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Problem 6.12
Let the probability space (€2, F, P) be given as follows:

Q= {a,b,c},
F = all subsets of 2,
P[{¢}] = 1/3 for each outcome (.

Let the random sequence X [n] be defined as follows:
X[n,a] = 36]n],
X[n,b] = u[n — 1],
X|[n, c] = cos(mn/2).
(a) Find the mean function px[n].

(b) Find the correlation function Ry x[m,n].
(c¢) Are X[1] and X[0] independent? Why?

Part (a)

Recall, from page 319 in [4], that the mean function of a random sequence X|[n] is given by
px[n] 2 E{X[n]} = Y @;P{X[n] = ;}, (1)
i=1

where we have assumed for this problem that X|[n] is a discrete random variable that takes on
the values {z;}, for i = 1,...,m. From the problem statement we observe that the mean function
px[n] can be written as the sum of two periodic functions (i.e., one defined for n > 1, another
for n < 0, and a unique value at the origin n = 0). This observation will be made more concrete
shortly; first, let’s begin by determining the value of px|[0]. From the problem statement we have
the following values for X0, (] with ¢ € {a,b, c}.

X[0,a] =3
X[0,6] = 0
X[0,c] =1

Since the simple events {a, b, c} are mutually exclusive and have equal probability P[{(}] = 1/3,
then we conclude that P{X][0] = z} is given by

_ +_[1/3, forz=1{0,1,3}
PAX(0] =z} = {O, otherwise.
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Substituting into Equation 1, we find that the mean function has the following value at n = 0.

W =

3
1
0] = PIX0l=x:}=0-= 1-
px[0] ;% {X[0] = @i} 3+
By observation we conclude that there are six unique cases (i.e., probability mass functions P{X [n] =
x;} for px[n]). The following table summarizes the derivation and domain of each. (Note that Case
2 and Case 7 actually describe the same underlying distribution).

Case Domain X|[n,(] Px(z) = P{X[n] = z;} wx[n]

Xln,a] =3 1/3, =1{0,1,3

1 n = {0} X[n,b] =0 Px(z) = {0’/ ’ Othejvv’isej } ux[n] = %
X[n,c] =1
X[n,a] =0 2/3, =0

2 n=1{1,3,5,...} X[n,b] =1 Px(x)=<¢1/3, z=1 px[n] =%
X[n,c]=0 0,  otherwise
X|n,a] =0

3 n=1{26,10,...} X{njb]]zl Px(z) = {1/3’ v={-1,1,0} px[n] =0

0, otherwise

X[n,c] = -1
X[n,a] =0 2/3, x=1

4 n={4,812,...} X[n,b] =1 Px(z)={1/3, =0 px[n] =2
X[n,c] =1 0,  otherwise
X[n,a] =0 1 2=0

5 n=A{..,-5-3,—-1} X[n,b) =0 Px(z) = {0’ otherwise pxin] =0
X[n,cJ=0
X[n,a] =0 2/3, =0

6 |[n=1{..,-10,-6,-2} | X[n,b]=0 Px(x) =4 1/3, z=-1 pxn] = —3%
X[n,c] =—-1 0,  otherwise
X[n,a] =0 2/3, =0

7 |n={..,-12,-8,-4} | X[n,b]=0 Px(x)=141/3, z=1 px[n] =%
X[n,c] = 0,  otherwise

From the tabulated cases we conclude that the mean function px[n] has the following solution.

4/3, forn=0
2/3, for {n >4 and mod(n,4) = 0}
pxln] =< 1/3,  for {n > 1 and mod(n +1,2) = 0} or {n < —4 and mod(n,4) = 0}

0, for {n > 2 and mod(n + 2,4) = 0} or {n < —1 and mod(n — 1,2) = 0}
—1/3, for {n < —2 and mod(n — 2,4) = 0}

Note that, for generality, we have expressed the mean function in terms of the common residue of
m(modn) = mod(m,n).

Part (b)

We begin by reviewing the basic properties of the autocorrelation function Rxx[m,n] and auto-
covariance function Kxx[m,n], as defined for the discrete-valued random sequence X [n]. Recall,
from pages 319 and 320 in [4], that Rxx[m,n| and Kxx[m,n] have the following forms for the
random sequence X [n].

