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Problem 6.22

Let W [n] be an independent random sequence with constant mean µW = 0 and variance σ2
W .

Define a new random sequence X[n] as follows:

X[0] = 0
X[n] = ρX[n− 1] + W [n] for n ≥ 1.

(a) Find the mean value of X[n] for n ≥ 0.
(b) Find the autocovariance of X[n], denoted as KXX [m, n].
(c) For what values of ρ does KXX [m,n] tend to G[m− n], for some finite-valued function G, as

m and n become large? (This situation is known as asymptotic stationarity.)

Part (a)

Let’s begin by determining the general form for X[n]. Following the derivation presented in class,
we can evaluate the first few terms in the sequence directly.

X[1] = ρX[0] + W [1]

X[2] = ρ(ρX[0] + W [1]) + W [2] = ρ2X[0] + ρW [1] + W [2]

X[3] = ρ(ρ2X[0] + ρW [1] + W [2]) + W [3] = ρ3X[0] + ρ2W [1] + ρW [2] + W [3]

By inspection, we conclude that the general form for X[n] is given by

X[n] = ρnX[0] +
n∑

m=1

ρn−mW [m],

where ρnX[0] is the homogeneous solution to X[n] = ρX[n− 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

X[n] =
n∑

m=1

ρn−mW [m] (1)

At this point we recall, from page 319 in [5], that the mean function of a random sequence is given
by the following expression.

µX [n] , E{X[n]}
Substituting Equation 1 and exploiting the linearity of the expectation operator, we find

µX [n] = E

{
n∑

m=1

ρn−mW [m]

}
=

n∑

m=1

ρn−mE{W [m]} =
n∑

m=1

ρn−mµW = 0.
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As a result, we conclude that the random sequence X[n] is mean-zero for all n ≥ 0.

µX [n] = µX = 0, for n ≥ 0

Part (b)

Recall, from Equation 6.1-10, that the autocovariance KXX [m, n] is defined as follows.

KXX [m,n] , E{(X[m]− µX [m])(X[n]− µX [n])∗}
Substituting Equation 1 and the result µX = 0, we obtain the following expression for KXX [m,n].

KXX [m,n] = E





(
m∑

i=1

ρm−iW [i]

)


n∑

j=1

ρn−jW [j]



∗


=
m∑

i=1

n∑

j=1

ρm−i(ρ∗)n−jE {W [i]W ∗[j]} (2)

At this point, we recall that the variance σ2
W [n] of W [n] is given by the following expression.

σ2
W [n] = Var {W [n]} , E {(W [n]− µW [n])(W [n]− µW [n])∗}

Since µW [n] = 0, we have

σ2
W [n] = σ2

W = E {W [n]W ∗[n]} , for n ≥ 0.

In addition, we recall from Definition 6.1-2 that an independent random sequence is one whose
random variables at any times {n1, n2, . . . , nN} are jointly independent for all positive integers N .
As a result, we conclude that E {W [m]W ∗[n]} is given by the following expression.

E {W [m]W ∗[n]} =
{

σ2
W , for m = n

0, otherwise

Substituting this result into Equation 2 gives the following expression for KXX [m,n].

KXX [m,n] =
{ ∑n

i=1 ρm−i(ρ∗)n−iσ2
W , for m ≥ n∑m

i=1 ρm−i(ρ∗)n−iσ2
W , for m < n

Following the derivation in class, we conclude that these geometric series will converge for |ρ| < 1,
such that the solution for KXX [m,n] is given by the following expression.

KXX [m,n] =





[
ρm−n(1−|ρ|2n)

1−|ρ|2
]
σ2

W , for m ≥ n
[

(ρ∗)n−m(1−|ρ|2m)
1−|ρ|2

]
σ2

W , for m < n
, for |ρ| < 1

As an aside, we note that |ρ| < 1 is a reasonable assumption, since this ensures bounded-input/bounded-
output (BIBO) stability. Also, for ρ ∈ R, this solution reduces to that found in class.

Part (c)

Finally, we conclude by noticing that X[n] is asymptotically stationary for |ρ| < 1. That is, in the
limit that m and n become large, KXX [m,n] is only a function of the time shift m− n such that

lim
m→∞, n→∞KXX [m,n] = G[m− n] =





[
ρm−n

1−|ρ|2
]
σ2

W , for m ≥ n
[

(ρ∗)n−m

1−|ρ|2
]
σ2

W , for m < n
, for |ρ| < 1
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Problem 6.25

Consider a wide sense stationary random sequence X[n] input to a linear filter with impulse response

h[n] =
{

1/2, n = {0, 1}
0, otherwise.

(3)

Write the PSD of the output sequence SY Y (ω) in terms of the PSD of the input sequence SXX(ω).

(a) Show that the PSD is real-valued, even if X[n] is a complex-valued random sequence.

(b) Show that if X[n] is real-valued, then SXX(ω) = SXX(−ω).

(c) Show that SXX(ω) ≥ 0 for every ω, regardless of whether X[n] is complex-valued or not.

Let’s begin by determining the PSD of the output sequence SY Y (ω) in terms of the PSD of the
input sequence SXX(ω). First, we recall that the autocorrelation of the output sequence RY Y [m]
is given by Equation 6.4-1 on page 350 in [5].

