EN 257: Applied Stochastic Processes
Problem Set 5

Douglas Lanman
dlanman@brown.edu
13 April 2007

Problem 6.37

The members of a sequence of jointly independent random variables X [n] have probability density
functions of the following form.

1\ 1 1 n—1\°
fX(x;n):<1—n> 271_Jexp!—%‘2 (x— - 0>

Determine whether or not the random sequence X [n| converges in

+ g exp(—ox)u(z)

(a) the mean-square sense,
(b) probability,
(c) distribution.

Part (a)

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence X[n| converges in the
mean-square sense to the random variable X if

lim E{|X[n] — X|*} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

nlLrgOE{|X[n]—X|2}:0<:> lim  E{|X[n] — X[m]|*} =0

For the real-valued random sequence X [n], we have the following result.
E{|X[n] - X[m]|*} = E{(X[n] — X[m])*}
= B{X[n]*} - 2B{X[n]X[m]} + E{X[m]*}
= B{X[n]*} — 2B{X[n]} E{X[m]} + E{X[m]?}, for n # m (1)
Note that in the previous expression we have substituted E{X[n]X[m]} = E{X[n|}E{X[m]},

since {X[n]} are jointly independent and the expression will be nonzero only for the case n # m.
Substituting the integral expressions for the expectations, we find

E{|X[n] - X[m][*}

| i —2 { | xfx<m;n>d4 [ | xfxu;m)dx} [T e @)

—00 —0o0 —00 —00



EN 257: Applied Stochastic Processes Problem Set 5 Douglas Lanman

At this point we require the following solutions for the integrals in the previous expression.

o0 1\ 1 [ 1 -1 \°
/_Ooxfx(:n;n)da::<ln> 27TJ/_Ooxexp[%‘2 <xnn U)

:(1—;)20—+1 (3)

> 1N 1 [ 1 ~-1\?
/ 22 fx (z;n)de = <1 - ) / 2% exp 55 <$ _n 0'>
oo n 210 J—oo 20 n

1\ 1 2
:<1—> 02+<1—>02+2 (4)
n n no

Substituting Equations 2-4 into Equation 1 yields the following result.

d$+a/ zrexp(—oz)dr
nJo

d:c+0/ z? exp(—ox)dzx
nJo

lim  E{|X[n] — X[m]*} =202 #0

n—oo, m—oo

In conclusion we find that X [n| does not converge in the mean-square sense.

lim E{|X[n] - X} #40= X[n]™ X

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence X [n] converges in proba-
bility to the limiting random variable X if

lim P[|X[n] — X|>¢ =0, Ve > 0.
n—oo

Let’s define the following random sequence Z[n] as follows.

In terms of the PDF F(z;n) of the random sequence Z[n|, we have
lim P[|X[n] — X| > €] = lim P[|Z[n]| > ¢
= lim {P[Z[n] > €] + P[Z[n] < —€]}

n—oo

= lim {1 — Fz(e;n) + Fz(—€;n)}.
n—oo
As a result, we find that the following condition must hold if X [n] converges to X in probability.
lim P[|X[n]— X|>¢ =0, Ve >0 < lim {Fz(e;n) — Fz(—¢;n)} =1, Ve >0
n—oo n—oo

While we could evaluate this expression directly from the expressions for fx(z;n) and the limiting
(postulated) form for fx(x), we know from Part (a) that X[n] cannot converge in probability;
that is, as we’ll show in Part (c), X [n] converges to a Gaussian random variable with mean ¢ and
variance o2. As a result, in the limit of large n, Z[n] = X[n] — X will tend to the difference between
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two Gaussian random variables — which is well-known to have a mean value equal to the difference
of the individual means and a variance equal to the sum of the variances [5].

lim pz[n] =0 and lim o%[n] = 20° = lim P[|X[n] — X|> ¢ #0, Ve >0

n—oo n—oo

In conclusion we find that X[n] does not converge in probability either.

lim P[|X[n] — X| > € #0, Ve >0= X[n] = X

n—oo

Part (c)

Recall, from Definition 6.7-7 on page 381 in [4], that a random sequence X [n]| with PDF Fx (z;n)
converges in distribution to the random variable X with PDF Fx(z) if

lim Fx(z;n) = Fx(x)

n—oo

for all z at which Fx (z;n) is continuous. Since convergence in distribution is defined by the limiting
behavior of the probability distribution function, we must begin by integrating the pdf fx(z;n) as
follows.

