EN 257: Applied Stochastic Processes Problem Set 4

Douglas Lanman dlanman@brown.edu 21 March 2007

Problem 6.12

Let the probability space (Ω, \mathcal{F}, P) be given as follows:

 $\Omega = \{a, b, c\},$ $\mathcal{F} = \text{ all subsets of } \Omega,$ $P[\{\zeta\}] = 1/3 \text{ for each outcome } \zeta.$

Let the random sequence X[n] be defined as follows:

 $X[n, a] = 3\delta[n],$ X[n, b] = u[n - 1], $X[n, c] = \cos(\pi n/2).$

- (a) Find the mean function $\mu_X[n]$.
- (b) Find the correlation function $R_{XX}[m, n]$.
- (c) Are X[1] and X[0] independent? Why?

Part (a)

Recall, from page 319 in [4], that the mean function of a random sequence X[n] is given by

$$\mu_X[n] \triangleq E\{X[n]\} = \sum_{i=1}^m x_i P\{X[n] = x_i\},\tag{1}$$

where we have assumed for this problem that X[n] is a discrete random variable that takes on the values $\{x_i\}$, for i = 1, ..., m. From the problem statement we observe that the mean function $\mu_X[n]$ can be written as the sum of two periodic functions (i.e., one defined for $n \ge 1$, another for n < 0, and a unique value at the origin n = 0). This observation will be made more concrete shortly; first, let's begin by determining the value of $\mu_X[0]$. From the problem statement we have the following values for $X[0, \zeta]$ with $\zeta \in \{a, b, c\}$.

$$X[0, a] = 3$$

 $X[0, b] = 0$
 $X[0, c] = 1$

Since the simple events $\{a, b, c\}$ are mutually exclusive and have equal probability $P[\{\zeta\}] = 1/3$, then we conclude that $P\{X[0] = x\}$ is given by

$$P\{X[0] = x\} = \begin{cases} 1/3, & \text{for } x = \{0, 1, 3\}\\ 0, & \text{otherwise.} \end{cases}$$

Substituting into Equation 1, we find that the mean function has the following value at n = 0.

$$\mu_X[0] = \sum_{i=1}^3 x_i P\{X[0] = x_i\} = 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} = \frac{4}{3}$$

By observation we conclude that there are six unique cases (i.e., probability mass functions $P\{X[n] = x_i\}$ for $\mu_X[n]$). The following table summarizes the derivation and domain of each. (Note that Case 2 and Case 7 actually describe the same underlying distribution).

Case	Domain	$X[n,\zeta]$	$P_X(x) = P\{X[n] = x_i\}$	$\mu_X[n]$
1	$n = \{0\}$	$\begin{split} X[n,a] &= 3\\ X[n,b] &= 0\\ X[n,c] &= 1 \end{split}$	$P_X(x) = \begin{cases} 1/3, & x = \{0, 1, 3\} \\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = \frac{4}{3}$
2	$n = \{1, 3, 5, \ldots\}$	$\begin{split} X[n,a] &= 0\\ X[n,b] &= 1\\ X[n,c] &= 0 \end{split}$	$P_X(x) = \begin{cases} 2/3, & x = 0\\ 1/3, & x = 1\\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = \frac{1}{3}$
3	$n = \{2, 6, 10, \ldots\}$	X[n, a] = 0 X[n, b] = 1 X[n, c] = -1	$P_X(x) = \begin{cases} 1/3, & x = \{-1, 1, 0\} \\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = 0$
4	$n = \{4, 8, 12, \ldots\}$	$\begin{split} X[n,a] &= 0\\ X[n,b] &= 1\\ X[n,c] &= 1 \end{split}$	$P_X(x) = \begin{cases} 2/3, & x = 1\\ 1/3, & x = 0\\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = \frac{2}{3}$
5	$n = \{\dots, -5, -3, -1\}$	$\begin{split} X[n,a] &= 0\\ X[n,b] &= 0\\ X[n,c] &= 0 \end{split}$	$P_X(x) = \begin{cases} 1, & x = 0\\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = 0$
6	$n = \{\dots, -10, -6, -2\}$	$\begin{split} X[n,a] &= 0\\ X[n,b] &= 0\\ X[n,c] &= -1 \end{split}$	$P_X(x) = \begin{cases} 2/3, & x = 0\\ 1/3, & x = -1\\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = -\frac{1}{3}$
7	$n = \{\dots, -12, -8, -4\}$	$\begin{split} X[n,a] &= 0\\ X[n,b] &= 0\\ X[n,c] &= 1 \end{split}$	$P_X(x) = \begin{cases} 2/3, & x = 0\\ 1/3, & x = 1\\ 0, & \text{otherwise} \end{cases}$	$\mu_X[n] = \frac{1}{3}$

From the tabulated cases we conclude that the mean function $\mu_X[n]$ has the following solution.

	(4/3,	for $n = 0$
	2/3,	for $\{n \ge 4 \text{ and } \operatorname{mod}(n, 4) = 0\}$
$\mu_X[n] =$	{ 1/3,	for $\{n \ge 1 \text{ and } mod(n+1,2) = 0\}$ or $\{n \le -4 \text{ and } mod(n,4) = 0\}$
	0,	for $\{n \ge 2 \text{ and } mod(n+2,4) = 0\}$ or $\{n \le -1 \text{ and } mod(n-1,2) = 0\}$
	(-1/3,	for $\{n \le -2 \text{ and } mod(n-2,4) = 0\}$

Note that, for generality, we have expressed the mean function in terms of the common residue of $m(\mod n) \triangleq \mod(m, n)$.

Part (b)

We begin by reviewing the basic properties of the autocorrelation function $R_{XX}[m, n]$ and autocovariance function $K_{XX}[m, n]$, as defined for the discrete-valued random sequence X[n]. Recall, from pages 319 and 320 in [4], that $R_{XX}[m, n]$ and $K_{XX}[m, n]$ have the following forms for the random sequence X[n].

