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Problem 6.12

Let the probability space (Ω,F , P ) be given as follows:

Ω = {a, b, c},
F = all subsets of Ω,

P [{ζ}] = 1/3 for each outcome ζ.

Let the random sequence X[n] be defined as follows:

X[n, a] = 3δ[n],
X[n, b] = u[n− 1],
X[n, c] = cos(πn/2).

(a) Find the mean function µX [n].
(b) Find the correlation function RXX [m, n].
(c) Are X[1] and X[0] independent? Why?

Part (a)

Recall, from page 319 in [4], that the mean function of a random sequence X[n] is given by

µX [n] , E{X[n]} =
m∑

i=1

xiP{X[n] = xi}, (1)

where we have assumed for this problem that X[n] is a discrete random variable that takes on
the values {xi}, for i = 1, . . . ,m. From the problem statement we observe that the mean function
µX [n] can be written as the sum of two periodic functions (i.e., one defined for n ≥ 1, another
for n < 0, and a unique value at the origin n = 0). This observation will be made more concrete
shortly; first, let’s begin by determining the value of µX [0]. From the problem statement we have
the following values for X[0, ζ] with ζ ∈ {a, b, c}.

X[0, a] = 3
X[0, b] = 0
X[0, c] = 1

Since the simple events {a, b, c} are mutually exclusive and have equal probability P [{ζ}] = 1/3,
then we conclude that P{X[0] = x} is given by

P{X[0] = x} =
{

1/3, for x = {0, 1, 3}
0, otherwise.
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Substituting into Equation 1, we find that the mean function has the following value at n = 0.

µX [0] =
3∑

i=1

xiP{X[0] = xi} = 0 · 1
3

+ 1 · 1
3

+ 3 · 1
3

=
4
3

By observation we conclude that there are six unique cases (i.e., probability mass functions P{X[n] =
xi} for µX [n]). The following table summarizes the derivation and domain of each. (Note that Case
2 and Case 7 actually describe the same underlying distribution).

Case Domain X[n, ζ] PX(x) = P{X[n] = xi} µX [n]

1 n = {0}
X[n, a] = 3
X[n, b] = 0
X[n, c] = 1

PX(x) =
{

1/3, x = {0, 1, 3}
0, otherwise

µX [n] = 4
3

2 n = {1, 3, 5, . . .}
X[n, a] = 0
X[n, b] = 1
X[n, c] = 0

PX(x) =





2/3, x = 0
1/3, x = 1
0, otherwise

µX [n] = 1
3

3 n = {2, 6, 10, . . .}
X[n, a] = 0
X[n, b] = 1
X[n, c] = −1

PX(x) =
{

1/3, x = {−1, 1, 0}
0, otherwise

µX [n] = 0

4 n = {4, 8, 12, . . .}
X[n, a] = 0
X[n, b] = 1
X[n, c] = 1

PX(x) =





2/3, x = 1
1/3, x = 0
0, otherwise

µX [n] = 2
3

5 n = {. . . ,−5,−3,−1}
X[n, a] = 0
X[n, b] = 0
X[n, c] = 0

PX(x) =
{

1, x = 0
0, otherwise

µX [n] = 0

6 n = {. . . ,−10,−6,−2}
X[n, a] = 0
X[n, b] = 0
X[n, c] = −1

PX(x) =





2/3, x = 0
1/3, x = −1
0, otherwise

µX [n] = −1
3

7 n = {. . . ,−12,−8,−4}
X[n, a] = 0
X[n, b] = 0
X[n, c] = 1

PX(x) =





2/3, x = 0
1/3, x = 1
0, otherwise

µX [n] = 1
3

From the tabulated cases we conclude that the mean function µX [n] has the following solution.

µX [n] =





4/3, for n = 0
2/3, for {n ≥ 4 and mod(n, 4) = 0}
1/3, for {n ≥ 1 and mod(n + 1, 2) = 0} or {n ≤ −4 and mod(n, 4) = 0}
0, for {n ≥ 2 and mod(n + 2, 4) = 0} or {n ≤ −1 and mod(n− 1, 2) = 0}
−1/3, for {n ≤ −2 and mod(n− 2, 4) = 0}

Note that, for generality, we have expressed the mean function in terms of the common residue of
m(modn) , mod(m,n).