RY Y [m] = g[m] ∗RXX [m], for g[m] , h[m] ∗ h∗[−m]

Note that g[m], the autocorrelation impulse response, is given by

g[m] = h[m] ∗ h∗[−m] =
∞∑

k=−∞
h[k]h∗[m− k] =





1/4, m = {0, 2}
1/2, m = 1
0, otherwise.

Also recall that the power spectral density (PSD) of the input sequence SXX(ω) is defined as the
discrete-time Fourier transform (DFT) of the input autocorrelation function RXX [m].

SXX(ω) ,
∞∑

m=−∞
RXX [m]e−jωm, for − π ≤ ω ≤ π (4)

Similarly, the PSD of the output sequence SY Y (ω) is given by the DFT of RY Y (ω).

SY Y (ω) ,
∞∑

m=−∞
RY Y [m]e−jωm, for − π ≤ ω ≤ π

Substituting the previous expression for RY Y [m], we find

SY Y (ω) =
∞∑

m=−∞
(h[k] ∗ h∗[−m]) ∗RXX [m]e−jωm, for − π ≤ ω ≤ π.

From the derivation of Equation 6.4-2b on page 351, we conclude that the general form of the
output PSD is given by the following expression.

SY Y (ω) = |H(ω)|2SXX(ω), for − π ≤ ω ≤ π (5)

At this point we can evaluate the DFT of the impulse response, as defined in Equation 3.

H(ω) =
∞∑

m=−∞
h[m]e−jωm =

1
2

(
1− e−jω

)
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The magnitude of H(ω) is then given by

|H(ω)|2 =
1
4

(
1− e−jω

) (
1− ejω

)
= cos2 (ω/2) .

Substituting this result in Equation 5 gives the desired expression for the PSD of the output.

SY Y (ω) = cos2 (ω/2) SXX(ω), for − π ≤ ω ≤ π

Part (a)

To prove that the PSD SXX(ω) is a real-valued function, we begin by proving that the autocorre-
lation function is conjugate symmetric, such that RXX [m] = R∗

XX [−m]. From the definition of the
autocorrelation function RXX [m], we have

RXX [m] = E{X[k + m]X∗[k]} = E{X[k]X∗[k −m]} = E∗{X[k −m]X∗[k]} = R∗
XX [−m]. (6)

If SXX(ω) is real-valued, then it must satisfy the following condition.

SXX(ω) = S∗XX(ω)

Substituting Equation 4, we must show that the following equality holds.

∞∑
m=−∞

RXX [m]e−jωm =

( ∞∑
m=−∞

RXX [m]e−jωm

)∗

=
∞∑

m=−∞
R∗

XX [m]ejωm

=
∞∑

m=−∞
RXX [−m]ejωm

=
∞∑

m=−∞
RXX [m]e−jωm

Note that in the previous expression we have applied the result of Equation 6 to conclude that
R∗

XX [m] = RXX [−m]. In addition, we have substituted −m for m since the order of summation
can be reversed. In conclusion, since the left-hand and right-hand sides of the previous expression
are equal, we find that SXX(ω) is a real-valued function, even if X[n] is a complex-valued sequence.

∴ SXX(ω) = S∗XX(ω) ⇒ SXX(ω) ∈ R, for − π ≤ ω ≤ π

Part (b)

Let’s begin by using Equation 4 to express SXX(−ω).

SXX(−ω) =
∞∑

m=−∞
RXX [m]ejωm =

∞∑
m=−∞

RXX [−m]e−jωm

Note that, since the order of summation can be reversed, we have substituted −m for m in the
right-hand expression. At this point we can apply the result of Equation 6 to conclude RXX [−m] =
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R∗
XX [m]. Now recall that the autocorrelation function RXX [m] will be real-valued if X[n] is real-

valued, such that

R∗
XX [m] = E∗{X[k + m]X∗[k]} = E{X[k + m]X[k]} = RXX [m], for {X[n]} ∈ R.

We conclude that RXX [−m] = RXX [m] if X[n] is real-valued and, substituting into the previous
expression, we find that SXX(ω) is an even function if X[n] is real-valued.

∴ SXX(ω) = SXX(−ω), for {X[n]} ∈ R

Part (c)

Recall, from page 351 in [5], that the inverse Fourier transform of the PSD SXX(ω) is equal to the
autocorrelation function RXX [m].

RXX [m] =
1
2π

∫ π

−π
SXX(ω)ejωmdω

Applying Equation 5, we find that the output autocorrelation function is given by

RY Y [m] =
1
2π

∫ π

−π
|H(ω)|2SXX(ω)ejωmdω.

At this point, consider a narrowband low-pass filter H(ω), with bandwidth 2ε, centered at frequency
ωo, where |ω0| < π, and with unity gain in the passband. Substituting into the previous expression
and evaluating at m = 0, we find

RY Y [0] =
1
2π

∫ ωo+ε

ωo−ε
SXX(ω)dω ' ε

π
SXX(ωo), for − π ≤ ωo ≤ π.

At this point we recall that RY Y [0] is a non-negative function, since

RY Y [0] = E{Y [k]Y ∗[k]} = E{|Y [k]|2} ≥ 0.

Substituting this result into the previous expression, we find that SXX(ω) ≥ 0 for every ω, regardless
of whether X[n] is complex-valued or not.

∴ SXX(ω) ≥ 0, for − π ≤ ω ≤ π
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Problem 6.26

Let the WSS random sequence X have the correlation function

RXX [m] = 10e−λ1|m| + 5e−λ2|m|

with λ1 > 0 and λ2 > 0. Find the corresponding PSD SXX(ω) for |ω| ≤ π.