X@m:[;h@n%
~(-3) g oo | ()
:;<1_;> {1—|—erf x_\(};;la)]}Jr;(l—e‘”)U(x)

Note that in the previous expression we have used the following well-known integral for a Gaussian

density function [5].
1 ’ 1 2| o 1 P
AR L LR )

At this point we can evaluate the limiting behavior of F'x (z;n) for large n.

v (%50)
V2o

Note that terms with coefficients of 1/n tend to zero as n approaches infinity. As a result, we have

g2

In conclusion we find that X[n] converges in distribution such that the following condition holds.

a4 [ sexp(-agul)ie

—00

1 1
lim Fx(z;n) = lim - (l—) {1+erf -

n—o00 n—oo 2 n

} + lim S (1—e7") u(z)

n—oo N

n—oo n—o0

1 T
lim Fx(z;n) = lim 3 {l—i—erf

lim Fy(z;n) = Fx(z) = ;[1+erf<

n—oo

N> )] = X[ 2 x
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Problem 6.40

Let X[n] be a real-valued random sequence on n > 0 composed of stationary and independent
increments such that X[n] — X[n — 1] = W[n| (i.e., where the increment Wn] is a stationary and
independent random sequence). Assume that X[0] = 0, E{X[1]} =7, and Var{X[1]} = o2

(a) Find px[n] and o%[n] for any time n > 1.
(b) Prove that X|[n]/n converges in probability to n as the time n approaches infinity.

Part (a)

Following the approach in Problem 6.22, let’s begin by determining the general form for X[n|. We
can evaluate the first few terms in the sequence directly.

X[1] = X[0] + W[1]
X[2] = X[0] + W[1] + W[2]
X[3] = X[0] + W[1] + W[2] + W[3]

By inspection, we conclude that the general form for X|[n| is given by
Xn] = X[0] + ) Wml,
m=1

where X[0] is the homogeneous solution to X[n] = X[n — 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

X[n] = W] (5)

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given
by the following expression.

pxn] = E{X[n]}

Substituting Equation 5 and exploiting the linearity of the expectation operator, we find

px[n]=E { > W[m]} = E{Wm]} =) BE{W]}

=3 B{xn] - X[} = Y B{X[1)} = > n=m. (6)

m=1

Note that in the previous expression we have applied the condition that W[n] is a stationary process
to conclude that E{Wn|} = E{W][1]} (since, by Theorem 6.1-2, all stationary random sequences
are also wide-sense stationary and, by Definition 6.1-6, all wide-sense stationary processes have a
constant mean function [4]). Similarly, we recall that the variance function is given by the following
expression.

o%[n] = Var{X[n]} £ E{(X[n] — px[n])(X[n] — px[n])"}
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Substituting our previous results and assuming X [n] is a real-valued sequence, we find

o n] = E{(X[n] — ux[n])*}
> W[W]) - nn]

(
(30 )-m] (& )-m}

=> > E{WW[m]} — 2nn Z E{W[m]} + n?

1 m=

N
Il
—

Note that in the previous expression we have exploited the linearity property of the expecta-
tion operator. At this point we recall that W[n| is a stationary independent sequence, such that
E{Wn]} = E{W][1]} = n, and must satisfy the following condition.

[ E{W[]*}, forl =m
E{W[IW[m]} = { E{W[1]}E{W[1]} = n?, otherwise

Substituting this condition into the previous expression yields the following result.

= Z E{W[m]?} + (n* — n)n? — 2n*n* + n’n?

