

Surround Structured Lighting for Full Object Scanning

Douglas Lanman, Daniel Crispell, and Gabriel Taubin Brown University, Dept. of Engineering August 21, 2007

Outline

- Introduction and Related Work
- System Design and Construction
- Calibration and Reconstruction
- Experimental Results
- Conclusions and Future Work

Review: Gray Code Structured Lighting

3D Reconstruction using Structured Light [Inokuchi 1984]

- Recover 3D depth for each pixel using ray-plane intersection
- Determine correspondence between camera pixels and projector planes by projecting a temporally-multiplexed binary image sequence
- Each image is a bit-plane of the Gray code for each projector row/column

Review: Gray Code Structured Lighting

3D Reconstruction using Structured Light [Inokuchi 1984]

- Recover 3D depth for each pixel using ray-plane intersection
- Determine correspondence between camera pixels and projector planes by projecting a temporally-multiplexed binary image sequence
- Each image is a bit-plane of the Gray code for each projector row/column
- Encoding algorithm: integer row/column index \rightarrow binary code \rightarrow Gray code

4

Recovery of Projector-Camera Correspondences

3D Reconstruction using Structured Light [Inokuchi 1984]

- Our implementation uses a total of 42 images
 (2 to measure dynamic range, 20 to encode rows, 20 to encode columns)
- Individual bits assigned by detecting if bit-plane (or its inverse) is brighter
- Decoding algorithm: Gray code \rightarrow binary code \rightarrow integer row/column index

Overview of Projector-Camera Calibration

Estimated Camera Lens Distortion

Camera Calibration Procedure

Uses the Camera Calibration Toolbox for Matlab by J.-Y. Bouguet

Normalized Ray	Distorted Ray (4 th -order radial + tangential)	Predicted Image-plane Projection
$\mathbf{x}_{n} = \begin{bmatrix} \mathbf{X}_{c} / \mathbf{Z}_{c} \\ \mathbf{Y}_{c} / \mathbf{Z}_{c} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$	$ \begin{aligned} \mathbf{x}_{d} &= \begin{bmatrix} \mathbf{x}_{d}(1) \\ \mathbf{x}_{d}(2) \end{bmatrix} = \left(1 + \mathrm{kc}(1) \mathbf{r}^{2} + \mathrm{kc}(2) \mathbf{r}^{4} + \mathrm{kc}(5) \mathbf{r}^{6} \right) \mathbf{x}_{n} + \mathrm{dx} \\ \mathrm{dx} &= \begin{bmatrix} 2 \mathrm{kc}(3) \mathrm{x} \mathrm{y} + \mathrm{kc}(4) \left(\mathbf{r}^{2} + 2 \mathbf{x}^{2} \right) \\ \mathrm{kc}(3) \left(\mathbf{r}^{2} + 2 \mathbf{y}^{2} \right) + 2 \mathrm{kc}(4) \mathrm{x} \mathrm{y} \end{bmatrix} \end{aligned} $	$\begin{aligned} \mathbf{x}_{p} &= \mathbf{fc}(\mathbf{l}) \left(\mathbf{x}_{d}(\mathbf{l}) + \mathbf{alpha}_{c} \cdot \mathbf{x}_{d}(2) \right) + \mathbf{cc}(1) \\ \mathbf{y}_{p} &= \mathbf{fc}(2) \mathbf{x}_{d}(2) + \mathbf{cc}(2) \end{aligned}$

6

Overview of Projector-Camera Calibration

Projector Calibration Procedure

Estimated Projector Lens Distortion

- Consider projector as an inverse camera (i.e., maps intensities to 3D rays)
- Observe a calibration board with a set of fidicials in known locations
- Use fidicials to recover calibration plane in camera coordinate system
- Project a checkerboard on calibration board and detect corners
- Apply ray-plane intersection to recover 3D position for each projected corner
- Use Camera Calibration Toolbox to recover intrinsic/extrinsic projector calibration using 2D→3D correspondences with 4th-order radial distortion

7

Projector-Camera Calibration

Projector Calibration Procedure

- Observe a calibration board with a set of fidicials in known locations
- Use fidicials to recover calibration plane in camera coordinate system
- Project a checkerboard on calibration board and detect corners
- Apply ray-plane intersection to recover 3D position for each projected corner
- Use Camera Calibration Toolbox to recover intrinsic/extrinsic projector calibration using $2D \rightarrow 3D$ correspondences with 4^{th} -order radial distortion