Substituting into Equation 4, we find that the PSD SXX(ω) is given by the following expression.

SXX(ω) =
∞∑

m=−∞
RXX [m]e−jωm

=
∞∑

m=−∞

(
10e−λ1|m| + 5e−λ2|m|

)
e−jωm

=

(
10

∞∑
m=−∞

e−λ1|m|e−jωm

)
+

(
5

∞∑
m=−∞

e−λ2|m|e−jωm

)

As an aside, we note that the first term in the previous expression can be further simplified by
separating the summation into several components.

10
∞∑

m=−∞
e−λ1|m|e−jωm = 10 + 10

−1∑
m=−∞

e−λ1|m|e−jωm + 10
∞∑

m=1

e−λ1|m|e−jωm

= 10 + 10
∞∑

m=1

e−λ1|m|ejωm + 10
∞∑

m=1

e−λ1|m|e−jωm

= 10 + 10
∞∑

m=1

e−λ1|m| (ejωm + e−jωm
)

= 10 + 20
∞∑

m=1

e−λ1m cos(ωm)

Substituting this result into the previous expression yields the following solution for the PSD
SXX(ω) for ω ≤ π.

SXX(ω) = 15 +
∞∑

m=1

(
20e−λ1m + 10e−λ2m

)
cos(ωm), for |ω| ≤ π

Applying additional trigonometric identities, we find that this expression can be further simplified.

SXX(ω) =
10 sinh(λ1)

cosh(λ1)− cos(ω)
+

5 sinh(λ2)
cosh(λ2)− cos(ω)

, for |ω| ≤ π
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Problem 6.29

Consider the LTI system show in Figure P6.29 on page 395 in [5]. Let X[n] and V [n] be WSS and
mutually uncorrelated with zero-mean and PSD’s SXX(ω) and SV V (ω), respectively.

(a) Find the PSD of the output SY Y (ω).

(b) Find the cross-power spectral density SXY (ω) between the input X and output Y .

Part (a)

Recall from Equation 4 that the PSD of the input sequence SXX(ω) is defined as the discrete-time
Fourier transform (DFT) of the input autocorrelation function RXX [m].

SXX(ω) ,
∞∑

m=−∞
RXX [m]e−jωm, for − π ≤ ω ≤ π

Similarly, the PSD of the output sequence SY Y (ω) is given by the DFT of RY Y (ω).

SY Y (ω) ,
∞∑

m=−∞
RY Y [m]e−jωm, for − π ≤ ω ≤ π

In order to proceed, we must first find an expression for RY Y [m] in terms of RXX [m] and RV V [m].
Let us define

Z[n] , X[n] + V [n]

as the input to the LTI system with impulse response h[n]. By the definition of the autocorrelation
function, we must have the following condition (see Table 7.5-1 on page 444 in [5]).

RZZ [m] = E{Z[k + m]Z∗[k]}
= E{(X[k + m] + V [k + m])(X[k] + V [k])∗}
= E{X[k + m]X∗[k]}+ E{X[k + m]V ∗[k]}+ E{V [k + m]X∗[k]}+ E{V [k + m]V ∗[k]}
= E{X[k + m]X∗[k]}+ E{V [k + m]V ∗[k]}
= RXX [m] + RV V [m] (7)

Note that, since X[n] and V [n] are mutually uncorrelated, we can conclude that E{X[k+m]V ∗[k]} =
E{V [k + m]X∗[k]} = 0. Now recall the expression for SY Y previously derived in Problem 6.25.

SY Y (ω) =
∞∑

m=−∞
(h[k] ∗ h∗[−m]) ∗RZZ [m]e−jωm, for − π ≤ ω ≤ π

Substituting Equation 7, we find that

SY Y (ω) =
∞∑

m=−∞
(h[k] ∗ h∗[−m]) ∗RXX [m]e−jωm +

∞∑
m=−∞

(h[k] ∗ h∗[−m]) ∗RV V [m]e−jωm.

Finally, we recall the following properties of the DFT: (1) the DFT of the convolution of two
functions is the product of their discrete-time Fourier transforms, and (2) the DFT of the complex

7
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conjugate of a time-reversed function is equal to the complex conjugate of the Fourier transform
of the original function [3]. In addition, we remember from Equation 4 that the autocorrelation
function and the power spectral density are Fourier transform pairs. Applying these conditions to
the previous expression gives the following result for the PSD of the output SY Y (ω).

SY Y (ω) = |H(ω)|2SXX(ω) + |H(ω)|2SV V (ω), for − π ≤ ω ≤ π

Part (b)

Similar to the previous part, we begin by recalling the definition of the cross-power spectral density
SXY (ω) given on page 352 in [5].

SXY (ω) ,
∞∑

m=−∞
RXY [m]e−jωm, for − π ≤ ω ≤ π (8)

In order to evaluate SXY (ω), we require a closed-form expression for the cross-correlation function
RXY (ω). Following the derivation on page 349, we find the following result.

