
EN 257: Applied Stochastic Processes
Problem Set 5
Douglas Lanman

dlanman@brown.edu
13 April 2007

Problem 6.37

The members of a sequence of jointly independent random variables X[n] have probability density
functions of the following form.

fX(x;n) =
(

1− 1
n

)
1√
2πσ

exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

+
1
n

σ exp(−σx)u(x)

Determine whether or not the random sequence X[n] converges in

(a) the mean-square sense,

(b) probability,

(c) distribution.

Part (a)

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence X[n] converges in the
mean-square sense to the random variable X if

lim
n→∞E{|X[n]−X|2} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim
n→∞E{|X[n]−X|2} = 0 ⇐⇒ lim

n→∞, m→∞E{|X[n]−X[m]|2} = 0

For the real-valued random sequence X[n], we have the following result.

E{|X[n]−X[m]|2} = E{(X[n]−X[m])2}
= E{X[n]2} − 2E{X[n]X[m]}+ E{X[m]2}
= E{X[n]2} − 2E{X[n]}E{X[m]}+ E{X[m]2}, for n 6= m (1)

Note that in the previous expression we have substituted E{X[n]X[m]} = E{X[n]}E{X[m]},
since {X[n]} are jointly independent and the expression will be nonzero only for the case n 6= m.
Substituting the integral expressions for the expectations, we find

E{|X[n]−X[m]|2} =∫ ∞

−∞
x2fX(x;n)dx− 2

[∫ ∞

−∞
xfX(x; n)dx

] [∫ ∞

−∞
xfX(x; m)dx

]
+

∫ ∞

−∞
x2fX(x;m)dx. (2)
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At this point we require the following solutions for the integrals in the previous expression.

∫ ∞

−∞
xfX(x; n)dx =

(
1− 1

n

)
1√
2πσ

∫ ∞

−∞
x exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

dx +
σ

n

∫ ∞

0
x exp(−σx)dx

=
(

1− 1
n

)2

σ +
1

nσ
(3)

∫ ∞

−∞
x2fX(x;n)dx =

(
1− 1

n

)
1√
2πσ

∫ ∞

−∞
x2 exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

dx +
σ

n

∫ ∞

0
x2 exp(−σx)dx

=
(

1− 1
n

)3

σ2 +
(

1− 1
n

)
σ2 +

2
nσ2

(4)

Substituting Equations 2-4 into Equation 1 yields the following result.

lim
n→∞, m→∞E{|X[n]−X[m]|2} = 2σ2 6= 0

In conclusion we find that X[n] does not converge in the mean-square sense.

lim
n→∞E{|X[n]−X|2} 6= 0 ⇒ X[n] m.s.9 X

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence X[n] converges in proba-
bility to the limiting random variable X if

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0.

Let’s define the following random sequence Z[n] as follows.

Z[n] , X[n]−X

In terms of the PDF FZ(z; n) of the random sequence Z[n], we have

lim
n→∞P [|X[n]−X| > ε] = lim

n→∞P [|Z[n]| > ε]

= lim
n→∞ {P [Z[n] > ε] + P [Z[n] < −ε]}

= lim
n→∞ {1− FZ(ε; n) + FZ(−ε; n)} .

As a result, we find that the following condition must hold if X[n] converges to X in probability.

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0 ⇐⇒ lim

n→∞ {FZ(ε;n)− FZ(−ε; n)} = 1, ∀ε > 0

While we could evaluate this expression directly from the expressions for fX(x;n) and the limiting
(postulated) form for fX(x), we know from Part (a) that X[n] cannot converge in probability;
that is, as we’ll show in Part (c), X[n] converges to a Gaussian random variable with mean σ and
variance σ2. As a result, in the limit of large n, Z[n] = X[n]−X will tend to the difference between
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two Gaussian random variables – which is well-known to have a mean value equal to the difference
of the individual means and a variance equal to the sum of the variances [5].

lim
n→∞µZ [n] = 0 and lim

n→∞σ2
Z [n] = 2σ2 ⇒ lim

n→∞P [|X[n]−X| > ε] 6= 0, ∀ε > 0

In conclusion we find that X[n] does not converge in probability either.

lim
n→∞P [|X[n]−X| > ε] 6= 0, ∀ε > 0 ⇒ X[n] P9 X

Part (c)

Recall, from Definition 6.7-7 on page 381 in [4], that a random sequence X[n] with PDF FX(x;n)
converges in distribution to the random variable X with PDF FX(x) if

lim
n→∞FX(x; n) = FX(x)

for all x at which FX(x;n) is continuous. Since convergence in distribution is defined by the limiting
behavior of the probability distribution function, we must begin by integrating the pdf fX(x;n) as
follows.

