shift $m-n$ such that

$$
\lim _{m \rightarrow \infty, n \rightarrow \infty} K_{X X}[m, n]=G[m-n]=\left\{\begin{array}{ll}
{\left[\frac{\rho^{m-n}}{1-|\rho|^{2}}\right] \sigma_{W}^{2},} & \text { for } m \geq n \\
{\left[\frac{\left(\rho^{*}\right)^{n-m}}{1-|\rho|^{2}}\right] \sigma_{W}^{2},} & \text { for } m<n
\end{array}, \text { for }|\rho|<1\right.
$$

Problem 9.3

Use the orthogonality principle to show that the minimum mean-square error (MMSE)

$$
\begin{equation*}
\varepsilon^{2} \triangleq E\left[(X-E[X \mid Y])^{2}\right], \tag{9}
\end{equation*}
$$

for real-valued random variables, can be expressed as

$$
\varepsilon^{2}=E[X(X-E[X \mid Y])]
$$

or as

$$
\varepsilon^{2}=E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right] .
$$

Generalize to the case where \mathbf{X} and \mathbf{Y} are real-valued random vectors. That is, show that the MMSE matrix is

$$
\begin{align*}
\varepsilon^{2} & \triangleq E\left[(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right] \tag{10}\\
& =E\left[\mathbf{X}(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right] \\
& =E\left[\mathbf{X X}^{T}\right]-E\left[E[\mathbf{X} \mid \mathbf{Y}] E^{T}[\mathbf{X} \mid \mathbf{Y}]\right] .
\end{align*}
$$

Let's begin by expanding the product in Equation 9.

$$
\begin{align*}
\varepsilon^{2} & =E[(X-E[X \mid Y])(X-E[X \mid Y])] \\
& =E[X(X-E[X \mid Y])-E[X \mid Y](X-E[X \mid Y])] \\
& =E[X(X-E[X \mid Y])]-E[E[X \mid Y](X-E[X \mid Y])] \tag{11}
\end{align*}
$$

At this point we recall the orthogonality principle, as given by Property 9.1-1 on page 555 in [4] and Theorem 5.4.1 on page 327 in [2]. That is, the MMSE error vector

$$
\varepsilon \triangleq \mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}]
$$

is orthogonal to any measurable function $h(\mathbf{Y})$ of the data, such that

$$
\begin{equation*}
E\left[h^{*}(\mathbf{Y})(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right]=\mathbf{0} . \tag{12}
\end{equation*}
$$

For the random variables X and Y, Equation 12 yields the following condition for $h^{*}(Y) \triangleq E[X \mid Y]$.

$$
E[E[X \mid Y](X-E[X \mid Y])]=0
$$

Substituting this result into Equation 11 yields the desired relation via the orthogonality principle.

$$
\varepsilon^{2}=E[X(X-E[X \mid Y])]
$$

To complete the scalar-valued derivation, we further expand this product as follows.

$$
\varepsilon^{2}=E[X(X-E[X \mid Y])]=E\left[X^{2}\right]-E[X E[X \mid Y]]
$$

Recall, from Equation 4.2-27 in [4], the smoothing property of the conditional expectation ensures

$$
E[X]=E[E[X \mid Y]]
$$

for the random variables X and Y. Applying this condition to the previous expression yields the final solution.

$$
\therefore \varepsilon^{2}=E[X(X-E[X \mid Y])]=E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right]
$$

Now let's generalize to the case where \mathbf{X} and \mathbf{Y} are real-valued random vectors. We begin by expanding the product in Equation 10.

$$
\begin{align*}
\varepsilon^{2} & =E\left[(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right] \\
& =E\left[\mathbf{X}(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}-E[\mathbf{X} \mid \mathbf{Y}](\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right] \\
& =E\left[\mathbf{X}(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right]-E\left[E[\mathbf{X} \mid \mathbf{Y}](\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right] \tag{13}
\end{align*}
$$

