EN 257: Applied Stochastic Processes
 Problem Set 5

Douglas Lanman
dlanman@brown.edu
13 April 2007

Problem 6.37

The members of a sequence of jointly independent random variables $X[n]$ have probability density functions of the following form.

$$
f_{X}(x ; n)=\left(1-\frac{1}{n}\right) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2 \sigma^{2}}\left(x-\frac{n-1}{n} \sigma\right)^{2}\right]+\frac{1}{n} \sigma \exp (-\sigma x) u(x)
$$

Determine whether or not the random sequence $X[n]$ converges in
(a) the mean-square sense,
(b) probability,
(c) distribution.

Part (a)

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence $X[n]$ converges in the mean-square sense to the random variable X if

$$
\lim _{n \rightarrow \infty} E\left\{|X[n]-X|^{2}\right\}=0
$$

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the following condition must hold in order for mean-square convergence.

$$
\lim _{n \rightarrow \infty} E\left\{|X[n]-X|^{2}\right\}=0 \Longleftrightarrow \lim _{n \rightarrow \infty, m \rightarrow \infty} E\left\{|X[n]-X[m]|^{2}\right\}=0
$$

For the real-valued random sequence $X[n]$, we have the following result.

$$
\begin{align*}
E\left\{|X[n]-X[m]|^{2}\right\} & =E\left\{(X[n]-X[m])^{2}\right\} \\
& =E\left\{X[n]^{2}\right\}-2 E\{X[n] X[m]\}+E\left\{X[m]^{2}\right\} \\
& =E\left\{X[n]^{2}\right\}-2 E\{X[n]\} E\{X[m]\}+E\left\{X[m]^{2}\right\}, \text { for } n \neq m \tag{1}
\end{align*}
$$

Note that in the previous expression we have substituted $E\{X[n] X[m]\}=E\{X[n]\} E\{X[m]\}$, since $\{X[n]\}$ are jointly independent and the expression will be nonzero only for the case $n \neq m$. Substituting the integral expressions for the expectations, we find

$$
\begin{align*}
& E\left\{|X[n]-X[m]|^{2}\right\}= \\
& \quad \int_{-\infty}^{\infty} x^{2} f_{X}(x ; n) d x-2\left[\int_{-\infty}^{\infty} x f_{X}(x ; n) d x\right]\left[\int_{-\infty}^{\infty} x f_{X}(x ; m) d x\right]+\int_{-\infty}^{\infty} x^{2} f_{X}(x ; m) d x \tag{2}
\end{align*}
$$

At this point we require the following solutions for the integrals in the previous expression.

$$
\begin{align*}
\int_{-\infty}^{\infty} x f_{X}(x ; n) d x & =\left(1-\frac{1}{n}\right) \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x \exp \left[-\frac{1}{2 \sigma^{2}}\left(x-\frac{n-1}{n} \sigma\right)^{2}\right] d x+\frac{\sigma}{n} \int_{0}^{\infty} x \exp (-\sigma x) d x \\
& =\left(1-\frac{1}{n}\right)^{2} \sigma+\frac{1}{n \sigma} \tag{3}\\
\int_{-\infty}^{\infty} x^{2} f_{X}(x ; n) d x & =\left(1-\frac{1}{n}\right) \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x^{2} \exp \left[-\frac{1}{2 \sigma^{2}}\left(x-\frac{n-1}{n} \sigma\right)^{2}\right] d x+\frac{\sigma}{n} \int_{0}^{\infty} x^{2} \exp (-\sigma x) d x \\
& =\left(1-\frac{1}{n}\right)^{3} \sigma^{2}+\left(1-\frac{1}{n}\right) \sigma^{2}+\frac{2}{n \sigma^{2}} \tag{4}
\end{align*}
$$

Substituting Equations 2-4 into Equation 1 yields the following result.

$$
\lim _{n \rightarrow \infty, m \rightarrow \infty} E\left\{|X[n]-X[m]|^{2}\right\}=2 \sigma^{2} \neq 0
$$

In conclusion we find that $X[n]$ does not converge in the mean-square sense.

$$
\lim _{n \rightarrow \infty} E\left\{|X[n]-X|^{2}\right\} \neq 0 \Rightarrow X[n] \stackrel{\text { m.s. }}{\nrightarrow} X
$$

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence $X[n]$ converges in probability to the limiting random variable X if

$$
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon]=0, \quad \forall \epsilon>0
$$

Let's define the following random sequence $Z[n]$ as follows.

$$
Z[n] \triangleq X[n]-X
$$

In terms of the $\operatorname{PDF} F_{Z}(z ; n)$ of the random sequence $Z[n]$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon] & =\lim _{n \rightarrow \infty} P[|Z[n]|>\epsilon] \\
& =\lim _{n \rightarrow \infty}\{P[Z[n]>\epsilon]+P[Z[n]<-\epsilon]\} \\
& =\lim _{n \rightarrow \infty}\left\{1-F_{Z}(\epsilon ; n)+F_{Z}(-\epsilon ; n)\right\} .
\end{aligned}
$$

As a result, we find that the following condition must hold if $X[n]$ converges to X in probability.

$$
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon]=0, \forall \epsilon>0 \Longleftrightarrow \lim _{n \rightarrow \infty}\left\{F_{Z}(\epsilon ; n)-F_{Z}(-\epsilon ; n)\right\}=1, \forall \epsilon>0
$$