 $R_{XX}[m,n] \triangleq E\{X[m]X^*[n]\}$

$$K_{XX}[m,n] \triangleq E\{(X[m] - \mu_X[m])(X[n] - \mu_X[n])^*\}$$
(2)

In addition, we recall the following familiar relationship between the two functions.

$$R_{XX}[m,n] = K_{XX}[m,n] + \mu_X[m]\mu_X^*[n]$$
(3)

Since $\mu_X[n]$ is not constant, we conclude that X[n] is not a stationary random sequence. As a result, we do not expect the autocorrelation function $R_{XX}[m,n]$ to be shift-invariant. Due to this complexity, we elect to evaluate the autocovariance function $K_{XX}[m,n]$ instead and apply Equation 3 to obtain $R_{XX}[m,n]$ using the previously-determined mean function. As we'll argue in Part (c), since X[m] and X[n] are independent for $m \neq n$, the autocovariance matrix will be diagonal such that

$$K_{XX}[m,n] = \sigma_X^2[n]\delta[m-n] = \begin{cases} E\{|X[n] - \mu_X[n]|^2\}, & \text{for } m = n\\ 0, & \text{for } m \neq n \end{cases},$$

where $\delta[m-n]$ is the discrete-time impulse and $\sigma_X^2[n]$ is the variance of the random variable X[n]. Using the probability mass functions tabulated in Part (a), we can evaluate $\sigma_X^2[n]$ using the following expression.

$$\sigma_X^2[n] = E\{|X[n] - \mu_X[n]|^2\} = \sum_{i=1}^m |x_i - \mu_X[n]|^2 P\{X[n] = x_i\}$$

This leads to the following expression for the autocorrelation function $R_{XX}[m, n]$ in terms of the mean function $\mu_X[n]$ and the variance function $\sigma_X^2[n]$.

$$R_{XX}[m,n] = \sigma_X^2[n]\delta[m-n] + \mu_X[m]\mu_X[n]$$

$$\sigma_X^2[n] = \begin{cases} 14/9, & \text{for } n = 0\\ 2/3, & \text{for } \{n \ge 2 \text{ and } \mod(n+2,4) = 0\}\\ 2/9, & \text{for } \{n \ge 1 \text{ and } \mod(n+2,4) \ne 0\} \text{ or } \{n \le -2 \text{ and } \mod(n,2) = 0\}\\ 0, & \text{for } \{n \le -1 \text{ and } \mod(n-1,2) = 0\} \end{cases}$$

Part (c)

We begin by recalling that it is a necessary, but not sufficient condition, that the covariance $K_{XX}[m,n]$ be equal to zero if two random variables X[n] and X[m] are independent. Using the results from Part (b), we conclude that $K_{XX}[0,1] = 0$; as a result, we cannot deny that X[0] and X[1] are dependent based solely on their correlation. (Neither can we conclude that they are necessarily independent.) To resolve this ambiguity we note that the random variables X[0] and X[1] must be independent, since they are generated by independent random processes. That is, to generate a sample of X[0], we first must uniformly select an event $\zeta \in \{a, b, c\}$. Afterwards, we will evaluate the deterministic function corresponding to each event. A simple, and most-importantly independent, selection procedure must be applied to generate a sample of X[1]. Since the sampling occurs independently, knowledge of X[0] does not alter out expectation of the value of X[1]. As a result we conclude that X[0] and X[1] are independent random variables.

Problem 6.13

Consider a random sequence X[n] as the input to a linear filter with impulse response

$$h[n] = \begin{cases} 1/2, & n = \{0, 1\} \\ 0, & \text{otherwise.} \end{cases}$$
(4)

Denote the output random sequence Y[n], for each outcome ζ , as

$$Y[n,\zeta] = \sum_{k=-\infty}^{\infty} h[k]X[n-k,\zeta].$$

Assume the filter runs for all time (i.e., $-\infty < n < \infty$) and that we are given the mean function of the input $\mu_X[n]$ and the autocorrelation function of the input $R_{XX}[n_1, n_2]$.

- (a) Find the mean function of the output $\mu_Y[n]$.
- (b) Find the output autocorrelation function $R_{YY}[n_1, n_2]$.
- (c) Write the output autocovariance function $K_{YY}[n_1, n_2]$ using answers from parts (a) and (b).
- (d) Now assume that the input X[n] is a Gaussian random sequence. Write the joint pdf of the output $f_Y(y_1, y_2; n_1, n_2)$ at two arbitrary times $n_1 \neq n_2$ in terms of $\mu_Y[n]$ and $K_{YY}[n_1, n_2]$.

Part (a)

Recall, from Section 6.3 in [4], that the output mean function $\mu_Y[n]$ can be obtained as follows.

$$\mu_{Y}[n] = E\{Y[n,\zeta]\} = E\left\{\sum_{k=-\infty}^{\infty} h[k]X[n-k,\zeta]\right\}$$
$$= \sum_{k=-\infty}^{\infty} h[k]E\{X[n-k,\zeta]\} = \sum_{k=-\infty}^{\infty} h[k]\mu_{X}[n-k]$$
(5)

Substituting Equation 4 into Equation 5 gives the following solution for the output mean function.

$$\mu_Y[n] = \frac{1}{2} \left(\mu_X[n] + \mu_X[n-1] \right)$$
(6)

Part (b)

Recall, from Equation 6.3-7 on page 344 in [4], that the output autocorrelation function $R_{YY}[n_1, n_2]$ for a linear system with time-variant impulse response h[n, k] is given by the following expression.

$$R_{YY}[n_1, n_2] = \sum_{k=-\infty}^{\infty} h[n_1, k] \left(\sum_{l=-\infty}^{\infty} h^*[n_2, l] R_{XX}[k, l] \right)$$

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the previous equation as follows.