FX(x; n) =
∫ x

−∞
fX(ξ; n)dξ

=
(

1− 1
n

)
1√
2πσ

∫ x

−∞
exp

[
− 1

2σ2

(
ξ − n− 1

n
σ

)2
]

dξ +
1
n

∫ x

−∞
σ exp(−σξ)u(ξ)dξ

=
1
2

(
1− 1

n

){
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
+

1
n

(
1− e−σx

)
u(x)

Note that in the previous expression we have used the following well-known integral for a Gaussian
density function [5].

1√
2πσ

∫ x

−∞
exp

[
− 1

2σ2
(ξ − µ)2

]
dξ =

1
2

[
1 + erf

(
x− µ√

2σ

)]

At this point we can evaluate the limiting behavior of FX(x;n) for large n.

lim
n→∞FX(x; n) = lim

n→∞
1
2

(
1− 1

n

){
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
+ lim

n→∞
1
n

(
1− e−σx

)
u(x)

Note that terms with coefficients of 1/n tend to zero as n approaches infinity. As a result, we have

lim
n→∞FX(x;n) = lim

n→∞
1
2

{
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
=

1
2

[
1 + erf

(
x− σ√

2σ

)]
.

In conclusion we find that X[n] converges in distribution such that the following condition holds.

lim
n→∞FX(x; n) = FX(x) =

1
2

[
1 + erf

(
x− σ√

2σ

)]
⇒ X[n] D→ X
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Problem 6.40

Let X[n] be a real-valued random sequence on n ≥ 0 composed of stationary and independent
increments such that X[n]−X[n− 1] = W [n] (i.e., where the increment W [n] is a stationary and
independent random sequence). Assume that X[0] = 0, E{X[1]} = η, and Var{X[1]} = σ2.

(a) Find µX [n] and σ2
X [n] for any time n > 1.

(b) Prove that X[n]/n converges in probability to η as the time n approaches infinity.

Part (a)

Following the approach in Problem 6.22, let’s begin by determining the general form for X[n]. We
can evaluate the first few terms in the sequence directly.

X[1] = X[0] + W [1]
X[2] = X[0] + W [1] + W [2]
X[3] = X[0] + W [1] + W [2] + W [3]

By inspection, we conclude that the general form for X[n] is given by

X[n] = X[0] +
n∑

m=1

W [m],

where X[0] is the homogeneous solution to X[n] = X[n − 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

X[n] =
n∑

m=1

W [m] (5)

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given
by the following expression.

µX [n] , E{X[n]}
Substituting Equation 5 and exploiting the linearity of the expectation operator, we find

µX [n] = E

{
n∑

m=1

W [m]

}
=

n∑

m=1

E{W [m]} =
n∑

m=1

E{W [1]}

=
n∑

m=1

E{X[1]−X[0]} =
n∑

m=1

E{X[1]} =
n∑

m=1

η = nη. (6)

Note that in the previous expression we have applied the condition that W [n] is a stationary process
to conclude that E{W [n]} = E{W [1]} (since, by Theorem 6.1-2, all stationary random sequences
are also wide-sense stationary and, by Definition 6.1-6, all wide-sense stationary processes have a
constant mean function [4]). Similarly, we recall that the variance function is given by the following
expression.

σ2
X [n] = Var{X[n]} , E{(X[n]− µX [n])(X[n]− µX [n])∗}
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Substituting our previous results and assuming X[n] is a real-valued sequence, we find

σ2
X [n] = E{(X[n]− µX [n])2}

= E





[(
n∑

m=1

W [m]

)
− nη

]2




= E

{[(
n∑

l=1

W [l]

)
− nη

] [(
n∑

m=1

W [m]

)
− nη

]}

=
n∑

l=1

n∑

m=1

E{W [l]W [m]} − 2nη
n∑

m=1

E{W [m]}+ n2η2.