While we could evaluate this expression directly from the expressions for $f_{X}(x ; n)$ and the limiting (postulated) form for $f_{X}(x)$, we know from Part (a) that $X[n]$ cannot converge in probability; that is, as we'll show in Part (c), $X[n]$ converges to a Gaussian random variable with mean σ and variance σ^{2}. As a result, in the limit of large $n, Z[n]=X[n]-X$ will tend to the difference between
two Gaussian random variables - which is well-known to have a mean value equal to the difference of the individual means and a variance equal to the sum of the variances [5].

$$
\lim _{n \rightarrow \infty} \mu_{Z}[n]=0 \text { and } \lim _{n \rightarrow \infty} \sigma_{Z}^{2}[n]=2 \sigma^{2} \Rightarrow \lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon] \neq 0, \forall \epsilon>0
$$

In conclusion we find that $X[n]$ does not converge in probability either.

$$
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon] \neq 0, \forall \epsilon>0 \Rightarrow X[n] \stackrel{P}{\nrightarrow} X
$$

Part (c)

Recall, from Definition 6.7-7 on page 381 in [4], that a random sequence $X[n]$ with PDF $F_{X}(x ; n)$ converges in distribution to the random variable X with $\operatorname{PDF} F_{X}(x)$ if

$$
\lim _{n \rightarrow \infty} F_{X}(x ; n)=F_{X}(x)
$$

for all x at which $F_{X}(x ; n)$ is continuous. Since convergence in distribution is defined by the limiting behavior of the probability distribution function, we must begin by integrating the $\operatorname{pdf} f_{X}(x ; n)$ as follows.

$$
\begin{aligned}
F_{X}(x ; n) & =\int_{-\infty}^{x} f_{X}(\xi ; n) d \xi \\
& =\left(1-\frac{1}{n}\right) \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \exp \left[-\frac{1}{2 \sigma^{2}}\left(\xi-\frac{n-1}{n} \sigma\right)^{2}\right] d \xi+\frac{1}{n} \int_{-\infty}^{x} \sigma \exp (-\sigma \xi) u(\xi) d \xi \\
& =\frac{1}{2}\left(1-\frac{1}{n}\right)\left\{1+\operatorname{erf}\left[\frac{x-\left(\frac{n-1}{n} \sigma\right)}{\sqrt{2} \sigma}\right]\right\}+\frac{1}{n}\left(1-e^{-\sigma x}\right) u(x)
\end{aligned}
$$

Note that in the previous expression we have used the following well-known integral for a Gaussian density function [5].

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \exp \left[-\frac{1}{2 \sigma^{2}}(\xi-\mu)^{2}\right] d \xi=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right)\right]
$$

At this point we can evaluate the limiting behavior of $F_{X}(x ; n)$ for large n.

$$
\lim _{n \rightarrow \infty} F_{X}(x ; n)=\lim _{n \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{n}\right)\left\{1+\operatorname{erf}\left[\frac{x-\left(\frac{n-1}{n} \sigma\right)}{\sqrt{2} \sigma}\right]\right\}+\lim _{n \rightarrow \infty} \frac{1}{n}\left(1-e^{-\sigma x}\right) u(x)
$$

Note that terms with coefficients of $1 / n$ tend to zero as n approaches infinity. As a result, we have

$$
\lim _{n \rightarrow \infty} F_{X}(x ; n)=\lim _{n \rightarrow \infty} \frac{1}{2}\left\{1+\operatorname{erf}\left[\frac{x-\left(\frac{n-1}{n} \sigma\right)}{\sqrt{2} \sigma}\right]\right\}=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\sigma}{\sqrt{2} \sigma}\right)\right] .
$$

In conclusion we find that $X[n]$ converges in distribution such that the following condition holds.

$$
\lim _{n \rightarrow \infty} F_{X}(x ; n)=F_{X}(x)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\sigma}{\sqrt{2} \sigma}\right)\right] \Rightarrow X[n] \xrightarrow{D} X
$$

Problem 6.40

Let $X[n]$ be a real-valued random sequence on $n \geq 0$ composed of stationary and independent increments such that $X[n]-X[n-1]=W[n]$ (i.e., where the increment $W[n]$ is a stationary and independent random sequence). Assume that $X[0]=0, E\{X[1]\}=\eta$, and $\operatorname{Var}\{X[1]\}=\sigma^{2}$.
(a) Find $\mu_{X}[n]$ and $\sigma_{X}^{2}[n]$ for any time $n>1$.
(b) Prove that $X[n] / n$ converges in probability to η as the time n approaches infinity.

Part (a)

Following the approach in Problem 6.22, let's begin by determining the general form for $X[n]$. We can evaluate the first few terms in the sequence directly.

$$
\begin{aligned}
& X[1]=X[0]+W[1] \\
& X[2]=X[0]+W[1]+W[2] \\
& X[3]=X[0]+W[1]+W[2]+W[3]
\end{aligned}
$$

By inspection, we conclude that the general form for $X[n]$ is given by

$$
X[n]=X[0]+\sum_{m=1}^{n} W[m],
$$

where $X[0]$ is the homogeneous solution to $X[n]=X[n-1]$. Substituting the initial condition $X[0]=0$ yields the specific solution for $X[n]$.

$$
\begin{equation*}
X[n]=\sum_{m=1}^{n} W[m] \tag{5}
\end{equation*}
$$

At this point we recall, from page 319 in [4], that the mean function of a random sequence is given by the following expression.