=Y E{(W[m] - n)*} = Z Var{W[m]} = Z Var{W 1]

— aVar (W1} = nE{(OVT1] — )%} = nB{(X[1] — X[0] — n)?)
— nE{(X[1] - B{X[1]})*} = nVar{X[1]} = no’ (7)

In conclusion, we find that the mean and variance functions for the random sequence X|[n| are
given by Equations 6 and 7, respectively.

px[n] =nn, forn>1

0%[n] = no?, forn>1

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence X [n] converges in proba-
bility to the limiting random variable X if

lim P[|X[n] — X| >¢€ =0, Ve > 0. (8)
n—oo
Furthermore, by Chebyshev’s inequality, we recall that mean-square convergence such that
lim E{|X[n] - X|*} =0
n—oo
implies convergence in probability, since

P[|X[n] — X| > €] < E{|X[n] — X|*}/€?, Ve > 0.
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As a result, we proceed by proving that the real-valued sequence X|[n]/n converges in the mean-
square sense to the constant X = 7.

)

= B (X} - 2B (X [a]} + 7

= %E {X[n]Q} —n? = %E{(X[n] - nn)Q}
= S E{(X[n] - E{X[n]})?} = —oxlnl =~

Substituting into Equation 8, we find that X [n]|/n converges in the mean-square sense to X = 7.

hmE{‘)iEM—n2}=0;»W”L§n

n—00 n

In conclusion, since mean-square converge implies converge in probability, we conclude that X[n]/n
converges in probability to n as the time n approaches infinity.

X
lim P[|X[n] — X| > ¢ =0, Ve>0:>7[ln]£>

(QED)
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Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let X [n] be their number at the
beginning of the n'® time period. Assume that during each time period each mouse present at the
beginning of that period has a fixed probability p of dying, independently of all the others. Before
the end of the n*™™ period, however, a random number Y [n]| of new mice invades the area, where
Y'[n] is a Poisson random variable with parameter A and is independent of X [n].

(
(

a) Find the conditional expectation E{X[n + 1]|X[n] = x} for all n > 1.
b) Use the conditional expectation to obtain a recurrence relation for ux[n| = E{X|n]}.
)

(c) Show the average number of mice px[n] approaches a limit as n — oo and evaluate this limit.

Part (a)

Let’s begin by defining the number of mice X[n + 1] at the beginning of time period n + 1. From
the problem statement we have

X[n+1] = X[n] — D[n] + Y[n|,
where X[n] is the number of mice at the beginning of period n, D[n] is the number of mice which
died during the previous period, and Y[n] is the number of invading mice. Since the conditional
expectation operator is linear, we conclude
E{X[n+1][X[n] =2} = E{X[n]|X[n] = z} — E{D[n]|X[n] = 2} + E{Y[n]|X[n] = z}

=z — E{D[n]|X[n] = z} + E{Y[n]|X[n] = z}. (9)
To proceed we must determine the remaining conditional expectations in Equation 9. First, note
that D[n], the number of mice that died in period n, follows a binomial distribution.

P{Dln] = Xt =a} = (4 ) 1 - 7

As a result, we conclude that the expected number of deaths is given by the following expression
in X[n] =z and p.

_ _ - Z d z—d __
E{D[nnX[n]—:c}—dE_jod(d)p (1= p) = pr (10)
Similarly, from the problem statement, we note that Y'[n] follows a Poisson distribution with para-
meter \.
Ae A
P{Y[n] =y|X[n] =2} = )

Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading
mice is given by the following expression in X[n] = z and A.

00 )
E{Y)|Xp =2} =3y (A ) Y (1)
y=0

y!

Substituting Equations 10 and 11 into Equation 9 yields the desired expression for the conditional
expectation.

|E{X[n+1][X[n] =2} = (1 - p)z + A (12)
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Part (b)
Recall from Problem 6.22 that the mean function px[n] is given by
px([n] = E{X[n]}.
For the initial condition X[1] we must have
px (1] = E{X[1]} = X[1],

since X[1] is a known constant. By recursively applying the conditional expectation in Equation 12,
we can determine the first few terms of px|[n].

px (2] = EAX2[X[1]} = (1 —p)X[1] + A
px (3] = B{X[3)IX[2]} = (1 - p)’X[1] + (1~ p)A + A

By induction, we conclude that px[n] is given by the following expression.