Note that in the previous expression we have exploited the linearity property of the expecta-
tion operator. At this point we recall that W [n] is a stationary independent sequence, such that
E{W [n]} = E{W [1]} = η, and must satisfy the following condition.

E {W [l]W [m]} =
{

E{W [1]2}, for l = m
E{W [1]}E{W [1]} = η2, otherwise

Substituting this condition into the previous expression yields the following result.

σ2
X [n] =

n∑

m=1

E{W [m]2}+ (n2 − n)η2 − 2n2η2 + n2η2

=
n∑

m=1

E{(W [m]− η)2} =
n∑

m=1

Var{W [m]} =
n∑

m=1

Var{W [1]}

= nVar{W [1]} = nE{(W [1]− η)2} = nE{(X[1]−X[0]− η)2}
= nE{(X[1]− E{X[1]})2} = nVar{X[1]} = nσ2 (7)

In conclusion, we find that the mean and variance functions for the random sequence X[n] are
given by Equations 6 and 7, respectively.

µX [n] = nη, for n > 1

σ2
X [n] = nσ2, for n > 1

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence X[n] converges in proba-
bility to the limiting random variable X if

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0. (8)

Furthermore, by Chebyshev’s inequality, we recall that mean-square convergence such that

lim
n→∞E{|X[n]−X|2} = 0

implies convergence in probability, since

P [|X[n]−X| > ε] ≤ E{|X[n]−X|2}/ε2, ∀ε > 0.

5
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As a result, we proceed by proving that the real-valued sequence X[n]/n converges in the mean-
square sense to the constant X = η.

E

{∣∣∣∣
X[n]

n
− η

∣∣∣∣
2
}

= E

{(
X[n]

n
− η

)2
}

=
1
n2

E
{
X[n]2

}− 2η

n
E {X[n]}+ η2

=
1
n2

E
{
X[n]2

}− η2 =
1
n2

E
{
(X[n]− nη)2

}

=
1
n2

E
{
(X[n]−E{X[n]})2} =

1
n2

σ2
X [n] =

σ2

n

Substituting into Equation 8, we find that X[n]/n converges in the mean-square sense to X = η.

lim
n→∞E

{∣∣∣∣
X[n]

n
− η

∣∣∣∣
2
}

= 0 ⇒ X[n]
n

m.s.→ η

In conclusion, since mean-square converge implies converge in probability, we conclude that X[n]/n
converges in probability to η as the time n approaches infinity.

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0 ⇒ X[n]

n

P→ η

(QED)
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Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let X[n] be their number at the
beginning of the nth time period. Assume that during each time period each mouse present at the
beginning of that period has a fixed probability p of dying, independently of all the others. Before
the end of the nth period, however, a random number Y [n] of new mice invades the area, where
Y [n] is a Poisson random variable with parameter λ and is independent of X[n].

(a) Find the conditional expectation E {X[n + 1]|X[n] = x} for all n ≥ 1.
(b) Use the conditional expectation to obtain a recurrence relation for µX [n] = E {X[n]}.
(c) Show the average number of mice µX [n] approaches a limit as n →∞ and evaluate this limit.

Part (a)

Let’s begin by defining the number of mice X[n + 1] at the beginning of time period n + 1. From
the problem statement we have

X[n + 1] = X[n]−D[n] + Y [n],

where X[n] is the number of mice at the beginning of period n, D[n] is the number of mice which
died during the previous period, and Y [n] is the number of invading mice. Since the conditional
expectation operator is linear, we conclude

E {X[n + 1]|X[n] = x} = E {X[n]|X[n] = x} − E {D[n]|X[n] = x}+ E {Y [n]|X[n] = x}
= x− E {D[n]|X[n] = x}+ E {Y [n]|X[n] = x} . (9)

To proceed we must determine the remaining conditional expectations in Equation 9. First, note
that D[n], the number of mice that died in period n, follows a binomial distribution.