$$R_{YY}[n_1, n_2] = \sum_{k=-\infty}^{\infty} h[n_1 - k] \left(\sum_{l=-\infty}^{\infty} h[n_2 - l] R_{XX}[k, l] \right),$$

Substituting Equation 4, we find the following solution for the output autocorrelation function.

$$R_{YY}[n_1, n_2] = \frac{1}{4} \left(R_{XX}[n_1, n_2] + R_{XX}[n_1 - 1, n_2] + R_{XX}[n_1, n_2 - 1] + R_{XX}[n_1 - 1, n_2 - 1] \right)$$

Part (c)

This problem is similar to part (b). First we recall, from Equation 6.3-11, that the output autocovariance function $K_{YY}[n_1, n_2]$ for a linear system with time-variant impulse response h[n, k] is given by the following expression.

$$K_{YY}[n_1, n_2] = \sum_{k=-\infty}^{\infty} h[n_1, k] \left(\sum_{l=-\infty}^{\infty} h^*[n_2, l] K_{XX}[k, l] \right)$$

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the previous equation as follows.

$$K_{YY}[n_1, n_2] = \sum_{k=-\infty}^{\infty} h[n_1 - k] \left(\sum_{l=-\infty}^{\infty} h[n_2 - l] K_{XX}[k, l] \right),$$

Substituting Equation 4, we find the following solution for the output autocovariance function $K_{YY}[n_1, n_2]$ in terms of the input autocovariance function $K_{XX}[n_1, n_2]$.

$$K_{YY}[n_1, n_2] = \frac{1}{4} \left(K_{XX}[n_1, n_2] + K_{XX}[n_1 - 1, n_2] + K_{XX}[n_1, n_2 - 1] + K_{XX}[n_1 - 1, n_2 - 1] \right)$$

To complete our derivation we need to find an expression linking the input autocovariance $K_{XX}[n_1, n_2]$ with the input mean $\mu_X[n]$ and input autocorrelation $R_{XX}[n_1, n_2]$. Recall that Equation 6.1-13 on page 320 in [4] gives precisely this relationship.

$$K_{XX}[n_1, n_2] = R_{XX}[n_1, n_2] - \mu_X[n_1]\mu_X^*[n_2]$$

Substituting this expression into the previous result gives the output autocovariance $K_{YY}[n_1, n_2]$ as a function of $\mu_X[n]$ and $R_{XX}[n_1, n_2]$.

$$K_{YY}[n_1, n_2] = \frac{1}{4} \left(R_{XX}[n_1, n_2] + R_{XX}[n_1 - 1, n_2] + R_{XX}[n_1, n_2 - 1] + R_{XX}[n_1 - 1, n_2 - 1] - \mu_X[n_1]\mu_X^*[n_2] - \mu_X[n_1 - 1]\mu_X^*[n_2] - \mu_X[n_1]\mu_X^*[n_2] - \mu_X[n_1 - 1]\mu_X^*[n_2 - 1] - \mu_X[n_1 - 1]\mu_X[n_2 - 1] - \mu_X[n_1 - 1]\mu_X[n_1 - 1]\mu_X[n_2 - 1] - \mu_X[n_1 - 1]\mu_X[n_2 - 1] - \mu_X[n_1 - 1]\mu_X[n_2 -$$

Finally, we note that the solutions to parts (a) and (b) can be substituted to simply this expression. This yields an equivalent solution for the output autocovariance function $K_{YY}[n_1, n_2]$ in terms of $\mu_Y[n]$ and $R_{YY}[n_1, n_2]$.

$$K_{YY}[n_1, n_2] = R_{YY}[n_1, n_2] - \mu_Y[n_1]\mu_Y^*[n_2]$$

Part (d)

Recall, from Definition 6.1-3 on page 323 in [4], that a random sequence X[n] is Gaussian if its N^{th} -order distribution functions are jointly Gaussian for all $N \ge 1$. In other words, if X[n] is a

Gaussian random sequence, then we can express the joint pdf of the input $f_X(x_1, x_2; n_1, n_2)$ at two arbitrary times $n_1 \neq n_2$ as

$$f_X(x_1, x_2; n_1, n_2) = \frac{1}{2\pi |\mathbf{K}_X|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_X)^T \mathbf{K}_X^{-1}(\mathbf{x} - \mu_X)\right),$$

where the parameters \mathbf{x} , μ_X , and \mathbf{K}_X are given by

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ \mu_X = \begin{pmatrix} \mu_X[n_1] \\ \mu_X[n_2] \end{pmatrix}, \text{ and } \mathbf{K}_X = \begin{pmatrix} K_{XX}[n_1, n_1] & K_{XX}[n_1, n_2] \\ K_{XX}[n_2, n_1] & K_{XX}[n_2, n_2] \end{pmatrix}$$

At this point we recall the important fact, as given by Theorem 5.6-1, that the linear transformation of a Gaussian random vector produces another Gaussian random vector. As a result, the output random sequence Y[n] will also be a Gaussian random sequence with the following joint pdf.

$$f_{Y}(y_{1}, y_{2}; n_{1}, n_{2}) = \frac{1}{2\pi |\mathbf{K}_{Y}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mu_{Y})^{T}\mathbf{K}_{Y}^{-1}(\mathbf{y} - \mu_{Y})\right), \text{ where}$$
$$\mathbf{y} = \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix}, \ \mu_{Y} = \begin{pmatrix} \mu_{Y}[n_{1}] \\ \mu_{Y}[n_{2}] \end{pmatrix}, \text{ and } \mathbf{K}_{Y} = \begin{pmatrix} K_{YY}[n_{1}, n_{1}] & K_{YY}[n_{1}, n_{2}] \\ K_{YY}[n_{2}, n_{1}] & K_{YY}[n_{2}, n_{2}] \end{pmatrix}$$

Problem 6.22

Let W[n] be an independent random sequence with constant mean $\mu_W = 0$ and variance σ_W^2 . Define a new random sequence X[n] as follows:

$$X[0] = 0$$

 $X[n] = \rho X[n-1] + W[n]$ for $n \ge 1$.