$$
\mu_{X}[n] \triangleq E\{X[n]\}
$$

Substituting Equation 5 and exploiting the linearity of the expectation operator, we find

$$
\begin{align*}
\mu_{X}[n] & =E\left\{\sum_{m=1}^{n} W[m]\right\}=\sum_{m=1}^{n} E\{W[m]\}=\sum_{m=1}^{n} E\{W[1]\} \\
& =\sum_{m=1}^{n} E\{X[1]-X[0]\}=\sum_{m=1}^{n} E\{X[1]\}=\sum_{m=1}^{n} \eta=n \eta . \tag{6}
\end{align*}
$$

Note that in the previous expression we have applied the condition that $W[n]$ is a stationary process to conclude that $E\{W[n]\}=E\{W[1]\}$ (since, by Theorem 6.1-2, all stationary random sequences are also wide-sense stationary and, by Definition 6.1-6, all wide-sense stationary processes have a constant mean function [4]). Similarly, we recall that the variance function is given by the following expression.

$$
\sigma_{X}^{2}[n]=\operatorname{Var}\{X[n]\} \triangleq E\left\{\left(X[n]-\mu_{X}[n]\right)\left(X[n]-\mu_{X}[n]\right)^{*}\right\}
$$

Substituting our previous results and assuming $X[n]$ is a real-valued sequence, we find

$$
\begin{aligned}
\sigma_{X}^{2}[n] & =E\left\{\left(X[n]-\mu_{X}[n]\right)^{2}\right\} \\
& =E\left\{\left[\left(\sum_{m=1}^{n} W[m]\right)-n \eta\right]^{2}\right\} \\
& =E\left\{\left[\left(\sum_{l=1}^{n} W[l]\right)-n \eta\right]\left[\left(\sum_{m=1}^{n} W[m]\right)-n \eta\right]\right\} \\
& =\sum_{l=1}^{n} \sum_{m=1}^{n} E\{W[l] W[m]\}-2 n \eta \sum_{m=1}^{n} E\{W[m]\}+n^{2} \eta^{2} .
\end{aligned}
$$

Note that in the previous expression we have exploited the linearity property of the expectation operator. At this point we recall that $W[n]$ is a stationary independent sequence, such that $E\{W[n]\}=E\{W[1]\}=\eta$, and must satisfy the following condition.

$$
E\{W[l] W[m]\}= \begin{cases}E\left\{W[1]^{2}\right\}, & \text { for } l=m \\ E\{W[1]\} E\{W[1]\}=\eta^{2}, & \text { otherwise }\end{cases}
$$

Substituting this condition into the previous expression yields the following result.

$$
\begin{align*}
\sigma_{X}^{2}[n] & =\sum_{m=1}^{n} E\left\{W[m]^{2}\right\}+\left(n^{2}-n\right) \eta^{2}-2 n^{2} \eta^{2}+n^{2} \eta^{2} \\
& =\sum_{m=1}^{n} E\left\{(W[m]-\eta)^{2}\right\}=\sum_{m=1}^{n} \operatorname{Var}\{W[m]\}=\sum_{m=1}^{n} \operatorname{Var}\{W[1]\} \\
& =n \operatorname{Var}\{W[1]\}=n E\left\{(W[1]-\eta)^{2}\right\}=n E\left\{(X[1]-X[0]-\eta)^{2}\right\} \\
& =n E\left\{(X[1]-E\{X[1]\})^{2}\right\}=n \operatorname{Var}\{X[1]\}=n \sigma^{2} \tag{7}
\end{align*}
$$

In conclusion, we find that the mean and variance functions for the random sequence $X[n]$ are given by Equations 6 and 7, respectively.

$$
\begin{gathered}
\mu_{X}[n]=n \eta, \text { for } n>1 \\
\sigma_{X}^{2}[n]=n \sigma^{2}, \text { for } n>1 \\
\hline
\end{gathered}
$$

Part (b)

Recall, from Definition 6.7-6 on page 379 in [4], that a random sequence $X[n]$ converges in probability to the limiting random variable X if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon]=0, \forall \epsilon>0 \tag{8}
\end{equation*}
$$

Furthermore, by Chebyshev's inequality, we recall that mean-square convergence such that

$$
\lim _{n \rightarrow \infty} E\left\{|X[n]-X|^{2}\right\}=0
$$

implies convergence in probability, since

$$
P[|X[n]-X|>\epsilon] \leq E\left\{|X[n]-X|^{2}\right\} / \epsilon^{2}, \forall \epsilon>0
$$

As a result, we proceed by proving that the real-valued sequence $X[n] / n$ converges in the meansquare sense to the constant $X=\eta$.

$$
\begin{aligned}
E\left\{\left|\frac{X[n]}{n}-\eta\right|^{2}\right\} & =E\left\{\left(\frac{X[n]}{n}-\eta\right)^{2}\right\} \\
& =\frac{1}{n^{2}} E\left\{X[n]^{2}\right\}-\frac{2 \eta}{n} E\{X[n]\}+\eta^{2} \\
& =\frac{1}{n^{2}} E\left\{X[n]^{2}\right\}-\eta^{2}=\frac{1}{n^{2}} E\left\{(X[n]-n \eta)^{2}\right\} \\
& =\frac{1}{n^{2}} E\left\{(X[n]-E\{X[n]\})^{2}\right\}=\frac{1}{n^{2}} \sigma_{X}^{2}[n]=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Substituting into Equation 8, we find that $X[n] / n$ converges in the mean-square sense to $X=\eta$.