P {D[n] = d|X[n] = x} =
(

x
d

)
pd(1− p)x−d

As a result, we conclude that the expected number of deaths is given by the following expression
in X[n] = x and p.

E {D[n]|X[n] = x} =
x∑

d=0

d

(
x
d

)
pd(1− p)x−d = px (10)

Similarly, from the problem statement, we note that Y [n] follows a Poisson distribution with para-
meter λ.

P {Y [n] = y|X[n] = x} =
λye−λ

y!
Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading
mice is given by the following expression in X[n] = x and λ.

E {Y [n]|X[n] = x} =
∞∑

y=0

y

(
λye−λ

y!

)
= λ (11)

Substituting Equations 10 and 11 into Equation 9 yields the desired expression for the conditional
expectation.

E {X[n + 1]|X[n] = x} = (1− p)x + λ (12)

7
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Part (b)

Recall from Problem 6.22 that the mean function µX [n] is given by

µX [n] = E{X[n]}.

For the initial condition X[1] we must have

µX [1] = E{X[1]} = X[1],

since X[1] is a known constant. By recursively applying the conditional expectation in Equation 12,
we can determine the first few terms of µX [n].

µX [2] = E{X[2]|X[1]} = (1− p)X[1] + λ

µX [3] = E{X[3]|X[2]} = (1− p)2X[1] + (1− p)λ + λ

By induction, we conclude that µX [n] is given by the following expression.

µX [n] =
{

(1− p)n−1X[1] + λ
∑n−2

i=0 (1− p)i, for n > 1
X[1], for n = 1

For 0 < p ≤ 1 the geometric series converges and µX [n] has the following solution.

µX [n] =

{
λ
p + (1− p)n−1

(
X[1]− λ

p

)
, for n > 1

X[1], for n = 1
(13)

Part (c)

For 0 < p ≤ 1 the average number of mice µX [n] approaches a finite limit as n →∞.

lim
n→∞µX [n] = lim

n→∞

{
λ

p
+ (1− p)n−1

(
X[1]− λ

p

)}
=

λ

p

Note that, since 0 < p ≤ 1, then (1−p)n−1 tends to zero as n becomes large. As a result we conclude
that, regardless of the starting population X[1], the average number of mice µX [n] approaches the
following limit as n →∞.

lim
n→∞µX [n] =

λ

p
, for 0 < p ≤ 1

Obviously, for p = 0, there will be no deaths and the population will grow without bound for λ > 0.

8
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Problem 5.4-13 [Larson and Shubert, p. 342]

Let X1 and X2 be independent random variables both uniformly distributed on (0, 1). For

Y =
1
2
(X1 + X2) and Z =

√
X1X2

find the conditional expectation E[Y |Z = z] for all 0 < z < 1.

We begin our analysis by applying the linearity property of the conditional expectation operator.

E[Y |Z = z] = E

[
1
2
(X1 + X2)

∣∣∣ Z = z

]
=

1
2
E[X1|Z = z] +

1
2
E[X2|Z = z] = E[X1|Z = z] (14)

Note that, on the right-hand side, we have used the fact that the expression is symmetric in X1

and X2, so we are only required to evaluate the single conditional expectation E[X1|Z = z]. Now
recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X1

given Z = z is

E[X1|Z = z] ,
∫ ∞

−∞
x1fX1|Z(x1|z)dx1, (15)

where the conditional probability density function is given by

fX1|Z(x1|z) =
fZX1(z, x1)

fZ(z)
, for fZ(z) 6= 0. (16)

At this point all that remains is to determine closed-form expressions for fZX1(z, x1) and fZ(z);
substituting these expressions into Equation 16 will yield the desired solution for E[Y |Z = z] via
Equations 14 and 15.

The expression for fZ(z) can be found using the approach outlined in Example 3.3-1 on page
186. Specifically, we know that the following expression defines the distribution function FZ(z).