A=) XA+ A1 - p)t, forn>1
’uX[n]_{X[l],p ’ g forn=1

For 0 < p <1 the geometric series converges and ux[n] has the following solution.

s epn (X[ -3), forn>1
e ]_{X[l], ( ) forn=1 (13)

Part (c)
For 0 < p <1 the average number of mice px[n] approaches a finite limit as n — oo.
i joxlo] = Jim {24 0= prt (x10- )} =2

Note that, since 0 < p < 1, then (1—p)"~! tends to zero as n becomes large. As a result we conclude
that, regardless of the starting population X[1], the average number of mice px[n] approaches the
following limit as n — oo.

A
lim px[n]=—, for0<p<1
n—oo p

Obviously, for p = 0, there will be no deaths and the population will grow without bound for A > 0.
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Problem 5.4-13 [Larson and Shubert, p. 342]

Let X; and X3 be independent random variables both uniformly distributed on (0,1). For

1
Yzi(X1+X2) and Z =+/X1Xo

find the conditional expectation E[Y|Z = z] for all 0 < z < 1.

We begin our analysis by applying the linearity property of the conditional expectation operator.

1 1 1
EY|Z=z]=F [2(X1 + Xo) ‘ Z = z} = §E[X1\Z =z]+ 5E[X2|Z =z]|=FE[X1|Z =2 (14)
Note that, on the right-hand side, we have used the fact that the expression is symmetric in Xy
and X9, so we are only required to evaluate the single conditional expectation E[X|Z = z]. Now
recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X

given Z = z is
oo

BXGIZ =2 2 [ afxplarlz)don (15)

—0o0
where the conditional probability density function is given by
fzx,(z, 21
fxyz(x1]2) = #7 for fz(z) # 0. (16)
fz(2)

At this point all that remains is to determine closed-form expressions for fzx, (z,x1) and fz(2);
substituting these expressions into Equation 16 will yield the desired solution for E[Y|Z = z] via
Equations 14 and 15.

The expression for fz(z) can be found using the approach outlined in Example 3.3-1 on page
186. Specifically, we know that the following expression defines the distribution function Fz(z).

Fz(2) = //( | fx,x, (21, x2)dr1dze, for {Z < z} = {(X1,X2) € C;}
x1,T2 cC,

For X; and Xj uniformly distributed on (0,1), the joint density function has the following form.

1, for0 <z, ze <1

Ixix (1, 2) = fx, (21) fx, (22) = {0 otherwise (17)

To evaluate the previous expression for Fz(z), we note that Xo can be expressed in terms of X
using Z = v/ X1Xo. As a result, we must have

xy?

. 22 for 22 <z <1
2:
1, for0<um <22

which yields the following result for the probability distribution Fz(z).

2

Fz(2) :/21 /01 do dml—l—/oz (/01de> dry = [1—1In(2?)] 22
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Taking the first derivative with respect to z yields the desired expression for fz(z).

) = dsz(z)

The expression for fzx,(z,z1) can be found using the approach outlined in Example 3.5-4 on
page 159. We begin by defining the pair of random variables Z and X; as functions of X; and Xo.

72 g(X1,Xs) =+vX1X2 and X; 2 h(X1,X1)=X;

= —2z1n(2?) (18)

Next, we observe that the equations
z—g(x1,22) =0 and x1 — h(xy,29) =0
have only one real root, for 0 < x1,z2 < 1, given by

i =¢1(z,21) =21 and i = p1(z,21) = fc—j (19)

At this point we recall that fzx,(z,z1) can be obtained directly from fx,x,(x1,z2) using the
methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be
expressed as

fzx(zm) =) fxox (2d, 2h)| 7], (20)
i=1
where |J;| is the magnitude of the Jacobian transformation such that
det ( 010z Oy )0z (21)

and n is the number of solutions to the equations z = g(z1,x2) and x; = h(x1,x2). Substituting
Equation 19 into Equation 21 gives the following Jacobian magnitude.

0 1 2
det [ 0o » ||=2 (22)
e 1

Substituting Equations 17, 19, and 22 into Equation 20 yields the desired expression for the joint
probability density fzx,(z,x1).