$$
\lim _{n \rightarrow \infty} E\left\{\left|\frac{X[n]}{n}-\eta\right|^{2}\right\}=0 \Rightarrow \frac{X[n]}{n} \xrightarrow{\text { m.s. }} \eta
$$

In conclusion, since mean-square converge implies converge in probability, we conclude that $X[n] / n$ converges in probability to η as the time n approaches infinity.

$$
\lim _{n \rightarrow \infty} P[|X[n]-X|>\epsilon]=0, \forall \epsilon>0 \Rightarrow \frac{X[n]}{n} \xrightarrow{P} \eta
$$

(QED)

Problem 5.4-9 [Larson and Shubert, p. 341]

Consider a population of mice in some fixed geographical area and let $X[n]$ be their number at the beginning of the $n^{\text {th }}$ time period. Assume that during each time period each mouse present at the beginning of that period has a fixed probability p of dying, independently of all the others. Before the end of the $n^{\text {th }}$ period, however, a random number $Y[n]$ of new mice invades the area, where $Y[n]$ is a Poisson random variable with parameter λ and is independent of $X[n]$.
(a) Find the conditional expectation $E\{X[n+1] \mid X[n]=x\}$ for all $n \geq 1$.
(b) Use the conditional expectation to obtain a recurrence relation for $\mu_{X}[n]=E\{X[n]\}$.
(c) Show the average number of mice $\mu_{X}[n]$ approaches a limit as $n \rightarrow \infty$ and evaluate this limit.

Part (a)

Let's begin by defining the number of mice $X[n+1]$ at the beginning of time period $n+1$. From the problem statement we have

$$
X[n+1]=X[n]-D[n]+Y[n],
$$

where $X[n]$ is the number of mice at the beginning of period $n, D[n]$ is the number of mice which died during the previous period, and $Y[n]$ is the number of invading mice. Since the conditional expectation operator is linear, we conclude

$$
\begin{align*}
E\{X[n+1] \mid X[n]=x\} & =E\{X[n] \mid X[n]=x\}-E\{D[n] \mid X[n]=x\}+E\{Y[n] \mid X[n]=x\} \\
& =x-E\{D[n] \mid X[n]=x\}+E\{Y[n] \mid X[n]=x\} . \tag{9}
\end{align*}
$$

To proceed we must determine the remaining conditional expectations in Equation 9. First, note that $D[n]$, the number of mice that died in period n, follows a binomial distribution.

$$
P\{D[n]=d \mid X[n]=x\}=\binom{x}{d} p^{d}(1-p)^{x-d}
$$

As a result, we conclude that the expected number of deaths is given by the following expression in $X[n]=x$ and p.

$$
\begin{equation*}
E\{D[n] \mid X[n]=x\}=\sum_{d=0}^{x} d\binom{x}{d} p^{d}(1-p)^{x-d}=p x \tag{10}
\end{equation*}
$$

Similarly, from the problem statement, we note that $Y[n]$ follows a Poisson distribution with parameter λ.

$$
P\{Y[n]=y \mid X[n]=x\}=\frac{\lambda^{y} e^{-\lambda}}{y!}
$$

Following Example 4.1-2 on page 173 in [4], we conclude that the expected number of invading mice is given by the following expression in $X[n]=x$ and λ.

$$
\begin{equation*}
E\{Y[n] \mid X[n]=x\}=\sum_{y=0}^{\infty} y\left(\frac{\lambda^{y} e^{-\lambda}}{y!}\right)=\lambda \tag{11}
\end{equation*}
$$

Substituting Equations 10 and 11 into Equation 9 yields the desired expression for the conditional expectation.

$$
\begin{equation*}
E\{X[n+1] \mid X[n]=x\}=(1-p) x+\lambda \tag{12}
\end{equation*}
$$

Part (b)

Recall from Problem 6.22 that the mean function $\mu_{X}[n]$ is given by

$$
\mu_{X}[n]=E\{X[n]\}
$$

For the initial condition $X[1]$ we must have

$$
\mu_{X}[1]=E\{X[1]\}=X[1],
$$

since $X[1]$ is a known constant. By recursively applying the conditional expectation in Equation 12, we can determine the first few terms of $\mu_{X}[n]$.

$$
\begin{aligned}
& \mu_{X}[2]=E\{X[2] \mid X[1]\}=(1-p) X[1]+\lambda \\
& \mu_{X}[3]=E\{X[3] \mid X[2]\}=(1-p)^{2} X[1]+(1-p) \lambda+\lambda
\end{aligned}
$$

By induction, we conclude that $\mu_{X}[n]$ is given by the following expression.

$$
\mu_{X}[n]= \begin{cases}(1-p)^{n-1} X[1]+\lambda \sum_{i=0}^{n-2}(1-p)^{i}, & \text { for } n>1 \\ X[1], & \text { for } n=1\end{cases}
$$

For $0<p \leq 1$ the geometric series converges and $\mu_{X}[n]$ has the following solution.

$$
\mu_{X}[n]= \begin{cases}\frac{\lambda}{p}+(1-p)^{n-1}\left(X[1]-\frac{\lambda}{p}\right), & \text { for } n>1 \tag{13}\\ X[1], & \text { for } n=1\end{cases}
$$

Part (c)

For $0<p \leq 1$ the average number of mice $\mu_{X}[n]$ approaches a finite limit as $n \rightarrow \infty$.