FZ(z) =
∫ ∫

(x1,x2)∈Cz

fX1X2(x1, x2)dx1dx2, for {Z ≤ z} = {(X1, X2) ∈ Cz}

For X1 and X2 uniformly distributed on (0, 1), the joint density function has the following form.

fX1X2(x1, x2) = fX1(x1)fX2(x2) =
{

1, for 0 < x1, x2 < 1
0, otherwise

(17)

To evaluate the previous expression for FZ(z), we note that X2 can be expressed in terms of X1

using Z =
√

X1X2. As a result, we must have

x2 =

{
z2

x1
, for z2 ≤ x1 < 1

1, for 0 < x1 < z2

which yields the following result for the probability distribution FZ(z).

FZ(z) =
∫ 1

z2




∫ z2

x1

0
dx2


 dx1 +

∫ z2

0

(∫ 1

0
dx2

)
dx1 =

[
1− ln(z2)

]
z2

9
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Taking the first derivative with respect to z yields the desired expression for fZ(z).

fZ(z) =
dFZ(z)

dz
= −2z ln(z2) (18)

The expression for fZX1(z, x1) can be found using the approach outlined in Example 3.5-4 on
page 159. We begin by defining the pair of random variables Z and X1 as functions of X1 and X2.

Z , g(X1, X2) =
√

X1X2 and X1 , h(X1, X1) = X1

Next, we observe that the equations

z − g(x1, x2) = 0 and x1 − h(x1, x2) = 0

have only one real root, for 0 < x1, x2 < 1, given by

x1
1 = φ1(z, x1) = x1 and x1

2 = ϕ1(z, x1) = z2

x1
. (19)

At this point we recall that fZX1(z, x1) can be obtained directly from fX1X2(x1, x2) using the
methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be
expressed as

fZX1(z, x1) =
n∑

i=1

fX1X2(x
i
1, x

i
2)|J̃i|, (20)

where |J̃i| is the magnitude of the Jacobian transformation such that

|J̃i| =
∣∣∣∣det

(
∂φi/∂z ∂φi/∂x1

∂ϕi/∂z ∂ϕi/∂x1

)∣∣∣∣ (21)

and n is the number of solutions to the equations z = g(x1, x2) and x1 = h(x1, x2). Substituting
Equation 19 into Equation 21 gives the following Jacobian magnitude.

|J̃1| =
∣∣∣∣∣det

(
0 1
2z
x1

− z2

x2
1

)∣∣∣∣∣ =
2z

x1
(22)

Substituting Equations 17, 19, and 22 into Equation 20 yields the desired expression for the joint
probability density fZX1(z, x1).

fZX1(z, x1) =
(

2z

x1

)
fX1X2

(
z2

x1
, x1

)
=

{ 2z
x1

, for z2 ≤ x1 < 1
0, for 0 < x1 < z2 (23)

Now that we have determined closed-form expressions for fZX1(z, x1) and fZ(z), we can sub-
stitute into Equation 16 to obtain the conditional density fX1|Z(x1|z).

fX1|Z(x1|z) =
fZX1(z, x1)

fZ(z)
=

{ −1
x1 ln(z2)

, for z2 ≤ x1 < 1
0, for 0 < x1 < z2

Substituting this result into Equation 15 gives the answer for E[Y |Z = z] via Equation 14.

E[Y |Z = z] =
∫ 1

z2

x1fX1|Z(x1|z)dx1 =
−1

ln(z2)

∫ 1

z2

dx1 =
z2 − 1
ln(z2)

In conclusion, we find that the conditional expectation E[Y |Z = z] is given by the following
expression.

E[Y |Z = z] =
z2 − 1
ln(z2)

, for all 0 < z < 1

10
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Problem 7.1-7 [Larson and Shubert, p. 426]

Let X[n], for n = 1, 2, . . ., be a sequence of independent random variables with E{X[n]} = µX [n]
and Var{X[n]} = σ2

X [n]. Use the Cauchy criterion to show that the sequence of partial sums
S[n] = X[1] + . . . + X[n], for n = 1, 2, . . ., converges in mean-square sense if and only if the infinite
series

∑∞
n=1 µX [n] and

∑∞
n=1 σ2

X [n] converge. Can the independence assumption be weakened?

