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Problem 8.2

Let X(t) be a random process with constant mean µX 6= 0 and covariance function

KXX(t1, t2) = σ2 cos (ω0(t1 − t2)) .

(a) Show that the mean-square (m.s.) derivative X ′(t) exists.
(b) Find the correlation function of the m.s. derivative RX′X′(t1, t2).
(c) Find the covariance function of the m.s. derivative KX′X′(t1, t2).

Part (a)

Recall, from Theorem 8.1-2 on page 490 in [4], that a random process X(t) with autocorrelation
function RXX(t1, t2) has a m.s. derivative at time t if ∂2RXX(t1, t2)/∂t1∂t2 exists at t1 = t2 = t.
Furthermore, we recall that the correlation function RXX(t1, t2) is related to the covariance function
KXX(t1, t2) as follows.

RXX(t1, t2) = KXX(t1, t2) + µX(t1)µ∗X(t2) (1)

For this problem we have a constant mean function µX 6= 0 such that

RXX(t1, t2) = σ2 cos (ω0(t1 − t2)) + µXµ∗X .

Evaluating the mixed partial derivative of RXX(t1, t2) at t1 = t2 = t yields the following result.

∂2RXX(t1, t2)
∂t1∂t2

∣∣∣∣
(t1,t2)=(t,t)

= σ2

{
∂2 cos (ω0(t1 − t2))

∂t1∂t2

∣∣∣∣
(t1,t2)=(t,t)

}
= σ2ω2

0

By Theorem 8.1-2, the m.s. derivative X ′(t) exists since ∂2RXX(t1, t2)/∂t1∂t2 exists at t1 = t2 = t.

Part (b)

Recall, by Theorem 8.1-3 on page 494 in [4], that if a random process X(t) with mean function µX(t)
and correlation function RXX(t1, t2) has a m.s. derivative X ′(t), then the mean and correlation
functions of X ′(t) are given by

µX′(t) =
dµX(t)

dt
(2)

and

RX′X′(t1, t2) =
∂2RXX(t1, t2)

∂t1∂t2
. (3)

As a result, we find that the correlation function RX′X′(t1, t2) is given by the following expression.

RX′X′(t1, t2) = σ2ω2
0 cos (ω0(t1 − t2))
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Part (c)

From Equation 1 we conclude that the covariance function of the m.s. derivative X ′(t) is given by

KX′X′(t1, t2) = RX′X′(t1, t2)− µX′(t1)µ∗X′(t2).

From Equation 2 we find that µX′(t) = µ∗X′(t) = 0, since X(t) has a constant mean µX 6= 0. As a
result, we conclude that the covariance function KX′X′(t1, t2) is equal to the correlation function
RX′X′(t1, t2) for this example.

KX′X′(t1, t2) = σ2ω2
0 cos (ω0(t1 − t2))

Problem 8.3

Let the random process X(t) be wide-sense stationary with correlation function

RXX(τ) = σ2e−(τ/T )2 .

Let Y (t) = 3X(t) + 2X ′(t), where the derivative is interpreted in the mean-square sense.

(a) State conditions for the m.s. existence of Y (t) in terms of RXX(τ).

(b) Find the correlation function RY Y (τ) for the given RXX(τ) in terms of σ2 and T .

Part (a)

To begin our analysis we recall, from Theorem 8.1-4, that the m.s. derivative X ′(t) of a WSS
random process X(t) exists at time t if the autocorrelation function RXX(τ) has up to second
order derivatives at τ = 0. In addition, from Definition 8.1-1 and Theorem 8.1-1, we note that the
random process Y (t) is m.s. continuous if

lim
ε→0

E{|Y (t + ε)− Y (t)|2} = 0, ∀t.

Expanding this expression, we find

E{|Y (t + ε)− Y (t)|2} = RY Y (t + ε, t + ε)−RY Y (t, t + ε)−RY Y (t + ε, t) + RY Y (t, t).

As a result, we find the Y (t) exists (and is m.s. continuous) if RY Y (t1, t2) is continuous at t1 =
t2 = t. As we’ll show in Part (b), the correlation function RY Y (t1, t2) is WSS and has the following
general form for Y (t) = 3X(t) + 2X ′(t).

RY Y (τ) = 9RXX(τ) + 4RX′X′(τ)

By Corollary 8.1-1, we note that the WSS random process X(t) is m.s. continuous if RXX(τ) is
continuous at τ = 0. In conclusion, we can combine the previous results to arrive at the following
conditions for the m.s. existence of Y (t) in terms of RXX(τ).