Rxx[m,n] = E{X[m]X"[n]}
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Kxx[m,n] £ E{(X[m] — px[m])(X[n] — px[n])"} (2)

In addition, we recall the following familiar relationship between the two functions.
Rxx[m,n] = Kxx[m,n] + px[m]ux[n] (3)

Since px[n] is not constant, we conclude that X|[n| is not a stationary random sequence. As a
result, we do not expect the autocorrelation function Rxx[m,n] to be shift-invariant. Due to
this complexity, we elect to evaluate the autocovariance function Kxx[m,n] instead and apply
Equation 3 to obtain Rxx[m,n] using the previously-determined mean function. As we’ll argue
in Part (c), since X[m] and X[n] are independent for m # n, the autocovariance matrix will be
diagonal such that

E{|X[n] - pux[n]?}, form=n

_ 2 1 ;

Kxx[m,n| = ox[n]é[m — n] {0, for m £n

where §[m — n] is the discrete-time impulse and o%[n] is the variance of the random variable
X|[n]. Using the probability mass functions tabulated in Part (a), we can evaluate 0% [n] using the
following expression.

oXn] = E{|X[n] — ux[n]*} = Y lai — pxn]PP{X[n] = 2}
i=1

This leads to the following expression for the autocorrelation function Rxx[m,n] in terms of the
mean function px[n] and the variance function o%[n].

Rxx[m,n] = 0% [n]d[m — n] + px[m]pux[n]

14/9, forn =20

2/3, for {n > 2 and mod(n + 2,4) = 0}

2/9, for {n >1 and mod(n+ 2,4) # 0} or {n < —2 and mod(n,2) =0}
0, for {n < —1 and mod(n — 1,2) = 0}

Part (c)

We begin by recalling that it is a necessary, but not sufficient condition, that the covariance
Kxx[m,n] be equal to zero if two random variables X[n] and X[m] are independent. Using
the results from Part (b), we conclude that Kxx[0,1] = 0; as a result, we cannot deny that X|[0]
and X[1] are dependent based solely on their correlation. (Neither can we conclude that they are
necessarily independent.) To resolve this ambiguity we note that the random variables X [0] and
X[1] must be independent, since they are generated by independent random processes. That is, to
generate a sample of X[0], we first must uniformly select an event ¢ € {a,b, c}. Afterwards, we will
evaluate the deterministic function corresponding to each event. A simple, and most-importantly
independent, selection procedure must be applied to generate a sample of X[1]. Since the sampling
occurs independently, knowledge of X[0] does not alter out expectation of the value of X[1]. As a
result we conclude that X[0] and X[1] are independent random variables.
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Problem 6.13

Consider a random sequence X [n] as the input to a linear filter with impulse response

hin] = {1/2, n={0,1} @)

0, otherwise.

Denote the output random sequence Y'[n], for each outcome ¢, as

> bk X[n - k).

k=—o00

Assume the filter runs for all time (i.e., —0o < n < 00) and that we are given the mean function of
the input px[n] and the autocorrelation function of the input Ry x[ni,na.
(a) Find the mean function of the output uy [n].
(b) Find the output autocorrelation function Ryy [ni,na].
(c) Write the output autocovariance function Kyy[ni,ng| using answers from parts (a) and (b).
)

(d) Now assume that the input X[n] is a Gaussian random sequence. Write the joint pdf of the
output fy (y1,y2; n1,n2) at two arbitrary times n; # ng in terms of py[n] and Kyy[ni, na).

Part (a)

Recall, from Section 6.3 in [4], that the output mean function uy [n] can be obtained as follows.

py[n] = E{Y[n, (]} = E{Zh n—k,d}

k=—o0
Zh [E{X[n —k, (]} Zh px[n — k] (5)
k=—00 k=—o00

Substituting Equation 4 into Equation 5 gives the following solution for the output mean function.

pvln] = 3 Guxln] + o — 1)) (6)

Part (b)

Recall, from Equation 6.3-7 on page 344 in [4], that the output autocorrelation function Ryy [nq, ns]
for a linear system with time-variant impulse response h[n, k] is given by the following expression.

Ryy [n1,no] Z hlni, k (Z h*[n%l]RXX[k;l])

k=—o00 l=—

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the
previous equation as follows.

Ryy[ni,no] Z hlny — }(i h[ng—l]RXX[k:,l]>,

k=—o00 l=—00
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Substituting Equation 4, we find the following solution for the output autocorrelation function.