2z 22 2 for22<m <1
fZXl (Z,l'l) - <> fX1X2 (7'1"1) — { 1 = (23)
1 X1 0,

| Ji| =

| J1| =

for 0 < z1 < 22

Now that we have determined closed-form expressions for fzx, (z,x1) and fz(z), we can sub-
stitute into Equation 16 to obtain the conditional density fx,|z(z1]z).

_ Jzxi(zm) ﬁéz), for 22 < < 1
Fxjz(ile) = fz(z) 0, for 0 < z1 < 22

Substituting this result into Equation 15 gives the answer for E[Y|Z = z| via Equation 14.

! -1 [t 22— 1
E\Y|Z =z = - —
Y] 2] /2 T1fx, |7 (x1]2)d2y ) /Z2 dxzy n(2)

z

In conclusion, we find that the conditional expectation E[Y|Z = z| is given by the following
expression.

22 —
E[Y|Z =2 = mEa)

, forall 0 < z < 1

10
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Problem 7.1-7 [Larson and Shubert, p. 426]

Let X|n], for n = 1,2,..., be a sequence of independent random variables with E{X[n|} = ux|[n]
and Var{X|[n]} = o%[n]. Use the Cauchy criterion to show that the sequence of partial sums
Sin] = X[1]+...4+ X[n], for n =1,2,..., converges in mean-square sense if and only if the infinite

series > o | ux[n] and > o2, 0% [n] converge. Can the independence assumption be weakened?

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence S[n| converges in the
mean-square sense to the random variable S if

lim E{|S[n] — S|*} =0.

n—oo
Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim E{|S[n] - S =0 «— lim  E{|S[n] — S[m]|*} =0 (24)

n—00, M—00

For the real-valued random sequence S[n|, we have the following result.

E{|S[n] — S[m]|*} = B{(S[n] - S[m])*}
= E{S[n]*} — 2E{S[n)S[m]} + E{S[m]?}, for n # m (25)

In the previous expression we only need to consider the case n # m, since E{|S[n] — S[m]|*} = 0
for n = m. At this point we can solve for the individual terms on the right-hand side as follows.

E{S[n] {(ZX > (Z Xm) } =S BXGIX)

i=1 j=1

n

ZE{X }+ZZE{X VE{X[j]} — ZE{X

=1 j=1

Z {(x1i] - BAX D} + (ZE{X )(ZE{XU]})
= _oklil+ (Z ux[ﬂ) (26)

Similarly, E{S[n]S[m]} is given by the following expression for n # m.

E{S[n]S[m]} = E (Zﬂﬂ) ZXU] =D B{X[X[])

i=1 j=1
min(n,m) min(n,m)
= Y E{X[EP}+ ZZE{X DE{X[Y - ) E{X[)
=1 i=1 j=1 i=1

_ Zm B{ (X[ - B(XUD?} + (zE{X ) gE{XU}}
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Substituting Equations 26 and 27 into Equation 25 yields the following result.

Jim E{|S[n] — Slm][*} = im Zai[m(_zuxm) -

m—00 m—o00 =1
min(n,m) n m
Jim 2 > okl + <Z [1x [ﬂ) <Z fx [i])
Moo i=1 i=1 i=1
m m 2
nan;o Z o3 [i] + <Z px [z])

Note that this expression will have a limit of zero if and only if the infinite series Y -, pux[n]
and > 7, UX[ n| converge. As a result, by the Cauchy criterion given in Equation 24, the random
sequence S[n] will converge in the mean-square sense if and only if the infinite series Y > | pux[n]
and Yo | 0% [n] converge.

lim E{|S[n] — S|’} =0= S[n] =" S EZMX ] and Z(fg([n] converge

To complete our analysis we note that the independence assumption could be lifted in certain cases.
Examining Equation 25 we note that the following condition must hold for S[n] to converge in the
mean-square sense.

lim E{|S[n] ~ Slm)*} = lim {B{S[]*} ~ 2B{S[n)S[m]} + E{S[m]*}}

Since Rgg[n,m] = E{S[n]S[m]}, we conclude that the following general condition must hold in

order for S[n] to converge in the mean-square sense. (Note that this result is also known as the
Loeve criterion [2]).