- (a) Find the mean value of X[n] for $n \ge 0$.
- (b) Find the autocovariance of X[n], denoted as $K_{XX}[m, n]$.
- (c) For what values of ρ does $K_{XX}[m, n]$ tend to G[m n], for some finite-valued function G, as m and n become large? (This situation is known as *asymptotic stationarity*.)

Part (a)

Let's begin by determining the general form for X[n]. Following the derivation presented in class, we can evaluate the first few terms in the sequence directly.

$$\begin{split} X[1] &= \rho X[0] + W[1] \\ X[2] &= \rho(\rho X[0] + W[1]) + W[2] = \rho^2 X[0] + \rho W[1] + W[2] \\ X[3] &= \rho(\rho^2 X[0] + \rho W[1] + W[2]) + W[3] = \rho^3 X[0] + \rho^2 W[1] + \rho W[2] + W[3] \end{split}$$

By inspection, we conclude that the general form for X[n] is given by

$$X[n] = \rho^{n} X[0] + \sum_{m=1}^{n} \rho^{n-m} W[m],$$

where $\rho^n X[0]$ is the homogeneous solution to $X[n] = \rho X[n-1]$. Substituting the initial condition X[0] = 0 yields the specific solution for X[n].

$$X[n] = \sum_{m=1}^{n} \rho^{n-m} W[m]$$
(7)

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given by the following expression.

$$\mu_X[n] \triangleq E\{X[n]\}$$

Substituting Equation 7 and exploiting the linearity of the expectation operator, we find

$$\mu_X[n] = E\left\{\sum_{m=1}^n \rho^{n-m} W[m]\right\} = \sum_{m=1}^n \rho^{n-m} E\{W[m]\} = \sum_{m=1}^n \rho^{n-m} \mu_W = 0$$

As a result, we conclude that the random sequence X[n] is mean-zero for all $n \ge 0$.

$$\mu_X[n] = \mu_X = 0, \text{ for } n \ge 0$$

Part (b)

Recall, from Equation 6.1-10, that the autocovariance $K_{XX}[m, n]$ is defined as follows.

$$K_{XX}[m,n] \triangleq E\{(X[m] - \mu_X[m])(X[n] - \mu_X[n])^*\}$$

Substituting Equation 7 and the result $\mu_X = 0$, we obtain the following expression for $K_{XX}[m, n]$.

$$K_{XX}[m,n] = E\left\{ \left(\sum_{i=1}^{m} \rho^{m-i} W[i] \right) \left(\sum_{j=1}^{n} \rho^{n-j} W[j] \right)^* \right\}$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \rho^{m-i} (\rho^*)^{n-j} E\left\{ W[i] W^*[j] \right\}$$
(8)

At this point, we recall that the variance $\sigma_W^2[n]$ of W[n] is given by the following expression.

$$\sigma_W^2[n] = Var \{ W[n] \} \triangleq E \{ (W[n] - \mu_W[n]) (W[n] - \mu_W[n])^* \}$$

Since $\mu_W[n] = 0$, we have

$$\sigma_W^2[n] = \sigma_W^2 = E\{W[n]W^*[n]\}, \text{ for } n \ge 0.$$

In addition, we recall from Definition 6.1-2 that an independent random sequence is one whose random variables at any times $\{n_1, n_2, \ldots, n_N\}$ are jointly independent for all positive integers N. As a result, we conclude that $E\{W[m]W^*[n]\}$ is given by the following expression.

$$E\{W[m]W^*[n]\} = \begin{cases} \sigma_W^2, & \text{for } m = n \\ 0, & \text{otherwise} \end{cases}$$

Substituting this result into Equation 8 gives the following expression for $K_{XX}[m, n]$.

$$K_{XX}[m,n] = \begin{cases} \sum_{i=1}^{n} \rho^{m-i}(\rho^*)^{n-i} \sigma_W^2, & \text{for } m \ge n\\ \sum_{i=1}^{m} \rho^{m-i}(\rho^*)^{n-i} \sigma_W^2, & \text{for } m < n \end{cases}$$

Following the derivation in class, we conclude that these geometric series will converge for $|\rho| < 1$, such that the solution for $K_{XX}[m, n]$ is given by the following expression.

$$K_{XX}[m,n] = \begin{cases} \left[\frac{\rho^{m-n}(1-|\rho|^{2n})}{1-|\rho|^2}\right]\sigma_W^2, & \text{for } m \ge n\\ \left[\frac{(\rho^*)^{n-m}(1-|\rho|^{2m})}{1-|\rho|^2}\right]\sigma_W^2, & \text{for } m < n \end{cases}, \text{ for } |\rho| < 1\end{cases}$$

As an aside, we note that $|\rho| < 1$ is a reasonable assumption, since this ensures bounded-input/boundedoutput (BIBO) stability. Also, for $\rho \in \mathbb{R}$, this solution reduces to that found in class.