— (Rxx[n1,n2] + Rxx[n1 — 1,n2] + Rxx[n1,n2 — 1] + Rxx[n1 — 1,n2 — 1])

Ryy[ni,ng] = 1

Part (c)

This problem is similar to part (b). First we recall, from Equation 6.3-11, that the output auto-
covariance function Kyy[ni,ng| for a linear system with time-variant impulse response hln, k] is
given by the following expression.

Kyy[n1,no] Z hlni, k] (Z h*[n%l]KXX[kvl]>

k=—o0 l=—00

Since the impulse response in Equation 4 is real-valued and shift-invariant, we can simply the
previous equation as follows.

Kyy nl,ng Z hn1 } ( i h[ng —Z]Kxx[k,l]> y

k=—o00 l=—00

Substituting Equation 4, we find the following solution for the output autocovariance function
Kyy[ni,ns] in terms of the input autocovariance function Kxx|[n1, nol.

1
Kyy[ni,ng] = 1 (Kxx[ni,n2] + Kxx[ni1 — 1,no] + Kxx[ni,ne — 1] + Kxx[n1 — 1,n2 — 1))

To complete our derivation we need to find an expression linking the input autocovariance Kx x [n1, na]
with the input mean px[n] and input autocorrelation Rx x[n1,na]. Recall that Equation 6.1-13 on
page 320 in [4] gives precisely this relationship.

Kxx[ni,n2] = Rxx[n1,na] — px[n]px [no]
Substituting this expression into the previous result gives the output autocovariance Kyy [ni,ns]
as a function of ux[n] and Rxx[ni,nsl.

Kyy[ni,no) = — (Rxx[n1,n2] + Rxx[n1 — 1,n2] + Rxx[ni,n2 — 1] + Rxx[n1 — 1,19 — 1]—

2
px[mlpx[ne] — px[n — px[ne] — px il ng — 1] — pxlny — 1px[ne — 1))
Finally, we note that the solutions to parts (a) and (b) can be substituted to simply this expression.

This yields an equivalent solution for the output autocovariance function Kyy[ni,ns| in terms of
wy[n] and Ryy [ni,ng.

’Kyy[nl, na] = Ryy|[ni,na] — py [n1]uy [na] ‘

Part (d)

Recall, from Definition 6.1-3 on page 323 in [4], that a random sequence X|[n] is Gaussian if its
Nth_order distribution functions are jointly Gaussian for all N > 1. In other words, if X[n] is a
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Gaussian random sequence, then we can express the joint pdf of the input fx(x1,x2;n1,n2) at two
arbitrary times ny # no as

1 1 _
Ix(x1,22;m1,n2) = —— exp (—(X— px) K (x — MX)) ,
27T’Kx|5 2

where the parameters x, ux, and Ky are given by

Y ( il ) Ly = < pux ] ) and Ky — ( Kxx[ni,m] Kxx[ni,ng] )

px [no] Kxx[na,ni] Kxx[na,ngl

At this point we recall the important fact, as given by Theorem 5.6-1, that the linear transformation
of a Gaussian random vector produces another Gaussian random vector. As a result, the output
random sequence Y'[n] will also be a Gaussian random sequence with the following joint pdf.

fy (y1,y2;m1,n2) = exp (—3(y — uy) Ky (y — py)) , where

1
2| Ky |2

y = < v ), Ly = ( pry [na] )7 and Ky = < Kyy[ni,m]  Kyy[ni,n2] )

Y2 py [n2] Kyyl[na,n1] Kyy[na,no
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Problem 6.22

Let W[n] be an independent random sequence with constant mean puy = 0 and variance o3, .
Define a new random sequence X [n] as follows:

0
X[n]:pX[n—l]—l—W[ | for n > 1.

(a) Find the mean value of X|[n| for n > 0.
(b) Find the autocovariance of X|[n|, denoted as Kx x[m,n].

(¢) For what values of p does Kxx[m,n] tend to G|m — n], for some finite-valued function G, as
m and n become large? (This situation is known as asymptotic stationarity.)

Part (a)

Let’s begin by determining the general form for X[n]. Following the derivation presented in class,
we can evaluate the first few terms in the sequence directly.

