
Abstract
•We present a new shape completion algorithm that can be used to detect and fill 
local concavities in the surface recovered from the visual motion of depth 
discontinuities viewed under orthographic projection. 

•We analyze the properties of orthographic multi-flash cameras for depth edge 
detection, using either near-field point sources or directional illumination. 

•We describe a calibration method for orthographic cameras using at least four 
images of a planar pattern augmented with a single point above its surface. 

•We present and analyze the performance of an experimental prototype, which is the 
first to exploit the unique properties of orthographic multi-flash imaging to 
reconstruct the 3-D shape of solid surfaces.

Related Work
Epipolar-Plane Image Analysis
One of the earliest studies about EPI’s was published by Bolles [1], in which he 
considers the case of linear motion for parallel cameras. In this case, a single scene 
point maps to a line in the EPI, with a slope corresponding to the distance of the point 
from the camera. Lines corresponding to points closer to the camera overlap those for 
points further away, allowing reconstruction without explicit feature matching [2]. This 
model is extended by Baker and Bolles [3] to deal with non-parallel cameras. 
Feldmann et al. [4] describe the properties of EPI curves for a circular motion path 
due to camera rotation. Their parameterized curves cannot be applied to our system, 
as they model texture features rather than depth discontinuities.

Optical Shape Capture Methods
In this work we propose a shape capture method inspired by the work of Crispell et 
al. [5]. In contrast to photometric stereo [6], in which lights are placed far from a 
camera, Raskar et al. [7] propose placing light sources close to the center of 
projection to estimate the set of visible depth discontinuities. Crispell et al. [5] show 
that such multi-flash cameras can be used to measure the visual motion of depth 
discontinuities as an object undergoes rigid rotation, allowing surface reconstruction 
using the differential method of Cipolla and Giblin [8].

Orthographic Imaging and Illumination
As demonstrated by Watanabe and Nayar [9], a telecentric lens can be fashioned 
from a conventional lens by placing an aperture at a specific location (e.g., at a focal 
point for a thin lens). 

Curve and Surface Completion
Shape completion has been extensively studied in 2-D and 3-D. Numerous 2-D curve 
completion schemes have been proposed [10, 11, 12, 13]; generally, two position and 
tangent constraints are specified. As an infinite number of curves satisfy such 
boundary conditions, additional constraints have been proposed to obtain a unique 
solution. Ullman [10] proposes a curve of minimum total curvature formed by two 
circular arcs, tangent at both ends, meeting in the center. Horn [13] further analyzes 
the curvature energy when the number of circular arcs increases, proving that the 
internal energy is smaller than that of an Euler spiral or a simple circle. Kimia et al. 
[12] propose minimizing variation of curvature, yielding completions based on the 
Euler spiral. Pauly et al. [14] complete meshes by detecting and replicating repeated 
patterns. In a closely-related work, Crispell et al. [5] fill gaps using the implicit surface 
defined by an oriented point cloud. Finally, Curless and Levoy [15] propose a 
volumetric method for fitting a signed distance function to a set of range images. 

Principles
Setup Overview
Our setup consists of an orthographic camera and 
a turntable. Depth discontinuities are 
obtained by the use of multiple flashes 
distributed around the lenses (Crispell et 
al. [5]). By tracking depth discontinuities 
over a sequence of images we obtain the equation for 
v, the line tangent to the 3-D surface.

3D Reconstruction of Point from Depth Discontinuity
We can express the coordinates of the 3-D point  touched by the tangent through 
the following equation

p = q + λv,

where q  is the camera center of projection (a circular trajectory for the turntable 
case) and λ  is the point depth with respect to the camera (our unknown). By 
manipulating this equation, and incorporating the surface normal n , it can be shown 
(Cipolla and Giblin [8]) that 

λ = −n!q

n!v̇

Curve Symmetries in Orthographic Epipolar Slice Images

If we consider the case of a cylinder of radius r , centered at a distance R  from the 
turntable rotation axis, the curves it describes on the EPI can be expressed as

u±(θ) = αR cos(θ)± αr,

which exhibits interesting symmetries. If reflected about the rotation axis and shifted 
180º we obtain the same curve. This symmetry is not present in the perspective case 
due to compression of the curve when the point is close to the camera and expansion 
when they are far from the camera. Locally, the surface boundary can be 
approximated by an osculating circle; as a result, we expect the EPI image to consist 
of intersecting sinusoidal contours. 

Occlusion in the Epipolar Slice Images
Occlusions limit the extent of u±  that can be recovered. By using the symmetry 
property present in orthographic projections we can extend the curve up to 
concavities.

Concavities and the Epiplar Slice Images
A set of cusps will be present in the EPI containing both visible and hidden depth 
discontinuities. These cusps correspond to positions where locally convex visible 
points on the surface transition into locally concave hidden points. Every concavity in 
the primal curve maps to a “fishtail” structure in the EPI. In other words, for a simple 
concavity, a T-junction will be present in the EPI, corresponding to a point of 

bitangency between the viewing ray and the surface [1]. As a result, T-junctions can 
be used to isolate corresponding points on either side of a concavity. We note that 
higher-order junctions, while improbable, correspond to points of multiple-tangency 
and can be processed in a similar manner. 
The proposed surface reconstruction method cannot recover locally concave points in 
deep concavities. As a result, a shape completion method is required to fill remaining 
gaps.

Implementation
Reconstruction Algorithm

1.To each EPI ridge fit a trigonometric polynomial ui(θ)
2.Form the additional set {ūi(θ)} of EPI curves by shifting each tracked contour by 
180º and reflecting about the rotation axis.

3.Join curves in {ūi(θ)} and {ui(θ)} if there is significant overlap, call this 
{u′

i(θ)}.

4.Searching for T-junctions between curves in {u′
i(θ)}.

5.To “hallucinate” the points inside concavities we fit a cubic Hermite interpolating 
polynomial to both sides of the concavity.

6.Points modeled by {u′
i(θ)} are reconstructed using equation (1).

Orthographic Camera Calibration
The method Zhang [17] proposes does not work with orthographic cameras since the 
intrinsic parameters matrix is singular for this case. We propose a similar technique, in 
which intrinsic and extrinsic parameters are separately estimated from multiple 
images of a planar checkerboard pattern.
We can express the projection of a point on a checkerboard (with coordinate z = 0) 
as
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As was done in Zhang we compute a homography between the points on the image 
and the true coordinates

p̃ = HP̃ ⇒ H = KsEs
The expression on the right can be manipulated to obtain

H!K−!
s K−1
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]

We can obtain the camera’s intrinsic parameters by noting that

det(R!
s Rs − I2) = 0

Results
A typical capture sequence consists of 670 viewpoints, separated by a rotation of 
approximated 0.527 degrees. Each images had a resolution of 1600x1200 at 8bits for 
each color channel. For each viewpoint four images are recorded in which the scene is 
sequentially illuminated by the top, bottom, left, and right flashes. 
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