RXY [m,n] = E{X[m]Y ∗[n]}

=
∞∑

k=−∞
h∗[n− k]E{X[m]Z∗[k]}

=
∞∑

k=−∞
h∗[n− k]E{X[m](X∗[k] + V ∗[k])}

=
∞∑

k=−∞
h∗[n− k]E{X[m]X∗[k]}+

∞∑

k=−∞
h∗[n− k]E{X[m]V ∗[k]}

=
∞∑

k=−∞
h∗[n− k]RXX [m− k]

=
∞∑

k=−∞
h∗[−l]RXX [(m− n)− l], for l , k − n

At this point we note that the cross-correlation RXY [m,n] is shift-invariant. As a result, we can
define RXY [m] , RXY [m, 0]. Substituting this result into the previous expression yields

RXY [m] =
∞∑

k=−∞
h∗[−l]RXX [m− l] = h∗[−m] ∗RXX [m].

Now we can evaluate Equation 8 to find the desired expression for the cross-power spectral density.

SXY (ω) =
∞∑

m=−∞
h∗[−m] ∗RXX [m]e−jωm, for − π ≤ ω ≤ π

Applying the previous properties of the DFT used in Part (a), we conclude that SXY (ω) is given
by the following expression.

SXY (ω) = H∗(ω)SXX(ω), for − π ≤ ω ≤ π

8
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Problem 6.32

Recall that a Markov random sequence X[n] is specified by its first-order pdf fX(x; n) and its
one-step conditional pdf

fX(xn|xn−1; n, n− 1) = fX(xn|xn−1).

(a) Find the two-step pdf fX(xn|xn−2) for a Markov random sequence in terms of the above
functions. For this problem, take n ≥ 2 for a sequence starting at n = 0.

(b) Find the N-step pdf fX(xn|xn−N ) for an arbitrary positive integer N , where n ≥ N .

Part (a)

Recall from pages 429-430 in [5] that the Chapman-Kolmogorov equations can be used to compute
the conditional density of X[n3] given X[n1], for n3 > n2 > n1. To begin our analysis, we note
that the joint pdf can be written as follows.

fX(x3|x1; n3, n1) =
∫ ∞

−∞
fX(x3|x2, x1; n3, n2, n1)fX(x2, x1; n2, n1)dx2

Dividing both sides of this expression by f(x1; n1) yields the following result.

fX(x3|x1; n3, n1) =
∫ ∞

−∞
fX(x3|x2, x1;n3, n2, n1)fX(x2|x1; n2, n1)dx2

Finally, by applying the Markov property we arrive at the well-known Chapman-Kolmogorov equa-
tion for the transition density fX(x3|x1).

fX(x3|x1; n3, n1) =
∫ ∞

−∞
fX(x3|x2; n3, n2)fX(x2|x1; n2, n1)dx2, for n3 > n2 > n1 (9)

From this condition we can conclude that the two-step pdf fX(xn|xn−2) for a Markov random
sequence is given by the following expression (using the simplified notation in the original problem
statement).

fX(xn|xn−2) =
∫ ∞

−∞
fX(xn|xn−1)fX(xn−1|xn−2)dxn−1

Part (b)

The N-step pdf fX(xn|xn−N ), for an arbitrary positive integer N , can be found in a similar manner
as the previous problem by repeatedly using conditioning (i.e., the chain rule of probability [5]).

fX(xn|xn−N ) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fX(xn|xn−1)fX(xn−1|xn−2) . . . fX(xn−N+1|xn−N )dxn−1dxn−2 . . . dxn−N+1

9
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Problem 6.33

Consider a Markov random sequence X[n] on 1 ≤ n ≤ N that is statistically described by its
first-order pdf fX(x; 1) and its one-step transition (conditional) pdf fX(xn|xn−1;n, n− 1). By the
Markov definition and suppressing time variables, we have

fX(xn|xn−1) = fX(xn|xn−1, xn−2, . . . , x1) for 2 ≤ n ≤ N.

Show that such a Markov sequence is also Markov in the reverse order, such that

fX(xn|xn+1) = fX(xn|xn+1, xn+2, . . . , xN ) for 1 ≤ n ≤ N − 1

and, as a result, one can alternatively describe a Markov random sequence by its one-step backward
pdf fX(xn−1|xn;n− 1, n) and its first-order pdf fX(x;N).

Recall, from Equation 2.6-52 on page 104 in [5], that the following expression relates the conditional
pdfs for two random variables X and Y .

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)
(10)

Furthermore, we recall that the chain rule of probability and the Markov property can be used to
express the joint pdf as follows.

fX(x1, x2, . . . , xN−1, xN ) = fX(xN |xN−1)fX(xN−1|xN−2) . . . fX(x2|x1)fX(x1)

From Equation 10 we observe that the following condition can be used to relate the conditional
probability density functions.

fX(xn|xn−1) =
fX(xn−1|xn)fX(xn)

fX(xn−1)

Substituting this result into the previous expression yields the following equation.

fX(x1, x2, . . . , xN−1, xN ) =(
fX(xN−1|xN )fX(xN )

fX(xN−1)

)(
fX(xN−2|xN−1)fX(xN−1)

fX(xN−2)

)
. . .

(
fX(x1|x2)fX(x2)

fX(x1)

)
fX(x1)

Simplifying this expression yields the following result.

fX(x1, x2, . . . , xN−1, xN ) = fX(x1|x2)fX(x2|x3) . . . fX(xN−1|xN )fX(xN )

Note that this expression has the general form of a Markov sequence in reverse order. As a result,
we conclude that a Markov sequence is also Markov in the reverse order, such that

fX(xn|xn+1) = fX(xn|xn+1, xn+2, . . . , xN ) for 1 ≤ n ≤ N − 1

and, as a result, one can alternatively describe a Markov random sequence by its one-step backward
pdf fX(xn−1|xn;n− 1, n) and its first-order pdf fX(x;N).