X[1] = pX[0] + W1]
X[2) = p(pX[0] + WIL]) + W[2] = o X[0] + pW[1] + W[2]
X[3] = p(p*X[0] + pWL] + W[2]) + W[3] = p>X[0] + o> W] + pW[2] + W3

By inspection, we conclude that the general form for X|[n| is given by
X|[n] = p"X[0] + Z p" T W m

where p™ X 0] is the homogeneous solution to X [n] = pX|[n — 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

= " Wim) (7)
m=1

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given
by the following expression.

pxn] = E{X[n]}

Substituting Equation 7 and exploiting the linearity of the expectation operator, we find

As a result, we conclude that the random sequence X [n] is mean-zero for all n > 0.

’MX[TL]:#XZO, fornZO‘
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Part (b)

Recall, from Equation 6.1-10, that the autocovariance Kx x|[m,n] is defined as follows.
Kxx[m,n] £ E{(X[m] — px[m])(X[n] — px[n])*}

Substituting Equation 7 and the result px = 0, we obtain the following expression for Kx x[m,n].

Kxx[m,n]=E (ZP”HW[Z']> an_jw[j]

=Y ) ") T E{WW (5]} (8)

i=1 j=1

*

At this point, we recall that the variance o3, [n] of W[n] is given by the following expression.
oy[n] = Var {W(n]} £ E{(W[n] - pwln])(W[n] — pw[n])"}
Since pw [n] = 0, we have
oiy[n] = oty = E{W[n]W*[n]}, for n > 0.

In addition, we recall from Definition 6.1-2 that an independent random sequence is one whose
random variables at any times {n1,ng,...,ny} are jointly independent for all positive integers NN.
As a result, we conclude that E {W[m|W*[n]} is given by the following expression.

2

. oy, form=n
E{W[m|W?[n]} = { ()W otherwise

Substituting this result into Equation 8 gives the following expression for Kx x[m,n].

i PP gy, form >n

Kxx[m,n] = { S P (pF ) ed,, form < n

Following the derivation in class, we conclude that these geometric series will converge for |p| < 1,
such that the solution for Kxx[m,n| is given by the following expression.

P Tiys form >n

[—(p*)niﬁ('/lﬂjp'm)] 0"2,[,, form<n

[Pm_"(1—|ﬁ|2")} 2

Kxx[m,n| = , for |p| <1

As an aside, we note that |p| < 1 is a reasonable assumption, since this ensures bounded-input /bounded-
output (BIBO) stability. Also, for p € R, this solution reduces to that found in class.

Part (c)

Finally, we conclude by noticing that X [n| is asymptotically stationary for |p| < 1. That is, in the
limit that m and n become large, Kx x[m,n] is only a function of the time shift m — n such that

[%] 0‘2,[,, form>n
lim  Kxx[m,n]=G[m—n|= , for [p| <1
m—00, N—00 [(p*)n—m

1—[p[?

]0‘2,[,, form <n



EN 257: Applied Stochastic Processes Problem Set 4 Douglas Lanman

Problem 9.3

Use the orthogonality principle to show that the minimum mean-square error (MMSE)

e’ £ B(X - BIX|Y])?], (9)
for real-valued random variables, can be expressed as
e? = E[X(X — E[X|Y])]
or as
e? = B[X? - E[E[X|Y]?.

Generalize to the case where X and Y are real-valued random vectors. That is, show that the
MMSE matrix is

4

E[(X - EX|Y])(X — BX|Y])T] (10)
E[X(X - E[X|Y])T]
E[XXT] - E[EX|Y]|ET[X|Y]].

62

Let’s begin by expanding the product in Equation 9.
e’ = B|(X — EIX|Y])(X — E[X|Y])]
[(X(X - EIX|Y]) = E[X|Y|(X — E[X|Y])]
[(X(X — E[X]Y])] - E[E[X]Y](X — E[X|Y])] (11)

E
E

At this point we recall the orthogonality principle, as given by Property 9.1-1 on page 555 in [4]
and Theorem 5.4.1 on page 327 in [2]. That is, the MMSE error vector

e 2 X — E[X]|Y]

is orthogonal to any measurable function h(Y) of the data, such that

ERh(Y)(X — EX|Y])T] = 0. (12)
For the random variables X and Y, Equation 12 yields the following condition for h*(Y) £ E[X|Y].

