
EN 253: Matlab Homework #2
Douglas R. Lanman
3 November 2005

1 Introduction

As discussed in the assignment handout, the goal of this writeup is to present the design of
a bandpass FIR filter using the three methods discussed in class: (1) the window method,
(2) the frequency sampling method, and (3) optimal equiripple design.

To begin our analysis, we must specify the filter passband, stopband, and attenuation
parameters [See Mitra, p. 490, Fig. 9.1]. First, note that the first stopband is given by
ω ∈ (0, ωs1), the passband is given by ω ∈ (ωp1 , ωp2), and the second stopband is given by
ω ∈ (ωs2 , π) (in radial frequency units). The radial frequencies are as follows

ωs1 = 2π
( 1, 768 Hz

44, 100 Hz

)
≈ 0.08018141π, ωs2 = 2π

( 5, 967 Hz

44, 100 Hz

)
≈ 0.2706122π

ωp1 = 2π
( 2, 431 Hz

44, 100 Hz

)
≈ 0.1102494π, ωp2 = 2π

( 4, 862 Hz

44, 100 Hz

)
≈ 0.2204989π

Note that there are two asymmetric transition bands given by

∆ω1 = ωp1 − ωs1 ≈ 0.03006803π (1)

∆ω2 = ωs2 − ωp2 ≈ 0.05011338π (2)

To complete the filter specification, we must define {δs, δp} the stopband and passband
peak ripple values, respectively. Recall that the problem statement gives αs = 60 dB and
αp = 0.5 dB (this was confirmed by the TA). Note that the passband and stopband peak
ripple values can be converted to linear scale, from decibels, using the following expressions
[See Mitra, p. 490, (9.3,9.4)].

αp = −20 log10(1− δp) dB

αs = −20 log10(δs) dB

Substituting for {αs, αp} we obtain

δp = 1− 10
−0.5
20 ≈ 0.05593912 (3)

δs = 10
−60
20 = 0.001 (4)

2 Filter Length Prediction

In this section, I will provide a prediction of the length of the optimal FIR filter using three
formulas: (1) Kaiser’s, (2) Hermann’s , and (3) Mintzer and Liu’s. As we will see, these
formulas provide similar, but not identical, estimates that can be used to guide the design
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process.

To begin, let’s consider the familiar Kaiser’s formula presented in class [See Mitra, p.
524, (10.3)].

NKaiser
∼= −20 log10(

√
δpδs)− 13

14.6(∆ω/2π)

As discussed in Mitra (p. 526), the transition width ∆ω should correspond to the smallest
transition width for asymmetric bandpass filters. As a result, the first transition band (∆ω1)
will be used for ∆ω. Using Equations (1,3,4) we find

NKaiser
∼= 135

Alternative filter order prediction formulas were briefly discussed in class, including Her-
mann’s and Mintzer and Liu’s. Let’s first consider Hermann’s formula, which is outlined in
Mitra (p. 525).

NHermann
∼= D∞(δp, δs)

(∆ω/2π)
− F(δp, δs)(∆ω/2π)

D∞(δp, δs) = log10 δs[a1(log10 δp)
2 + a2(log10 δp) + a3]

−[a4(log10 δp)
2 + a5(log10 δp) + a6]

F(δp, δs) = b1 + b2[log10 δp − log10 δs]

The coefficients are given by the following values

a1 = 0.005309, a2 = 0.07114, a3 = −0.4761

a4 = 0.00266, a5 = 0.5941, a6 = 0.4278

b1 = 11.01217, b2 = 0.51244

Using the smaller transition width ∆ω1 and Equations(1,3,4) we find

NHermann
∼= 132

Finally, let’s consider the Mintzer and Liu prediction formula [See F. Mintzer and B.
Liu, “An Estimate of the Order of an Optimal FIR Band-pass Digital Filter”, 1978]. As
discussed in class, this formula is quite similar to Hermann’s and is given by the following
expressions

NMintzer
∼= C∞(δp, δs)

(∆ω/2π)
+ G(δp, δs)(∆ω/2π)

C∞(δp, δs) = log10 δs[a1(log10 δp)
2 + a2(log10 δp) + a3]

+[a4(log10 δp)
2 + a5(log10 δp) + a6]

G(δp, δs) = −14.6 log10

(δp

δs

)
− 16.9
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where the coefficients are given by

a1 = 0.01201, a2 = 0.09664, a3 = −0.51325

a4 = 0.00203, a5 = −0.5705, a6 = −0.44314

Once again, using the smaller transition width ∆ω1 and Equations (1,3,4) we find

NMintzer
∼= 141

Notice that the three filter order prediction formulas give similar results. Also recall that
the FIR filter length is equal to the order plus one. The predicted optimal FIR filter lengths
are tabulated below.