(1) RXX(τ) must be continuous at τ = 0.

(2) The derivatives of RXX(τ) must exist up to second order.
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Part (b)

Let’s begin by expanding the expression for the correlation function RY Y (τ).

RY Y (τ) = E {Y (t + τ)Y ∗(t)}
= E

{[
3X(t + τ) + 2X ′(t + τ)

] [
3X(t) + 2X ′(t)

]∗}

= 9E {X(t + τ)X∗(t)}+ 6E
{
X(t + τ)X ′∗(t)

}
+ 6E

{
X ′(t + τ)X∗(t)

}
+ 4E

{
X ′(t + τ)X ′∗(t)

}

= 9RXX(τ) + 6RXX′(τ) + 6RX′X(τ) + 4RX′X′(τ)

Recall from Equations 8.1-10 and 8.1-11 that, for a WSS random process X(t), the cross-correlation
functions are given by the following expressions.

RX′X(τ) = +
dRXX(τ)

dτ
and RXX′(τ) = −dRXX(τ)

dτ

In addition, we recall from Theorem 8.1-4 that the correlation function for the m.s. derivative X ′(t)
is given by

RX′X′(τ) = −d2RXX(τ)
dτ2

Substituting into the previous expression for RY Y (τ), we find that the correlation function for Y (t)
is given by the following expression.

RY Y (τ) = 9RXX(τ) + 4RX′X′(τ)

= 9RXX(τ)− 4
{

d2RXX(τ)
dτ2

}

= 9σ2e−(τ/T )2 − 4
{

σ2

(
4τ2 − 2T 2

T 4

)
e−(τ/T )2

}

In conclusion, the correlation function RY Y (τ) has the following solution.

RY Y (τ) = σ2

(
9T 4 − 16τ2 + 8T 2

T 4

)
e−(τ/T )2
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Problem 8.7

To estimate the mean of a stationary random process X(t), we often consider an integral average

I(T ) , 1
T

∫ T

0
X(t)dt, T > 0.

(a) Find the mean of I(T ), denoted µI(T ), in terms of the mean µX for T > 0.
(b) Find the variance of I(T ), denoted σ2

I (T ), in terms of the covariance KXX(τ) for T > 0.

Part (a)

The mean function µI(T ) of the integral average I(T ) is given by the following expression.

µI(T ) = E{I(t)} = E

{
1
T

∫ T

0
X(t)dt

}
=

1
T

∫ T

0
E{X(t)}dt =

1
T

∫ T

0
µXdt = µX

Note that in the previous expression we have applied the linearity property of the expectation
operator, as well as the condition that E{X(t)} = µX for a stationary random process X(t). In
conclusion, the mean function µI(T ) is equal to µX – which implies that X(t) is ergodic in the
mean such that the time average equals the ensemble average.

µI(T ) = µX , for T > 0

Part (b)

The variance function σ2
I (T ) of the integral average I(T ) is given by the following expression.

σ2
I (T ) = E

{
[I(T )− µI(T )]2

}
= E {[I(T )− µI(T )] [I(T )− µI(T )]∗}

= E

{[
1
T

∫ T

0
X(t1)dt1 − µX

] [
1
T

∫ T

0
X∗(t2)dt2 − µ∗X

]}

= E

{[
1
T

∫ T

0
(X(t1)− µX) dt1

] [
1
T

∫ T

0
(X(t2)− µX)∗ dt2

]}

=
1
T 2

∫ T

0

∫ T

0
E {[X(t1)− µX ] [X(t2)− µX ]∗} dt1dt2

=
1
T 2

∫ T

0

∫ T

0
KXX(t1, t2)dt1dt2

Note that we have applied the linearity of the expectation operator, as well as the condition that
KXX(t1, t2) = E {[X(t1)− µX ] [X(t2)− µX ]∗} for a stationary random process X(t). Furthermore,
we recall that for a stationary random process the covariance function is only a function of the time
shift τ = t1− t2 such that KXX(t1, t2) = KXX(t1− t2). In conclusion, the variance function σ2

I (T )
is equal to the following expression in terms of the covariance function KXX(τ).