For the random vectors \mathbf{X} and \mathbf{Y}, Equation 12 yields the following condition for $h^{*}(\mathbf{Y}) \triangleq E[\mathbf{X} \mid \mathbf{Y}]$.

$$
E\left[E[\mathbf{X} \mid \mathbf{Y}](\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right]=\mathbf{0}
$$

Substituting this result into Equation 13 yields the desired relation via the orthogonality principle.

$$
\varepsilon^{2}=E\left[\mathbf{X}(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right]
$$

To complete the vector-valued derivation, we further expand this product as follows.

$$
\varepsilon^{2}=E\left[\mathbf{X} \mathbf{X}^{T}\right]-E\left[\mathbf{X} E^{T}[\mathbf{X} \mid \mathbf{Y}]\right]
$$

As in the scalar-valued case, the smoothing property of the conditional expectation ensures

$$
E[\mathbf{X}]=E[E[\mathbf{X} \mid \mathbf{Y}]] .
$$

Applying this condition to the previous expression yields the desired solution.

$$
\therefore \varepsilon^{2}=E\left[\mathbf{X}(\mathbf{X}-E[\mathbf{X} \mid \mathbf{Y}])^{T}\right]=E\left[\mathbf{X} \mathbf{X}^{T}\right]-E\left[E[\mathbf{X} \mid \mathbf{Y}] E^{T}[\mathbf{X} \mid \mathbf{Y}]\right]
$$

(QED)

Problem 9.8

A random sequence $Y[n]$, for $n=0,1,2, \ldots$, satisfies the second-order linear difference equation

$$
2 Y[n+2]+Y[n+1]+Y[n]=2 W[n], \text { for } Y[0]=0, Y[1]=1,
$$

with $W[n]$ a standard white Gaussian random sequence. Transform this equation into the statespace representation and evaluate the mean function $\mu_{\mathbf{X}}[n]$ and the correlation function $\mathbf{R}_{\mathbf{X} \mathbf{X}}\left[n_{1}, n_{2}\right]$ for at least the first few values of n. (Hint: Define the state vector $\mathbf{X}[n] \triangleq(Y[n+2], Y[n+1])^{T}$.)

As requested, let's begin by transforming the linear constant coefficient difference equation into the state-space representation. Following the method outlined in Example 6.6-2 on page 374 in [4], we conclude that the state-space representation has the following form.

$$
\begin{array}{|ll|}
\hline \mathbf{X}[n]=\mathbf{A X}[n-1]+\mathbf{b} W[n], \text { where } \\
\mathbf{X}[n]=\binom{Y[n+2]}{Y[n+1]}, & \mathbf{A}=\left(\begin{array}{cc}
-1 / 2 & -1 / 2 \\
1 & 0
\end{array}\right), \quad \mathbf{b}=\binom{1}{0}, \quad \text { and } \quad \mathbf{X}[-1]=\binom{1}{0}
\end{array}
$$

To confirm this expression, we write out the matrix-vector product and compare to the original difference equation.

$$
\binom{Y[n+2]}{Y[n+1]}=\left(\begin{array}{cc}
-1 / 2 & -1 / 2 \\
1 & 0
\end{array}\right)\binom{Y[n+1]}{Y[n]}+\binom{1}{0} W[n]
$$

Now recall that the general solution to the resulting vector-valued difference equation is given by Equation 9.2-2 on page 571 in [4].

$$
\mathbf{X}[n]=\mathbf{A}^{n+1} \mathbf{X}[-1]+\sum_{m=0}^{n} \mathbf{A}^{n-m} \mathbf{b} W[m]
$$

The mean function can be obtained using the standard definition as follows.

$$
\begin{aligned}
\mu_{\mathbf{X}}[n] & =E\{\mathbf{X}[n]\}=E\left\{\mathbf{A}^{n+1} \mathbf{X}[-1]+\sum_{m=0}^{n} \mathbf{A}^{n-m} \mathbf{b} W[m]\right\} \\
& =\mathbf{A}^{n+1} \mathbf{X}[-1]+\sum_{m=0}^{n} \mathbf{A}^{n-m} \mathbf{b} E\{W[m]\} \\
& =\mathbf{A}^{n+1} \mathbf{X}[-1]
\end{aligned}
$$