Part (b)

We begin by reviewing the basic properties of the autocorrelation function RXX [m,n] and auto-
covariance function KXX [m,n], as defined for the discrete-valued random sequence X[n]. Recall,
from pages 319 and 320 in [4], that RXX [m,n] and KXX [m,n] have the following forms for the
random sequence X[n].

RXX [m, n] , E{X[m]X∗[n]}
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KXX [m,n] , E{(X[m]− µX [m])(X[n]− µX [n])∗} (2)

In addition, we recall the following familiar relationship between the two functions.

RXX [m,n] = KXX [m,n] + µX [m]µ∗X [n] (3)

Since µX [n] is not constant, we conclude that X[n] is not a stationary random sequence. As a
result, we do not expect the autocorrelation function RXX [m,n] to be shift-invariant. Due to
this complexity, we elect to evaluate the autocovariance function KXX [m, n] instead and apply
Equation 3 to obtain RXX [m,n] using the previously-determined mean function. As we’ll argue
in Part (c), since X[m] and X[n] are independent for m 6= n, the autocovariance matrix will be
diagonal such that

KXX [m,n] = σ2
X [n]δ[m− n] =

{
E{|X[n]− µX [n]|2}, for m = n
0, for m 6= n

,

where δ[m − n] is the discrete-time impulse and σ2
X [n] is the variance of the random variable

X[n]. Using the probability mass functions tabulated in Part (a), we can evaluate σ2
X [n] using the

following expression.

σ2
X [n] = E{|X[n]− µX [n]|2} =

m∑

i=1

|xi − µX [n]|2P{X[n] = xi}

This leads to the following expression for the autocorrelation function RXX [m,n] in terms of the
mean function µX [n] and the variance function σ2

X [n].

RXX [m,n] = σ2
X [n]δ[m− n] + µX [m]µX [n]

σ2
X [n] =





14/9, for n = 0
2/3, for {n ≥ 2 and mod(n + 2, 4) = 0}
2/9, for {n ≥ 1 and mod(n + 2, 4) 6= 0} or {n ≤ −2 and mod(n, 2) = 0}
0, for {n ≤ −1 and mod(n− 1, 2) = 0}

Part (c)

We begin by recalling that it is a necessary, but not sufficient condition, that the covariance
KXX [m,n] be equal to zero if two random variables X[n] and X[m] are independent. Using
the results from Part (b), we conclude that KXX [0, 1] = 0; as a result, we cannot deny that X[0]
and X[1] are dependent based solely on their correlation. (Neither can we conclude that they are
necessarily independent.) To resolve this ambiguity we note that the random variables X[0] and
X[1] must be independent, since they are generated by independent random processes. That is, to
generate a sample of X[0], we first must uniformly select an event ζ ∈ {a, b, c}. Afterwards, we will
evaluate the deterministic function corresponding to each event. A simple, and most-importantly
independent, selection procedure must be applied to generate a sample of X[1]. Since the sampling
occurs independently, knowledge of X[0] does not alter out expectation of the value of X[1]. As a
result we conclude that X[0] and X[1] are independent random variables.
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Problem 6.13

Consider a random sequence X[n] as the input to a linear filter with impulse response

h[n] =
{

1/2, n = {0, 1}
0, otherwise.

(4)

Denote the output random sequence Y [n], for each outcome ζ, as

Y [n, ζ] =
∞∑

k=−∞
h[k]X[n− k, ζ].

Assume the filter runs for all time (i.e., −∞ < n < ∞) and that we are given the mean function of
the input µX [n] and the autocorrelation function of the input RXX [n1, n2].

(a) Find the mean function of the output µY [n].
(b) Find the output autocorrelation function RY Y [n1, n2].
(c) Write the output autocovariance function KY Y [n1, n2] using answers from parts (a) and (b).
(d) Now assume that the input X[n] is a Gaussian random sequence. Write the joint pdf of the

output fY (y1, y2; n1, n2) at two arbitrary times n1 6= n2 in terms of µY [n] and KY Y [n1, n2].

Part (a)

Recall, from Section 6.3 in [4], that the output mean function µY [n] can be obtained as follows.