Part (c)

Finally, we conclude by noticing that X[n] is asymptotically stationary for $|\rho| < 1$. That is, in the limit that m and n become large, $K_{XX}[m, n]$ is only a function of the time shift m - n such that

$$\lim_{m \to \infty, \ n \to \infty} K_{XX}[m, n] = G[m - n] = \begin{cases} \left[\frac{\rho^{m - n}}{1 - |\rho|^2}\right] \sigma_W^2, & \text{for } m \ge n\\ \left[\frac{(\rho^*)^{n - m}}{1 - |\rho|^2}\right] \sigma_W^2, & \text{for } m < n \end{cases}, \text{ for } |\rho| < 1 \end{cases}$$

Problem 9.3

Use the orthogonality principle to show that the minimum mean-square error (MMSE)

$$\varepsilon^2 \triangleq E[(X - E[X|Y])^2],\tag{9}$$

for real-valued random variables, can be expressed as

$$\varepsilon^2 = E[X(X - E[X|Y])]$$

or as

$$\varepsilon^2 = E[X^2] - E[E[X|Y]^2].$$

Generalize to the case where \mathbf{X} and \mathbf{Y} are real-valued random vectors. That is, show that the MMSE matrix is

$$\varepsilon^{2} \triangleq E[(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}]$$

$$= E[\mathbf{X}(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}]$$

$$= E[\mathbf{X}\mathbf{X}^{T}] - E[E[\mathbf{X}|\mathbf{Y}]E^{T}[\mathbf{X}|\mathbf{Y}]].$$
(10)

Let's begin by expanding the product in Equation 9.

$$\varepsilon^{2} = E[(X - E[X|Y])(X - E[X|Y])]$$

= $E[X(X - E[X|Y]) - E[X|Y](X - E[X|Y])]$
= $E[X(X - E[X|Y])] - E[E[X|Y](X - E[X|Y])]$ (11)

At this point we recall the *orthogonality principle*, as given by Property 9.1-1 on page 555 in [4] and Theorem 5.4.1 on page 327 in [2]. That is, the MMSE error vector

$$\varepsilon \triangleq \mathbf{X} - E[\mathbf{X}|\mathbf{Y}]$$

is orthogonal to any measurable function $h(\mathbf{Y})$ of the data, such that

$$E[h^*(\mathbf{Y})(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^T] = \mathbf{0}.$$
(12)

For the random variables X and Y, Equation 12 yields the following condition for $h^*(Y) \triangleq E[X|Y]$.

$$E[E[X|Y](X - E[X|Y])] = 0$$

Substituting this result into Equation 11 yields the desired relation via the orthogonality principle.

$$\varepsilon^2 = E[X(X - E[X|Y])]$$

To complete the scalar-valued derivation, we further expand this product as follows.

$$\varepsilon^2 = E[X(X - E[X|Y])] = E[X^2] - E[XE[X|Y]]$$

Recall, from Equation 4.2-27 in [4], the smoothing property of the conditional expectation ensures

$$E[X] = E[E[X|Y]]$$

for the random variables X and Y. Applying this condition to the previous expression yields the final solution.

:
$$\varepsilon^2 = E[X(X - E[X|Y])] = E[X^2] - E[E[X|Y]^2]$$

Now let's generalize to the case where X and Y are real-valued random vectors. We begin by expanding the product in Equation 10.

$$\varepsilon^{2} = E[(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}]$$

= $E[\mathbf{X}(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T} - E[\mathbf{X}|\mathbf{Y}](\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}]$
= $E[\mathbf{X}(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}] - E[E[\mathbf{X}|\mathbf{Y}](\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^{T}]$ (13)

For the random vectors **X** and **Y**, Equation 12 yields the following condition for $h^*(\mathbf{Y}) \triangleq E[\mathbf{X}|\mathbf{Y}]$.

$$E[E[\mathbf{X}|\mathbf{Y}](\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^T] = \mathbf{0}$$

Substituting this result into Equation 13 yields the desired relation via the orthogonality principle.

$$\varepsilon^2 = E[\mathbf{X}(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^T]$$

To complete the vector-valued derivation, we further expand this product as follows.

$$\varepsilon^2 = E[\mathbf{X}\mathbf{X}^T] - E[\mathbf{X}E^T[\mathbf{X}|\mathbf{Y}]]$$

As in the scalar-valued case, the smoothing property of the conditional expectation ensures

$$E[\mathbf{X}] = E[E[\mathbf{X}|\mathbf{Y}]].$$

Applying this condition to the previous expression yields the desired solution.

$$\therefore \varepsilon^2 = E[\mathbf{X}(\mathbf{X} - E[\mathbf{X}|\mathbf{Y}])^T] = E[\mathbf{X}\mathbf{X}^T] - E[E[\mathbf{X}|\mathbf{Y}]E^T[\mathbf{X}|\mathbf{Y}]]$$

(QED)

Problem 9.8

A random sequence Y[n], for n = 0, 1, 2, ..., satisfies the second-order linear difference equation

$$2Y[n+2] + Y[n+1] + Y[n] = 2W[n]$$
, for $Y[0] = 0, Y[1] = 1$

with W[n] a standard white Gaussian random sequence. Transform this equation into the statespace representation and evaluate the mean function $\mu_{\mathbf{X}}[n]$ and the correlation function $\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2]$ for at least the first few values of n. (Hint: Define the state vector $\mathbf{X}[n] \triangleq (Y[n+2], Y[n+1])^T$.)

As requested, let's begin by transforming the linear constant coefficient difference equation into the state-space representation. Following the method outlined in Example 6.6-2 on page 374 in [4], we conclude that the state-space representation has the following form.

$$\mathbf{X}[n] = \mathbf{A}\mathbf{X}[n-1] + \mathbf{b}W[n], \text{ where}$$
$$\mathbf{X}[n] = \begin{pmatrix} Y[n+2] \\ Y[n+1] \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} -1/2 & -1/2 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{and} \quad \mathbf{X}[-1] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

To confirm this expression, we write out the matrix-vector product and compare to the original difference equation.

$$\begin{pmatrix} Y[n+2]\\ Y[n+1] \end{pmatrix} = \begin{pmatrix} -1/2 & -1/2\\ 1 & 0 \end{pmatrix} \begin{pmatrix} Y[n+1]\\ Y[n] \end{pmatrix} + \begin{pmatrix} 1\\ 0 \end{pmatrix} W[n]$$

Now recall that the general solution to the resulting vector-valued difference equation is given by Equation 9.2-2 on page 571 in [4].

