EN 257: Applied Stochastic Processes Problem Set 8

Douglas Lanman
dlanman@brown.edu
9 May 2007

Problem 8.2

Let $X(t)$ be a random process with constant mean $\mu_{X} \neq 0$ and covariance function

$$
K_{X X}\left(t_{1}, t_{2}\right)=\sigma^{2} \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)\right) .
$$

(a) Show that the mean-square (m.s.) derivative $X^{\prime}(t)$ exists.
(b) Find the correlation function of the m.s. derivative $R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)$.
(c) Find the covariance function of the m.s. derivative $K_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)$.

Part (a)

Recall, from Theorem 8.1-2 on page 490 in [4], that a random process $X(t)$ with autocorrelation function $R_{X X}\left(t_{1}, t_{2}\right)$ has a m.s. derivative at time t if $\partial^{2} R_{X X}\left(t_{1}, t_{2}\right) / \partial t_{1} \partial t_{2}$ exists at $t_{1}=t_{2}=t$. Furthermore, we recall that the correlation function $R_{X X}\left(t_{1}, t_{2}\right)$ is related to the covariance function $K_{X X}\left(t_{1}, t_{2}\right)$ as follows.

$$
\begin{equation*}
R_{X X}\left(t_{1}, t_{2}\right)=K_{X X}\left(t_{1}, t_{2}\right)+\mu_{X}\left(t_{1}\right) \mu_{X}^{*}\left(t_{2}\right) \tag{1}
\end{equation*}
$$

For this problem we have a constant mean function $\mu_{X} \neq 0$ such that

$$
R_{X X}\left(t_{1}, t_{2}\right)=\sigma^{2} \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)\right)+\mu_{X} \mu_{X}^{*} .
$$

Evaluating the mixed partial derivative of $R_{X X}\left(t_{1}, t_{2}\right)$ at $t_{1}=t_{2}=t$ yields the following result.

$$
\left.\frac{\partial^{2} R_{X X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}}\right|_{\left(t_{1}, t_{2}\right)=(t, t)}=\sigma^{2}\left\{\left.\frac{\partial^{2} \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)\right)}{\partial t_{1} \partial t_{2}}\right|_{\left(t_{1}, t_{2}\right)=(t, t)}\right\}=\sigma^{2} \omega_{0}^{2}
$$

By Theorem 8.1-2, the m.s. derivative $X^{\prime}(t)$ exists since $\partial^{2} R_{X X}\left(t_{1}, t_{2}\right) / \partial t_{1} \partial t_{2}$ exists at $t_{1}=t_{2}=t$.

Part (b)

Recall, by Theorem 8.1-3 on page 494 in [4], that if a random process $X(t)$ with mean function $\mu_{X}(t)$ and correlation function $R_{X X}\left(t_{1}, t_{2}\right)$ has a m.s. derivative $X^{\prime}(t)$, then the mean and correlation functions of $X^{\prime}(t)$ are given by

$$
\begin{equation*}
\mu_{X^{\prime}}(t)=\frac{d \mu_{X}(t)}{d t} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=\frac{\partial^{2} R_{X X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}} . \tag{3}
\end{equation*}
$$

As a result, we find that the correlation function $R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)$ is given by the following expression.

$$
R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=\sigma^{2} \omega_{0}^{2} \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)\right)
$$

Part (c)

From Equation 1 we conclude that the covariance function of the m.s. derivative $X^{\prime}(t)$ is given by

$$
K_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)-\mu_{X^{\prime}}\left(t_{1}\right) \mu_{X^{\prime}}^{*}\left(t_{2}\right)
$$

From Equation 2 we find that $\mu_{X^{\prime}}(t)=\mu_{X^{\prime}}^{*}(t)=0$, since $X(t)$ has a constant mean $\mu_{X} \neq 0$. As a result, we conclude that the covariance function $K_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)$ is equal to the correlation function $R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)$ for this example.

$$
K_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=\sigma^{2} \omega_{0}^{2} \cos \left(\omega_{0}\left(t_{1}-t_{2}\right)\right)
$$

Problem 8.3

Let the random process $X(t)$ be wide-sense stationary with correlation function

$$
R_{X X}(\tau)=\sigma^{2} e^{-(\tau / T)^{2}}
$$

Let $Y(t)=3 X(t)+2 X^{\prime}(t)$, where the derivative is interpreted in the mean-square sense.
(a) State conditions for the m.s. existence of $Y(t)$ in terms of $R_{X X}(\tau)$.
(b) Find the correlation function $R_{Y Y}(\tau)$ for the given $R_{X X}(\tau)$ in terms of σ^{2} and T.

Part (a)

To begin our analysis we recall, from Theorem 8.1-4, that the m.s. derivative $X^{\prime}(t)$ of a WSS random process $X(t)$ exists at time t if the autocorrelation function $R_{X X}(\tau)$ has up to second order derivatives at $\tau=0$. In addition, from Definition 8.1-1 and Theorem 8.1-1, we note that the random process $Y(t)$ is m.s. continuous if

$$
\lim _{\varepsilon \rightarrow 0} E\left\{|Y(t+\varepsilon)-Y(t)|^{2}\right\}=0, \forall t
$$

Expanding this expression, we find

$$
E\left\{|Y(t+\varepsilon)-Y(t)|^{2}\right\}=R_{Y Y}(t+\varepsilon, t+\varepsilon)-R_{Y Y}(t, t+\varepsilon)-R_{Y Y}(t+\varepsilon, t)+R_{Y Y}(t, t)
$$

As a result, we find the $Y(t)$ exists (and is m.s. continuous) if $R_{Y Y}\left(t_{1}, t_{2}\right)$ is continuous at $t_{1}=$ $t_{2}=t$. As we'll show in Part (b), the correlation function $R_{Y Y}\left(t_{1}, t_{2}\right)$ is WSS and has the following general form for $Y(t)=3 X(t)+2 X^{\prime}(t)$.

$$
R_{Y Y}(\tau)=9 R_{X X}(\tau)+4 R_{X^{\prime} X^{\prime}}(\tau)
$$

By Corollary 8.1-1, we note that the WSS random process $X(t)$ is m.s. continuous if $R_{X X}(\tau)$ is continuous at $\tau=0$. In conclusion, we can combine the previous results to arrive at the following conditions for the m.s. existence of $Y(t)$ in terms of $R_{X X}(\tau)$.
(1) $R_{X X}(\tau)$ must be continuous at $\tau=0$.
(2) The derivatives of $R_{X X}(\tau)$ must exist up to second order.