Note that in the previous expression we have exploited the linearity property of the expectation operator and the fact that $E\{W[m]\}=0, \forall n$. As a result, we conclude that the mean function $\mu_{\mathbf{X}}[n]$ is given by the following expression (with the resulting first few values also shown below).

$$
\begin{gathered}
\mu_{\mathbf{X}}[n]=\mathbf{A}^{n+1} \mathbf{X}[-1] \\
\mu_{\mathbf{X}}[0]=\binom{-1 / 2}{1}, \quad \mu_{\mathbf{X}}[1]=\binom{-1 / 4}{-1 / 2}, \quad \text { and } \quad \mu_{\mathbf{X}}[2]=\binom{3 / 8}{-1 / 4}
\end{gathered}
$$

To complete our analysis, we recall that the autocorrelation function $\mathbf{R}_{\mathbf{X} \mathbf{X}}\left[n_{1}, n_{2}\right]$ can also be obtained using the standard definition

$$
\mathbf{R}_{\mathbf{X} \mathbf{X}}\left[n_{1}, n_{2}\right]=E\left\{\mathbf{X}\left[n_{1}\right] \mathbf{X}^{\dagger}\left[n_{2}\right]\right\}
$$

where $\mathbf{X}^{\dagger}[n]$ denotes the conjugate transpose of $\mathbf{X}[n]$. In this problem \mathbf{X} is real-valued, so we conclude that $\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]$ is given by the following expression.

$$
\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]=E\left\{\mathbf{X}\left[n_{1}\right] \mathbf{X}^{T}\left[n_{2}\right]\right\}
$$

Substituting the general solution for $\mathbf{X}[n]$, we find the following result.

$$
\begin{array}{r}
\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]=E\left\{\left(\mathbf{A}^{n_{1}+1} \mathbf{X}[-1]+\sum_{m_{1}=0}^{n_{1}} \mathbf{A}^{n_{1}-m_{1}} \mathbf{b} W\left[m_{1}\right]\right)\left(\mathbf{A}^{n_{2}+1} \mathbf{X}[-1]+\sum_{m_{2}=0}^{n_{2}} \mathbf{A}^{n_{2}-m_{2}} \mathbf{b} W\left[m_{2}\right]\right)^{T}\right\} \\
=E\left\{\left(\mathbf{A}^{n_{1}+1} \mathbf{X}[-1]+\sum_{m_{1}=0}^{n_{1}} \mathbf{A}^{n_{1}-m_{1}} \mathbf{b} W\left[m_{1}\right]\right)\left(\mathbf{X}^{T}[-1]\left(\mathbf{A}^{T}\right)^{n_{2}+1}+\sum_{m_{2}=0}^{n_{2}} \mathbf{b}^{T}\left(\mathbf{A}^{T}\right)^{n_{2}-m_{2}} W\left[m_{2}\right]\right)\right\}
\end{array}
$$

Once again we can exploit the linearity property of the expectation operator. In addition, notice that the cross-terms in $W[n]$ will be eliminated since $E\{W[n]\}=0, \forall n$. As a result, the autocorrelation function has the following solution.
$\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]=\mathbf{A}^{n_{1}+1} \mathbf{X}[-1] \mathbf{X}^{T}[-1]\left(\mathbf{A}^{T}\right)^{n_{2}+1}+\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} \mathbf{A}^{n_{1}-m_{1}} \mathbf{b b}^{T}\left(\mathbf{A}^{T}\right)^{n_{2}-m_{2}} E\left\{W\left[m_{1}\right] W\left[m_{2}\right]\right\}$
At this point we recall that $E\left\{W\left[m_{1}\right] W\left[m_{2}\right]\right\}=\sigma_{W}^{2} \delta\left[m_{1}-m_{2}\right]$ for $W[n]$ a white Gaussian random sequence. According to the problem state, $\sigma_{W}^{2}=1$ which leads to the following solution for the autocorrelation function $\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]$ (with the resulting first few values also shown below).