10
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Problem 6.37

The members of a sequence of jointly independent random variables X[n], for n ≥ 1, have proba-
bility density functions of the following form.

fX(x;n) =
(

1− 1
n

)
1√
2πσ

exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

+
1
n

σ exp(−σx)u(x)

Determine whether or not the random sequence X[n] converges in

(a) the mean-square sense,

(b) probability,

(c) distribution.

Part (a)

Recall, from Definition 6.7-5 on page 379 in [5], that a random sequence X[n] converges in the
mean-square sense to the random variable X if

lim
n→∞E{|X[n]−X|2} = 0.

Following the derivation on page 420-421 in [2], we note the Cauchy criterion requires that the
following condition must hold in order for mean-square convergence.

lim
n→∞E{|X[n]−X|2} = 0 ⇐⇒ lim

n→∞, m→∞E{|X[n]−X[m]|2} = 0

For the real-valued random sequence X[n], we have the following result.

E{|X[n]−X[m]|2} = E{(X[n]−X[m])2}
= E{X[n]2} − 2E{X[n]X[m]}+ E{X[m]2}
= E{X[n]2} − 2E{X[n]}E{X[m]}+ E{X[m]2}, for n 6= m (11)

Note that in the previous expression we have substituted E{X[n]X[m]} = E{X[n]}E{X[m]},
since {X[n]} are jointly independent and the expression will be nonzero only for the case n 6= m.
Substituting the integral expressions for the expectations, we find

E{|X[n]−X[m]|2} =∫ ∞

−∞
x2fX(x; n)dx− 2

[∫ ∞

−∞
xfX(x;n)dx

] [∫ ∞

−∞
xfX(x;m)dx

]
+

∫ ∞

−∞
x2fX(x; m)dx. (12)

At this point we require the following solutions for the integrals in the previous expression.

∫ ∞

−∞
xfX(x; n)dx =

(
1− 1

n

)
1√
2πσ

∫ ∞

−∞
x exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

dx +
σ

n

∫ ∞

0
x exp(−σx)dx

=
(

1− 1
n

)2

σ +
1

nσ
(13)

11
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∫ ∞

−∞
x2fX(x;n)dx =

(
1− 1

n

)
1√
2πσ

∫ ∞

−∞
x2 exp

[
− 1

2σ2

(
x− n− 1

n
σ

)2
]

dx +
σ

n

∫ ∞

0
x2 exp(−σx)dx

=
(

1− 1
n

)3

σ2 +
(

1− 1
n

)
σ2 +

2
nσ2

(14)

Substituting Equations 12-14 into Equation 11 yields the following result.

lim
n→∞, m→∞E{|X[n]−X[m]|2} = 2σ2 6= 0

In conclusion we find that X[n] does not converge in the mean-square sense.

lim
n→∞E{|X[n]−X|2} 6= 0 ⇒ X[n] m.s.9 X

Part (b)

Recall, from Definition 6.7-6 on page 379 in [5], that a random sequence X[n] converges in proba-
bility to the limiting random variable X if

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0.

Let’s define the following random sequence Z[n] as follows.

Z[n] , X[n]−X

In terms of the PDF FZ(z; n) of the random sequence Z[n], we have

lim
n→∞P [|X[n]−X| > ε] = lim

n→∞P [|Z[n]| > ε]

= lim
n→∞ {P [Z[n] > ε] + P [Z[n] < −ε]}

= lim
n→∞ {1− FZ(ε; n) + FZ(−ε; n)} .

As a result, we find that the following condition must hold if X[n] converges to X in probability.

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0 ⇐⇒ lim

n→∞ {FZ(ε;n)− FZ(−ε; n)} = 1, ∀ε > 0

While we could evaluate this expression directly from the expressions for fX(x;n) and the limiting
(postulated) form for fX(x), we know from Part (a) that X[n] cannot converge in probability;
that is, as we’ll show in Part (c), X[n] converges to a Gaussian random variable with mean σ and
variance σ2. As a result, in the limit of large n, Z[n] = X[n]−X will tend to the difference between
two Gaussian random variables – which is well-known to have a mean value equal to the difference
of the individual means and a variance equal to the sum of the variances [6].

lim
n→∞µZ [n] = 0 and lim

n→∞σ2
Z [n] = 2σ2 ⇒ lim

n→∞P [|X[n]−X| > ε] 6= 0, ∀ε > 0

In conclusion we find that X[n] does not converge in probability either.

lim
n→∞P [|X[n]−X| > ε] 6= 0, ∀ε > 0 ⇒ X[n] P9 X

12
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Part (c)

Recall, from Definition 6.7-7 on page 381 in [5], that a random sequence X[n] with PDF FX(x;n)
converges in distribution to the random variable X with PDF FX(x) if

lim
n→∞FX(x; n) = FX(x)

for all x at which FX(x;n) is continuous. Since convergence in distribution is defined by the limiting
behavior of the probability distribution function, we must begin by integrating the pdf fX(x;n) as
follows.

FX(x; n) =
∫ x

−∞
fX(ξ; n)dξ

=
(

1− 1
n

)
1√
2πσ

∫ x

−∞
exp

[
− 1

2σ2

(
ξ − n− 1

n
σ

)2
]

dξ +
1
n

∫ x

−∞
σ exp(−σξ)u(ξ)dξ

=
1
2

(
1− 1

n

){
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
+

1
n

(
1− e−σx

)
u(x)

Note that in the previous expression we have used the following well-known integral for a Gaussian
density function [6].