σ2
I (T ) =

1
T 2

∫ T

0

∫ T

0
KXX(t1 − t2)dt1dt2, for T > 0
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Problem 8.12

This problem concerns the mean-square derivative. Let the random process X(t) be second order
(i.e., E{|X(t)|2} < ∞) with correlation function RXX(t1, t2). Let the random process Y (t) be
defined by the mean-square integral

Y (t) ,
∫ t

−∞
e−(t−s)X(s)ds. (4)

(a) State the condition for the existence of the m.s. integral Y (t) in terms of RXX(t1, t2).
(b) Find the correlation function RY Y (t1, t2) of Y (t) in terms of RXX(t1, t2).
(c) Determine the condition on RXX(t1, t2) for the existence of the m.s. derivative dY (t)/dt.

Part (a)

Note that Equation 4 defines a weighted mean-square integral of the form

I ,
∫ T2

T1

h(t)X(t)dt,

where h(t) = e−(T2−t) is the specific weighting function and (T1, T2) = (−∞, t). From pages 503
and 505 of [4], we recall that the weighted mean-square integral I is defined by

lim
n→∞E





∣∣∣∣∣I −
n∑

i=1

h(ti)X(ti)∆ti

∣∣∣∣∣
2


 = 0, (5)

where the integral I is approximated by the following summation.

In ,
n∑

i=1

h(ti)X(ti)∆ti, for ∆ti = (T2 − T1)/n

At this point we can apply the Cauchy criterion to determine the necessary conditions for the
existence of the m.s. integral.

lim
m,n→∞E{|In − Im|2} = 0

Expanding this expression yields the following condition for convergence.

lim
m,n→∞E{InI∗n} − 2Re (E{InI∗m}) + E{ImI∗m} = 0 (6)

Focusing on the cross-term, we find the following result.

E{InI∗m} =
n∑

i=1

m∑

j=1

h(ti)h∗(tj)E{X(ti)X∗(tj)}∆ti∆tj

=
n∑

i=1

m∑

j=1

h(ti)h∗(tj)RXX(ti, tj)∆ti∆tj

As a result, we conclude that the m.s. integral of Y (t) will exist if and only if
∫ t1

−∞

∫ t2

−∞
e−(t1−s1)e−(t2−s2)RXX(s1, s2)ds1ds2

exists in the ordinary calculus. If this integral exists, then Equation 6 is satisfied and, via the
Cauchy criterion, the weighted mean-square integral I must satisfy Equation 5.
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Part (b)

The correlation function can be found by direct evaluation as follows.

RY Y (t1, t2) = E {Y (t1)Y ∗(t2)}

= E

{[∫ t1

−∞
e−(t1−s1)X(s1)ds1

] [∫ t2

−∞
e−(t2−s2)X(s2)ds2

]∗}

=
∫ t1

−∞

∫ t2

−∞
e−(t1−s1)e−(t2−s2)E {X(s1)X∗(s2)} ds1ds2

Since the correlation function of X(t) satisfies RXX(t1, t2) = E {X(t1)X∗(t2)}, we conclude that
RY Y (t1, t2) has the following solution.

RY Y (t1, t2) =
∫ t1

−∞

∫ t2

−∞
e−(t1−s1)e−(t2−s2)RXX(s1, s2)ds1ds2

Part (c)

From page 506 in [4], we recognize that the solution Y (t) to the stochastic differential equation

dY (t)/dt = X(t)

is given by

Y (t) =
∫ t

t0

X(s)ds + Y (t0), for t ≥ t0.

As a result, we note that the m.s. derivative dY (t)/dt will exist if the weighted integral in Equation 4
exists and is bounded. From Equation 8.2-6 we recall that the following condition of the weighting
kernel h(t, s) = e−(t−s) is required.

∫ t

−∞
|e−(t−s)|ds < ∞

As before, this generalizes to a m.s. stochastic integral involving the correlation function RXX(t1, t2).
In conclusion, we find that the m.s. derivative dY (t)/dt will exist if and only if

∫ t1

−∞

∫ t2

−∞
e−(t1−s1)e−(t2−s2)RXX(s1, s2)ds1ds2

exists in the ordinary calculus.
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Problem 8.17

Consider the m.s. differential equation

dY (t)
dt

+ 2Y (t) = X(t),

for t ≥ 0, subject to the initial condition Y (0) = 0. Let the input be given by

X(t) = 5 cos(2t) + W (t), (7)

where W (t) is a mean-zero Gaussian noise process with covariance function KWW (τ) = σ2δ(τ).