$$\mathbf{X}[n] = \mathbf{A}^{n+1}\mathbf{X}[-1] + \sum_{m=0}^{n} \mathbf{A}^{n-m}\mathbf{b}W[m]$$

The mean function can be obtained using the standard definition as follows.

$$\mu_{\mathbf{X}}[n] = E\{\mathbf{X}[n]\} = E\left\{\mathbf{A}^{n+1}\mathbf{X}[-1] + \sum_{m=0}^{n} \mathbf{A}^{n-m}\mathbf{b}W[m]\right\}$$
$$= \mathbf{A}^{n+1}\mathbf{X}[-1] + \sum_{m=0}^{n} \mathbf{A}^{n-m}\mathbf{b}E\{W[m]\}$$
$$= \mathbf{A}^{n+1}\mathbf{X}[-1]$$

Note that in the previous expression we have exploited the linearity property of the expectation operator and the fact that $E\{W[m]\} = 0$, $\forall n$. As a result, we conclude that the mean function $\mu_{\mathbf{X}}[n]$ is given by the following expression (with the resulting first few values also shown below).

$$\mu_{\mathbf{X}}[n] = \mathbf{A}^{n+1}\mathbf{X}[-1]$$
$$\mu_{\mathbf{X}}[0] = \begin{pmatrix} -1/2\\ 1 \end{pmatrix}, \quad \mu_{\mathbf{X}}[1] = \begin{pmatrix} -1/4\\ -1/2 \end{pmatrix}, \quad \text{and} \quad \mu_{\mathbf{X}}[2] = \begin{pmatrix} 3/8\\ -1/4 \end{pmatrix}$$

To complete our analysis, we recall that the autocorrelation function $\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2]$ can also be obtained using the standard definition

$$\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2] = E\{\mathbf{X}[n_1]\mathbf{X}^{\dagger}[n_2]\},\$$

where $\mathbf{X}^{\dagger}[n]$ denotes the conjugate transpose of $\mathbf{X}[n]$. In this problem \mathbf{X} is real-valued, so we conclude that $\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2]$ is given by the following expression.

$$\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2] = E\{\mathbf{X}[n_1]\mathbf{X}^T[n_2]\}\$$

Substituting the general solution for $\mathbf{X}[n]$, we find the following result.

$$\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2] = E\left\{ \left(\mathbf{A}^{n_1+1}\mathbf{X}[-1] + \sum_{m_1=0}^{n_1} \mathbf{A}^{n_1-m_1}\mathbf{b}W[m_1] \right) \left(\mathbf{A}^{n_2+1}\mathbf{X}[-1] + \sum_{m_2=0}^{n_2} \mathbf{A}^{n_2-m_2}\mathbf{b}W[m_2] \right)^T \right\}$$
$$= E\left\{ \left(\mathbf{A}^{n_1+1}\mathbf{X}[-1] + \sum_{m_1=0}^{n_1} \mathbf{A}^{n_1-m_1}\mathbf{b}W[m_1] \right) \left(\mathbf{X}^T[-1](\mathbf{A}^T)^{n_2+1} + \sum_{m_2=0}^{n_2} \mathbf{b}^T(\mathbf{A}^T)^{n_2-m_2}W[m_2] \right) \right\}$$

Once again we can exploit the linearity property of the expectation operator. In addition, notice that the cross-terms in W[n] will be eliminated since $E\{W[n]\} = 0, \forall n$. As a result, the autocorrelation function has the following solution.

$$\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2] = \mathbf{A}^{n_1+1}\mathbf{X}[-1]\mathbf{X}^T[-1](\mathbf{A}^T)^{n_2+1} + \sum_{m_1=0}^{n_1} \sum_{m_2=0}^{n_2} \mathbf{A}^{n_1-m_1} \mathbf{b} \mathbf{b}^T(\mathbf{A}^T)^{n_2-m_2} E\{W[m_1]W[m_2]\}$$

At this point we recall that $E\{W[m_1]W[m_2]\} = \sigma_W^2 \delta[m_1 - m_2]$ for W[n] a white Gaussian random sequence. According to the problem state, $\sigma_W^2 = 1$ which leads to the following solution for the autocorrelation function $\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2]$ (with the resulting first few values also shown below).

$$\mathbf{R}_{\mathbf{X}\mathbf{X}}[n_1, n_2] = \begin{cases} \mathbf{A}^{n_1+1}\mathbf{X}[-1]\mathbf{X}^T[-1](\mathbf{A}^T)^{n_2+1} + \sum_{m=0}^{n_2} \mathbf{A}^{n_1-m} \mathbf{b} \mathbf{b}^T(\mathbf{A}^T)^{n_2-m}, & \text{for } n_1 \ge n_2 \\ \mathbf{A}^{n_1+1}\mathbf{X}[-1]\mathbf{X}^T[-1](\mathbf{A}^T)^{n_2+1} + \sum_{m=0}^{n_1} \mathbf{A}^{n_1-m} \mathbf{b} \mathbf{b}^T(\mathbf{A}^T)^{n_2-m}, & \text{for } n_1 < n_2 \\ \mathbf{R}_{\mathbf{X}\mathbf{X}}[0, 0] = \begin{pmatrix} 5/4 & -1/2 \\ -1/2 & 1 \end{pmatrix}, \ \mathbf{R}_{\mathbf{X}\mathbf{X}}[0, 1] = \begin{pmatrix} -3/8 & 5/4 \\ -1/4 & -1/2 \end{pmatrix}, \text{ and } \mathbf{R}_{\mathbf{X}\mathbf{X}}[1, 1] = \begin{pmatrix} 21/16 & -3/8 \\ -3/8 & 5/4 \end{pmatrix}$$

Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let X[n] be their number at the beginning of the n^{th} time period. Assume that during each time period each mouse present at the beginning of that period has a fixed probability p of dying, independently of all the others. Before the end of the n^{th} period, however, a random number Y[n] of new mice invades the area, where Y[n] is a Poisson random variable with parameter λ and is independent of X[n].