Part (b)

Let's begin by expanding the expression for the correlation function $R_{Y Y}(\tau)$.

$$
\begin{aligned}
R_{Y Y}(\tau) & =E\left\{Y(t+\tau) Y^{*}(t)\right\} \\
& =E\left\{\left[3 X(t+\tau)+2 X^{\prime}(t+\tau)\right]\left[3 X(t)+2 X^{\prime}(t)\right]^{*}\right\} \\
& =9 E\left\{X(t+\tau) X^{*}(t)\right\}+6 E\left\{X(t+\tau) X^{\prime *}(t)\right\}+6 E\left\{X^{\prime}(t+\tau) X^{*}(t)\right\}+4 E\left\{X^{\prime}(t+\tau) X^{\prime *}(t)\right\} \\
& =9 R_{X X}(\tau)+6 R_{X X^{\prime}}(\tau)+6 R_{X^{\prime} X}(\tau)+4 R_{X^{\prime} X^{\prime}}(\tau)
\end{aligned}
$$

Recall from Equations 8.1-10 and 8.1-11 that, for a WSS random process $X(t)$, the cross-correlation functions are given by the following expressions.

$$
R_{X^{\prime} X}(\tau)=+\frac{d R_{X X}(\tau)}{d \tau} \quad \text { and } \quad R_{X X^{\prime}}(\tau)=-\frac{d R_{X X}(\tau)}{d \tau}
$$

In addition, we recall from Theorem 8.1-4 that the correlation function for the m.s. derivative $X^{\prime}(t)$ is given by

$$
R_{X^{\prime} X^{\prime}}(\tau)=-\frac{d^{2} R_{X X}(\tau)}{d \tau^{2}}
$$

Substituting into the previous expression for $R_{Y Y}(\tau)$, we find that the correlation function for $Y(t)$ is given by the following expression.

$$
\begin{aligned}
R_{Y Y}(\tau) & =9 R_{X X}(\tau)+4 R_{X^{\prime} X^{\prime}}(\tau) \\
& =9 R_{X X}(\tau)-4\left\{\frac{d^{2} R_{X X}(\tau)}{d \tau^{2}}\right\} \\
& =9 \sigma^{2} e^{-(\tau / T)^{2}}-4\left\{\sigma^{2}\left(\frac{4 \tau^{2}-2 T^{2}}{T^{4}}\right) e^{-(\tau / T)^{2}}\right\}
\end{aligned}
$$

In conclusion, the correlation function $R_{Y Y}(\tau)$ has the following solution.

$$
R_{Y Y}(\tau)=\sigma^{2}\left(\frac{9 T^{4}-16 \tau^{2}+8 T^{2}}{T^{4}}\right) e^{-(\tau / T)^{2}}
$$

Problem 8.7

To estimate the mean of a stationary random process $X(t)$, we often consider an integral average

$$
I(T) \triangleq \frac{1}{T} \int_{0}^{T} X(t) d t, T>0
$$

(a) Find the mean of $I(T)$, denoted $\mu_{I}(T)$, in terms of the mean μ_{X} for $T>0$.
(b) Find the variance of $I(T)$, denoted $\sigma_{I}^{2}(T)$, in terms of the covariance $K_{X X}(\tau)$ for $T>0$.

Part (a)

The mean function $\mu_{I}(T)$ of the integral average $I(T)$ is given by the following expression.

$$
\mu_{I}(T)=E\{I(t)\}=E\left\{\frac{1}{T} \int_{0}^{T} X(t) d t\right\}=\frac{1}{T} \int_{0}^{T} E\{X(t)\} d t=\frac{1}{T} \int_{0}^{T} \mu_{X} d t=\mu_{X}
$$

Note that in the previous expression we have applied the linearity property of the expectation operator, as well as the condition that $E\{X(t)\}=\mu_{X}$ for a stationary random process $X(t)$. In conclusion, the mean function $\mu_{I}(T)$ is equal to μ_{X} - which implies that $X(t)$ is ergodic in the mean such that the time average equals the ensemble average.

$$
\mu_{I}(T)=\mu_{X}, \text { for } T>0
$$

Part (b)

The variance function $\sigma_{I}^{2}(T)$ of the integral average $I(T)$ is given by the following expression.

$$
\begin{aligned}
\sigma_{I}^{2}(T) & =E\left\{\left[I(T)-\mu_{I}(T)\right]^{2}\right\}=E\left\{\left[I(T)-\mu_{I}(T)\right]\left[I(T)-\mu_{I}(T)\right]^{*}\right\} \\
& =E\left\{\left[\frac{1}{T} \int_{0}^{T} X\left(t_{1}\right) d t_{1}-\mu_{X}\right]\left[\frac{1}{T} \int_{0}^{T} X^{*}\left(t_{2}\right) d t_{2}-\mu_{X}^{*}\right]\right\} \\
& =E\left\{\left[\frac{1}{T} \int_{0}^{T}\left(X\left(t_{1}\right)-\mu_{X}\right) d t_{1}\right]\left[\frac{1}{T} \int_{0}^{T}\left(X\left(t_{2}\right)-\mu_{X}\right)^{*} d t_{2}\right]\right\} \\
& =\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} E\left\{\left[X\left(t_{1}\right)-\mu_{X}\right]\left[X\left(t_{2}\right)-\mu_{X}\right]^{*}\right\} d t_{1} d t_{2} \\
& =\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} K_{X X}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
\end{aligned}
$$