Gray Code Structured Lighting Results

Proposed Improvement: Surround Lighting

Limitations of Structured Lighting

- Only recovers mutually-visible surface (i.e., must be illuminated and imaged)
- Complete model requires multiple scans or additional projectors/cameras
- Often requires post-processing (e.g., ICP)

Proposed Solution

- Trade spatial for angular resolution
- Multiple views by including planar mirrors
- What about illumination inference?
 - ✤ Use orthographic illumination

System Components

- Multi-view: digital camera + planar mirrors
- Orthographic: DLP projector + Fresnel lens

Related Work

Structured Light for 3D Scanning

- Over 20 years of research [Salvi '04]
- Gray code sequences [Inokuchi '84]
- Recent real-time methods [Zhang '06]
- Including planar mirrors [Epstein '04]

Multi-view using Planar Mirrors

- Visual Hull using mirrors [Forbes '06]
- Catadioptric Stereo [Gluckman '99]
- Mirror MoCap [Lin '02]

Orthographic Projectors

- Recent work by Nayar and Anand on volumetric displays using passive optical scatterers [SIGGRAPH '06]
- Introduces orthographic projectors

Outline

- Introduction and Related Work
- System Design and Construction
- Calibration and Reconstruction
- Experimental Results
- Conclusions and Future Work

Surround Structured Lighting Components

- Mitsubishi XD300U Projector (1024x786)
- Point Grey Flea2 Digital Camera (1024x786)
- Manfrotto 410 Compact Geared Tripod Head
- 11"x11" Fresnel Lens (Fresnel Technologies #54)
- 15"x15" First Surface Mirrors
- Newport Optics Kinematic Mirror Mounts

Mechanical Alignment Procedure

Manual Projector Alignment

- Center of projection must be at focal point of Frensel lens for orthographic configuration
- Given intrinsic projector calibration, we predict the projection of a known pattern on the surface of the Fresnel lens

Result of Mechanical Alignment (coincident projected and printed patterns)

Projected Calibration Pattern

Printed Calibration Pattern (affixed to Frensel lens surface)

Mechanical Alignment Procedure

Manual Mirror Alignment

- Mirrors must be aligned such that plane spanned by surface normals is parallel to the orthographic illumination rays
- Projected Gray code stripe patterns assist in manually adjusting the mirror orientations

Step 1: Alignment using a Flat Surface

- Cover each mirror with a blank surface
- Adjust the uncovered mirror so that the reflected and projected stripes coincide

Step 2: Alignment using a Cylinder

- Place a blank cylindrical object in the center of the scanning volume
- Adjust both mirrors until the reflected stripes coincide on the cylinder surface

Outline

- Introduction and Related Work
- System Design and Construction
- Calibration and Reconstruction
- Experimental Results
- Conclusions and Future Work

Orthographic Projector Calibration

Orthographic Projector Calibration using Structured Light

- Observe a checkerboard calibration pattern at several positions/poses
- Recover calibration planes in camera coordinate system
- Find camera pixel \rightarrow projector plane correspondence using Gray codes
- Apply ray-plane intersection to recover a *labeled* 3D point cloud
- Fit a plane to the set of all 3D points corresponding with each projector row
- Filter/extrapolate plane coefficients using a best-fit quadratic polynomial

Planar Mirror Calibration

Calibration Procedure

- Record planar checkerboard patterns (place against mirrors in two images)
- Find corners in real/reflected images
- Solve for checkerboard position/pose (also find initial mirror position/pose)
- Ray-trace through "reflected" corners
- Optimize {R_{M1}, T_{M1}} to minimize backprojected checkerboard corner error
- Repeat for second mirror $\{\mathbf{R}_{M2}, \mathbf{T}_{M2}\}$

	Mirror → Camera	Point Reflection	Ray Reflection
$\{\mathbf{R}_{M1}, \mathbf{T}_{M1}\} \bigvee_{\mathbf{V}_{C0}} \{\mathbf{R}_{M2}, \mathbf{T}_{M2}\}$	$\mathbf{x}_{C0} = \mathbf{R}_{M1}\mathbf{x}_{M1} + \mathbf{T}_{M1}$ $\mathbf{x}_{C0} = \mathbf{R}_{M2}\mathbf{x}_{M2} + \mathbf{T}_{M2}$	$\mathbf{x}_{C0}' = \mathbf{Q}_{M1}\mathbf{x}_{M1} + (\mathbf{I} - \mathbf{Q}_{M1})\mathbf{T}_{M1}$ $\mathbf{Q}_{M1} = \mathbf{R}_{M1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \mathbf{R}_{M1}^{T}$	$\mathbf{v}_{M1} = \mathbf{Q}_{M1} \mathbf{v}_{C0}$ $\mathbf{v}_{M2} = \mathbf{Q}_{M2} \mathbf{v}_{C0}$