$$
\begin{gathered}
\mathbf{R}_{\mathbf{X X}}\left[n_{1}, n_{2}\right]=\left\{\begin{array}{l}
\mathbf{A}^{n_{1}+1} \mathbf{X}[-1] \mathbf{X}^{T}[-1]\left(\mathbf{A}^{T}\right)^{n_{2}+1}+\sum_{m=0}^{n_{2}} \mathbf{A}^{n_{1}-m} \mathbf{b b}^{T}\left(\mathbf{A}^{T}\right)^{n_{2}-m}, \\
\mathbf{A}^{n_{1}+1} \mathbf{X}[-1] \mathbf{X}^{T}[-1]\left(\mathbf{A}^{T}\right)^{n_{2}+1}+\sum_{m=0}^{n_{1}} \mathbf{A}^{n_{1}-m} \mathbf{b b}^{T}\left(\mathbf{A}^{T}\right)^{n_{2}-m}, \\
\text { for } n_{1}<n_{2}
\end{array}\right. \\
\mathbf{R}_{\mathbf{X X}}[0,0]=\left(\begin{array}{cc}
5 / 4 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right), \mathbf{R}_{\mathbf{X X}}[0,1]=\left(\begin{array}{cc}
-3 / 8 & 5 / 4 \\
-1 / 4 & -1 / 2
\end{array}\right), \text { and } \mathbf{R}_{\mathbf{X X}}[1,1]=\left(\begin{array}{cc}
21 / 16 & -3 / 8 \\
-3 / 8 & 5 / 4
\end{array}\right)
\end{gathered}
$$

Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let $X[n]$ be their number at the beginning of the $n^{\text {th }}$ time period. Assume that during each time period each mouse present at the beginning of that period has a fixed probability p of dying, independently of all the others. Before the end of the $n^{\text {th }}$ period, however, a random number $Y[n]$ of new mice invades the area, where $Y[n]$ is a Poisson random variable with parameter λ and is independent of $X[n]$.
(a) Find the conditional expectation $E\{X[n+1] \mid X[n]=x\}$ for all $n \geq 1$.
(b) Use the conditional expectation to obtain a recurrence relation for $\mu_{X}[n]=E\{X[n]\}$.
(c) Show the average number of mice $\mu_{X}[n]$ approaches a limit as $n \rightarrow \infty$ and evaluate this limit.

Part (a)

Let's begin by defining the number of mice $X[n+1]$ at the beginning of time period $n+1$. From the problem statement we have

$$
X[n+1]=X[n]-D[n]+Y[n],
$$

where $X[n]$ is the number of mice at the beginning of period $n, D[n]$ is the number of mice which died during the previous period, and $Y[n]$ is the number of invading mice. Since the conditional expectation operator is linear, we conclude

$$
\begin{align*}
E\{X[n+1] \mid X[n]=x\} & =E\{X[n] \mid X[n]=x\}-E\{D[n] \mid X[n]=x\}+E\{Y[n] \mid X[n]=x\} \\
& =x-E\{D[n] \mid X[n]=x\}+E\{Y[n] \mid X[n]=x\} . \tag{14}
\end{align*}
$$

To proceed we must determine the remaining conditional expectations in Equation 14. First, note that $D[n]$, the number of mice that died in period n, follows a binomial distribution.

$$
P\{D[n]=d \mid X[n]=x\}=\binom{x}{d} p^{d}(1-p)^{x-d}
$$

As a result, we conclude that the expected number of deaths is given by the following expression in $X[n]=x$ and p.

$$
\begin{equation*}
E\{D[n] \mid X[n]=x\}=\sum_{d=0}^{x} d\binom{x}{d} p^{d}(1-p)^{x-d}=p x \tag{15}
\end{equation*}
$$