$$
\lim _{n \rightarrow \infty} \mu_{X}[n]=\lim _{n \rightarrow \infty}\left\{\frac{\lambda}{p}+(1-p)^{n-1}\left(X[1]-\frac{\lambda}{p}\right)\right\}=\frac{\lambda}{p}
$$

Note that, since $0<p \leq 1$, then $(1-p)^{n-1}$ tends to zero as n becomes large. As a result we conclude that, regardless of the starting population $X[1]$, the average number of mice $\mu_{X}[n]$ approaches the following limit as $n \rightarrow \infty$.

$$
\lim _{n \rightarrow \infty} \mu_{X}[n]=\frac{\lambda}{p}, \text { for } 0<p \leq 1
$$

Obviously, for $p=0$, there will be no deaths and the population will grow without bound for $\lambda>0$.

Problem 5.4-13 [Larson and Shubert, p. 342]

Let X_{1} and X_{2} be independent random variables both uniformly distributed on $(0,1)$. For

$$
Y=\frac{1}{2}\left(X_{1}+X_{2}\right) \quad \text { and } \quad Z=\sqrt{X_{1} X_{2}}
$$

find the conditional expectation $E[Y \mid Z=z]$ for all $0<z<1$.

We begin our analysis by applying the linearity property of the conditional expectation operator.

$$
\begin{equation*}
E[Y \mid Z=z]=E\left[\left.\frac{1}{2}\left(X_{1}+X_{2}\right) \right\rvert\, Z=z\right]=\frac{1}{2} E\left[X_{1} \mid Z=z\right]+\frac{1}{2} E\left[X_{2} \mid Z=z\right]=E\left[X_{1} \mid Z=z\right] \tag{14}
\end{equation*}
$$

Note that, on the right-hand side, we have used the fact that the expression is symmetric in X_{1} and X_{2}, so we are only required to evaluate the single conditional expectation $E\left[X_{1} \mid Z=z\right]$. Now recall, from Equations 4.2-9 and 4.2-10 on page 186 in [4], that the conditional expectation of X_{1} given $Z=z$ is

$$
\begin{equation*}
E\left[X_{1} \mid Z=z\right] \triangleq \int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid Z}\left(x_{1} \mid z\right) d x_{1} \tag{15}
\end{equation*}
$$

where the conditional probability density function is given by

$$
\begin{equation*}
f_{X_{1} \mid Z}\left(x_{1} \mid z\right)=\frac{f_{Z X_{1}}\left(z, x_{1}\right)}{f_{Z}(z)}, \text { for } f_{Z}(z) \neq 0 \tag{16}
\end{equation*}
$$

At this point all that remains is to determine closed-form expressions for $f_{Z X_{1}}\left(z, x_{1}\right)$ and $f_{Z}(z)$; substituting these expressions into Equation 16 will yield the desired solution for $E[Y \mid Z=z]$ via Equations 14 and 15.

The expression for $f_{Z}(z)$ can be found using the approach outlined in Example 3.3-1 on page 186. Specifically, we know that the following expression defines the distribution function $F_{Z}(z)$.

$$
F_{Z}(z)=\iint_{\left(x_{1}, x_{2}\right) \in C_{z}} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}, \text { for }\{Z \leq z\}=\left\{\left(X_{1}, X_{2}\right) \in C_{z}\right\}
$$

For X_{1} and X_{2} uniformly distributed on $(0,1)$, the joint density function has the following form.

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)= \begin{cases}1, & \text { for } 0<x_{1}, x_{2}<1 \tag{17}\\ 0, & \text { otherwise }\end{cases}
$$

To evaluate the previous expression for $F_{Z}(z)$, we note that X_{2} can be expressed in terms of X_{1} using $Z=\sqrt{X_{1} X_{2}}$. As a result, we must have

$$
x_{2}= \begin{cases}\frac{z^{2}}{x_{1}}, & \text { for } z^{2} \leq x_{1}<1 \\ 1, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

which yields the following result for the probability distribution $F_{Z}(z)$.

$$
F_{Z}(z)=\int_{z^{2}}^{1}\left(\int_{0}^{\frac{z^{2}}{x_{1}}} d x_{2}\right) d x_{1}+\int_{0}^{z^{2}}\left(\int_{0}^{1} d x_{2}\right) d x_{1}=\left[1-\ln \left(z^{2}\right)\right] z^{2}
$$

Taking the first derivative with respect to z yields the desired expression for $f_{Z}(z)$.

$$
\begin{equation*}
f_{Z}(z)=\frac{d F_{Z}(z)}{d z}=-2 z \ln \left(z^{2}\right) \tag{18}
\end{equation*}
$$

The expression for $f_{Z X_{1}}\left(z, x_{1}\right)$ can be found using the approach outlined in Example 3.5-4 on page 159. We begin by defining the pair of random variables Z and X_{1} as functions of X_{1} and X_{2}.

$$
Z \triangleq g\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}} \quad \text { and } \quad X_{1} \triangleq h\left(X_{1}, X_{1}\right)=X_{1}
$$

Next, we observe that the equations

$$
z-g\left(x_{1}, x_{2}\right)=0 \quad \text { and } \quad x_{1}-h\left(x_{1}, x_{2}\right)=0
$$

have only one real root, for $0<x_{1}, x_{2}<1$, given by

$$
\begin{equation*}
x_{1}^{1}=\phi_{1}\left(z, x_{1}\right)=x_{1} \quad \text { and } \quad x_{2}^{1}=\varphi_{1}\left(z, x_{1}\right)=\frac{z^{2}}{x_{1}} . \tag{19}
\end{equation*}
$$