(Loéve criterion) S[n] ™" S iff lim Rsg[n,m] = C, for C € R

n—oo
m—00

In other words, we find that under general conditions (i.e., even if { X[n]} are not independent) the
sequence of partial sums {S[n]} will converge if the autocovariance function Rgg[n,m] approaches
a fixed constant C' as n and m become large.

12
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Problem 7.1-10 [Larson and Shubert, p. 427]

If X[n], forn =1,2,...,is a sequence of i.i.d. random variables with zero means and unit variances,
it follows from the central limit theorem that the stochastic sequence

Sin| = \}EZXW’ forn=1,2,...,
k=1

converges in distribution to a standard Gaussian random variable. Does the sequence S[n], for
n=1,2,..., also converge in the mean-square sense? Can it possibly converge almost surely?

As in Problem 7.1-7 we recall, from Definition 6.7-5 on page 379 in [4], that a random sequence
S[n] converges in the mean-square sense to the random variable S if

lim E{|S[n] — S|*} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim E{[S[n] - S =0 «— lim  E{|S[n] — S[m]*} =0

For the real-valued random sequence S[n|, we have the following result.
E{|S[n] - S[m][*} = E{S[n]*} — 2E{S[n]S[m]} + E{S[m]*}, for n #m

Substituting Equations 26 and 27 from Problem 7.1-7, we conclude that this condition can be
expressed as follows.

" 2
B8] - Spn)?) = - { S okl + (Zmﬂ) -
=1

=1

min(n,m)

2" i (Sowt) (Suin) |+

1=1

m m 2
1 . ,
L83 i (St
i=1
For this problem we have px[n] = 0 and 0% [n] = 1, such that the following condition holds.

)

In conclusion, in the limit of large n and m, the previous expression will converge to zero — implying
that S[n] does converge in the mean-square sense via Equation 24.

B(ti] - SlmlP?) =2 1

lim E{|S[n] — S|?’} =0= S[n] =" S

In addition, via the Strong Law of Large Numbers given on page 387 in [4], we also conclude that
the sequence S[n] converges almost surely to a standard Gaussian random variable.

13
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Problem 7.1-11 [Larson and Shubert, p. 427]

A closed-loop control system is trying to reach the state X = 0. It operates in such a manner that
if at time n its state is X[n] = x[n], then at time n+ 1 it transitions to state X[n+ 1] = z[n] — Z[n],
where the correction Z[n] is a Gaussian random variable with mean ;1 = x[n] and standard deviation
o = ~|z[n]|, for v+ > 0. Thus, the corrections are contaminated by noise proportional to the
magnitude of the correction. For what values of the constant + is the system successful in the sense
that X [n] converges to z = 0 in the mean-square sense? What happens for other values of 7?7

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence X[n| converges in the
mean-square sense to the random variable X if

lim E{|X[n] — X|*} = 0.
n—oo
As a result, we need to demonstrate that the following condition holds in order for the closed-loop
control system to reach the state X = 0, where X [n] is real-valued.
lim E{X[n]*} =0 (28)
n—oo

Let’s begin our analysis by determining the general form for X [n], where z[0] is the known initial
condition. We can evaluate the first few terms in the sequence directly.

X[1] = 2[0] — Z][0]
X[2] = z[0] — Z[0] — Z[1]
X[3] = 2[0] — Z[0] — Z[1] — Z[2]

X[n] =2[0] = ) Z[m],
m=0
where z[0] is the homogeneous solution to X[n + 1] = X[n|. At this point we can determine a

closed-form expression for E{X[n + 1]?} as follows.
B{X[n+ 112} = B{(X[n] - Zn])*} = B{(Z[n] — X[}
= £{(zln] - B{Z[n)})’}
= Var{Z[n]} = o? = 7* [«[n]|* = v* E{X[n]*}

From this expression we obtain a simple recurrence relation for E{X[n]?} which has the following
solution in terms of the initial condition x[0] and the constant ~.

E{X[n]*} = ~*"|z[0]|”

Substituting this result into Equation 28 yields the following condition such that X[n] converges
to zero in the mean-square sense.

lim E{X[n)*} =0= X[n] ™50, for0 <y <1

n—oo

For v > 1, a non-empty set of sample paths for X[n] will grow without bound as n increases.
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