µY [n] = E{Y [n, ζ]} = E

{ ∞∑

k=−∞
h[k]X[n− k, ζ]

}

=
∞∑

k=−∞
h[k]E{X[n− k, ζ]} =

∞∑

k=−∞
h[k]µX [n− k] (5)

Substituting Equation 4 into Equation 5 gives the following solution for the output mean function.

µY [n] =
1
2

(µX [n] + µX [n− 1]) (6)

Part (b)

Recall, from Equation 6.3-7 on page 344 in [4], that the output autocorrelation function RY Y [n1, n2]
for a linear system with time-variant impulse response h[n, k] is given by the following expression.

RY Y [n1, n2] =
∞∑

k=−∞
h[n1, k]

( ∞∑

l=−∞
h∗[n2, l]RXX [k, l]

)

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the
previous equation as follows.

RY Y [n1, n2] =
∞∑

k=−∞
h[n1 − k]

( ∞∑

l=−∞
h[n2 − l]RXX [k, l]

)
,
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Substituting Equation 4, we find the following solution for the output autocorrelation function.

RY Y [n1, n2] =
1
4

(RXX [n1, n2] + RXX [n1 − 1, n2] + RXX [n1, n2 − 1] + RXX [n1 − 1, n2 − 1])

Part (c)

This problem is similar to part (b). First we recall, from Equation 6.3-11, that the output auto-
covariance function KY Y [n1, n2] for a linear system with time-variant impulse response h[n, k] is
given by the following expression.

KY Y [n1, n2] =
∞∑

k=−∞
h[n1, k]

( ∞∑

l=−∞
h∗[n2, l]KXX [k, l]

)

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the
previous equation as follows.

KY Y [n1, n2] =
∞∑

k=−∞
h[n1 − k]

( ∞∑

l=−∞
h[n2 − l]KXX [k, l]

)
,

Substituting Equation 4, we find the following solution for the output autocovariance function
KY Y [n1, n2] in terms of the input autocovariance function KXX [n1, n2].

KY Y [n1, n2] =
1
4

(KXX [n1, n2] + KXX [n1 − 1, n2] + KXX [n1, n2 − 1] + KXX [n1 − 1, n2 − 1])

To complete our derivation we need to find an expression linking the input autocovariance KXX [n1, n2]
with the input mean µX [n] and input autocorrelation RXX [n1, n2]. Recall that Equation 6.1-13 on
page 320 in [4] gives precisely this relationship.

KXX [n1, n2] = RXX [n1, n2]− µX [n1]µ∗X [n2]

Substituting this expression into the previous result gives the output autocovariance KY Y [n1, n2]
as a function of µX [n] and RXX [n1, n2].

KY Y [n1, n2] =
1
4

(RXX [n1, n2] + RXX [n1 − 1, n2] + RXX [n1, n2 − 1] + RXX [n1 − 1, n2 − 1]−
µX [n1]µ∗X [n2]− µX [n1 − 1]µ∗X [n2]− µX [n1]µ∗X [n2 − 1]− µX [n1 − 1]µ∗X [n2 − 1])

Finally, we note that the solutions to parts (a) and (b) can be substituted to simply this expression.
This yields an equivalent solution for the output autocovariance function KY Y [n1, n2] in terms of
µY [n] and RY Y [n1, n2].

KY Y [n1, n2] = RY Y [n1, n2]− µY [n1]µ∗Y [n2]

Part (d)

Recall, from Definition 6.1-3 on page 323 in [4], that a random sequence X[n] is Gaussian if its
N th-order distribution functions are jointly Gaussian for all N ≥ 1. In other words, if X[n] is a

5



EN 257: Applied Stochastic Processes Problem Set 4 Douglas Lanman

Gaussian random sequence, then we can express the joint pdf of the input fX(x1, x2; n1, n2) at two
arbitrary times n1 6= n2 as

fX(x1, x2; n1, n2) =
1

2π|KX | 12
exp

(
−1

2
(x− µX)TK−1

X (x− µX)
)

,

where the parameters x, µX , and KX are given by

x =
(

x1

x2

)
, µX =

(
µX [n1]
µX [n2]

)
, and KX =

(
KXX [n1, n1] KXX [n1, n2]
KXX [n2, n1] KXX [n2, n2]

)
.