At this point we recall that $f_{Z X_{1}}\left(z, x_{1}\right)$ can be obtained directly from $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$ using the methods outlined in Section 3.4 in [4]. From that section we note that the joint pdf can be expressed as

$$
\begin{equation*}
f_{Z X_{1}}\left(z, x_{1}\right)=\sum_{i=1}^{n} f_{X_{1} X_{2}}\left(x_{1}^{i}, x_{2}^{i}\right)\left|\tilde{J}_{i}\right|, \tag{20}
\end{equation*}
$$

where $\left|\tilde{J}_{i}\right|$ is the magnitude of the Jacobian transformation such that

$$
\left|\tilde{J}_{i}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
\partial \phi_{i} / \partial z & \partial \phi_{i} / \partial x_{1} \tag{21}\\
\partial \varphi_{i} / \partial z & \partial \varphi_{i} / \partial x_{1}
\end{array}\right)\right|
$$

and n is the number of solutions to the equations $z=g\left(x_{1}, x_{2}\right)$ and $x_{1}=h\left(x_{1}, x_{2}\right)$. Substituting Equation 19 into Equation 21 gives the following Jacobian magnitude.

$$
\left|\tilde{J}_{1}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
0 & 1 \tag{22}\\
\frac{2 z}{x_{1}} & -\frac{z^{2}}{x_{1}^{2}}
\end{array}\right)\right|=\frac{2 z}{x_{1}}
$$

Substituting Equations 17, 19, and 22 into Equation 20 yields the desired expression for the joint probability density $f_{Z X_{1}}\left(z, x_{1}\right)$.

$$
f_{Z X_{1}}\left(z, x_{1}\right)=\left(\frac{2 z}{x_{1}}\right) f_{X_{1} X_{2}}\left(\frac{z^{2}}{x_{1}}, x_{1}\right)= \begin{cases}\frac{2 z}{x_{1}}, & \text { for } z^{2} \leq x_{1}<1 \tag{23}\\ 0, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

Now that we have determined closed-form expressions for $f_{Z X_{1}}\left(z, x_{1}\right)$ and $f_{Z}(z)$, we can substitute into Equation 16 to obtain the conditional density $f_{X_{1} \mid Z}\left(x_{1} \mid z\right)$.

$$
f_{X_{1} \mid Z}\left(x_{1} \mid z\right)=\frac{f_{Z X_{1}}\left(z, x_{1}\right)}{f_{Z}(z)}= \begin{cases}\frac{-1}{x_{1} \ln \left(z^{2}\right)}, & \text { for } z^{2} \leq x_{1}<1 \\ 0, & \text { for } 0<x_{1}<z^{2}\end{cases}
$$

Substituting this result into Equation 15 gives the answer for $E[Y \mid Z=z]$ via Equation 14.

$$
E[Y \mid Z=z]=\int_{z^{2}}^{1} x_{1} f_{X_{1} \mid Z}\left(x_{1} \mid z\right) d x_{1}=\frac{-1}{\ln \left(z^{2}\right)} \int_{z^{2}}^{1} d x_{1}=\frac{z^{2}-1}{\ln \left(z^{2}\right)}
$$

In conclusion, we find that the conditional expectation $E[Y \mid Z=z]$ is given by the following expression.

$$
E[Y \mid Z=z]=\frac{z^{2}-1}{\ln \left(z^{2}\right)}, \text { for all } 0<z<1
$$

Problem 7.1-7 [Larson and Shubert, p. 426]

Let $X[n]$, for $n=1,2, \ldots$, be a sequence of independent random variables with $E\{X[n]\}=\mu_{X}[n]$ and $\operatorname{Var}\{X[n]\}=\sigma_{X}^{2}[n]$. Use the Cauchy criterion to show that the sequence of partial sums $S[n]=X[1]+\ldots+X[n]$, for $n=1,2, \ldots$, converges in mean-square sense if and only if the infinite series $\sum_{n=1}^{\infty} \mu_{X}[n]$ and $\sum_{n=1}^{\infty} \sigma_{X}^{2}[n]$ converge. Can the independence assumption be weakened?

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence $S[n]$ converges in the mean-square sense to the random variable S if

$$
\lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0
$$

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the following condition must hold in order for mean-square convergence.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0 \Longleftrightarrow \lim _{n \rightarrow \infty, m \rightarrow \infty} E\left\{|S[n]-S[m]|^{2}\right\}=0 \tag{24}
\end{equation*}
$$

For the real-valued random sequence $S[n]$, we have the following result.

$$
\begin{align*}
E\left\{|S[n]-S[m]|^{2}\right\} & =E\left\{(S[n]-S[m])^{2}\right\} \\
& =E\left\{S[n]^{2}\right\}-2 E\{S[n] S[m]\}+E\left\{S[m]^{2}\right\}, \text { for } n \neq m \tag{25}
\end{align*}
$$

In the previous expression we only need to consider the case $n \neq m$, since $E\left\{|S[n]-S[m]|^{2}\right\}=0$ for $n=m$. At this point we can solve for the individual terms on the right-hand side as follows.