Similarly, from the problem statement, we note that $Y[n]$ follows a Poisson distribution with parameter λ.

$$
P\{Y[n]=y \mid X[n]=x\}=\frac{\lambda^{y} e^{-\lambda}}{y!}
$$

Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading mice is given by the following expression in $X[n]=x$ and λ.

$$
\begin{equation*}
E\{Y[n] \mid X[n]=x\}=\sum_{y=0}^{\infty} y\left(\frac{\lambda^{y} e^{-\lambda}}{y!}\right)=\lambda \tag{16}
\end{equation*}
$$

Substituting Equations 15 and 16 into Equation 14 yields the desired expression for the conditional expectation.

$$
\begin{equation*}
E\{X[n+1] \mid X[n]=x\}=(1-p) x+\lambda \tag{17}
\end{equation*}
$$

Part (b)

Recall from Problem 6.22 that the mean function $\mu_{X}[n]$ is given by

$$
\mu_{X}[n]=E\{X[n]\}
$$

For the initial condition $X[1]$ we must have

$$
\mu_{X}[1]=E\{X[1]\}=X[1],
$$

since $X[1]$ is a known constant. By recursively applying the conditional expectation in Equation 17, we can determine the first few terms of $\mu_{X}[n]$.

$$
\begin{aligned}
& \mu_{X}[2]=E\{X[2] \mid X[1]\}=(1-p) X[1]+\lambda \\
& \mu_{X}[3]=E\{X[3] \mid X[2]\}=(1-p)^{2} X[1]+(1-p) \lambda+\lambda
\end{aligned}
$$

By induction, we conclude that $\mu_{X}[n]$ is given by the following expression.

$$
\mu_{X}[n]= \begin{cases}(1-p)^{n-1} X[1]+\lambda \sum_{i=0}^{n-2}(1-p)^{i}, & \text { for } n>1 \\ X[1], & \text { for } n=1\end{cases}
$$

For $0<p \leq 1$ the geometric series converges and $\mu_{X}[n]$ has the following solution.

$$
\mu_{X}[n]= \begin{cases}\frac{\lambda}{p}+(1-p)^{n-1}\left(X[1]-\frac{\lambda}{p}\right), & \text { for } n>1 \tag{18}\\ X[1], & \text { for } n=1\end{cases}
$$

Part (c)

For $0<p \leq 1$ the average number of mice $\mu_{X}[n]$ approaches a finite limit as $n \rightarrow \infty$.

$$
\lim _{n \rightarrow \infty} \mu_{X}[n]=\lim _{n \rightarrow \infty}\left\{\frac{\lambda}{p}+(1-p)^{n-1}\left(X[1]-\frac{\lambda}{p}\right)\right\}=\frac{\lambda}{p}
$$

Note that, since $0<p \leq 1$, then $(1-p)^{n-1}$ tends to zero as n becomes large. As a result we conclude that, regardless of the starting population $X[1]$, the average number of mice $\mu_{X}[n]$ approaches the following limit as $n \rightarrow \infty$.

$$
\lim _{n \rightarrow \infty} \mu_{X}[n]=\frac{\lambda}{p}, \text { for } 0<p \leq 1
$$

Obviously, for $p=0$, there will be no deaths and the population will grow without bound for $\lambda>0$.

Problem 5.4-13 [Larson and Shubert, p. 342]

Let X_{1} and X_{2} be independent random variables both uniformly distributed on $(0,1)$. For

$$
Y=\frac{1}{2}\left(X_{1}+X_{2}\right) \quad \text { and } \quad Z=\sqrt{X_{1} X_{2}}
$$

find the conditional expectation $E[Y \mid Z=z]$ for all $0<z<1$.