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence S[n] converges in the
mean-square sense to the random variable S if

lim
n→∞E{|S[n]− S|2} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim
n→∞E{|S[n]− S|2} = 0 ⇐⇒ lim

n→∞, m→∞E{|S[n]− S[m]|2} = 0 (24)

For the real-valued random sequence S[n], we have the following result.

E{|S[n]− S[m]|2} = E{(S[n]− S[m])2}
= E{S[n]2} − 2E{S[n]S[m]}+ E{S[m]2}, for n 6= m (25)

In the previous expression we only need to consider the case n 6= m, since E{|S[n] − S[m]|2} = 0
for n = m. At this point we can solve for the individual terms on the right-hand side as follows.

E{S[n]2} = E





(
n∑

i=1

X[i]

)


n∑

j=1

X[j]






 =

n∑

i=1

n∑

j=1

E{X[i]X[j]}

=
n∑

i=1

E{X[i]2}+
n∑

i=1

n∑

j=1

E{X[i]}E{X[j]} −
n∑

i=1

E{X[i]}2

=
n∑

i=1

E
{

(X[i]−E{X[i]})2
}

+

(
n∑

i=1

E{X[i]}
)


n∑

j=1

E{X[j]}



=
n∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

)2

(26)

Similarly, E{S[n]S[m]} is given by the following expression for n 6= m.

E{S[n]S[m]} = E





(
n∑

i=1

X[i]

)


m∑

j=1

X[j]






 =

n∑

i=1

m∑

j=1

E{X[i]X[j]}

=
min(n,m)∑

i=1

E{X[i]2}+
n∑

i=1

m∑

j=1

E{X[i]}E{X[j]} −
min(n,m)∑

i=1

E{X[i]}2

=
min(n,m)∑

i=1

E
{

(X[i]− E{X[i]})2
}

+

(
n∑

i=1

E{X[i]}
) 


m∑

j=1

E{X[j]}



=
min(n,m)∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

)(
m∑

i=1

µX [i]

)
(27)
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Substituting Equations 26 and 27 into Equation 25 yields the following result.

lim
n→∞
m→∞

E{|S[n]− S[m]|2} = lim
n→∞
m→∞





n∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

)2


−

lim
n→∞
m→∞

2





min(n,m)∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

) (
m∑

i=1

µX [i]

)

 +

lim
n→∞
m→∞





m∑

i=1

σ2
X [i] +

(
m∑

i=1

µX [i]

)2




Note that this expression will have a limit of zero if and only if the infinite series
∑∞

n=1 µX [n]
and

∑∞
n=1 σ2

X [n] converge. As a result, by the Cauchy criterion given in Equation 24, the random
sequence S[n] will converge in the mean-square sense if and only if the infinite series

∑∞
n=1 µX [n]

and
∑∞

n=1 σ2
X [n] converge.

∴ lim
n→∞E{|S[n]− S|2} = 0 ⇒ S[n] m.s.→ S iff

∞∑

n=1

µX [n] and
∞∑

n=1

σ2
X [n] converge

To complete our analysis we note that the independence assumption could be lifted in certain cases.
Examining Equation 25 we note that the following condition must hold for S[n] to converge in the
mean-square sense.

lim
n→∞
m→∞

E{|S[n]− S[m]|2} = lim
n→∞
m→∞

{
E{S[n]2} − 2E{S[n]S[m]}+ E{S[m]2}}

Since RSS [n, m] = E{S[n]S[m]}, we conclude that the following general condition must hold in
order for S[n] to converge in the mean-square sense. (Note that this result is also known as the
Loève criterion [2]).

(Loève criterion) S[n] m.s.→ S iff lim
n→∞
m→∞

RSS [n,m] = C, for C ∈ R

In other words, we find that under general conditions (i.e., even if {X[n]} are not independent) the
sequence of partial sums {S[n]} will converge if the autocovariance function RSS [n, m] approaches
a fixed constant C as n and m become large.

12
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Problem 7.1-10 [Larson and Shubert, p. 427]

If X[n], for n = 1, 2, . . ., is a sequence of i.i.d. random variables with zero means and unit variances,
it follows from the central limit theorem that the stochastic sequence

S[n] =
1√
n

n∑

k=1

X[k], for n = 1, 2, . . . ,

converges in distribution to a standard Gaussian random variable. Does the sequence S[n], for
n = 1, 2, . . ., also converge in the mean-square sense? Can it possibly converge almost surely?