At this point we recall the important fact, as given by Theorem 5.6-1, that the linear transformation
of a Gaussian random vector produces another Gaussian random vector. As a result, the output
random sequence Y [n] will also be a Gaussian random sequence with the following joint pdf.

fY (y1, y2;n1, n2) = 1

2π|KY |
1
2

exp
(−1

2(y − µY )TK−1
Y (y − µY )

)
, where

y =
(

y1

y2

)
, µY =

(
µY [n1]
µY [n2]

)
, and KY =

(
KY Y [n1, n1] KY Y [n1, n2]
KY Y [n2, n1] KY Y [n2, n2]

)
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Problem 6.22

Let W [n] be an independent random sequence with constant mean µW = 0 and variance σ2
W .

Define a new random sequence X[n] as follows:

X[0] = 0
X[n] = ρX[n− 1] + W [n] for n ≥ 1.

(a) Find the mean value of X[n] for n ≥ 0.

(b) Find the autocovariance of X[n], denoted as KXX [m, n].

(c) For what values of ρ does KXX [m,n] tend to G[m− n], for some finite-valued function G, as
m and n become large? (This situation is known as asymptotic stationarity.)

Part (a)

Let’s begin by determining the general form for X[n]. Following the derivation presented in class,
we can evaluate the first few terms in the sequence directly.

X[1] = ρX[0] + W [1]

X[2] = ρ(ρX[0] + W [1]) + W [2] = ρ2X[0] + ρW [1] + W [2]

X[3] = ρ(ρ2X[0] + ρW [1] + W [2]) + W [3] = ρ3X[0] + ρ2W [1] + ρW [2] + W [3]

By inspection, we conclude that the general form for X[n] is given by

X[n] = ρnX[0] +
n∑

m=1

ρn−mW [m],

where ρnX[0] is the homogeneous solution to X[n] = ρX[n− 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

X[n] =
n∑

m=1

ρn−mW [m] (7)

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given
by the following expression.

µX [n] , E{X[n]}
Substituting Equation 7 and exploiting the linearity of the expectation operator, we find

µX [n] = E

{
n∑

m=1

ρn−mW [m]

}
=

n∑

m=1

ρn−mE{W [m]} =
n∑

m=1

ρn−mµW = 0.

As a result, we conclude that the random sequence X[n] is mean-zero for all n ≥ 0.

µX [n] = µX = 0, for n ≥ 0
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Part (b)

Recall, from Equation 6.1-10, that the autocovariance KXX [m, n] is defined as follows.

KXX [m,n] , E{(X[m]− µX [m])(X[n]− µX [n])∗}
Substituting Equation 7 and the result µX = 0, we obtain the following expression for KXX [m,n].

KXX [m,n] = E





(
m∑

i=1

ρm−iW [i]

)


n∑

j=1

ρn−jW [j]



∗


=
m∑

i=1

n∑

j=1

ρm−i(ρ∗)n−jE {W [i]W ∗[j]} (8)

At this point, we recall that the variance σ2
W [n] of W [n] is given by the following expression.

σ2
W [n] = V ar {W [n]} , E {(W [n]− µW [n])(W [n]− µW [n])∗}

Since µW [n] = 0, we have

σ2
W [n] = σ2

W = E {W [n]W ∗[n]} , for n ≥ 0.

In addition, we recall from Definition 6.1-2 that an independent random sequence is one whose
random variables at any times {n1, n2, . . . , nN} are jointly independent for all positive integers N .
As a result, we conclude that E {W [m]W ∗[n]} is given by the following expression.

E {W [m]W ∗[n]} =
{

σ2
W , for m = n

0, otherwise

Substituting this result into Equation 8 gives the following expression for KXX [m,n].

KXX [m,n] =
{ ∑n

i=1 ρm−i(ρ∗)n−iσ2
W , for m ≥ n∑m

i=1 ρm−i(ρ∗)n−iσ2
W , for m < n

Following the derivation in class, we conclude that these geometric series will converge for |ρ| < 1,
such that the solution for KXX [m,n] is given by the following expression.

KXX [m,n] =





[
ρm−n(1−|ρ|2n)

1−|ρ|2
]
σ2

W , for m ≥ n
[

(ρ∗)n−m(1−|ρ|2m)
1−|ρ|2

]
σ2

W , for m < n
, for |ρ| < 1

As an aside, we note that |ρ| < 1 is a reasonable assumption, since this ensures bounded-input/bounded-
output (BIBO) stability. Also, for ρ ∈ R, this solution reduces to that found in class.