We begin our analysis by applying the linearity property of the conditional expectation operator.

$$
\begin{equation*}
E[Y \mid Z=z]=E\left[\left.\frac{1}{2}\left(X_{1}+X_{2}\right) \right\rvert\, Z=z\right]=\frac{1}{2} E\left[X_{1} \mid Z=z\right]+\frac{1}{2} E\left[X_{2} \mid Z=z\right]=E\left[X_{1} \mid Z=z\right] \tag{19}
\end{equation*}
$$

Note that, on the right-hand side, we have used the fact that the expression is symmetric in X_{1} and X_{2}, so we are only required to evaluate the single conditional expectation $E\left[X_{1} \mid Z=z\right]$. Now recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X_{1} given $Z=z$ is

$$
\begin{equation*}
E\left[X_{1} \mid Z=z\right] \triangleq \int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid Z}\left(x_{1} \mid z\right) d x_{1} \tag{20}
\end{equation*}
$$

where the conditional probability density function is given by

$$
\begin{equation*}
f_{X_{1} \mid Z}\left(x_{1} \mid z\right)=\frac{f_{Z X_{1}}\left(z, x_{1}\right)}{f_{Z}(z)}, \text { for } f_{Z}(z) \neq 0 \tag{21}
\end{equation*}
$$

At this point all that remains is to determine closed-form expressions for $f_{Z X_{1}}\left(z, x_{1}\right)$ and $f_{Z}(z)$; substituting these expressions into Equation 21 will yield the desired solution for $E[Y \mid Z=z]$ via Equations 19 and 20.

The expression for $f_{Z}(z)$ can be found using the approach outlined in Example 3.3-1 on page 186. Specifically, we know that the following expression defines the distribution function $F_{Z}(z)$.

$$
F_{Z}(z)=\iint_{\left(x_{1}, x_{2}\right) \in C_{z}} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}, \text { for }\{Z \leq z\}=\left\{\left(X_{1}, X_{2}\right) \in C_{z}\right\}
$$

For X_{1} and X_{2} uniformly distributed on $(0,1)$, the joint density function has the following form.

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)= \begin{cases}1, & \text { for } 0<x_{1}, x_{2}<1 \tag{22}\\ 0, & \text { otherwise }\end{cases}
$$

To evaluate the previous expression for $F_{Z}(z)$, we note that X_{2} can be expressed in terms of X_{1} using $Z=\sqrt{X_{1} X_{2}}$. As a result, we must have

$$
x_{2}= \begin{cases}\frac{z^{2}}{x_{1}}, & \text { for } z^{2} \leq x_{1}<1 \\ 1, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

which yields the following result for the probability distribution $F_{Z}(z)$.

$$
F_{Z}(z)=\int_{z^{2}}^{1}\left(\int_{0}^{\frac{z^{2}}{x_{1}}} d x_{2}\right) d x_{1}+\int_{0}^{z^{2}}\left(\int_{0}^{1} d x_{2}\right) d x_{1}=\left[1-\ln \left(z^{2}\right)\right] z^{2}
$$

Taking the first derivative with respect to z yields the desired expression for $f_{Z}(z)$.

$$
\begin{equation*}
f_{Z}(z)=\frac{d F_{Z}(z)}{d z}=-2 z \ln \left(z^{2}\right) \tag{23}
\end{equation*}
$$

The expression for $f_{Z X_{1}}\left(z, x_{1}\right)$ can be found using the approach outlined in Example 3.5-4 on page 159 . We begin by defining the pair of random variables Z and X_{1} as functions of X_{1} and X_{2}.

$$
\begin{aligned}
Z \triangleq g\left(X_{1}, X_{2}\right) & =\sqrt{X_{1} X_{2}} \\
X_{1} \triangleq h\left(X_{1}, X_{1}\right) & =X_{1}
\end{aligned}
$$

Next, we observe that the equations

$$
\begin{array}{r}
z-g\left(x_{1}, x_{2}\right)=0 \\
x_{1}-h\left(x_{1}, x_{2}\right)=0
\end{array}
$$

have only one real root, for $0<x_{1}, x_{2}<1$, given by

$$
\begin{align*}
& x_{1}^{1}=\phi_{1}\left(z, x_{1}\right)=x_{1} \\
& x_{2}^{1}=\varphi_{1}\left(z, x_{1}\right)=\frac{z^{2}}{x_{1}} \tag{24}
\end{align*}
$$