Note that we have applied the linearity of the expectation operator, as well as the condition that $K_{X X}\left(t_{1}, t_{2}\right)=E\left\{\left[X\left(t_{1}\right)-\mu_{X}\right]\left[X\left(t_{2}\right)-\mu_{X}\right]^{*}\right\}$ for a stationary random process $X(t)$. Furthermore, we recall that for a stationary random process the covariance function is only a function of the time shift $\tau=t_{1}-t_{2}$ such that $K_{X X}\left(t_{1}, t_{2}\right)=K_{X X}\left(t_{1}-t_{2}\right)$. In conclusion, the variance function $\sigma_{I}^{2}(T)$ is equal to the following expression in terms of the covariance function $K_{X X}(\tau)$.

$$
\sigma_{I}^{2}(T)=\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} K_{X X}\left(t_{1}-t_{2}\right) d t_{1} d t_{2}, \text { for } T>0
$$

Problem 8.12

This problem concerns the mean-square derivative. Let the random process $X(t)$ be second order (i.e., $E\left\{|X(t)|^{2}\right\}<\infty$) with correlation function $R_{X X}\left(t_{1}, t_{2}\right)$. Let the random process $Y(t)$ be defined by the mean-square integral

$$
\begin{equation*}
Y(t) \triangleq \int_{-\infty}^{t} e^{-(t-s)} X(s) d s \tag{4}
\end{equation*}
$$

(a) State the condition for the existence of the m.s. integral $Y(t)$ in terms of $R_{X X}\left(t_{1}, t_{2}\right)$.
(b) Find the correlation function $R_{Y Y}\left(t_{1}, t_{2}\right)$ of $Y(t)$ in terms of $R_{X X}\left(t_{1}, t_{2}\right)$.
(c) Determine the condition on $R_{X X}\left(t_{1}, t_{2}\right)$ for the existence of the m.s. derivative $d Y(t) / d t$.

Part (a)

Note that Equation 4 defines a weighted mean-square integral of the form

$$
I \triangleq \int_{T_{1}}^{T_{2}} h(t) X(t) d t
$$

where $h(t)=e^{-\left(T_{2}-t\right)}$ is the specific weighting function and $\left(T_{1}, T_{2}\right)=(-\infty, t)$. From pages 503 and 505 of [4], we recall that the weighted mean-square integral I is defined by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left\{\left|I-\sum_{i=1}^{n} h\left(t_{i}\right) X\left(t_{i}\right) \Delta t_{i}\right|^{2}\right\}=0 \tag{5}
\end{equation*}
$$

where the integral I is approximated by the following summation.

$$
I_{n} \triangleq \sum_{i=1}^{n} h\left(t_{i}\right) X\left(t_{i}\right) \Delta t_{i}, \text { for } \Delta t_{i}=\left(T_{2}-T_{1}\right) / n
$$

At this point we can apply the Cauchy criterion to determine the necessary conditions for the existence of the m.s. integral.

$$
\lim _{m, n \rightarrow \infty} E\left\{\left|I_{n}-I_{m}\right|^{2}\right\}=0
$$

Expanding this expression yields the following condition for convergence.

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} E\left\{I_{n} I_{n}^{*}\right\}-2 \operatorname{Re}\left(E\left\{I_{n} I_{m}^{*}\right\}\right)+E\left\{I_{m} I_{m}^{*}\right\}=0 \tag{6}
\end{equation*}
$$

Focusing on the cross-term, we find the following result.

$$
\begin{aligned}
E\left\{I_{n} I_{m}^{*}\right\} & =\sum_{i=1}^{n} \sum_{j=1}^{m} h\left(t_{i}\right) h^{*}\left(t_{j}\right) E\left\{X\left(t_{i}\right) X^{*}\left(t_{j}\right)\right\} \Delta t_{i} \Delta t_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} h\left(t_{i}\right) h^{*}\left(t_{j}\right) R_{X X}\left(t_{i}, t_{j}\right) \Delta t_{i} \Delta t_{j}
\end{aligned}
$$

As a result, we conclude that the m.s. integral of $Y(t)$ will exist if and only if

$$
\int_{-\infty}^{t_{1}} \int_{-\infty}^{t_{2}} e^{-\left(t_{1}-s_{1}\right)} e^{-\left(t_{2}-s_{2}\right)} R_{X X}\left(s_{1}, s_{2}\right) d s_{1} d s_{2}
$$

exists in the ordinary calculus. If this integral exists, then Equation 6 is satisfied and, via the Cauchy criterion, the weighted mean-square integral I must satisfy Equation 5.

Part (b)

The correlation function can be found by direct evaluation as follows.

$$
\begin{aligned}
R_{Y Y}\left(t_{1}, t_{2}\right) & =E\left\{Y\left(t_{1}\right) Y^{*}\left(t_{2}\right)\right\} \\
& =E\left\{\left[\int_{-\infty}^{t_{1}} e^{-\left(t_{1}-s_{1}\right)} X\left(s_{1}\right) d s_{1}\right]\left[\int_{-\infty}^{t_{2}} e^{-\left(t_{2}-s_{2}\right)} X\left(s_{2}\right) d s_{2}\right]^{*}\right\} \\
& =\int_{-\infty}^{t_{1}} \int_{-\infty}^{t_{2}} e^{-\left(t_{1}-s_{1}\right)} e^{-\left(t_{2}-s_{2}\right)} E\left\{X\left(s_{1}\right) X^{*}\left(s_{2}\right)\right\} d s_{1} d s_{2}
\end{aligned}
$$

Since the correlation function of $X(t)$ satisfies $R_{X X}\left(t_{1}, t_{2}\right)=E\left\{X\left(t_{1}\right) X^{*}\left(t_{2}\right)\right\}$, we conclude that $R_{Y Y}\left(t_{1}, t_{2}\right)$ has the following solution.