Prediction Formula Length
Kaiser 136
Hermann 133
Mintzer and Liu 142

3 Window Method

In this section, I will summarize my design of the required FIR filter using the window
method. First, analytical results will be presented. Afterward, Matlab plots will be used to
analyze the performance of the FIR filter and confirm that it meets all design criteria.

3.1 Ideal Impulse Response

The ideal infinite discrete-time filter sequence can be obtained by taking the inverse DTFT
of the desired filter HD(ejω). For arbitrary lower and upper cutoff frequencies {ωc1 , ωc2} we
can define the desired frequency response as follows

HD(ejω) =





0, 0 ≤ |ω| < ωc1

1, ωc1 ≤ |ω| ≤ ωc2

0, ωc2 < |ω| ≤ π

The desired impulse response hd[n] has the following solution [c.f. Mitra, p. 528, (10.17)].
First, let’s begin by writing the impulse response as the inverse DTFT of the frequency
response.

hd[n] =
1

2π

∫ π

−π

HD(ejω)ejωn dω

Notice that the desired frequency response is only non-zero and equal to unity within the
passband, so we have

hd[n] =
1

2π

∫ −ωc1

−ωc2

ejωn dω +
1

2π

∫ ωc2

ωc1

ejωn dω
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For n 6= 0, we obtain the following result

hd[n] =
1

(2πn)j
ejωn

∣∣∣
ω=−ωc1

ω=−ωc2

+
1

(2πn)j
ejωn

∣∣∣
ω=ωc2

ω=ωc1

hd[n] =
1

nπ

[e−jωc1n − e−jωc2n

2j

]
+

1

nπ

[ejωc2n − ejωc1n

2j

]

Rearranging terms, we can express the solution in the form of sinusoids

hd[n] =
1

nπ

[ejωc2n − e−jωc2n

2j

]
− 1

nπ

[ejωc1n − e−jωc1n

2j

]

hd[n] =
sin(ωc2n)

nπ
− sin(ωc1n)

nπ
, n 6= 0

We can obtain the solution for n = 0 by considering the limiting behavior (and applying
L’Hospital’s rule).

lim
n→0

sin(ωc2n)

nπ
− sin(ωc1n)

nπ
= lim

n→0

ωc2 cos(ωc2n)

π
− ωc1 cos(ωc1n)

π
=

ωc2 − ωc1

π

In conclusion, the closed-form expression for the ideal infinite discrete-time filter sequence is

hd[n] =

{
sin(ωc2n)

nπ
− sin(ωc1n)

nπ
, n 6= 0

ωc2−ωc1

π
, n = 0

To proceed with our design, we must now select sensible cutoffs for the ideal filter used
in this method. As discussed in the problem statement, we do not necessarily want to select
the endpoints of the passband as the cutoff frequencies (i.e., 2,431 Hz and 4,862 Hz); such
a choice would necessitate a larger filter due to the narrowing of the passband. We will use
the standard choice of the halfway points in the transition bands as our cutoff frequencies.
As a result, we find

fc1 =
1, 768 Hz + 2, 431 Hz

2
= 2, 099.5 Hz

fc2 =
4, 862 Hz + 5, 967 Hz

2
= 5, 414.5 Hz

where fc1 is the lower cutoff frequency and fc2 is the upper cutoff frequency for the ideal
filter. In radial frequency units, we conclude

ωc1 =
ωs1 + ωp1

2
= 0.09521542π

ωc1 =
ωp2 + ωs2

2
= 0.2455556π
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3.2 Filter Length and Window Selection

In order to create a finite length filter we must truncate the ideal, infinite-length impulse
response hd[n]. As previously discussed, the filter length prediction formulas were used to
estimate the minimum length for an FIR filter meeting our design criteria. As we will see in
the following sections, however, the windowing method does not achieve the optimal length
predicted by these formulas. Instead, the “windowing method” filter tends to be longer than
the predicted length by at least a factor of two – indicating the fundamental limitation of
the windowing method for filter design.