Part (c)

Finally, we conclude by noticing that X[n] is asymptotically stationary for |ρ| < 1. That is, in the
limit that m and n become large, KXX [m,n] is only a function of the time shift m− n such that

lim
m→∞, n→∞KXX [m,n] = G[m− n] =





[
ρm−n

1−|ρ|2
]
σ2

W , for m ≥ n
[

(ρ∗)n−m

1−|ρ|2
]
σ2

W , for m < n
, for |ρ| < 1
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Problem 9.3

Use the orthogonality principle to show that the minimum mean-square error (MMSE)

ε2 , E[(X − E[X|Y ])2], (9)

for real-valued random variables, can be expressed as

ε2 = E[X(X −E[X|Y ])]

or as
ε2 = E[X2]−E[E[X|Y ]2].

Generalize to the case where X and Y are real-valued random vectors. That is, show that the
MMSE matrix is

ε2 , E[(X− E[X|Y])(X− E[X|Y])T ] (10)

= E[X(X− E[X|Y])T ]

= E[XXT ]− E[E[X|Y]ET [X|Y]].

Let’s begin by expanding the product in Equation 9.

ε2 = E[(X −E[X|Y ])(X − E[X|Y ])]
= E[X(X −E[X|Y ])− E[X|Y ](X −E[X|Y ])]
= E[X(X −E[X|Y ])]− E[E[X|Y ](X −E[X|Y ])] (11)

At this point we recall the orthogonality principle, as given by Property 9.1-1 on page 555 in [4]
and Theorem 5.4.1 on page 327 in [2]. That is, the MMSE error vector

ε , X−E[X|Y]

is orthogonal to any measurable function h(Y) of the data, such that

E[h∗(Y)(X−E[X|Y])T ] = 0. (12)

For the random variables X and Y , Equation 12 yields the following condition for h∗(Y ) , E[X|Y ].

E[E[X|Y ](X − E[X|Y ])] = 0

Substituting this result into Equation 11 yields the desired relation via the orthogonality principle.

ε2 = E[X(X −E[X|Y ])]

To complete the scalar-valued derivation, we further expand this product as follows.

ε2 = E[X(X − E[X|Y ])] = E[X2]−E[XE[X|Y ]]

Recall, from Equation 4.2-27 in [4], the smoothing property of the conditional expectation ensures

E[X] = E[E[X|Y ]]

9
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for the random variables X and Y . Applying this condition to the previous expression yields the
final solution.

∴ ε2 = E[X(X − E[X|Y ])] = E[X2]−E[E[X|Y ]2]

Now let’s generalize to the case where X and Y are real-valued random vectors. We begin by
expanding the product in Equation 10.

ε2 = E[(X− E[X|Y])(X− E[X|Y])T ]

= E[X(X− E[X|Y])T − E[X|Y](X− E[X|Y])T ]

= E[X(X− E[X|Y])T ]− E[E[X|Y](X−E[X|Y])T ] (13)

For the random vectors X and Y, Equation 12 yields the following condition for h∗(Y) , E[X|Y].

E[E[X|Y](X−E[X|Y])T ] = 0

Substituting this result into Equation 13 yields the desired relation via the orthogonality principle.

ε2 = E[X(X− E[X|Y])T ]

To complete the vector-valued derivation, we further expand this product as follows.

ε2 = E[XXT ]− E[XET [X|Y]]

As in the scalar-valued case, the smoothing property of the conditional expectation ensures

E[X] = E[E[X|Y]].

Applying this condition to the previous expression yields the desired solution.

∴ ε2 = E[X(X−E[X|Y])T ] = E[XXT ]− E[E[X|Y]ET [X|Y]]

(QED)
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Problem 9.8

A random sequence Y [n], for n = 0, 1, 2, . . ., satisfies the second-order linear difference equation

2Y [n + 2] + Y [n + 1] + Y [n] = 2W [n], for Y [0] = 0, Y [1] = 1,

with W [n] a standard white Gaussian random sequence. Transform this equation into the state-
space representation and evaluate the mean function µX[n] and the correlation function RXX[n1, n2]
for at least the first few values of n. (Hint: Define the state vector X[n] , (Y [n + 2], Y [n + 1])T .)