(a) Find the mean function µY (t) for t ≥ 0.
(b) Find the covariance function KY Y (t1, t2) for t1 ≥ 0 and t2 ≥ 0.
(c) What is the maximum value of σ such that P [|Y (t)− µY (t)| < 0.1] > 0.99, for all t > 0?.

Part (a)

Note that in the following analysis we will follow the general approach outlined in Example 8.3-1.
Let’s begin by taking the expectation of both sides of Equation 7.

dE{Y (t)}
dt

+ 2E{Y (t)} = E{X(t)}, for E{Y (0)} = 0 and t ≥ 0

⇒ µ′Y (t) + 2µY (t) = µX(t) = 5 cos(2t), for µY (0) = 0 and t ≥ 0

In conclusion, the solution to this ordinary differential equation is given by the following expression.

µY (t) =
5
4

(
cos(2t) + sin(2t)− e−2t

)
, for t ≥ 0

Part (b)

For brevity, we recall that the derivation of the covariance function KY Y (t1, t2) is presented on pages
506-511 in [4]. From that section we recall that the following expression defines the cross-covariance
function KXY (t1, t2) for t1 ≥ 0 and t2 ≥ 0.

∂KXY (t1, t2)
∂t2

+ 2KXY (t1, t2) = KXX(t1, t2) = σ2δ(t1 − t2), for KXY (t1, 0) = 0

Note that the initial condition is given by KXY (t1, 0) = 0 since Y (0) = 0. Also recognize that the
covariance of the input function is given by KXX(t1, t2) = σ2δ(t1 − t2). As described in Example
8.3-1, this ordinary differential equation has the following solution.

KXY (t1, t2) =
{

0, for 0 ≤ t2 < t1,

σ2e−2(t2−t1), for t2 ≥ t1

Continuing with our analysis, we recall that Equation 8.3-4 yields the following expression for the
output covariance KY Y (t1, t2) in terms of the cross-covariance KXY (t1, t2).

∂KY Y (t1, t2)
∂t1

+ 2KY Y (t1, t2) = KXY (t1, t2), for KY Y (0, t2) = 0

7
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In conclusion, we find that covariance function KY Y (t1, t2) is given by the following expression.

KY Y (t1, t2) =

{
σ2

4 e−2t2
(
e2t1 − e−2t1

)
, for 0 < t1 ≤ t2,

σ2

4

(
1− e−4t2

)
e−2(t1−t2), for t1 ≥ t2

Part (c)

As discussed on page 511, the random process Y (t) has asymptotic wide-wense stationarity such
that covariance KY Y (t1, t2) tends to the constant σ2/4 as t1 and t2 become large. As a result, let’s
assume that the random process Y (t)−µY (t) is modeled by a white Gaussian random process noise
with mean zero and variance σ2/4. Under these circumstances we find that the maximum value of
σ can be found using the following constraint.

P [|Y (t)− µY (t)| < 0.1] = P [−0.1 < Y (t)− µY (t) < 0.1] > 0.99

⇒ 2√
2πσ2

∫ 0.1

−0.1
exp

(−2x2

σ2

)
dx > 0.99

Recall that the error function has the following definition.

erf(z) , 2√
π

∫ z

0
e−t2dt

Substituting this expression in the previous result yields the following condition.

erf
(

1
5
√

2σ

)
> 0.99

In conclusion, σ must satisfy the following inequality in order for P [|Y (t) − µY (t)| < 0.1] > 0.99,
for all t > 0.

σ < 0.07765
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Problem 8.22

To detect a constant signal of amplitude A in white Gaussian noise of variance σ2 and mean zero,
we consider two hypotheses (i.e., events):

H0 : R(t) = W (t)
H1 : R(t) = A + W (t)

}
for t ∈ [0, T ].

It can be shown that the optimal detector, to decide between hypotheses, first computes the integral

Λ ,
∫ T

0
R(t)dt

and then performs a threshold test.

(a) Find the mean value of the integral Λ under each hypothesis.
(b) Find the variance of Λ under each hypothesis.
(c) An optimal detector would compare Λ to the threshold Λ0 , AT/2 when each hypothesis is

equally likely (i.e., P [H0] = P [H1] = 1/2). Under these conditions, find P [Λ ≥ Λ0|H0] and
express your result in terms of the error function.

Part (a)

Let’s begin by evaluating the mean value of the integral Λ under hypothesis H0.