$$
R_{Y Y}\left(t_{1}, t_{2}\right)=\int_{-\infty}^{t_{1}} \int_{-\infty}^{t_{2}} e^{-\left(t_{1}-s_{1}\right)} e^{-\left(t_{2}-s_{2}\right)} R_{X X}\left(s_{1}, s_{2}\right) d s_{1} d s_{2}
$$

Part (c)

From page 506 in [4], we recognize that the solution $Y(t)$ to the stochastic differential equation

$$
d Y(t) / d t=X(t)
$$

is given by

$$
Y(t)=\int_{t_{0}}^{t} X(s) d s+Y\left(t_{0}\right), \text { for } t \geq t_{0}
$$

As a result, we note that the m.s. derivative $d Y(t) / d t$ will exist if the weighted integral in Equation 4 exists and is bounded. From Equation 8.2-6 we recall that the following condition of the weighting kernel $h(t, s)=e^{-(t-s)}$ is required.

$$
\int_{-\infty}^{t}\left|e^{-(t-s)}\right| d s<\infty
$$

As before, this generalizes to a m.s. stochastic integral involving the correlation function $R_{X X}\left(t_{1}, t_{2}\right)$. In conclusion, we find that the m.s. derivative $d Y(t) / d t$ will exist if and only if

$$
\int_{-\infty}^{t_{1}} \int_{-\infty}^{t_{2}} e^{-\left(t_{1}-s_{1}\right)} e^{-\left(t_{2}-s_{2}\right)} R_{X X}\left(s_{1}, s_{2}\right) d s_{1} d s_{2}
$$

exists in the ordinary calculus.

Problem 8.17

Consider the m.s. differential equation

$$
\frac{d Y(t)}{d t}+2 Y(t)=X(t)
$$

for $t \geq 0$, subject to the initial condition $Y(0)=0$. Let the input be given by

$$
\begin{equation*}
X(t)=5 \cos (2 t)+W(t) \tag{7}
\end{equation*}
$$

where $W(t)$ is a mean-zero Gaussian noise process with covariance function $K_{W W}(\tau)=\sigma^{2} \delta(\tau)$.
(a) Find the mean function $\mu_{Y}(t)$ for $t \geq 0$.
(b) Find the covariance function $K_{Y Y}\left(t_{1}, t_{2}\right)$ for $t_{1} \geq 0$ and $t_{2} \geq 0$.
(c) What is the maximum value of σ such that $P\left[\left|Y(t)-\mu_{Y}(t)\right|<0.1\right]>0.99$, for all $t>0$?.

Part (a)

Note that in the following analysis we will follow the general approach outlined in Example 8.3-1. Let's begin by taking the expectation of both sides of Equation 7.

$$
\begin{aligned}
& \frac{d E\{Y(t)\}}{d t}+2 E\{Y(t)\}=E\{X(t)\}, \text { for } E\{Y(0)\}=0 \text { and } t \geq 0 \\
& \Rightarrow \mu_{Y}^{\prime}(t)+2 \mu_{Y}(t)=\mu_{X}(t)=5 \cos (2 t), \text { for } \mu_{Y}(0)=0 \text { and } t \geq 0
\end{aligned}
$$

In conclusion, the solution to this ordinary differential equation is given by the following expression.

$$
\mu_{Y}(t)=\frac{5}{4}\left(\cos (2 t)+\sin (2 t)-e^{-2 t}\right), \text { for } t \geq 0
$$

Part (b)

For brevity, we recall that the derivation of the covariance function $K_{Y Y}\left(t_{1}, t_{2}\right)$ is presented on pages $506-511$ in [4]. From that section we recall that the following expression defines the cross-covariance function $K_{X Y}\left(t_{1}, t_{2}\right)$ for $t_{1} \geq 0$ and $t_{2} \geq 0$.

$$
\frac{\partial K_{X Y}\left(t_{1}, t_{2}\right)}{\partial t_{2}}+2 K_{X Y}\left(t_{1}, t_{2}\right)=K_{X X}\left(t_{1}, t_{2}\right)=\sigma^{2} \delta\left(t_{1}-t_{2}\right), \text { for } K_{X Y}\left(t_{1}, 0\right)=0
$$

Note that the initial condition is given by $K_{X Y}\left(t_{1}, 0\right)=0$ since $Y(0)=0$. Also recognize that the covariance of the input function is given by $K_{X X}\left(t_{1}, t_{2}\right)=\sigma^{2} \delta\left(t_{1}-t_{2}\right)$. As described in Example 8.3-1, this ordinary differential equation has the following solution.

$$
K_{X Y}\left(t_{1}, t_{2}\right)=\left\{\begin{array}{cc}
0, & \text { for } 0 \leq t_{2}<t_{1}, \\
\sigma^{2} e^{-2\left(t_{2}-t_{1}\right)}, & \text { for } t_{2} \geq t_{1}
\end{array}\right.
$$

Continuing with our analysis, we recall that Equation 8.3-4 yields the following expression for the output covariance $K_{Y Y}\left(t_{1}, t_{2}\right)$ in terms of the cross-covariance $K_{X Y}\left(t_{1}, t_{2}\right)$.

$$
\frac{\partial K_{Y Y}\left(t_{1}, t_{2}\right)}{\partial t_{1}}+2 K_{Y Y}\left(t_{1}, t_{2}\right)=K_{X Y}\left(t_{1}, t_{2}\right), \text { for } K_{Y Y}\left(0, t_{2}\right)=0
$$

In conclusion, we find that covariance function $K_{Y Y}\left(t_{1}, t_{2}\right)$ is given by the following expression.

$$
K_{Y Y}\left(t_{1}, t_{2}\right)=\left\{\begin{array}{lc}
\frac{\sigma^{2}}{4} e^{-2 t_{2}}\left(e^{2 t_{1}}-e^{-2 t_{1}}\right), & \text { for } 0<t_{1} \leq t_{2}, \\
\frac{\sigma^{2}}{4}\left(1-e^{-4 t_{2}}\right) e^{-2\left(t_{1}-t_{2}\right)}, & \text { for } t_{1} \geq t_{2}
\end{array}\right.
$$