E[E[X|Y](X - B[X|Y])] = 0
Substituting this result into Equation 11 yields the desired relation via the orthogonality principle.

e? = E[X(X — E[X|Y])]
To complete the scalar-valued derivation, we further expand this product as follows.
e? = E[X(X — E[X|Y])] = E[X?] — E[XE[X]|Y]]

Recall, from Equation 4.2-27 in [4], the smoothing property of the conditional expectation ensures

E[X] = E[E[X]Y]]
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for the random variables X and Y. Applying this condition to the previous expression yields the
final solution.

|2 = BIx (X - BIX|Y))] = B[X?] - EIEIX|Y)])

Now let’s generalize to the case where X and Y are real-valued random vectors. We begin by
expanding the product in Equation 10.

e’ = E[(X - EX|Y)(X - E[X[Y])]
(XX - EX|Y)" - EX|Y](X - EX[Y])]
(X(X - EX|Y)"] - E[EX[Y](X - E[X|Y])"] (13)

E[X(X -
E[X(X —

For the random vectors X and Y, Equation 12 yields the following condition for h*(Y) £ E[X|Y].
EIEIX|Y)(X - E[X[Y])T] = 0
Substituting this result into Equation 13 yields the desired relation via the orthogonality principle.
e? = B[X(X — EX|Y])T]
To complete the vector-valued derivation, we further expand this product as follows.
e? = EXX"] - EXET[X|Y]]
As in the scalar-valued case, the smoothing property of the conditional expectation ensures
E[X] = E[E[X|Y]].

Applying this condition to the previous expression yields the desired solution.

|e? = BE[X(X — EX|Y))'] = E[XX'] - E[EX|Y]ET[X]|Y]]

(QED)

10
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Problem 9.8

A random sequence Y[n], for n = 0,1,2,..., satisfies the second-order linear difference equation

2Y[n+2|+Y[n+ 1]+ Y[n] =2W][n|, for Y[0] =0,Y[1] =1,

with W{n] a standard white Gaussian random sequence. Transform this equation into the state-
space representation and evaluate the mean function px [n] and the correlation function Rxx [n1, na]
for at least the first few values of n. (Hint: Define the state vector X[n] = (Y[n +2],Y[n + 1])7.)

As requested, let’s begin by transforming the linear constant coefficient difference equation into the
state-space representation. Following the method outlined in Example 6.6-2 on page 374 in [4], we
conclude that the state-space representation has the following form.

X[n] = AX[n — 1] + bW|[n], where

X[”]:@{Ziﬂ) A:<_11/2 —3/2)7 b:(é), and X[—1]=<é)

To confirm this expression, we write out the matrix-vector product and compare to the original

difference equation.
() - (7 ) () (2

Now recall that the general solution to the resulting vector-valued difference equation is given by
Equation 9.2-2 on page 571 in [4].

X[n] = A"MX[-1] + zn: A" bW [m)]

m=0

The mean function can be obtained using the standard definition as follows.

px[n] = E{X[n]} = E {A"HX[_U + i A”mbW[m]}
m=0
— AMHIX[1] + zn: A"BE{W [m]}
m=0

= A"TX[-1]

Note that in the previous expression we have exploited the linearity property of the expectation
operator and the fact that E{W[m|} = 0, Vn. As a result, we conclude that the mean function
ux[n] is given by the following expression (with the resulting first few values also shown below).

px[n] = AMHIX[-1]
ix[0] = <—11/2> . x|l = <:%;l> , and  px(2] = (_3{?4>

To complete our analysis, we recall that the autocorrelation function Rxx[n1,ne| can also be
obtained using the standard definition

Rxx [n1, 2] = E{X[n1]X o]},

11
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where X[n] denotes the conjugate transpose of X[n]. In this problem X is real-valued, so we
conclude that Rxx[n1,ng] is given by the following expression.

Rxx[n1, n2] = E{X[n1]X" [ny]}

Substituting the general solution for X|[n|, we find the following result.

ni n2 T
Rxx|ni,no] = E (A"l“X[—l] + > A”lmlbW[m1]> (A”?“X[—l] + ) AmmbW{mz])

m1=0 mao=0

ni n2

—FE { (Am“X[—l] + > A”l_mlbW[m1}> (xT[_l](AT)m“ + > bT(AT)"Q_mW[mg])}
m1=0 mo=0

Once again we can exploit the linearity property of the expectation operator. In addition, no-

tice that the cross-terms in Wn] will be eliminated since E{W[n]} = 0, Vn. As a result, the

autocorrelation function has the following solution.