If we simply truncate the ideal sequence without applying a window, then we are implic-
itly assuming a rectangular window. As can be seen in [Mitra, p. 534, Figure 10.7 and Table
10.2] there are a variety of window functions available. In general, there are two classes of
windows: fixed and parametric. In this problem we will consider both classes.

Again by inspecting the plot in Mitra (p. 534), we see that only the Hann and Blackman
windows meet our design criterion of 60 dB attenuation in the stopband. As a result, we will
restrict our analysis to these two fixed window functions. Although these windows meet the
required stopband attenuation goal, a sufficient number of samples must be used to ensure
that the main lobe does not extend further than the smallest transition band (i.e., ∆ωc1).
Using the formulas from [Mitra, p. 535, Table 10.2] we obtain the following predictions of
the main lobe widths

Hann Window: ∆ML =
4fs

L

Blackman Window: ∆ML =
6fs

L
where fs = 44,100 Hz (the sampling frequency) and L is the length of the FIR filter. Note
that half the main lobe width must be less than or equal to the effective transition width:
1
2
∆ML = ∆f = fc1 − fs1 = 2,099.5 Hz - 1,768 Hz = 331.5 Hz. Solving for L, the required

filter length we find

Hann Window: L ≈
⌈2fs

∆f

⌉
= 267

Blackman Window: L ≈
⌈3fs

∆f

⌉
= 400

This is only a rough estimate of the required filter order, but indicates that, using a fixed
window, it will be difficult to achieve the predicted optimal filter length. This is due to
the fact that fixed windows do not allow dynamic optimization of the transition width and
sidelobe attenuation. For such functionality we will have to consider parametric windows.
For this writeup, I will restrict my analysis to the Kaiser window (although my Matlab code
also supports Dolph-Chebyshev windows).

The Kaiser window function is defined as follows [See Mitra, p. 538, (10.39)]

w[n] =
I0

{
β
√

1− (n/M)2
}

I0(β)
,−M ≤ n ≤ M
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where β is the parametric parameter and I0(u) is the modified zeroth-order Bessel function.
Similar to our rough analysis for fixed window lengths, Kaiser provides the following formulas
to predict the necessary window length and β for a given design

β =





0.1102(αs − 8.7), for αs > 50
0.5842(αs − 21)0.4 + 0.07886(αs − 21), for 21 ≤ αs ≤ 50
0, for αs < 21

N =
αs − 8

2.285∆ω

Substituting for the values of ∆ω1 and αs, we obtain the following results

N = 241, β ≈ 5.65326

3.3 Frequency Domain Analysis of Filter Design

As discussed in the previous section, we are going to evaluate the Hann, Blackman, and
Kaiser windows. In order to demonstrate that our filter meets the design criterion, I will
evaluate the frequency response magnitude of the truncated, windowed impulse response.
In this manner, we can graphically confirm that the frequency response of our truncated,
windowed impulse response achieves the required attenuation and transition width criteria.

As was demonstrated in Matlab Homework #1, we can use a finite-length DFT to approx-
imate a DTFT [See Mitra, pp. 240-241]. In order to achieve a greater frequency resolution
than simply taking the N-point DFT, we will use the standard method of zero-padding the
impulse response sequence to obtain a length M sequence (M > N). As a result, for an
arbitrary window w[n], we obtain the following frequency response (via the M-point DFT)

X(ejωk) =
M−1∑
n=0

he[n]e−j2πkn/M

where the truncated, zero-padded impulse response is given by

he[n] =

{
w[n] · hd[n], 0 ≤ n < N − 1
0, N ≤ n ≤ M − 1

The attached Matlab program Problem_1.m allows the user to select from various window
functions and filter lengths and plots both the impulse response and the frequency response
magnitude for the resulting FIR filter [See attached source code]. Both the impulse responses
and frequency response magnitudes are evaluated for the Hann, Blackman, and Kaiser win-
dows. Please note that all figures are reproduced in the Appendix at full-page resolution.