Part (c)

As discussed on page 511, the random process $Y(t)$ has asymptotic wide-wense stationarity such that covariance $K_{Y Y}\left(t_{1}, t_{2}\right)$ tends to the constant $\sigma^{2} / 4$ as t_{1} and t_{2} become large. As a result, let's assume that the random process $Y(t)-\mu_{Y}(t)$ is modeled by a white Gaussian random process noise with mean zero and variance $\sigma^{2} / 4$. Under these circumstances we find that the maximum value of σ can be found using the following constraint.

$$
\begin{gathered}
P\left[\left|Y(t)-\mu_{Y}(t)\right|<0.1\right]=P\left[-0.1<Y(t)-\mu_{Y}(t)<0.1\right]>0.99 \\
\Rightarrow \frac{2}{\sqrt{2 \pi \sigma^{2}}} \int_{-0.1}^{0.1} \exp \left(\frac{-2 x^{2}}{\sigma^{2}}\right) d x>0.99
\end{gathered}
$$

Recall that the error function has the following definition.

$$
\operatorname{erf}(z) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t
$$

Substituting this expression in the previous result yields the following condition.

$$
\operatorname{erf}\left(\frac{1}{5 \sqrt{2} \sigma}\right)>0.99
$$

In conclusion, σ must satisfy the following inequality in order for $P\left[\left|Y(t)-\mu_{Y}(t)\right|<0.1\right]>0.99$, for all $t>0$.
$\sigma<0.07765$

Problem 8.22

To detect a constant signal of amplitude A in white Gaussian noise of variance σ^{2} and mean zero, we consider two hypotheses (i.e., events):

$$
\left.\begin{array}{ll}
H_{0}: & R(t)=W(t) \\
H_{1}: & R(t)=A+W(t)
\end{array}\right\} \text { for } t \in[0, T]
$$

It can be shown that the optimal detector, to decide between hypotheses, first computes the integral

$$
\Lambda \triangleq \int_{0}^{T} R(t) d t
$$

and then performs a threshold test.
(a) Find the mean value of the integral Λ under each hypothesis.
(b) Find the variance of Λ under each hypothesis.
(c) An optimal detector would compare Λ to the threshold $\Lambda_{0} \triangleq A T / 2$ when each hypothesis is equally likely (i.e., $P\left[H_{0}\right]=P\left[H_{1}\right]=1 / 2$). Under these conditions, find $P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right]$ and express your result in terms of the error function.

Part (a)

Let's begin by evaluating the mean value of the integral Λ under hypothesis H_{0}.

$$
\mu_{\Lambda \mid H_{0}}(T)=E\left\{\int_{0}^{T} W(t) d t\right\}=\int_{0}^{T} E\{W(t)\} d t=0
$$

Note that we have applied the linearity property of the expectation operator, as well as the meanzero condition $E\{W(t)\}=0$ for the white Gaussian noise process. Similarly, the mean value of the integral Λ under hypothesis H_{1} is given by the following expression.

$$
\mu_{\Lambda \mid H_{1}}(T)=E\left\{\int_{0}^{T}(A+W(t)) d t\right\}=A T+\int_{0}^{T} E\{W(t)\} d t=A T
$$

In conclusion, we find that the mean value function has the following values under each hypothesis.

$$
\begin{array}{ll}
H_{0}: & \mu_{\Lambda \mid H_{0}}(T)=0 \\
H_{1}: & \mu_{\Lambda \mid H_{1}}(T)=A T \tag{8}
\end{array}
$$

Part (b)

Following the derivation in Problem 8.7(b), we conclude that the general solution for the variance function $\sigma_{\Lambda}^{2}(T)$ is given by the following expression.

$$
\begin{align*}
\sigma_{\Lambda}^{2}(T) & =E\left\{\left[\Lambda(T)-\mu_{\Lambda}(T)\right]^{2}\right\}=E\left\{\left[\Lambda(T)-\mu_{\Lambda}(T)\right]\left[\Lambda(T)-\mu_{\Lambda}(T)\right]^{*}\right\} \\
& =E\left\{\left[\int_{0}^{T} R\left(t_{1}\right) d t_{1}-\mu_{\Lambda}(T)\right]\left[\int_{0}^{T} R^{*}\left(t_{2}\right) d t_{2}-\mu_{\Lambda}^{*}(T)\right]\right\} \\
& =\int_{0}^{T} \int_{0}^{T} R_{R R}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}-\mu_{\Lambda}(T) \mu_{\Lambda}^{*}(T) \tag{9}
\end{align*}
$$

Note that we have substituted for the correlation function $R_{R R}\left(t_{1}, t_{2}\right)=E\left\{R\left(t_{1}\right) R^{*}\left(t_{2}\right)\right\}$. At this point, we require closed-form expressions for the correlation function under each hypothesis. Let's begin by evaluating the correlation under hypothesis H_{0}.

$$
\begin{equation*}
R_{R R \mid H_{0}}\left(t_{1}, t_{2}\right)=E\left\{W\left(t_{1}\right) W^{*}\left(t_{2}\right)\right\}=\sigma^{2} \delta\left(t_{1}-t_{2}\right) \tag{10}
\end{equation*}
$$

Note that, by Equation 7.3-6 on page 436 in [4], we conclude that the correlation function for mean zero white Gaussian noise is given by the previous expression. Now let's evaluate the correlation function under the hypothesis H_{1}.

$$
\begin{equation*}
R_{R R \mid H_{1}}\left(t_{1}, t_{2}\right)=E\left\{\left[A+W\left(t_{1}\right)\right]\left[A+W\left(t_{2}\right)\right]^{*}\right\}=A^{2}+\sigma^{2} \delta\left(t_{1}-t_{2}\right) \tag{11}
\end{equation*}
$$