$$
\begin{align*}
E\left\{S[n]^{2}\right\} & =E\left\{\left(\sum_{i=1}^{n} X[i]\right)\left(\sum_{j=1}^{n} X[j]\right)\right\}=\sum_{i=1}^{n} \sum_{j=1}^{n} E\{X[i] X[j]\} \\
& =\sum_{i=1}^{n} E\left\{X[i]^{2}\right\}+\sum_{i=1}^{n} \sum_{j=1}^{n} E\{X[i]\} E\{X[j]\}-\sum_{i=1}^{n} E\{X[i]\}^{2} \\
& =\sum_{i=1}^{n} E\left\{(X[i]-E\{X[i]\})^{2}\right\}+\left(\sum_{i=1}^{n} E\{X[i]\}\right)\left(\sum_{j=1}^{n} E\{X[j]\}\right) \\
& =\sum_{i=1}^{n} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)^{2} \tag{26}
\end{align*}
$$

Similarly, $E\{S[n] S[m]\}$ is given by the following expression for $n \neq m$.

$$
\begin{align*}
E\{S[n] S[m]\} & =E\left\{\left(\sum_{i=1}^{n} X[i]\right)\left(\sum_{j=1}^{m} X[j]\right)\right\}=\sum_{i=1}^{n} \sum_{j=1}^{m} E\{X[i] X[j]\} \\
& =\sum_{i=1}^{\min (n, m)} E\left\{X[i]^{2}\right\}+\sum_{i=1}^{n} \sum_{j=1}^{m} E\{X[i]\} E\{X[j]\}-\sum_{i=1}^{\min (n, m)} E\{X[i]\}^{2} \\
& =\sum_{i=1}^{\min (n, m)} E\left\{(X[i]-E\{X[i]\})^{2}\right\}+\left(\sum_{i=1}^{n} E\{X[i]\}\right)\left(\sum_{j=1}^{m} E\{X[j]\}\right) \\
& =\sum_{i=1}^{\min (n, m)} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)\left(\sum_{i=1}^{m} \mu_{X}[i]\right) \tag{27}
\end{align*}
$$

Substituting Equations 26 and 27 into Equation 25 yields the following result.

$$
\begin{aligned}
\lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}} E\left\{|S[n]-S[m]|^{2}\right\}= & \lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}}\left\{\sum_{i=1}^{n} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)^{2}\right\}- \\
& \lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}} 2\left\{\sum_{i=1}^{\min (n, m)} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)\left(\sum_{i=1}^{m} \mu_{X}[i]\right)\right\}+ \\
& \lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}}\left\{\sum_{i=1}^{m} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{m} \mu_{X}[i]\right)^{2}\right\}
\end{aligned}
$$

Note that this expression will have a limit of zero if and only if the infinite series $\sum_{n=1}^{\infty} \mu_{X}[n]$ and $\sum_{n=1}^{\infty} \sigma_{X}^{2}[n]$ converge. As a result, by the Cauchy criterion given in Equation 24, the random sequence $S[n]$ will converge in the mean-square sense if and only if the infinite series $\sum_{n=1}^{\infty} \mu_{X}[n]$ and $\sum_{n=1}^{\infty} \sigma_{X}^{2}[n]$ converge.

$$
\therefore \lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0 \Rightarrow S[n] \xrightarrow{\text { m.s. }} S \text { iff } \sum_{n=1}^{\infty} \mu_{X}[n] \text { and } \sum_{n=1}^{\infty} \sigma_{X}^{2}[n] \text { converge }
$$

To complete our analysis we note that the independence assumption could be lifted in certain cases. Examining Equation 25 we note that the following condition must hold for $S[n]$ to converge in the mean-square sense.

$$
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} E\left\{|S[n]-S[m]|^{2}\right\}=\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}}\left\{E\left\{S[n]^{2}\right\}-2 E\{S[n] S[m]\}+E\left\{S[m]^{2}\right\}\right\}
$$

Since $R_{S S}[n, m]=E\{S[n] S[m]\}$, we conclude that the following general condition must hold in order for $S[n]$ to converge in the mean-square sense. (Note that this result is also known as the Loève criterion [2]).

$$
\text { (Loève criterion) } S[n] \xrightarrow{\text { m.s. }} S \text { iff } \lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} R_{S S}[n, m]=C \text {, for } C \in \mathbb{R}
$$

In other words, we find that under general conditions (i.e., even if $\{X[n]\}$ are not independent) the sequence of partial sums $\{S[n]\}$ will converge if the autocovariance function $R_{S S}[n, m]$ approaches a fixed constant C as n and m become large.

Problem 7.1-10 [Larson and Shubert, p. 427]

If $X[n]$, for $n=1,2, \ldots$, is a sequence of i.i.d. random variables with zero means and unit variances, it follows from the central limit theorem that the stochastic sequence

$$
S[n]=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X[k], \text { for } n=1,2, \ldots,
$$

converges in distribution to a standard Gaussian random variable. Does the sequence $S[n]$, for $n=1,2, \ldots$, also converge in the mean-square sense? Can it possibly converge almost surely?