Using Problem_1.m, I began my filter design by choosing a filter length L and window
type wType [See lines 31 and 35]. For the Hann window, I initially choose a length-267
filter (as predicted in Section 3.2). While this filter was nearly acceptable, it technically
did not meet the attenuation criterion of 60 dB at the beginning of the stopband (it did
meet the passband requirements). Using the frequency response magnitude plot, I progres-
sively increased the filter length until the design criteria were satisfied everywhere. Since I

6



Matlab Homework #2 EN 253 Douglas R. Lanman

−200 −150 −100 −50 0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

0.15

Impulse Response: Hann Window

Sample Index

A
m

pl
itu

de

0 0.5 1 1.5 2

x 10
4

−120

−100

−80

−60

−40

−20

0

20
Frequency Response Magnitude: Hann Window

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Window Method Result
Desired

Figure 1: Results for a 445-point Hann Window.
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Figure 2: Results for a 333-point Blackman Window.

am interested in designing a Type I FIR filter (i.e., even-symmetric and real-valued) I only
considered odd values of the filter length. In conclusion, I found that the Hann window
required a length-445 filter to meet all design goals. The Hann-windowed impulse response
and corresponding frequency response magnitude for a length-445 filter are shown in Figure 1.

A similar design process was undertaken for the Blackman window. Using an initial
length of 400 (as predicted in Section 3.2), I found that this initial estimate was too conser-
vative. From visual inspection, I found that a length-333 window was the minimum allowed
by the design criteria. The Blackman-windowed impulse response and frequency response
magnitude for a length-333 window are shown in Figure 2.

Not surprisingly, I found that the parametric Kaiser window achieved the shortest-length
filter meeting the design criterion. Beginning with the initial length of 241 predicted in
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Figure 3: Results for a 249-point Kaiser Window.

Section 3.2, I found that a length-249 Kaiser window was the shortest odd-length filter that
met all the design requirements. The results for the Kaiser window are shown in Figure 3.
Please consult the Appendix for high-resolution plots.

In conclusion, we find that the window method does not achieve the predicted optimal
filter lengths – even when a parametric window is used. This observation motivates the de-
velopment of alternate filter design methodologies, such as the frequency sampling method
or the optimal filter design – both of which will be considered in the following sections. The
minimum filter lengths for each window type are tabulated below.

Window Type Filter Length
Hann 445
Blackman 333
Kaiser 249

4 Frequency Sampling Method

In this section we will apply the frequency sampling method to design an FIR filter which
meets all of the criteria discussed in Section 1. We will see that, initially, the frequency sam-
pling method does not appear to be very effective in achieving short filters. The introduction
of variable “transition” samples, however, will result in greatly-reduced filter lengths. As a
result, we will discover that the frequency sampling method comes closer to approaching the
predicted filter lengths we found in Section 2.

The frequency sampling method is a straightforward process: N equally-spaced samples
are taken of the desired frequency response HD(ejω). The inverse DFT is applied to these
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N points to yield a finite-length impulse response as follows [See Mitra, p. 236, (5.14)].

h[n] =
1

N

N−1∑

k=0

H[k]ej2πkn/N , 0 ≤ n ≤ N − 1

The values of H[k] are given by uniformly sampling HD(ejω) as follows.

H[k] = HD(ej∆ωNk), where ∆ωN ≡ 2π

N

The desired filter response is identical to that derived in Section 3.1.

HD(ejω) =





0, 0 ≤ |ω| < ωc1

1, ωc1 ≤ |ω| ≤ ωc2

0, ωc2 < |ω| ≤ π

with the radial cutoff frequencies

ωc1 =
ωs1 + ωp1

2
= 0.09521542π

ωc1 =
ωp2 + ωs2

2
= 0.2455556π

The problem statement did not ask for an analytic solution for the inverse DFT, so I will
numerically compute it using Matlab’s ifft.m. As was done in Section 3, I will verify that
the filter achieves the design criteria by computing the DFT of the resulting finite-length
FIR filter and plotting the frequency response magnitude. I have included both the filter
evaluation and plotting routines in evalFilter.m (attached at the end of this writeup).

4.1 Initial Results

As required by Problem 2, Part (a), I evaluated the N-point inverse DFT and obtained the
finite-length impulse response. The M-point DFT was then used (with zero-padding) to
evaluate whether or not the filter achieves the design criteria. Using a length-143 filter, as
predicted by Minzter and Liu’s formula clearly does not achieve the design specifications
[See Figure 4 and attached high-resolution plots].

In order to meet the design criteria, I found that 19,929 points were required [See Figure
5]! This result is surprising, however it illuminates the central limitation of the frequency
sampling method: a lack of tradeoff parameters. With the Kaiser window, we found that a
parametric filter design process can optimize the tradeoff between the transition width and
the stopband/passband attenuation levels. A “direct” application of the frequency sampling
method does not allow one to perform such a tradeoff – resulting in very large filters to meet
all design criteria simultaneously. In the following section we will consider a modification
which will mitigate this problem.
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Figure 4: Frequency sampling results using 143 samples.
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Figure 5: Frequency sampling results using 19,929 samples.