In conlcusion, substituting Equations 12, 10, and 11 into Equation 9 yields the following solution for the variance function under each hypothesis (which, as should be expected, turns out to be identical under either hypothesis).

$$
\begin{array}{cl}
H_{0}: & \sigma_{\Lambda \mid H_{0}}^{2}(T)=T \sigma^{2} \\
H_{1}: & \sigma_{\Lambda \mid H_{1}}^{2}(T)=T \sigma^{2} \tag{12}
\end{array}
$$

Part (c)

First, by Problem 8.13(c), we conclude that Λ is a Gaussian random variance. Under hypothesis H_{0}, Λ is a white Gaussian random noise processes with mean zero and variance $T \sigma^{2}$. As a result, the false alarm probability (i.e., the probability of incorrectly identifying a noise sequence as containing the target signal) is given by the following expression.

$$
\begin{aligned}
P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right] & =1-P\left[\Lambda<\Lambda_{0} \mid H_{0}\right] \\
& =1-\frac{1}{\sqrt{2 \pi T \sigma^{2}}} \int_{-\infty}^{A T / 2} \exp \left(\frac{-x^{2}}{2 T \sigma^{2}}\right) d x
\end{aligned}
$$

Recall that the error function has the following definition.

$$
\operatorname{erf}(z) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t
$$

In conclusion, we find that the false alarm probability has the following simple form in terms of the error function.

$$
P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right]=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{A T}{2 \sqrt{2 T \sigma^{2}}}\right)\right]
$$

Briefly, we note that this function has several properties which must logically follow from the detection criterion. If $A=0$, then the hypotheses are equal and we obtain $P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right]=1 / 2$ - corresponding to equal detection likelihoods. Similarly, we recall that the error function has an output on the interval $(-1,1)$. As a result, the false alarm probability $P\left[\Lambda \geq \Lambda_{0} \mid H_{0}\right]$ must be within the interval $(0,1)$ depending on the value of parameters $\{A, T, \sigma\}$.

Problem 9.9

In this problem we will derive the Kalman filter under a Gauss-Markov signal model with nonzero mean. In the general case we consider a vector-valued discrete random process $\mathbf{X}[n]$ with nonzero mean. Let the Gauss-Markov signal model be

$$
\mathbf{X}[n]=\mathbf{A} \mathbf{X}[n-1]+\mathbf{B} \mathbf{W}[n], n \geq 0
$$

where $\mathbf{X}[-1]=\mathbf{0}$ and the centered noise process $\mathbf{W}_{c}[n] \triangleq \mathbf{W}[n]-\mu_{\mathbf{W}}[n]$ is white Gaussian with variance $\sigma_{\mathbf{W}}^{2}$ and $\mu_{\mathbf{W}}[n] \neq \mathbf{0}$. Note that $\mathbf{V} \perp \mathbf{W}_{c}$ and that the observation equation is given by

$$
\mathbf{Y}[n]=\mathbf{X}[n]+\mathbf{V}[n], n \geq 0
$$

(a) Find expressions for $\mu_{\mathbf{X}}[n]$ and $\mu_{\mathbf{Y}}[n]$.
(b) Show that the MMSE estimate of $\mathbf{X}[n]$ equals the sum of $\mu_{\mathbf{X}}[n]$ and the MMSE estimate of $\mathbf{X}_{c}[n] \triangleq \mathbf{X}[n]-\mu_{\mathbf{X}}[n]$ based on the centered observations $\mathbf{Y}_{c}[n] \triangleq \mathbf{Y}[n]-\mu_{\mathbf{Y}}[n]$.
(c) Extend the Kalman filter Equation 9.2-16 to the nonzero mean case using the result of (b).

Part (a)

Let's begin by evaluating the mean function for $\mathbf{X}[n]$.

$$
\mu_{\mathbf{X}}[n]=E\{\mathbf{A} \mathbf{X}[n-1]+\mathbf{B} \mathbf{W}[n]\}=\mathbf{A} \mu_{\mathbf{X}}[n-1]+\mathbf{B} \mu_{\mathbf{W}}[n]
$$

Substituting the initial condition $\mathbf{X}[-1]=\mathbf{0}$, we find that $\mu_{\mathbf{X}}[0]$ is given by

$$
\mu_{\mathbf{X}}[0]=\mathbf{A} \mu_{\mathbf{X}}[-1]+\mathbf{B} \mu_{\mathbf{W}}[0]=\mathbf{B} \mu_{\mathbf{W}}[0]
$$

Iterating, we find the following expressions for $\mu_{\mathbf{X}}[1]$ and $\mu_{\mathbf{X}}[2]$.

$$
\begin{gathered}
\mu_{\mathbf{X}}[1]=\mathbf{A} \mu_{\mathbf{X}}[0]+\mathbf{B} \mu_{\mathbf{W}}[1]=\mathbf{A B} \mu_{\mathbf{W}}[0]+\mathbf{B} \mu_{\mathbf{W}}[1] \\
\mu_{\mathbf{X}}[2]=\mathbf{A} \mu_{\mathbf{X}}[1]+\mathbf{B} \mu_{\mathbf{W}}[2]=\mathbf{A}^{2} \mathbf{B} \mu_{\mathbf{W}}[0]+\mathbf{A B} \mu_{\mathbf{W}}[1]+\mathbf{B} \mu_{\mathbf{W}}[2]
\end{gathered}
$$

By induction we conclude that $\mu_{\mathbf{X}}[n]$ and $\mu_{\mathbf{Y}}[n]$ are given by the following expression.

$$
\mu_{\mathbf{X}}[n]=\mu_{\mathbf{Y}}[n]=\sum_{m=0}^{n} \mathbf{A}^{m} \mathbf{B} \mu_{\mathbf{W}}[n-m], n \geq 0
$$

Note that $\mu_{\mathbf{X}}[n]=\mu_{\mathbf{Y}}[n]$ by substituting $\mu_{\mathbf{V}}[n]=\mathbf{0}$ in the following expression.