Rxx|n1,na] = AMHX[—1]XT[—1](AT)m2+! 4 Z Z AmM=mpbT (ATYR2=m2 B [, |W mo] )

m1=0mo=0

At this point we recall that E{W [m1]W[ma]} = o3,0[m1 —ma] for W[n] a white Gaussian random
sequence. According to the problem state, 012,[, = 1 which leads to the following solution for the
autocorrelation function Rxx|[n1,ng] (with the resulting first few values also shown below).

AMHX [ XT[-1) (ATt 4 5702 Am=mpbT(AT)2=™m for ny > ny
AM X[ XT[-1)(AT)et 437 Am=mhbT(AT)"2™  for ny < ng

Raxx[0.0] = (_51/;12 —11/2>, Rxx[0,1] = <j’?i _51/;12> and Rxx|[1,1] = (2_1?{/1;5 —5%8>

Rxx([ni,n2] = {

12
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Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let X [n] be their number at the
beginning of the n'® time period. Assume that during each time period each mouse present at the
beginning of that period has a fixed probability p of dying, independently of all the others. Before
the end of the n*™™ period, however, a random number Y [n]| of new mice invades the area, where
Y'[n] is a Poisson random variable with parameter A and is independent of X [n].

(
(

a) Find the conditional expectation E{X[n + 1]|X[n] = x} for all n > 1.
b) Use the conditional expectation to obtain a recurrence relation for ux[n| = E{X|n]}.
)

(c) Show the average number of mice px[n] approaches a limit as n — oo and evaluate this limit.

Part (a)

Let’s begin by defining the number of mice X[n + 1] at the beginning of time period n + 1. From
the problem statement we have

X[n+1] = X[n] — D[n] + Y[n],
where X[n] is the number of mice at the beginning of period n, D[n] is the number of mice which
died during the previous period, and Y[n] is the number of invading mice. Since the conditional
expectation operator is linear, we conclude
E{X[n+1][X[n] =2} = E{X[n]|X[n] = z} — E{D[n]|X[n] = 2} + E{Y[n]|X[n] = z}

— o — E{D[)|X[n] = 2} + E{Y[n]|X[n] =} (14)
To proceed we must determine the remaining conditional expectations in Equation 14. First, note
that D[n], the number of mice that died in period n, follows a binomial distribution.

P{Dln] = Xt =a} = (4 ) 1 - 7

As a result, we conclude that the expected number of deaths is given by the following expression
in X[n] =z and p.

_ _ - Z d z—d __
E{D[nnX[n]—:c}—dE_jod(d)p (1= p) = pr (15)
Similarly, from the problem statement, we note that Y'[n] follows a Poisson distribution with para-
meter \.
Ae A
P{Y[n] =y|X[n] =2} = )

Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading
mice is given by the following expression in X[n] = z and A.

00 )
E{Y)|Xp =2} =3y (A ) Y (16)
y=0

y!

Substituting Equations 15 and 16 into Equation 14 yields the desired expression for the conditional
expectation.

|E{X[n+1][X[n] =2} = (1 - p)z + A (17)

13
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Part (b)
Recall from Problem 6.22 that the mean function px[n] is given by
px([n] = E{X[n]}.
For the initial condition X[1] we must have
px (1] = E{X[1]} = X[1],

since X[1] is a known constant. By recursively applying the conditional expectation in Equation 17,
we can determine the first few terms of px|[n].

px (2] = EAX2[X[1]} = (1 —p)X[1] + A
px (3] = B{X[3)IX[2]} = (1 - p)’X[1] + (1~ p)A + A

By induction, we conclude that px[n] is given by the following expression.

A=) XA+ A1 - p)t, forn>1
’uX[n]_{X[l],p ’ g forn=1

For 0 < p <1 the geometric series converges and ux[n] has the following solution.

s epn (X[ -3), forn>1
e ]_{X[l], ( ) forn=1 (18)

Part (c)
For 0 < p <1 the average number of mice px[n] approaches a finite limit as n — oo.
i joxlo] = Jim {24 0= prt (x10- )} =2

Note that, since 0 < p < 1, then (1—p)"~! tends to zero as n becomes large. As a result we conclude
that, regardless of the starting population X[1], the average number of mice px[n] approaches the
following limit as n — oo.

A
lim px[n]=—, for0<p<1
n—oo p

Obviously, for p = 0, there will be no deaths and the population will grow without bound for A > 0.