At this point we recall that $f_{Z X_{1}}\left(z, x_{1}\right)$ can be obtained directly from $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$ using the methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be expressed as

$$
\begin{equation*}
f_{Z X_{1}}\left(z, x_{1}\right)=\sum_{i=1}^{n} f_{X_{1} X_{2}}\left(x_{1}^{i}, x_{2}^{i}\right)\left|\tilde{J}_{i}\right| \tag{25}
\end{equation*}
$$

where $\left|\tilde{J}_{i}\right|$ is the magnitude of the Jacobian transformation such that

$$
\left|\tilde{J}_{i}\right|=\left|\operatorname{det}\left(\begin{array}{ll}
\partial \phi_{i} / \partial z & \partial \phi_{i} / \partial x_{1} \tag{26}\\
\partial \varphi_{i} / \partial z & \partial \varphi_{i} / \partial x_{1}
\end{array}\right)\right|
$$

and n is the number of solutions to the equations $z=g\left(x_{1}, x_{2}\right)$ and $x_{1}=h\left(x_{1}, x_{2}\right)$. Substituting Equation 24 into Equation 26 gives the following Jacobian magnitude.

$$
\left|\tilde{J}_{1}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
0 & 1 \tag{27}\\
\frac{2 z}{x_{1}} & -\frac{z^{2}}{x_{1}^{2}}
\end{array}\right)\right|=\frac{2 z}{x_{1}}
$$

Substituting Equations 22, 24, and 27 into Equation 25 yields the desired expression for the joint probability density $f_{Z X_{1}}\left(z, x_{1}\right)$.

$$
f_{Z X_{1}}\left(z, x_{1}\right)=\left(\frac{2 z}{x_{1}}\right) f_{X_{1} X_{2}}\left(\frac{z^{2}}{x_{1}}, x_{1}\right)= \begin{cases}\frac{2 z}{x_{1}}, & \text { for } z^{2} \leq x_{1}<1 \tag{28}\\ 0, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

Now that we have determined closed-form expressions for $f_{Z X_{1}}\left(z, x_{1}\right)$ and $f_{Z}(z)$, we can substitute into Equation 21 to obtain the conditional density $f_{X_{1} \mid Z}\left(x_{1} \mid z\right)$.

$$
f_{X_{1} \mid Z}\left(x_{1} \mid z\right)=\frac{f_{Z X_{1}}\left(z, x_{1}\right)}{f_{Z}(z)}= \begin{cases}\frac{-1}{x_{1} \ln \left(z^{2}\right)}, & \text { for } z^{2} \leq x_{1}<1 \\ 0, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

Substituting this result into Equation 20 gives the answer for $E[Y \mid Z=z]$ via Equation 19.

$$
E[Y \mid Z=z]=\int_{z^{2}}^{1} x_{1} f_{X_{1} \mid Z}\left(x_{1} \mid z\right) d x_{1}=\frac{-1}{\ln \left(z^{2}\right)} \int_{z^{2}}^{1} d x_{1}=\frac{z^{2}-1}{\ln \left(z^{2}\right)}
$$

In conclusion, we find that the conditional expectation $E[Y \mid Z=z]$ is given by the following expression.

$$
E[Y \mid Z=z]=\frac{z^{2}-1}{\ln \left(z^{2}\right)}, \text { for all } 0<z<1
$$

References

[1] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes (Third Edition). Oxford University Press, 2001.
[2] Harold J. Larson and Bruno O. Shubert. Probabilistic Models in Engineering Sciences: Random Variables and Stochastic Processes. John Wiley \& Sons, 1979.
[3] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[4] Henry Stark and John W. Woods. Probability and Random Processes with Applications to Signal Processing (Third Edition). Prentice-Hall, 2002.