$$
\mu_{\mathbf{Y}}[n]=E\{\mathbf{X}[n]+\mathbf{V}[n]\}=\mu_{\mathbf{X}}[n]+\mu_{\mathbf{V}}[n]=\mu_{\mathbf{X}}[n]
$$

Part (b)

First, we recall that the MMSE estimate of $\mathbf{X}[n]$ is defined on page 576 in [4] as follows.

$$
\hat{\mathbf{X}}[n] \triangleq E\{\mathbf{X}[n] \mid \mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\}
$$

Note that the state estimate $\hat{\mathbf{X}}[n]$ is the conditional expectation of $\mathbf{X}[n]$ given the set of prior observations $\{\mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\}$. By the problem statement we wish to show that the following equality holds.

$$
\hat{\mathbf{X}}[n] \stackrel{?}{=} \mu_{\mathbf{X}}[n]+\hat{\mathbf{X}}_{c}[n]=\mu_{\mathbf{X}}[n]+E\left\{\mathbf{X}_{c}[n] \mid \mathbf{Y}_{c}[n-1], \mathbf{Y}_{c}[n-2], \ldots, \mathbf{Y}_{c}[0]\right\}
$$

This can be shown by applying the linearity property of the conditional expectation operator.

$$
\begin{aligned}
\hat{\mathbf{X}}[n] & =E\{\mathbf{X}[n] \mid \mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\} \\
& =E\left\{\mu_{\mathbf{X}}[n]+\left(\mathbf{X}[n]-\mu_{\mathbf{X}}[n]\right) \mid \mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\right\} \\
& =\mu_{\mathbf{X}}[n]+E\left\{\mathbf{X}_{c}[n] \mid \mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\right\}
\end{aligned}
$$

Note that, as shown in the previous part, $\mu_{\mathbf{X}}[n]$ is independent of the observation sequence, so $E\left\{\mu_{\mathbf{X}}[n] \mid \mathbf{Y}[n-1], \mathbf{Y}[n-2], \ldots, \mathbf{Y}[0]\right\}=\mu_{\mathbf{X}}[n]$. At this point we can define the following innovations sequence for $\mathbf{Y}[n]$ for the noiseless centered observations $\mathbf{X}_{c}[n]$. As shown on pages $576-577$, such a sequence must be an orthogonal (or white) random sequence which consists of a causal, linear transformation of $\mathbf{Y}[n]$. By the previous part we recall that $\mu_{\mathbf{X}}[n]=\mu_{\mathbf{Y}}[n]$. As a result, we find the the innovations sequence $\tilde{\mathbf{Y}}_{c}[n]$ is defined on the centered observations $\mathbf{Y}_{c}[n]$ as follows.

$$
\begin{gathered}
\tilde{\mathbf{Y}}_{c}[0] \triangleq \mathbf{Y}_{c}[0] \\
\tilde{\mathbf{Y}}_{c}[n] \triangleq \mathbf{Y}_{c}[n]-E\left\{\mathbf{Y}_{c}[n] \mid \mathbf{Y}_{c}[n-1], \mathbf{Y}_{c}[n-2], \ldots, \mathbf{Y}_{c}[0]\right\}, \text { for } n \geq 1
\end{gathered}
$$

Since the innovations sequence $\tilde{\mathbf{Y}}_{c}[n]$ and $\mathbf{Y}_{c}[n]$ are equivalent, we conclude that the equality holds.

$$
\hat{\mathbf{X}}[n]=\mu_{\mathbf{X}}[n]+E\left\{\mathbf{X}_{c}[n] \mid \mathbf{Y}_{c}[n-1], \mathbf{Y}_{c}[n-2], \ldots, \mathbf{Y}_{c}[0]\right\}=\mu_{\mathbf{X}}[n]+\hat{\mathbf{X}}_{c}[n]
$$

Part (c)

The Kalman filter, providing an optimal estimate of the system state $\mathbf{X}[n]$ given the observations $\{\mathbf{Y}[n], \mathbf{Y}[n-1], \ldots, \mathbf{Y}[0]\}$, is defined for mean zero sequences by Equation $9.2-16$ as

$$
\hat{\mathbf{X}}[n \mid n]=\mathbf{A} \hat{\mathbf{X}}[n-1 \mid n-1]+\mathbf{G}_{n}(\mathbf{Y}[n]-\mathbf{A} \hat{\mathbf{X}}[n-1 \mid n-1]),
$$

where $\hat{\mathbf{X}}[n \mid m] \triangleq E\{\mathbf{X}[n] \mid \mathbf{Y}[m], \mathbf{Y}[m-1], \ldots, \mathbf{Y}[0]\}$ and $\hat{\mathbf{X}}[-1 \mid-1] \triangleq \mathbf{0}$. From the previous part, we conclude that the Kalman filter for nonzero mean sequences has a similar form for the centered sequences.

$$
\hat{\mathbf{X}}_{c}[n \mid n]=\mathbf{A} \hat{\mathbf{X}}_{c}[n-1 \mid n-1]+\mathbf{G}_{c_{n}}\left(\mathbf{Y}_{c}[n]-\mathbf{A} \hat{\mathbf{X}}_{c}[n-1 \mid n-1]\right)
$$

Note that the Kalman gain matrix $\mathbf{G}_{c_{n}}$ for the centered sequences may not correspond to that in the previous expression. Finally, we add the mean function to obtain the desired expression for the Kalman filter.

$$
\hat{\mathbf{X}}[n \mid n]=\mu_{\mathbf{X}}[n]+\mathbf{A} \hat{\mathbf{X}}_{c}[n-1 \mid n-1]+\mathbf{G}_{c_{n}}\left(\mathbf{Y}_{c}[n]-\mathbf{A} \hat{\mathbf{X}}_{c}[n-1 \mid n-1]\right)
$$

Problem 2.3-4 [Larson and Shubert, p. 130]

A Gaussian random sequence $X[n]$, for $n=0,1,2, \ldots$, is defined as

$$
\begin{equation*}
X[n]=-\sum_{k=1}^{n}\binom{k+2}{2} X[n-k]+W[n], \tag{13}
\end{equation*}
$$

where $X[0]=W[0]$ and $W[n]$ is a Gaussian white noise sequence with zero mean and unity variance.
(a) Show that $W[n]$ is the innovations sequence for $X[n]$.
(b) Show that $X[n]=W[n]-3 W[n-1]+3 W[n-2]-W[n-3]$, for $W[-1]=W[-2]=W[-3]=0$.
(c) Use the preceding result to obtain the best two-step predictor of $X[12]$ as a linear combination of $X[0], \ldots, X[10]$. Also calculate the resulting mean-square prediction error.