As requested, let’s begin by transforming the linear constant coefficient difference equation into the
state-space representation. Following the method outlined in Example 6.6-2 on page 374 in [4], we
conclude that the state-space representation has the following form.

X[n] = AX[n− 1] + bW [n], where

X[n] =
(

Y [n + 2]
Y [n + 1]

)
, A =

(−1/2 −1/2
1 0

)
, b =

(
1
0

)
, and X[−1] =

(
1
0

)

To confirm this expression, we write out the matrix-vector product and compare to the original
difference equation.

(
Y [n + 2]
Y [n + 1]

)
=

(−1/2 −1/2
1 0

)(
Y [n + 1]

Y [n]

)
+

(
1
0

)
W [n]

Now recall that the general solution to the resulting vector-valued difference equation is given by
Equation 9.2-2 on page 571 in [4].

X[n] = An+1X[−1] +
n∑

m=0

An−mbW [m]

The mean function can be obtained using the standard definition as follows.

µX[n] = E{X[n]} = E

{
An+1X[−1] +

n∑

m=0

An−mbW [m]

}

= An+1X[−1] +
n∑

m=0

An−mbE{W [m]}

= An+1X[−1]

Note that in the previous expression we have exploited the linearity property of the expectation
operator and the fact that E{W [m]} = 0, ∀n. As a result, we conclude that the mean function
µX[n] is given by the following expression (with the resulting first few values also shown below).

µX[n] = An+1X[−1]

µX[0] =
(−1/2

1

)
, µX[1] =

(−1/4
−1/2

)
, and µX[2] =

(
3/8
−1/4

)

To complete our analysis, we recall that the autocorrelation function RXX[n1, n2] can also be
obtained using the standard definition

RXX[n1, n2] = E{X[n1]X†[n2]},

11
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where X†[n] denotes the conjugate transpose of X[n]. In this problem X is real-valued, so we
conclude that RXX[n1, n2] is given by the following expression.

RXX[n1, n2] = E{X[n1]XT [n2]}

Substituting the general solution for X[n], we find the following result.

RXX[n1, n2] = E





(
An1+1X[−1] +

n1∑

m1=0

An1−m1bW [m1]

)(
An2+1X[−1] +

n2∑

m2=0

An2−m2bW [m2]

)T




= E

{(
An1+1X[−1] +

n1∑

m1=0

An1−m1bW [m1]

)(
XT [−1](AT )n2+1 +

n2∑

m2=0

bT (AT )n2−m2W [m2]

)}

Once again we can exploit the linearity property of the expectation operator. In addition, no-
tice that the cross-terms in W [n] will be eliminated since E{W [n]} = 0, ∀n. As a result, the
autocorrelation function has the following solution.

RXX[n1, n2] = An1+1X[−1]XT [−1](AT )n2+1 +
n1∑

m1=0

n2∑

m2=0

An1−m1bbT (AT )n2−m2E{W [m1]W [m2]}

At this point we recall that E{W [m1]W [m2]} = σ2
W δ[m1−m2] for W [n] a white Gaussian random

sequence. According to the problem state, σ2
W = 1 which leads to the following solution for the

autocorrelation function RXX[n1, n2] (with the resulting first few values also shown below).

RXX[n1, n2] =

{
An1+1X[−1]XT [−1](AT )n2+1 +

∑n2
m=0 An1−mbbT (AT )n2−m, for n1 ≥ n2

An1+1X[−1]XT [−1](AT )n2+1 +
∑n1

m=0 An1−mbbT (AT )n2−m, for n1 < n2

RXX[0, 0] =
(

5/4 −1/2
−1/2 1

)
, RXX[0, 1] =

(−3/8 5/4
−1/4 −1/2

)
, and RXX[1, 1] =

(
21/16 −3/8
−3/8 5/4

)

12
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Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let X[n] be their number at the
beginning of the nth time period. Assume that during each time period each mouse present at the
beginning of that period has a fixed probability p of dying, independently of all the others. Before
the end of the nth period, however, a random number Y [n] of new mice invades the area, where
Y [n] is a Poisson random variable with parameter λ and is independent of X[n].