- (a) Find the conditional expectation $E\{X[n+1]|X[n]=x\}$ for all $n \ge 1$.
- (b) Use the conditional expectation to obtain a recurrence relation for $\mu_X[n] = E\{X[n]\}$.
- (c) Show the average number of mice $\mu_X[n]$ approaches a limit as $n \to \infty$ and evaluate this limit.

Part (a)

Let's begin by defining the number of mice X[n+1] at the beginning of time period n+1. From the problem statement we have

$$X[n+1] = X[n] - D[n] + Y[n],$$

where X[n] is the number of mice at the beginning of period n, D[n] is the number of mice which died during the previous period, and Y[n] is the number of invading mice. Since the conditional expectation operator is linear, we conclude

$$E \{X[n+1]|X[n] = x\} = E \{X[n]|X[n] = x\} - E \{D[n]|X[n] = x\} + E \{Y[n]|X[n] = x\}$$
$$= x - E \{D[n]|X[n] = x\} + E \{Y[n]|X[n] = x\}.$$
(14)

To proceed we must determine the remaining conditional expectations in Equation 14. First, note that D[n], the number of mice that died in period n, follows a binomial distribution.

$$P\{D[n] = d | X[n] = x\} = {\binom{x}{d}} p^d (1-p)^{x-d}$$

As a result, we conclude that the expected number of deaths is given by the following expression in X[n] = x and p.

$$E\{D[n]|X[n] = x\} = \sum_{d=0}^{x} d\binom{x}{d} p^{d} (1-p)^{x-d} = px$$
(15)

Similarly, from the problem statement, we note that Y[n] follows a Poisson distribution with parameter λ .

$$P\left\{Y[n] = y|X[n] = x\right\} = \frac{\lambda^y e^{-\lambda}}{y!}$$

Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading mice is given by the following expression in X[n] = x and λ .

$$E\left\{Y[n]|X[n] = x\right\} = \sum_{y=0}^{\infty} y\left(\frac{\lambda^y e^{-\lambda}}{y!}\right) = \lambda$$
(16)

Substituting Equations 15 and 16 into Equation 14 yields the desired expression for the conditional expectation.

$$E\{X[n+1]|X[n] = x\} = (1-p)x + \lambda$$
(17)

Part (b)

Recall from Problem 6.22 that the mean function $\mu_X[n]$ is given by

$$\mu_X[n] = E\{X[n]\}.$$

For the initial condition X[1] we must have

$$\mu_X[1] = E\{X[1]\} = X[1],$$

since X[1] is a known constant. By recursively applying the conditional expectation in Equation 17, we can determine the first few terms of $\mu_X[n]$.

$$\mu_X[2] = E\{X[2]|X[1]\} = (1-p)X[1] + \lambda$$

$$\mu_X[3] = E\{X[3]|X[2]\} = (1-p)^2X[1] + (1-p)\lambda + \lambda$$

By induction, we conclude that $\mu_X[n]$ is given by the following expression.

$$\mu_X[n] = \begin{cases} (1-p)^{n-1}X[1] + \lambda \sum_{i=0}^{n-2} (1-p)^i, & \text{for } n > 1\\ X[1], & \text{for } n = 1 \end{cases}$$

For $0 the geometric series converges and <math>\mu_X[n]$ has the following solution.

$$\mu_X[n] = \begin{cases} \frac{\lambda}{p} + (1-p)^{n-1} \left(X[1] - \frac{\lambda}{p} \right), & \text{for } n > 1\\ X[1], & \text{for } n = 1 \end{cases}$$
(18)

Part (c)

For $0 the average number of mice <math>\mu_X[n]$ approaches a finite limit as $n \to \infty$.

$$\lim_{n \to \infty} \mu_X[n] = \lim_{n \to \infty} \left\{ \frac{\lambda}{p} + (1-p)^{n-1} \left(X[1] - \frac{\lambda}{p} \right) \right\} = \frac{\lambda}{p}$$

Note that, since $0 , then <math>(1-p)^{n-1}$ tends to zero as n becomes large. As a result we conclude that, regardless of the starting population X[1], the average number of mice $\mu_X[n]$ approaches the following limit as $n \to \infty$.

$$\lim_{n \to \infty} \mu_X[n] = \frac{\lambda}{p}, \text{ for } 0$$

Obviously, for p = 0, there will be no deaths and the population will grow without bound for $\lambda > 0$.

Problem 5.4-13 [Larson and Shubert, p. 342]

Let X_1 and X_2 be independent random variables both uniformly distributed on (0, 1). For

$$Y = \frac{1}{2}(X_1 + X_2)$$
 and $Z = \sqrt{X_1 X_2}$

find the conditional expectation E[Y|Z = z] for all 0 < z < 1.

We begin our analysis by applying the linearity property of the conditional expectation operator.

$$E[Y|Z=z] = E\left[\frac{1}{2}(X_1+X_2) \mid Z=z\right] = \frac{1}{2}E[X_1|Z=z] + \frac{1}{2}E[X_2|Z=z] = E[X_1|Z=z] \quad (19)$$

Note that, on the right-hand side, we have used the fact that the expression is symmetric in X_1 and X_2 , so we are only required to evaluate the single conditional expectation $E[X_1|Z=z]$. Now recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X_1 given Z = z is

$$E[X_1|Z=z] \triangleq \int_{-\infty}^{\infty} x_1 f_{X_1|Z}(x_1|z) dx_1,$$
(20)

where the conditional probability density function is given by

$$f_{X_1|Z}(x_1|z) = \frac{f_{ZX_1}(z, x_1)}{f_Z(z)}, \text{ for } f_Z(z) \neq 0.$$
(21)

At this point all that remains is to determine closed-form expressions for $f_{ZX_1}(z, x_1)$ and $f_Z(z)$; substituting these expressions into Equation 21 will yield the desired solution for E[Y|Z = z] via Equations 19 and 20.