Part (a)

Recall, from Definition 9.2-1 on page 571 in [4], that the innovations sequence for a random sequence $X[n]$ is defined to be a white random sequence which is a casual and causally-invertible linear transformation of the sequence $X[n]$. From Equation 13 we find that $W[n]$ is a causal linear transformation of $\{X[0], X[1], \ldots, X[n]\}$ such that

$$
W[n]=X[n]+\sum_{k=1}^{n}\binom{k+2}{2} X[n-k] .
$$

In addition, we note that each $X[n]$ is composed of a linear combination of zero-mean Gaussian random variables and, as a result, must also be a white random sequence. In conclusion, we find that $W[n]$ is a white random sequence that is causally equivalent to $X[n]$. Similarly, as we'll show in Part (b), $X[n]$ can be expressed as a causal linear combination of $\{W[n-3], W[n-2], W[n-1], W[n]\}$. As a result, we find that $W[n]$ is the innovations sequence for $X[n]$ since it satisfies Definition 9.2-1. In other words, $W[n]$ contains the new information obtained when we observe $X[n]$ given the past observations $\{X[n-1], X[n-2], \ldots, X[0]\}$.

Part (b)

Let's begin by evaluating $X[1]$ by direct evaluation of Equation 13.

$$
\begin{aligned}
X[1] & =W[1]-\sum_{k=1}^{1}\binom{k+2}{2} X[1-k] \\
& =W[1]-3 X[0]=W[1]-3 W[0]
\end{aligned}
$$

Similarly, for $X[2]$ we find the following result.

$$
\begin{aligned}
X[2] & =W[2]-\sum_{k=1}^{2}\binom{k+2}{2} X[2-k] \\
& =W[2]-3 X[1]-6 X[0]=W[2]-3 W[1]+3 W[0]
\end{aligned}
$$

Continuing our analysis we find that $X[3]$ has the following solution.

$$
\begin{aligned}
X[3] & =W[3]-\sum_{k=1}^{3}\binom{k+2}{2} X[3-k] \\
& =W[3]-3 X[2]-6 X[1]-10 X[0]=W[3]-3 W[2]+3 W[1]-W[0]
\end{aligned}
$$

By induction we conclude that the general solution for $X[n]$, for $n=0,1,2, \ldots$, is given by the following expression.

$$
X[n]=W[n]-3[n-1]+3 W[n-2]-W[n-3], \text { for } W[-1]=W[-2]=W[-3]=0
$$

Part (c)

Recall that the best two-step predictor $\hat{X}[12]$ of $X[12]$ will be given by the following conditional expectation.

$$
\hat{X}[12]=E\{X[12] \mid X[10], \ldots, X[0]\}
$$

Note that $W[n]$, the innovations sequence, is causally equivalent to $X[n]$. As a result, we can also express the two-step predictor as follows.

$$
\begin{aligned}
\hat{X}[12] & =E\{X[12] \mid W[10], \ldots, W[0]\} \\
& =E\{W[12]-3 W[11]+3 W[10]-W[9] \mid W[10], \ldots, W[0]\} \\
& =3 W[10]-W[9]
\end{aligned}
$$

Note that we substituted for $X[n]$ using the result found in Part (b). Since $W[n]$ is a white random process, we also conclude that $E\{W[12] \mid W[10], \ldots, W[0]\}=E\{W[11] \mid W[10], \ldots, W[0]\}=0$. As a result, the best two-step predictor of $X[12]$ is given by the following expression.
$\hat{X}[12]=3 W[10]-W[9]=3\left\{X[10]+\sum_{k=1}^{10}\binom{k+2}{2} X[10-k]\right\}-\left\{X[9]+\sum_{k=1}^{9}\binom{k+2}{2} X[9-k]\right\}$
Finally, we note that the mean-square prediction error ε^{2} is given by the following expression.

$$
\begin{aligned}
\varepsilon^{2} & =E\left\{(X[12]-\hat{X}[12])^{2}\right\}=E\left\{(W[12]-3 W[11])^{2}\right\} \\
& =E\left\{W[12]^{2}\right\}-6 E\{W[12] W[11]\}+9 E\left\{W[11]^{2}\right\} \\
& =E\left\{W[12]^{2}\right\}-6 E\{W[12]\} E\{W[11]\}+9 E\left\{W[11]^{2}\right\}=10
\end{aligned}
$$

Since $W[n]$ is a mean-zero white random process we conclude that $E\left\{W[12]^{2}\right\}=E\left\{W[11]^{2}\right\}=1$ and $E\{W[12] W[11]\}=E\{W[12]\} E\{W[11]\}=0$. In conclusion, the mean-square prediction error ε^{2} for $X[12]$ is given by the following equation.

$$
\varepsilon^{2}=E\left\{(X[12]-\hat{X}[12])^{2}\right\}=10
$$

References

[1] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes (Third Edition). Oxford University Press, 2001.
[2] Harold J. Larson and Bruno O. Shubert. Probabilistic Models in Engineering Sciences: Random Variables and Stochastic Processes. John Wiley \& Sons, 1979.
[3] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
[4] Henry Stark and John W. Woods. Probability and Random Processes with Applications to Signal Processing (Third Edition). Prentice-Hall, 2002.