(a) Find the conditional expectation E {X[n + 1]|X[n] = x} for all n ≥ 1.
(b) Use the conditional expectation to obtain a recurrence relation for µX [n] = E {X[n]}.
(c) Show the average number of mice µX [n] approaches a limit as n →∞ and evaluate this limit.

Part (a)

Let’s begin by defining the number of mice X[n + 1] at the beginning of time period n + 1. From
the problem statement we have

X[n + 1] = X[n]−D[n] + Y [n],

where X[n] is the number of mice at the beginning of period n, D[n] is the number of mice which
died during the previous period, and Y [n] is the number of invading mice. Since the conditional
expectation operator is linear, we conclude

E {X[n + 1]|X[n] = x} = E {X[n]|X[n] = x} − E {D[n]|X[n] = x}+ E {Y [n]|X[n] = x}
= x− E {D[n]|X[n] = x}+ E {Y [n]|X[n] = x} . (14)

To proceed we must determine the remaining conditional expectations in Equation 14. First, note
that D[n], the number of mice that died in period n, follows a binomial distribution.

P {D[n] = d|X[n] = x} =
(

x
d

)
pd(1− p)x−d

As a result, we conclude that the expected number of deaths is given by the following expression
in X[n] = x and p.

E {D[n]|X[n] = x} =
x∑

d=0

d

(
x
d

)
pd(1− p)x−d = px (15)

Similarly, from the problem statement, we note that Y [n] follows a Poisson distribution with para-
meter λ.

P {Y [n] = y|X[n] = x} =
λye−λ

y!
Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading
mice is given by the following expression in X[n] = x and λ.

E {Y [n]|X[n] = x} =
∞∑

y=0

y

(
λye−λ

y!

)
= λ (16)

Substituting Equations 15 and 16 into Equation 14 yields the desired expression for the conditional
expectation.

E {X[n + 1]|X[n] = x} = (1− p)x + λ (17)

13
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Part (b)

Recall from Problem 6.22 that the mean function µX [n] is given by

µX [n] = E{X[n]}.

For the initial condition X[1] we must have

µX [1] = E{X[1]} = X[1],

since X[1] is a known constant. By recursively applying the conditional expectation in Equation 17,
we can determine the first few terms of µX [n].

µX [2] = E{X[2]|X[1]} = (1− p)X[1] + λ

µX [3] = E{X[3]|X[2]} = (1− p)2X[1] + (1− p)λ + λ

By induction, we conclude that µX [n] is given by the following expression.

µX [n] =
{

(1− p)n−1X[1] + λ
∑n−2

i=0 (1− p)i, for n > 1
X[1], for n = 1

For 0 < p ≤ 1 the geometric series converges and µX [n] has the following solution.

µX [n] =

{
λ
p + (1− p)n−1

(
X[1]− λ

p

)
, for n > 1

X[1], for n = 1
(18)

Part (c)

For 0 < p ≤ 1 the average number of mice µX [n] approaches a finite limit as n →∞.

lim
n→∞µX [n] = lim

n→∞

{
λ

p
+ (1− p)n−1

(
X[1]− λ

p

)}
=

λ

p

Note that, since 0 < p ≤ 1, then (1−p)n−1 tends to zero as n becomes large. As a result we conclude
that, regardless of the starting population X[1], the average number of mice µX [n] approaches the
following limit as n →∞.

lim
n→∞µX [n] =

λ

p
, for 0 < p ≤ 1

Obviously, for p = 0, there will be no deaths and the population will grow without bound for λ > 0.

14
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Problem 5.4-13 [Larson and Shubert, p. 342]

Let X1 and X2 be independent random variables both uniformly distributed on (0, 1). For

Y =
1
2
(X1 + X2) and Z =

√
X1X2

find the conditional expectation E[Y |Z = z] for all 0 < z < 1.

We begin our analysis by applying the linearity property of the conditional expectation operator.

E[Y |Z = z] = E

[
1
2
(X1 + X2)

∣∣∣ Z = z

]
=

1
2
E[X1|Z = z] +

1
2
E[X2|Z = z] = E[X1|Z = z] (19)

Note that, on the right-hand side, we have used the fact that the expression is symmetric in X1

and X2, so we are only required to evaluate the single conditional expectation E[X1|Z = z]. Now
recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X1

given Z = z is

E[X1|Z = z] ,
∫ ∞

−∞
x1fX1|Z(x1|z)dx1, (20)

where the conditional probability density function is given by

fX1|Z(x1|z) =
fZX1(z, x1)

fZ(z)
, for fZ(z) 6= 0. (21)

At this point all that remains is to determine closed-form expressions for fZX1(z, x1) and fZ(z);
substituting these expressions into Equation 21 will yield the desired solution for E[Y |Z = z] via
Equations 19 and 20.