µΛ|H0
(T ) = E

{∫ T

0
W (t)dt

}
=

∫ T

0
E{W (t)}dt = 0

Note that we have applied the linearity property of the expectation operator, as well as the mean-
zero condition E{W (t)} = 0 for the white Gaussian noise process. Similarly, the mean value of the
integral Λ under hypothesis H1 is given by the following expression.

µΛ|H1
(T ) = E

{∫ T

0
(A + W (t)) dt

}
= AT +

∫ T

0
E{W (t)}dt = AT

In conclusion, we find that the mean value function has the following values under each hypothesis.

H0 : µΛ|H0
(T ) = 0

H1 : µΛ|H1
(T ) = AT

(8)

Part (b)

Following the derivation in Problem 8.7(b), we conclude that the general solution for the variance
function σ2

Λ(T ) is given by the following expression.

σ2
Λ(T ) = E

{
[Λ(T )− µΛ(T )]2

}
= E {[Λ(T )− µΛ(T )] [Λ(T )− µΛ(T )]∗}

= E

{[∫ T

0
R(t1)dt1 − µΛ(T )

] [∫ T

0
R∗(t2)dt2 − µ∗Λ(T )

]}

=
∫ T

0

∫ T

0
RRR(t1, t2)dt1dt2 − µΛ(T )µ∗Λ(T ) (9)

9
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Note that we have substituted for the correlation function RRR(t1, t2) = E{R(t1)R∗(t2)}. At this
point, we require closed-form expressions for the correlation function under each hypothesis. Let’s
begin by evaluating the correlation under hypothesis H0.

RRR|H0
(t1, t2) = E{W (t1)W ∗(t2)} = σ2δ(t1 − t2) (10)

Note that, by Equation 7.3-6 on page 436 in [4], we conclude that the correlation function for mean
zero white Gaussian noise is given by the previous expression. Now let’s evaluate the correlation
function under the hypothesis H1.

RRR|H1
(t1, t2) = E{[A + W (t1)][A + W (t2)]∗} = A2 + σ2δ(t1 − t2) (11)

In conlcusion, substituting Equations 12, 10, and 11 into Equation 9 yields the following solution
for the variance function under each hypothesis (which, as should be expected, turns out to be
identical under either hypothesis).

H0 : σ2
Λ|H0

(T ) = Tσ2

H1 : σ2
Λ|H1

(T ) = Tσ2 (12)

Part (c)

First, by Problem 8.13(c), we conclude that Λ is a Gaussian random variance. Under hypothesis H0,
Λ is a white Gaussian random noise processes with mean zero and variance Tσ2. As a result, the
false alarm probability (i.e., the probability of incorrectly identifying a noise sequence as containing
the target signal) is given by the following expression.

P [Λ ≥ Λ0|H0] = 1− P [Λ < Λ0|H0]

= 1− 1√
2πTσ2

∫ AT/2

−∞
exp

( −x2

2Tσ2

)
dx

Recall that the error function has the following definition.

erf(z) , 2√
π

∫ z

0
e−t2dt

In conclusion, we find that the false alarm probability has the following simple form in terms of
the error function.

P [Λ ≥ Λ0|H0] =
1
2

[
1− erf

(
AT

2
√

2Tσ2

)]

Briefly, we note that this function has several properties which must logically follow from the
detection criterion. If A = 0, then the hypotheses are equal and we obtain P [Λ ≥ Λ0|H0] = 1/2
– corresponding to equal detection likelihoods. Similarly, we recall that the error function has an
output on the interval (−1, 1). As a result, the false alarm probability P [Λ ≥ Λ0|H0] must be
within the interval (0, 1) depending on the value of parameters {A, T, σ}.

10
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Problem 9.9

In this problem we will derive the Kalman filter under a Gauss-Markov signal model with nonzero
mean. In the general case we consider a vector-valued discrete random process X[n] with nonzero
mean. Let the Gauss-Markov signal model be

X[n] = AX[n− 1] + BW[n], n ≥ 0

where X[−1] = 0 and the centered noise process Wc[n] , W[n] − µW[n] is white Gaussian with
variance σ2

W and µW[n] 6= 0. Note that V ⊥ Wc and that the observation equation is given by

Y[n] = X[n] + V[n], n ≥ 0.

(a) Find expressions for µX[n] and µY[n].

(b) Show that the MMSE estimate of X[n] equals the sum of µX[n] and the MMSE estimate of
Xc[n] , X[n]− µX[n] based on the centered observations Yc[n] , Y[n]− µY[n].