4.2 Optimizing the Transition Samples

As discussed in Problem 2, Part (b), we can reduce the required filter length by “relaxing”
several samples in the transition band. In class, it was demonstrated that we could set a
single sample in the transition band to 1

2
to allow the frequency sampling method to have

better tradeoffs between stopband/passband attenuation and transition width. This method
is discussed, in depth, in [Rabiner, “Theory and Application of Digital Signal Processing”,
pp. 108-123, 1975]. In this section I will evaluate the shortest allowable filters using one,
two, and three variable transition samples with the frequency sampling method.

As discussed in Rabiner, the optimal values of the transition samples, for a given filter
length, can be found using linear programming. Since this problem does not explicitly re-
quire implementing this optimal method, I will instead rely upon a non-linear optimization
to iteratively refine the transition samples until they meet (or come as close as possible
to) the design criteria. Using evalFilter.m, I wrote an additional optimization routine
Problem_2.m to find the best-possible values of a fixed number of transition samples. Fun-
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Figure 6: One variable transition sample.
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Figure 7: Two variable transition samples.
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Figure 8: Results using three variable transition samples.

damentally, this program uses Matlab’s fminsearch to solve for the best values of either one,
two, or three transition samples. My error function is given by the energy of the frequency
response within the prohibited frequency domain (i.e., outside the required stopband and
passband attenuation limits).

Following the method outlined in Rabiner, I used variable transition points that were
located in the center of each transition band and were symmetric on either side of the pass-
band. Using Problem_2.m, I tried decreasing the filter length until the frequency response
magnitude satisfied all design criteria. For a single transition sample, I found that a length-
295 filter met all design criteria [Figure 6]. For two transition samples, a length-161 filter was
sufficient [Figure 7]. Finally, for three transition samples I again found that a length-161 filter
was required [Figure 8]. The minimum filter lengths obtained using the frequency sampling
method with variable transition samples are tabulated below. The “transition coefficients”
column summarizes the values of the transition samples from low to high frequency in the
lower transition band (recall they they are symmetric in the upper transition region). High
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resolution plots are attached in the Appendix.

Transition Samples Filter Length Transition Values
Zero 19,929 NA
One 295 0.425
Two 161 0.0412, 0.461
Three 161 0.0450, 0.475, 1.01

5 Optimal Equiripple Method

5.1 Using FDATOOL

In this section I will apply the Parks-McClellan Algorithm to design an optimal equirip-
ple filter that achieves the design criteria. As described in Problem 3, Part (a), Matlab’s
FDATOOL can be used to directly input the filter specifications. I have attached my input
window in the Appendix. Note that the response type must be set as “Bandpass” and the
frequency specifications and magnitude specifications are identical to those in the problem
statement. It is also important to note that, in order to “design the optimal equiripple filter
exactly for the specifications given”, we should use the “minimum order” mode in FDATOOL.

5.2 Design Analysis

Using the “minimum order” option, I find that a filter order of 132 is obtained by FDATOOL.
This corresponds to a filter length of 133. In general, the filter order in FDATOOL is one
less than the FIR filter length. The magnitude of the frequency response for the optical
length-133 filter is shown in Figure 9.

It is important to note that, while acceptable, the “minimum order” filter provided by
FDATOOL does not strictly satisfy our design criteria – it’s attenuation in the stopband and
passband is insufficient. This can be clearly seen in Figure 9 and the attached plots in the
Appendix. In order to strictly meet the design goals, we must use the “specify order” mode
in FDATOOL.

It is important to note that the magnitude specification in the “specify order” mode is
weight-based rather than the dB-scale attenuations used in the “minimum order” mode. As
discussed in [Mitra, p. 542] we can determine the appropriate weights using the following
equations.

W (ω) =

{
1, in the passband
δp/δs ≈ 55.939, in the stopbands

Using these weights in the “specify order” mode allows us to design an optimal filter which
exactly meets all design goals. Starting with the Kaiser filter order prediction of 135, I
find that a filter order of 138 is required to satisfy all design goals. This corresponds to a
length-139 filter! The impulse response and frequency response magnitudes for the optimal
design are shown in Figure 10. Please consult the Appendix for higher-resolution images and
specific views of the stopbands and passbands.
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Figure 9: FDATOOL results using minimum order specification.
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Figure 10: FDATOOL results using user-specified order of 138.