1√
2πσ

∫ x

−∞
exp

[
− 1

2σ2
(ξ − µ)2

]
dξ =

1
2

[
1 + erf

(
x− µ√

2σ

)]

At this point we can evaluate the limiting behavior of FX(x;n) for large n.

lim
n→∞FX(x; n) = lim

n→∞
1
2

(
1− 1

n

){
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
+ lim

n→∞
1
n

(
1− e−σx

)
u(x)

Note that terms with coefficients of 1/n tend to zero as n approaches infinity. As a result, we have

lim
n→∞FX(x;n) = lim

n→∞
1
2

{
1 + erf

[
x− (

n−1
n σ

)
√

2σ

]}
=

1
2

[
1 + erf

(
x− σ√

2σ

)]
.

In conclusion we find that X[n] converges in distribution such that the following condition holds.

lim
n→∞FX(x; n) = FX(x) =

1
2

[
1 + erf

(
x− σ√

2σ

)]
⇒ X[n] D→ X

13
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Problem 6.40

Let X[n] be a real-valued random sequence on n ≥ 0 composed of stationary and independent
increments such that X[n]−X[n− 1] = W [n] (i.e., where the increment W [n] is a stationary and
independent random sequence). Assume that X[0] = 0, E{X[1]} = η, and Var{X[1]} = σ2.

(a) Find µX [n] and σ2
X [n] for any time n > 1.

(b) Prove that X[n]/n converges in probability to η as the time n approaches infinity.

Part (a)

Following the approach in Problem 6.22, let’s begin by determining the general form for X[n]. We
can evaluate the first few terms in the sequence directly.

X[1] = X[0] + W [1]
X[2] = X[0] + W [1] + W [2]
X[3] = X[0] + W [1] + W [2] + W [3]

By inspection, we conclude that the general form for X[n] is given by

X[n] = X[0] +
n∑

m=1

W [m],

where X[0] is the homogeneous solution to X[n] = X[n − 1]. Substituting the initial condition
X[0] = 0 yields the specific solution for X[n].

X[n] =
n∑

m=1

W [m] (15)

At this point we recall, from page 319 in [5], that the mean function of a random sequence is given
by the following expression.

µX [n] , E{X[n]}
Substituting Equation 15 and exploiting the linearity of the expectation operator, we find

µX [n] = E

{
n∑

m=1

W [m]

}
=

n∑

m=1

E{W [m]} =
n∑

m=1

E{W [1]}

=
n∑

m=1

E{X[1]−X[0]} =
n∑

m=1

E{X[1]} =
n∑

m=1

η = nη. (16)

Note that in the previous expression we have applied the condition that W [n] is a stationary process
to conclude that E{W [n]} = E{W [1]} (since, by Theorem 6.1-2, all stationary random sequences
are also wide-sense stationary and, by Definition 6.1-6, all wide-sense stationary processes have a
constant mean function [5]). Similarly, we recall that the variance function is given by the following
expression.

σ2
X [n] = Var{X[n]} , E{(X[n]− µX [n])(X[n]− µX [n])∗}

14
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Substituting our previous results and assuming X[n] is a real-valued sequence, we find

σ2
X [n] = E{(X[n]− µX [n])2}

= E





[(
n∑

m=1

W [m]

)
− nη

]2




= E

{[(
n∑

l=1

W [l]

)
− nη

] [(
n∑

m=1

W [m]

)
− nη

]}

=
n∑

l=1

n∑

m=1

E{W [l]W [m]} − 2nη
n∑

m=1

E{W [m]}+ n2η2.

Note that in the previous expression we have exploited the linearity property of the expecta-
tion operator. At this point we recall that W [n] is a stationary independent sequence, such that
E{W [n]} = E{W [1]} = η, and must satisfy the following condition.

E {W [l]W [m]} =
{

E{W [1]2}, for l = m
E{W [1]}E{W [1]} = η2, otherwise

Substituting this condition into the previous expression yields the following result.

σ2
X [n] =

n∑

m=1

E{W [m]2}+ (n2 − n)η2 − 2n2η2 + n2η2

=
n∑

m=1

E{(W [m]− η)2} =
n∑

m=1

Var{W [m]} =
n∑

m=1

Var{W [1]}

= nVar{W [1]} = nE{(W [1]− η)2} = nE{(X[1]−X[0]− η)2}
= nE{(X[1]− E{X[1]})2} = nVar{X[1]} = nσ2 (17)

In conclusion, we find that the mean and variance functions for the random sequence X[n] are
given by Equations 16 and 17, respectively.

µX [n] = nη, for n > 1

σ2
X [n] = nσ2, for n > 1

Part (b)

Recall, from Definition 6.7-6 on page 379 in [5], that a random sequence X[n] converges in proba-
bility to the limiting random variable X if

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0. (18)

Furthermore, by Chebyshev’s inequality, we recall that mean-square convergence such that

lim
n→∞E{|X[n]−X|2} = 0

implies convergence in probability, since

P [|X[n]−X| > ε] ≤ E{|X[n]−X|2}/ε2, ∀ε > 0.

15
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As a result, we proceed by proving that the real-valued sequence X[n]/n converges in the mean-
square sense to the constant X = η.