The expression for fZ(z) can be found using the approach outlined in Example 3.3-1 on page
186. Specifically, we know that the following expression defines the distribution function FZ(z).

FZ(z) =
∫ ∫

(x1,x2)∈Cz

fX1X2(x1, x2)dx1dx2, for {Z ≤ z} = {(X1, X2) ∈ Cz}

For X1 and X2 uniformly distributed on (0, 1), the joint density function has the following form.

fX1X2(x1, x2) = fX1(x1)fX2(x2) =
{

1, for 0 < x1, x2 < 1
0, otherwise

(22)

To evaluate the previous expression for FZ(z), we note that X2 can be expressed in terms of X1

using Z =
√

X1X2. As a result, we must have

x2 =

{
z2

x1
, for z2 ≤ x1 < 1

1, for 0 < x1 < z2

which yields the following result for the probability distribution FZ(z).

FZ(z) =
∫ 1

z2




∫ z2

x1

0
dx2


 dx1 +

∫ z2

0

(∫ 1

0
dx2

)
dx1 =

[
1− ln(z2)

]
z2

15
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Taking the first derivative with respect to z yields the desired expression for fZ(z).

fZ(z) =
dFZ(z)

dz
= −2z ln(z2) (23)

The expression for fZX1(z, x1) can be found using the approach outlined in Example 3.5-4 on
page 159. We begin by defining the pair of random variables Z and X1 as functions of X1 and X2.

Z , g(X1, X2) =
√

X1X2

X1 , h(X1, X1) = X1

Next, we observe that the equations

z − g(x1, x2) = 0
x1 − h(x1, x2) = 0

have only one real root, for 0 < x1, x2 < 1, given by

x1
1 = φ1(z, x1) = x1

x1
2 = ϕ1(z, x1) = z2

x1
.

(24)

At this point we recall that fZX1(z, x1) can be obtained directly from fX1X2(x1, x2) using the
methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be
expressed as

fZX1(z, x1) =
n∑

i=1

fX1X2(x
i
1, x

i
2)|J̃i|, (25)

where |J̃i| is the magnitude of the Jacobian transformation such that

|J̃i| =
∣∣∣∣det

(
∂φi/∂z ∂φi/∂x1

∂ϕi/∂z ∂ϕi/∂x1

)∣∣∣∣ (26)

and n is the number of solutions to the equations z = g(x1, x2) and x1 = h(x1, x2). Substituting
Equation 24 into Equation 26 gives the following Jacobian magnitude.

|J̃1| =
∣∣∣∣∣det

(
0 1
2z
x1

− z2

x2
1

)∣∣∣∣∣ =
2z

x1
(27)

Substituting Equations 22, 24, and 27 into Equation 25 yields the desired expression for the joint
probability density fZX1(z, x1).

fZX1(z, x1) =
(

2z

x1

)
fX1X2

(
z2

x1
, x1

)
=

{ 2z
x1

, for z2 ≤ x1 < 1
0, for 0 < x1 < z2 (28)

Now that we have determined closed-form expressions for fZX1(z, x1) and fZ(z), we can sub-
stitute into Equation 21 to obtain the conditional density fX1|Z(x1|z).

fX1|Z(x1|z) =
fZX1(z, x1)

fZ(z)
=

{ −1
x1 ln(z2)

, for z2 ≤ x1 < 1
0, for 0 < x1 < z2

16
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Substituting this result into Equation 20 gives the answer for E[Y |Z = z] via Equation 19.

E[Y |Z = z] =
∫ 1

z2

x1fX1|Z(x1|z)dx1 =
−1

ln(z2)

∫ 1

z2

dx1 =
z2 − 1
ln(z2)

In conclusion, we find that the conditional expectation E[Y |Z = z] is given by the following
expression.

E[Y |Z = z] =
z2 − 1
ln(z2)

, for all 0 < z < 1
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