(c) Extend the Kalman filter Equation 9.2-16 to the nonzero mean case using the result of (b).

Part (a)

Let’s begin by evaluating the mean function for X[n].

µX[n] = E {AX[n− 1] + BW[n]} = AµX[n− 1] + BµW[n]

Substituting the initial condition X[−1] = 0, we find that µX[0] is given by

µX[0] = AµX[−1] + BµW[0] = BµW[0].

Iterating, we find the following expressions for µX[1] and µX[2].

µX[1] = AµX[0] + BµW[1] = ABµW[0] + BµW[1]

µX[2] = AµX[1] + BµW[2] = A2BµW[0] + ABµW[1] + BµW[2]

By induction we conclude that µX[n] and µY[n] are given by the following expression.

µX[n] = µY[n] =
n∑

m=0

AmBµW[n−m], n ≥ 0

Note that µX[n] = µY[n] by substituting µV[n] = 0 in the following expression.

µY[n] = E {X[n] + V[n]} = µX[n] + µV[n] = µX[n]

11
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Part (b)

First, we recall that the MMSE estimate of X[n] is defined on page 576 in [4] as follows.

X̂[n] , E{X[n]|Y[n− 1],Y[n− 2], . . . ,Y[0]}

Note that the state estimate X̂[n] is the conditional expectation of X[n] given the set of prior
observations {Y[n − 1],Y[n − 2], . . . ,Y[0]}. By the problem statement we wish to show that the
following equality holds.

X̂[n] ?= µX[n] + X̂c[n] = µX[n] + E{Xc[n]|Yc[n− 1],Yc[n− 2], . . . ,Yc[0]}

This can be shown by applying the linearity property of the conditional expectation operator.

X̂[n] = E{X[n]|Y[n− 1],Y[n− 2], . . . ,Y[0]}
= E{µX[n] + (X[n]− µX[n])|Y[n− 1],Y[n− 2], . . . ,Y[0]}
= µX[n] + E{Xc[n]|Y[n− 1],Y[n− 2], . . . ,Y[0]}

Note that, as shown in the previous part, µX[n] is independent of the observation sequence, so
E{µX[n]|Y[n−1],Y[n−2], . . . ,Y[0]} = µX[n]. At this point we can define the following innovations
sequence for Y[n] for the noiseless centered observations Xc[n]. As shown on pages 576-577, such
a sequence must be an orthogonal (or white) random sequence which consists of a causal, linear
transformation of Y[n]. By the previous part we recall that µX[n] = µY[n]. As a result, we find
the the innovations sequence Ỹc[n] is defined on the centered observations Yc[n] as follows.

Ỹc[0] , Yc[0]

Ỹc[n] , Yc[n]− E{Yc[n]|Yc[n− 1],Yc[n− 2], . . . ,Yc[0]}, for n ≥ 1

Since the innovations sequence Ỹc[n] and Yc[n] are equivalent, we conclude that the equality holds.

X̂[n] = µX[n] + E{Xc[n]|Yc[n− 1],Yc[n− 2], . . . ,Yc[0]} = µX[n] + X̂c[n]

Part (c)

The Kalman filter, providing an optimal estimate of the system state X[n] given the observations
{Y[n],Y[n− 1], . . . ,Y[0]}, is defined for mean zero sequences by Equation 9.2-16 as

X̂[n|n] = AX̂[n− 1|n− 1] + Gn(Y[n]−AX̂[n− 1|n− 1]),

where X̂[n|m] , E{X[n]|Y[m],Y[m − 1], . . . ,Y[0]} and X̂[−1| − 1] , 0. From the previous part,
we conclude that the Kalman filter for nonzero mean sequences has a similar form for the centered
sequences.

X̂c[n|n] = AX̂c[n− 1|n− 1] + Gcn(Yc[n]−AX̂c[n− 1|n− 1])

Note that the Kalman gain matrix Gcn for the centered sequences may not correspond to that in
the previous expression. Finally, we add the mean function to obtain the desired expression for the
Kalman filter.

X̂[n|n] = µX[n] + AX̂c[n− 1|n− 1] + Gcn(Yc[n]−AX̂c[n− 1|n− 1])

12
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Problem 2.3-4 [Larson and Shubert, p. 130]

A Gaussian random sequence X[n], for n = 0, 1, 2, . . ., is defined as

X[n] = −
n∑

k=1

(
k + 2

2

)
X[n− k] + W [n], (13)

where X[0] = W [0] and W [n] is a Gaussian white noise sequence with zero mean and unity variance.