The expression for $f_Z(z)$ can be found using the approach outlined in Example 3.3-1 on page 186. Specifically, we know that the following expression defines the distribution function $F_Z(z)$.

$$F_Z(z) = \int \int_{(x_1, x_2) \in C_z} f_{X_1 X_2}(x_1, x_2) dx_1 dx_2, \text{ for } \{Z \le z\} = \{(X_1, X_2) \in C_z\}$$

For X_1 and X_2 uniformly distributed on (0, 1), the joint density function has the following form.

$$f_{X_1X_2}(x_1, x_2) = f_{X_1}(x_1)f_{X_2}(x_2) = \begin{cases} 1, & \text{for } 0 < x_1, x_2 < 1\\ 0, & \text{otherwise} \end{cases}$$
(22)

To evaluate the previous expression for $F_Z(z)$, we note that X_2 can be expressed in terms of X_1 using $Z = \sqrt{X_1 X_2}$. As a result, we must have

$$x_2 = \begin{cases} \frac{z^2}{x_1}, & \text{for } z^2 \le x_1 < 1\\ 1, & \text{for } 0 < x_1 < z^2 \end{cases}$$

which yields the following result for the probability distribution $F_Z(z)$.

$$F_Z(z) = \int_{z^2}^1 \left(\int_0^{\frac{z^2}{x_1}} dx_2 \right) dx_1 + \int_0^{z^2} \left(\int_0^1 dx_2 \right) dx_1 = \left[1 - \ln(z^2) \right] z^2$$

Taking the first derivative with respect to z yields the desired expression for $f_Z(z)$.

$$f_Z(z) = \frac{dF_Z(z)}{dz} = -2z\ln(z^2)$$
(23)

The expression for $f_{ZX_1}(z, x_1)$ can be found using the approach outlined in Example 3.5-4 on page 159. We begin by defining the pair of random variables Z and X_1 as functions of X_1 and X_2 .

$$Z \triangleq g(X_1, X_2) = \sqrt{X_1 X_2}$$
$$X_1 \triangleq h(X_1, X_1) = X_1$$

Next, we observe that the equations

$$z - g(x_1, x_2) = 0$$

 $x_1 - h(x_1, x_2) = 0$

have only one real root, for $0 < x_1, x_2 < 1$, given by

$$\begin{aligned}
x_1^1 &= \phi_1(z, x_1) = x_1 \\
x_2^1 &= \varphi_1(z, x_1) = \frac{z^2}{x_1}.
\end{aligned}$$
(24)

At this point we recall that $f_{ZX_1}(z, x_1)$ can be obtained directly from $f_{X_1X_2}(x_1, x_2)$ using the methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be expressed as

$$f_{ZX_1}(z, x_1) = \sum_{i=1}^n f_{X_1X_2}(x_1^i, x_2^i) |\tilde{J}_i|, \qquad (25)$$

where $|\tilde{J}_i|$ is the magnitude of the Jacobian transformation such that

$$|\tilde{J}_i| = \left| \det \left(\begin{array}{cc} \partial \phi_i / \partial z & \partial \phi_i / \partial x_1 \\ \partial \varphi_i / \partial z & \partial \varphi_i / \partial x_1 \end{array} \right) \right|$$
(26)

and n is the number of solutions to the equations $z = g(x_1, x_2)$ and $x_1 = h(x_1, x_2)$. Substituting Equation 24 into Equation 26 gives the following Jacobian magnitude.

$$|\tilde{J}_1| = \left| \det \begin{pmatrix} 0 & 1\\ \frac{2z}{x_1} & -\frac{z^2}{x_1^2} \end{pmatrix} \right| = \frac{2z}{x_1}$$
(27)

Substituting Equations 22, 24, and 27 into Equation 25 yields the desired expression for the joint probability density $f_{ZX_1}(z, x_1)$.

$$f_{ZX_1}(z, x_1) = \left(\frac{2z}{x_1}\right) f_{X_1X_2}\left(\frac{z^2}{x_1}, x_1\right) = \begin{cases} \frac{2z}{x_1}, & \text{for } z^2 \le x_1 < 1\\ 0, & \text{for } 0 < x_1 < z^2 \end{cases}$$
(28)

Now that we have determined closed-form expressions for $f_{ZX_1}(z, x_1)$ and $f_Z(z)$, we can substitute into Equation 21 to obtain the conditional density $f_{X_1|Z}(x_1|z)$.

$$f_{X_1|Z}(x_1|z) = \frac{f_{ZX_1}(z, x_1)}{f_Z(z)} = \begin{cases} \frac{-1}{x_1 \ln(z^2)}, & \text{for } z^2 \le x_1 < 1\\ 0, & \text{for } 0 < x_1 < z^2 \end{cases}$$

Substituting this result into Equation 20 gives the answer for E[Y|Z = z] via Equation 19.

$$E[Y|Z=z] = \int_{z^2}^1 x_1 f_{X_1|Z}(x_1|z) dx_1 = \frac{-1}{\ln(z^2)} \int_{z^2}^1 dx_1 = \frac{z^2 - 1}{\ln(z^2)}$$

In conclusion, we find that the conditional expectation E[Y|Z = z] is given by the following expression.

$$E[Y|Z = z] = \frac{z^2 - 1}{\ln(z^2)}$$
, for all $0 < z < 1$

References

- [1] Geoffrey Grimmett and David Stirzaker. *Probability and Random Processes (Third Edition)*. Oxford University Press, 2001.
- [2] Harold J. Larson and Bruno O. Shubert. Probabilistic Models in Engineering Sciences: Random Variables and Stochastic Processes. John Wiley & Sons, 1979.
- [3] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
- [4] Henry Stark and John W. Woods. Probability and Random Processes with Applications to Signal Processing (Third Edition). Prentice-Hall, 2002.