As in Problem 7.1-7 we recall, from Definition 6.7-5 on page 379 in [4], that a random sequence $S[n]$ converges in the mean-square sense to the random variable S if

$$
\lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0
$$

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the following condition must hold in order for mean-square convergence.

$$
\lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0 \Longleftrightarrow \lim _{n \rightarrow \infty, m \rightarrow \infty} E\left\{|S[n]-S[m]|^{2}\right\}=0
$$

For the real-valued random sequence $S[n]$, we have the following result.

$$
E\left\{|S[n]-S[m]|^{2}\right\}=E\left\{S[n]^{2}\right\}-2 E\{S[n] S[m]\}+E\left\{S[m]^{2}\right\}, \text { for } n \neq m
$$

Substituting Equations 26 and 27 from Problem 7.1-7, we conclude that this condition can be expressed as follows.

$$
\begin{aligned}
& E\left\{|S[n]-S[m]|^{2}\right\}= \frac{1}{n}\left\{\sum_{i=1}^{n} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)^{2}\right\}- \\
& \frac{2}{\sqrt{n m}}\left\{\sum_{i=1}^{\min (n, m)} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{n} \mu_{X}[i]\right)\left(\sum_{i=1}^{m} \mu_{X}[i]\right)\right\}+ \\
& \frac{1}{m}\left\{\sum_{i=1}^{m} \sigma_{X}^{2}[i]+\left(\sum_{i=1}^{m} \mu_{X}[i]\right)^{2}\right\}
\end{aligned}
$$

For this problem we have $\mu_{X}[n]=0$ and $\sigma_{X}^{2}[n]=1$, such that the following condition holds.

$$
E\left\{|S[n]-S[m]|^{2}\right\}=2\left(1-\frac{\min (n, m)}{\sqrt{n m}}\right)
$$

In conclusion, in the limit of large n and m, the previous expression will converge to zero - implying that $S[n]$ does converge in the mean-square sense via Equation 24.

$$
\lim _{n \rightarrow \infty} E\left\{|S[n]-S|^{2}\right\}=0 \Rightarrow S[n] \xrightarrow{\text { m.s. }} S
$$

In addition, via the Strong Law of Large Numbers given on page 387 in [4], we also conclude that the sequence $S[n]$ converges almost surely to a standard Gaussian random variable.

Problem 7.1-11 [Larson and Shubert, p. 427]

A closed-loop control system is trying to reach the state $X=0$. It operates in such a manner that if at time n its state is $X[n]=x[n]$, then at time $n+1$ it transitions to state $X[n+1]=x[n]-Z[n]$, where the correction $Z[n]$ is a Gaussian random variable with mean $\mu=x[n]$ and standard deviation $\sigma=\gamma|x[n]|$, for $\gamma>0$. Thus, the corrections are contaminated by noise proportional to the magnitude of the correction. For what values of the constant γ is the system successful in the sense that $X[n]$ converges to $x=0$ in the mean-square sense? What happens for other values of γ ?

Recall, from Definition 6.7-5 on page 379 in [4], that a random sequence $X[n]$ converges in the mean-square sense to the random variable X if

$$
\lim _{n \rightarrow \infty} E\left\{|X[n]-X|^{2}\right\}=0
$$

As a result, we need to demonstrate that the following condition holds in order for the closed-loop control system to reach the state $X=0$, where $X[n]$ is real-valued.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left\{X[n]^{2}\right\}=0 \tag{28}
\end{equation*}
$$

Let's begin our analysis by determining the general form for $X[n]$, where $x[0]$ is the known initial condition. We can evaluate the first few terms in the sequence directly.

$$
\begin{aligned}
X[1] & =x[0]-Z[0] \\
X[2] & =x[0]-Z[0]-Z[1] \\
X[3] & =x[0]-Z[0]-Z[1]-Z[2]
\end{aligned}
$$

By inspection, we conclude that the general form for $X[n]$ is given by

$$
X[n]=x[0]-\sum_{m=0}^{n-1} Z[m],
$$

where $x[0]$ is the homogeneous solution to $X[n+1]=X[n]$. At this point we can determine a closed-form expression for $E\left\{X[n+1]^{2}\right\}$ as follows.

$$
\begin{aligned}
E\left\{X[n+1]^{2}\right\} & =E\left\{(X[n]-Z[n])^{2}\right\}=E\left\{(Z[n]-X[n])^{2}\right\} \\
& =E\left\{(Z[n]-E\{Z[n]\})^{2}\right\} \\
& =\operatorname{Var}\{Z[n]\}=\sigma^{2}=\gamma^{2}|x[n]|^{2}=\gamma^{2} E\left\{X[n]^{2}\right\}
\end{aligned}
$$

From this expression we obtain a simple recurrence relation for $E\left\{X[n]^{2}\right\}$ which has the following solution in terms of the initial condition $x[0]$ and the constant γ.

$$
E\left\{X[n]^{2}\right\}=\gamma^{2 n}|x[0]|^{2}
$$

Substituting this result into Equation 28 yields the following condition such that $X[n]$ converges to zero in the mean-square sense.

$$
\lim _{n \rightarrow \infty} E\left\{X[n]^{2}\right\}=0 \Rightarrow X[n] \xrightarrow{\text { m.s. }} 0, \text { for } 0<\gamma<1
$$

For $\gamma \geq 1$, a non-empty set of sample paths for $X[n]$ will grow without bound as n increases.

References

[1] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes (Third Edition). Oxford University Press, 2001.
[2] Harold J. Larson and Bruno O. Shubert. Probabilistic Models in Engineering Sciences: Random Variables and Stochastic Processes. John Wiley \& Sons, 1979.
[3] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[4] Henry Stark and John W. Woods. Probability and Random Processes with Applications to Signal Processing (Third Edition). Prentice-Hall, 2002.
[5] Wikipedia. Normal distribution. http://en.wikipedia.org/wiki/Normal_distribution.