E

{∣∣∣∣
X[n]

n
− η

∣∣∣∣
2
}

= E

{(
X[n]

n
− η

)2
}

=
1
n2

E
{
X[n]2

}− 2η

n
E {X[n]}+ η2

=
1
n2

E
{
X[n]2

}− η2 =
1
n2

E
{
(X[n]− nη)2

}

=
1
n2

E
{
(X[n]−E{X[n]})2} =

1
n2

σ2
X [n] =

σ2

n

Substituting into Equation 18, we find that X[n]/n converges in the mean-square sense to X = η.

lim
n→∞E

{∣∣∣∣
X[n]

n
− η

∣∣∣∣
2
}

= 0 ⇒ X[n]
n

m.s.→ η

In conclusion, since mean-square converge implies converge in probability, we conclude that X[n]/n
converges in probability to η as the time n approaches infinity.

lim
n→∞P [|X[n]−X| > ε] = 0, ∀ε > 0 ⇒ X[n]

n

P→ η

(QED)

16
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Problem 7.40

Express the answers to the following questions in terms of probability density functions.

(a) State the definition of an independent-increments random process.
(b) State the definition of a Markov random process.
(c) Prove that any random process that has independent increments also has the Markov property.

Part (a)

Recall, from pages 326 and 410 in [5], that a random process has independent increments when the
set of n random variables

X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1)

are jointly independent for all t1 < t2 < . . . < tn and n ≥ 1. In terms of probability density
functions, we note that a random process X(t) with independent increments must satisfy

fX(xn − xn−1|xn−1, xn−2, . . . , x1; tn, tn−1, . . . , t1) = fX(xn − xn−1; tn, tn−1), (19)

for all x1, x2, . . . , xn and integers n > 0 where t1 < t2 < . . . < tn.

Part (b)

From page 422 in [5] we recall that a (first-order) continuous-valued Markov process X(t) satisfies

fX(xn|xn−1, xn−2, . . . , x1; tn, tn−1, . . . , t1) = fX(xn|xn−1; tn, tn−1), (20)

for all x1, x2, . . . , xn and integers n > 0 where t1 < t2 < . . . < tn. Note that this expression
defines the so-called one-step conditional pdf, however a continuous-valued Markov process must
also satisfy the following k-step pdf given by

fX(xn+k|xn, xn−1, . . . , x1; tn+k, tn, tn−1, . . . , t1) = fX(xn+k|xn; tn+k, tn),

for all x1, x2, . . . , xn, xn+k and integers n > 0 and k > 0 where t1 < t2 < . . . < tn < tn+k.

Part (c)

Following the derivation outlined on page 423 in [5], we note that any random process X(t) with
independent increments must have a pdf that can be expressed in the following form.

fX(xn|xn−1, xn−2, . . . , x1; tn, tn−1, . . . , t1) = fX(xn − xn−1|xn−1, xn−2, . . . , x1; tn, tn−1, . . . , t1)
= fX(xn − xn−1; tn, tn−1)
= fX(xn − xn−1|xn−1; tn, tn−1)
= fX(xn|xn−1; tn, tn−1)

Note that, on the first two lines of this expression, we have applied the definition of independent
increments given by Equation 19. Since the last line is identical to the definition of Markov
random processes given by Equation 20, we conclude that any random process that has independent
increments also has the Markov property.

17
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Problem 7.46

Consider the linear system shown in Figure P7.46 on page 485 in [5], which is excited by two
orthogonal zero-mean, jointly wide-sense stationary random processes X(t), the signal, and U(t),
the noise. Let the input to the system G be

Y (t) = h(t) ∗X(t) + U(t),

which models a distorted-signal-in-noise estimation problem. If we pass the received signal Y (t)
through the filter G, we obtain an estimate X̂(t). Finally, we define the estimation error ε(t) such
that

ε(t) = X̂(t)−X(t).

In the following problems we will evaluate some relevant power and cross-power spectral densities.

(a) Find SY Y (ω).

(b) Find SX̂X(ω) = S∗
XX̂

(ω) in terms of H(ω), G(ω), SXX(ω), and SUU (ω).

(c) Find Sεε(ω).

(d) Show that, in order to minimize Sεε(ω) at frequencies where SXX(ω) >> SUU (ω), we should
select G ≈ H−1. Similarly, where SXX(ω) << SUU (ω), we should have G ≈ 0.

Part (a)

To begin our analysis we recall that the power spectral density SXX(ω), for a continuous-valued
wide-sense stationary random process X(t), is given on page 443 in [5].

SXX(ω) ,
∫ ∞

−∞
RXX(τ)e−jωτdτ

Similar to Part (a) of Problem 6.29 and as given by Equation7.5-14, we recall that a LTI system
with frequency response H(ω) has the following output PSD SY Y (ω) for the input process X(t).

SY Y (ω) =
∫ ∞

−∞
RY Y (τ)e−jωτdτ =

∫ ∞

−∞
h(τ) ∗RXX(τ) ∗ h∗(−τ)e−jωτdτ = |H(ω)|2SXX(ω)

Next, we observe that h(t) ∗X(t) and U(t) are orthogonal since

E {[h(t) ∗X(t1)]Y ∗(t2)} = E

{∫ ∞

−∞
h(τ)X(t1 − τ)Y ∗(t2)dτ

}

=
∫ ∞

−∞
h(τ)E {X(t1 − τ)Y ∗(t2)} dτ = 0

and E {X(t1 − τ)Y ∗(t2)} = 0 for the orthogonal random processes X(t) and Y (t) (see page 437).
Finally, we recall from Table 7.5-1 that the PSD of two orthogonal random process X1(t) and X2(t)
is given by SX1X1(ω) + SX2X2(ω). In conclusion SY Y (ω) is given by the following expression.