(a) Show that W [n] is the innovations sequence for X[n].

(b) Show that X[n] = W [n]−3W [n−1]+3W [n−2]−W [n−3], for W [−1] = W [−2] = W [−3] = 0.

(c) Use the preceding result to obtain the best two-step predictor of X[12] as a linear combination
of X[0], . . . , X[10]. Also calculate the resulting mean-square prediction error.

Part (a)

Recall, from Definition 9.2-1 on page 571 in [4], that the innovations sequence for a random sequence
X[n] is defined to be a white random sequence which is a casual and causally-invertible linear
transformation of the sequence X[n]. From Equation 13 we find that W [n] is a causal linear
transformation of {X[0], X[1], . . . , X[n]} such that

W [n] = X[n] +
n∑

k=1

(
k + 2

2

)
X[n− k].

In addition, we note that each X[n] is composed of a linear combination of zero-mean Gaussian
random variables and, as a result, must also be a white random sequence. In conclusion, we find that
W [n] is a white random sequence that is causally equivalent to X[n]. Similarly, as we’ll show in Part
(b), X[n] can be expressed as a causal linear combination of {W [n− 3],W [n− 2],W [n− 1],W [n]}.
As a result, we find that W [n] is the innovations sequence for X[n] since it satisfies Definition 9.2-1.
In other words, W [n] contains the new information obtained when we observe X[n] given the past
observations {X[n− 1], X[n− 2], . . . , X[0]}.

Part (b)

Let’s begin by evaluating X[1] by direct evaluation of Equation 13.

X[1] = W [1]−
1∑

k=1

(
k + 2

2

)
X[1− k]

= W [1]− 3X[0] = W [1]− 3W [0]

Similarly, for X[2] we find the following result.

X[2] = W [2]−
2∑

k=1

(
k + 2

2

)
X[2− k]

= W [2]− 3X[1]− 6X[0] = W [2]− 3W [1] + 3W [0]

13



EN 257: Applied Stochastic Processes Problem Set 8 Douglas Lanman

Continuing our analysis we find that X[3] has the following solution.

X[3] = W [3]−
3∑

k=1

(
k + 2

2

)
X[3− k]

= W [3]− 3X[2]− 6X[1]− 10X[0] = W [3]− 3W [2] + 3W [1]−W [0]

By induction we conclude that the general solution for X[n], for n = 0, 1, 2, . . ., is given by the
following expression.

X[n] = W [n]− 3[n− 1] + 3W [n− 2]−W [n− 3], for W [−1] = W [−2] = W [−3] = 0

Part (c)

Recall that the best two-step predictor X̂[12] of X[12] will be given by the following conditional
expectation.

X̂[12] = E{X[12]|X[10], . . . , X[0]}
Note that W [n], the innovations sequence, is causally equivalent to X[n]. As a result, we can also
express the two-step predictor as follows.

X̂[12] = E{X[12]|W [10], . . . , W [0]}
= E{W [12]− 3W [11] + 3W [10]−W [9]|W [10], . . . , W [0]}
= 3W [10]−W [9]

Note that we substituted for X[n] using the result found in Part (b). Since W [n] is a white random
process, we also conclude that E{W [12]|W [10], . . . ,W [0]} = E{W [11]|W [10], . . . , W [0]} = 0. As a
result, the best two-step predictor of X[12] is given by the following expression.

X̂[12] = 3W [10]−W [9] = 3

{
X[10] +

10∑

k=1

(
k + 2

2

)
X[10− k]

}
−

{
X[9] +

9∑

k=1

(
k + 2

2

)
X[9− k]

}

Finally, we note that the mean-square prediction error ε2 is given by the following expression.

ε2 = E{(X[12]− X̂[12])2} = E{(W [12]− 3W [11])2}
= E{W [12]2} − 6E{W [12]W [11]}+ 9E{W [11]2}
= E{W [12]2} − 6E{W [12]}E{W [11]}+ 9E{W [11]2} = 10

Since W [n] is a mean-zero white random process we conclude that E{W [12]2} = E{W [11]2} = 1
and E{W [12]W [11]} = E{W [12]}E{W [11]} = 0. In conclusion, the mean-square prediction error
ε2 for X[12] is given by the following equation.

ε2 = E{(X[12]− X̂[12])2} = 10

14
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