6 Conclusion

6.1 Comments on Design Methods

In this final section I will summarize my findings, and specifically answer Problem 3, Parts
(c) and (d). It this writeup we have utilized three filter design methods: (1) the window
method, (2) the frequency sampling method, and (3) optimal equiripple design. In Section 2
we used three filter order prediction formulas to estimate the minimum filter length. Those
results are summarized below of convenience.

Prediction Formula Length
Kaiser 136
Hermann 133
Mintzer and Liu 142

Design Method Length
Window Method 249
Frequency Sampling 161
Optimal Equiripple 139

The experimentally-determined minimum filter lengths for each method are also shown.
First, notice that the optimal equiripple method achieves the shortest filter which meets the
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design goals and is within the range of values predicted. In fact, the optimal design is only
3 points longer than that predicted by Kaiser, 6 points longer than Hermann’s result, and 3
points shorter than Minter and Liu’s estimate. This indicates that the prediction formulas
are very useful for gauging the length of an optimal design (although experimental verifica-
tion will always be required).

In terms of the cost of implementation, the shortest filter is usually the best (all factors
being equal) as it requires fewer “multiplication-additions” (i.e., MADDs) to evaluate. As a
result, the length-139 filter obtained using FDATOOL is the best design.

Problem 3, Part (c) also asks us to evaluate the ease of design for each method. Overall,
I believe that Matlab’s FDATOOL is both the easiest to use for filter design and obtains the
best results. While the window method and the frequency sampling method are conceptually
simpler, they are more difficult to use. For the window method, we must obtain the ideal
infinite impulse response which requires analytically evaluating the inverse DTFT integral
[See 3.1]. For arbitrary filter designs this task may be difficult or analytically intractable.
As a result, the window method mostly serves as a pedagogical tool.

The frequency sampling method is also conceptually simple and fairly straightforward to
implement. Since the inverse DFT can be evaluated numerically, as was done in this writeup,
it is easier to use than the windowing method. As was discovered in Section 4.2, variable
transition samples must be introduced to allow the user to simultaneously optimize the tran-
sition width and the stopband/passband attenuation levels. In the most general case, this
will require the iterative solution for the optimal transition values. In my implementation I
used Matlab’s fminsearch to solve for these parameters, however additional methods such
as linear programming could be used. While transition samples improve the results, they
increase the implementation complexity – the algorithm is now iterative. As a result, there
are few benefits of the frequency sampling method over the optimal equiripple method (in
terms of implementation complexity). Finally, the filters obtained with this method are
significantly longer than the predicted or optimal values. For our design, a minimum length
of 161 was required – 22 samples longer than the optimal equiripple result!

6.2 Would I Really Use This Filter?

This final section will address the limitations of the best filter I obtained: the length-139
optimal equiripple design shown in Figures 9 and 10. As previously discussed, “minimum
order” mode in FDATOOL did not strickly satisfy the design criteria [See Figure 9], but was
very close. If we decided to use this filter there are several limitation we’d have to address.
First, the attenuation in the transition band is not smooth – there is a peak within the
upper transition region. While we don’t specify any strict requirements in the transitions
regions, we want them to be as smooth as possible – a condition not met by this design.
As I have already discussed in Section 5.2, the “engineer’s” solution to this problem is to
simply increase the filter length until we achieve a smooth transition in each band. This is
precisely what was done to obtain the length-139 filter shown in Figure 10. Note that this
filter meets all design criteria and also exhibits smooth transition bands.
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Since the length-139 filter shown in Figure 10 is my best result, let’s briefly address some
practical limitations it would have for real-world systems. As we have discussed in class,
multirate filter techniques could be applied to reduce the number of operations required to
evaluate this bandpass filter. These issues will be more fully explored in Homework #3, so
I will only highlight this issue in this writeup.

In addition to saving operations using multirate filtering, we could also employ fixed-
point arithmetic on a DSP processor to reduce computation requirements. First, note that
all filters designed in this writeup have discrete samples but continuous amplitudes (i.e. they
are discrete sequences). We have not yet discussed the limitations imposed by quantizing
these filters to put them in a digital form appropriate for digital signal processors (DSPs). If
we attempt to use these filters without quantizing them to discrete levels, then we will have
to employ floating-point arithmetic to implement them in practice. An alternative to this is
to quantize the filter ahead of time and employ fixed-point arithmetic for filter evaluation.
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