SY Y (ω) = |H(ω)|2SXX(ω) + SUU (ω)

18
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Part (b)

From the problem statement, we have

X̂(t) = g(t) ∗ [h(t) ∗X(t) + U(t)] = g(t) ∗ h(t) ∗X(t) + g(t) ∗ U(t). (21)

Now we recall that the cross-power spectral density SX̂X(ω) is given by the following expression.

SX̂X(ω) =
∫ ∞

−∞
RX̂X(τ)e−jωτdτ

To proceed we need to obtain a closed-form expression for the cross-correlation RX̂X(ω). By
definition, we have

RX̂X(τ) = E
{

X̂(t + τ)X∗(t)
}

= E {[g(t + τ) ∗ h(t + τ) ∗X(t + τ) + g(t + τ) ∗ U(t + τ)]X∗(t)}
= E {[g(t + τ) ∗ h(t + τ) ∗X(t + τ)]X∗(t)}+ E {[g(t + τ) ∗ U(t + τ)]X∗(t)}
= g(t + τ) ∗ h(t + τ) ∗ E {X(t + τ)X∗(t)}
= g(τ) ∗ h(τ) ∗RXX(τ), (22)

since, by definition, X(t) and U(t) are orthogonal random processes such that RUX(t1, t2) =
E {U(t1)X∗(t2)} = 0 for all t1 and t2. Substituting Equation 22 into Equation 21 yields the
following solution for SX̂X(ω).

SX̂X(ω) = H(ω)G(ω)SXX(ω)

Part (c)

From the problem statement and Equation 21, we find

ε(t) = X̂(t)−X(t) = [g(t) ∗ h(t)− δ(t)] ∗X(t) + g(t) ∗ U(t).

Correspondingly, the power spectral density of the estimation error is given by

Sεε(ω) =
∫ ∞

−∞
Rεε(τ)e−jωτdτ.

Since the Fourier transform of the Dirac delta function δ(t) is equal to unity, we conclude that the
power spectral density of the estimation error has the following solution.

Sεε(ω) = |G(ω)H(ω)− 1|2SXX(ω) + |G(ω)|2SUU (ω) (23)

Part (d)

From Equation 23 we find that, in order to minimize Sεε(ω) for SXX(ω) >> SUU (ω), we must
select G(ω) ≈ [H(ω)]−1. Similarly, G ≈ 0 minimizes Sεε(ω) for SXX(ω) << SUU (ω). In summary,
the following conditions on G(ω) will minimize the power spectral density of the estimation error.

Sεε(ω) =
∣∣∣[H(ω)]−1 H(ω)− 1

∣∣∣
2
SXX(ω) + |H(ω)|−2SUU (ω) ≈ 0, for SXX(ω) >> SUU (ω)

Sεε(ω) = SXX(ω) ≈ 0, for SXX << SUU (ω)
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Problem 7.47

Let X(t), the input to the system in Figure P7.47 on page 486 in [5], be a stationary Gaussian
random process. The power spectral density of Z(t) is measured experimentally and found to be

SZZ(ω) = πδ(ω) +
2β

(ω2 + β2)(ω2 + 1)
.

(a) Find the correlation function SY Y (ω) in terms of β.

(b) Find the correlation function SXX(ω).

Part (a)

To begin our analysis we recall that the power spectral density SZZ(ω) is given on page 443 in [5].

SZZ(ω) =
∫ ∞

−∞
RZZ(τ)e−jωτdτ =

∫ ∞

−∞
h(τ) ∗RY Y (τ) ∗ h∗(−τ)e−jωτdτ = |H(ω)|2SY Y (ω)

To proceed we need to determine a closed-form expression for the system frequency response H(ω).
By definition the frequency response H(ω) is the discrete-time Fourier transform of the impulse
response h(t). As a result, we have

H(ω) =
∫ ∞

−∞
h(τ)e−jωτdτ =

∫ ∞

−∞
e−τu(τ)e−jωτdτ =

∫ ∞

0
e−(1+jω)τdτ =

1
1 + jω

.

Evaluating the frequency response magnitude |H(ω)|2, we find

|H(ω)|2 = H(ω)H∗(ω) =
1

ω2 + 1
.

Substituting into the previous expression for SZZ(ω) yields a solution for SY Y (ω) in terms of β.

SY Y (ω) =
SZZ(ω)
|H(ω)|2 , for |H(ω)| 6= 0 ⇒ SY Y (ω) = π(ω2 + 1)δ(ω) +

2β

ω2 + β2

Part (b)

Recall from Table 7.5-1 in [5] that the power spectral density of a random process Xn(t), generated
from the random process X(t), is given by ω2nSXX(ω). As a result, we find that the PSD of X2(t)
should be given by ω4SXX(ω). Since Y (t) = X2(t), we conclude that the correlation function
SXX(ω) has the following form.

SXX(ω) =
SY Y (ω)

ω4
, for ω 6= 0 ⇒ SY Y (ω) = π

(
ω2 + 1

ω4

)
δ(ω) +

2β

ω4(ω2 + β2)
, for ω 6= 0
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