As in Problem 7.1-7 we recall, from Definition 6.7-5 on page 379 in [4], that a random sequence
S[n] converges in the mean-square sense to the random variable S if

lim
n→∞E{|S[n]− S|2} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim
n→∞E{|S[n]− S|2} = 0 ⇐⇒ lim

n→∞, m→∞E{|S[n]− S[m]|2} = 0

For the real-valued random sequence S[n], we have the following result.

E{|S[n]− S[m]|2} = E{S[n]2} − 2E{S[n]S[m]}+ E{S[m]2}, for n 6= m

Substituting Equations 26 and 27 from Problem 7.1-7, we conclude that this condition can be
expressed as follows.

E{|S[n]− S[m]|2} =
1
n





n∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

)2


−

2√
nm





min(n,m)∑

i=1

σ2
X [i] +

(
n∑

i=1

µX [i]

)(
m∑

i=1

µX [i]

)

 +

1
m





m∑

i=1

σ2
X [i] +

(
m∑

i=1

µX [i]

)2




For this problem we have µX [n] = 0 and σ2
X [n] = 1, such that the following condition holds.

E{|S[n]− S[m]|2} = 2
(

1− min(n, m)√
nm

)

In conclusion, in the limit of large n and m, the previous expression will converge to zero – implying
that S[n] does converge in the mean-square sense via Equation 24.

lim
n→∞E{|S[n]− S|2} = 0 ⇒ S[n] m.s.→ S

In addition, via the Strong Law of Large Numbers given on page 387 in [4], we also conclude that
the sequence S[n] converges almost surely to a standard Gaussian random variable.

13
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Problem 7.1-11 [Larson and Shubert, p. 427]

A closed-loop control system is trying to reach the state X = 0. It operates in such a manner that
if at time n its state is X[n] = x[n], then at time n+1 it transitions to state X[n+1] = x[n]−Z[n],
where the correction Z[n] is a Gaussian random variable with mean µ = x[n] and standard deviation
σ = γ|x[n]|, for γ > 0. Thus, the corrections are contaminated by noise proportional to the
magnitude of the correction. For what values of the constant γ is the system successful in the sense
that X[n] converges to x = 0 in the mean-square sense? What happens for other values of γ?

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence X[n] converges in the
mean-square sense to the random variable X if

lim
n→∞E{|X[n]−X|2} = 0.

As a result, we need to demonstrate that the following condition holds in order for the closed-loop
control system to reach the state X = 0, where X[n] is real-valued.

lim
n→∞E{X[n]2} = 0 (28)

Let’s begin our analysis by determining the general form for X[n], where x[0] is the known initial
condition. We can evaluate the first few terms in the sequence directly.

X[1] = x[0]− Z[0]
X[2] = x[0]− Z[0]− Z[1]
X[3] = x[0]− Z[0]− Z[1]− Z[2]

By inspection, we conclude that the general form for X[n] is given by

X[n] = x[0]−
n−1∑

m=0

Z[m],

where x[0] is the homogeneous solution to X[n + 1] = X[n]. At this point we can determine a
closed-form expression for E{X[n + 1]2} as follows.

E{X[n + 1]2} = E{(X[n]− Z[n])2} = E{(Z[n]−X[n])2}
= E

{
(Z[n]−E{Z[n]})2

}

= Var{Z[n]} = σ2 = γ2 |x[n]|2 = γ2E{X[n]2}
From this expression we obtain a simple recurrence relation for E{X[n]2} which has the following
solution in terms of the initial condition x[0] and the constant γ.

E{X[n]2} = γ2n|x[0]|2

Substituting this result into Equation 28 yields the following condition such that X[n] converges
to zero in the mean-square sense.

lim
n→∞E{X[n]2} = 0 ⇒ X[n] m.s.→ 0, for 0 < γ < 1

For γ ≥ 1, a non-empty set of sample paths for X[n] will grow without bound as n increases.
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