14
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Problem 5.4-13 [Larson and Shubert, p. 342]

Let X; and X3 be independent random variables both uniformly distributed on (0,1). For

1
Yzi(X1+X2) and Z =+/X1Xo

find the conditional expectation E[Y|Z = z] for all 0 < z < 1.

We begin our analysis by applying the linearity property of the conditional expectation operator.

1 1 1
EY|Z=z]=F [2(X1 + Xo) ‘ Z = z} = §E[X1\Z =z]+ iE[X2|Z =z]|=F[X1|Z =2 (19)
Note that, on the right-hand side, we have used the fact that the expression is symmetric in Xy
and X9, so we are only required to evaluate the single conditional expectation E[X|Z = z]. Now
recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X

given Z = z is
oo

BXGIZ =2 2 [ afxplarlz)don (20)

—0o0
where the conditional probability density function is given by
fzx,(z, 21
fxyz(x1]2) = #7 for fz(z) # 0. (21)
fz(2)

At this point all that remains is to determine closed-form expressions for fzx, (z,x1) and fz(2);
substituting these expressions into Equation 21 will yield the desired solution for E[Y|Z = z] via
Equations 19 and 20.

The expression for fz(z) can be found using the approach outlined in Example 3.3-1 on page
186. Specifically, we know that the following expression defines the distribution function Fz(z).

Fz(2) = //( | fx,x, (21, x2)dr1dze, for {Z < z} = {(X1,X2) € C;}
x1,T2 cC,

For X; and Xj uniformly distributed on (0,1), the joint density function has the following form.

1, for0 <z, ze <1

Ixix (1, 2) = fx, (21) fx, (22) = {0 otherwise (22)

To evaluate the previous expression for Fz(z), we note that Xo can be expressed in terms of X
using Z = v/ X1Xo. As a result, we must have

xy?

. 22 for 22 <z <1
2:
1, for0<um <22

which yields the following result for the probability distribution Fz(z).

2

Fz(2) :/21 /01 do dml—l—/oz (/01de> dry = [1—1In(2?)] 22
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Taking the first derivative with respect to z yields the desired expression for fz(z).

_ dFz(2)

fz(z) = = —2,2111(22) (23)

The expression for fzx,(z,x1) can be found using the approach outlined in Example 3.5-4 on
page 159. We begin by defining the pair of random variables Z and X; as functions of X; and Xo.

72 g(X1,Xs) = VX1 X2
X £ h(X1,X1) =X,

Next, we observe that the equations

z—g(x1,22) =0
x1 — h(x1,22) =0
have only one real root, for 0 < x1,z2 < 1, given by
x1 = di(z,21) = a1
1 _ _ 22 (24)
zy = p1(z,21) = 2.

At this point we recall that fzx,(z,z1) can be obtained directly from fx,x,(z1,2z2) using the
methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be
expressed as

fzxi(zm1) = fxix (@, a9)| il (25)

=1

where |.J;| is the magnitude of the Jacobian transformation such that

1= gt (5205% oot )| )

and n is the number of solutions to the equations z = g(z1,x2) and x; = h(z1,x2). Substituting
Equation 24 into Equation 26 gives the following Jacobian magnitude.

0 1 2
et ( oo )‘ _ 2 @7
noT? 21

Substituting Equations 22, 24, and 27 into Equation 25 yields the desired expression for the joint
probability density fzx,(z,x1).

2z 22 22 for 22 < <1
fzx,(z,21) = (> Ix1x, <7l’1) = { 1 = (28)
x1 x1

0, for0<ux < 2?

| J1| =

Now that we have determined closed-form expressions for fzx,(z,x1) and fz(z), we can sub-
stitute into Equation 21 to obtain the conditional density fx,|z(71]2).

_ fzx,(z,71) B ﬁég), for 22 <z <1
fxiz(x1]z) = fz(z) )0, for 0 < 1 < 22

16
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Substituting this result into Equation 20 gives the answer for E[Y|Z = z| via Equation 19.

1 -1 [t 22 -1
E|Y|Z = 2] = das — dpt —
[Y] 2] /Z2 71 fx,z(21]2)d71 (22 /22 x1 (=)

In conclusion, we find that the conditional expectation E[Y|Z = z| is given by the following
expression.

2

-1
E[Y]Z:z]:f(iz), forall0 <z <1
n(z
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