Reconstruction Algorithm

Gray Code Sequence

Step 1: Recover Projector Rows

Step 2: Recover 3D point cloud

Project Gray code image sequence

Post-process using image morphology

Reconstruct using ray-plane intersection

Consider each real/virtual camera separately

Assign per-point color using ambient image

Recover projector scanline illuminating each pixel

Recovered Projector Rows

Real and Virtual Cameras

Camera Centers	Optical Rays	
$c_{0} = (0, 0, 0)^{T}$ $c_{1} = (\mathbf{I} - \mathbf{Q}_{M1})\mathbf{T}_{M1}$ $c_{2} = (\mathbf{I} - \mathbf{Q}_{M2})\mathbf{T}_{M2}$ $c_{21} = \mathbf{Q}_{M2}\mathbf{c}_{1} + (\mathbf{I} - \mathbf{Q}_{M2})\mathbf{T}_{M2}$ $c_{12} = \mathbf{Q}_{M1}\mathbf{c}_{2} + (\mathbf{I} - \mathbf{Q}_{M1})\mathbf{T}_{M1}$	$\mathbf{v}_1 = \mathbf{Q}_{M1}\mathbf{v}_0$ $\mathbf{v}_2 = \mathbf{Q}_{M2}\mathbf{v}_0$ $\mathbf{v}_{21} = \mathbf{Q}_{M2}\mathbf{Q}_{M1}\mathbf{v}_0$ $\mathbf{v}_{12} = \mathbf{Q}_{M1}\mathbf{Q}_{M2}\mathbf{v}_0$	

Outline

- Introduction and Related Work
- System Design and Construction
- Calibration and Reconstruction
- Experimental Results
- Conclusions and Future Work

Experimental Reconstruction Results

Ambient Illumination

Gray Code Sequence

Recovered Projector Rows

Surround Structured Lighting

Outline

- Introduction and Related Work
- System Design and Construction
- Calibration and Reconstruction
- Experimental Results
- Conclusions and Future Work

Conclusions and Future Work

Primary Accomplishments

- Experimentally demonstrated Surround Structured Lighting
- Developed a complete calibration procedure for prototype apparatus

Secondary Accomplishments

- Proposed practical methods for orthographic projector construction/calibration
- Extended Camera Calibration Toolbox for general projector-camera calibration

Future Work

- Sub-pixel light-plane localization
- Evaluate quantitative reconstruction accuracy
- Apply post-processing to point cloud (e.g., filtering, implicit surface, texture blending)
- Increase the scanning volume
- "Flatbed" scanner configuration (i.e., no projector)
- Extend to real-time shape acquisition "in the round"

de Bruijn Pattern [Zhang '02]

References

3DIM 2007: Surround Structured Lighting

1. D. Lanman, D. Crispell, and G. Taubin. Surround Structured Lighting for Full Object Scanning. 3DIM 2007.

Related Work: Orthographic Projectors and Structured Light with Mirrors

- 2. S. K. Nayar and V. Anand. Projection Volumetric Display Using Passive Optical Scatterers. Technical Report, July 2006.
- 3. E. Epstein, M. Granger-Piché, and P. Poulin. Exploiting Mirrors in Interactive Reconstruction with Structured Light. *Vision, Modeling, and Visualization 2004*.

Multi-view Reconstruction using Planar Mirrors

- 4. K. Forbes, F. Nicolls, G. de Jager, and A. Voigt. Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera. *ECCV 2006*.
- 5. J. Gluckman and S. Nayar. Planar Catadioptric Stereo: Geometry and Calibration. In CVPR 1999.
- 6. B. Hu, C. Brown, and R. Nelson. Multiple-view 3D Reconstruction Using a Mirror. Technical Report, May 2005.
- 7. I.-C. Lin, J.-S. Yeh, and M. Ouhyoung. Extracting Realistic 3D Facial Animation Parameters from Multi-view Video clips. *IEEE Computer Graphics and Applications*, 2002.

References

3D Reconstruction using Structured Light

- 8. J. Salvi, J. Pages, and J. Batlle. Pattern Codification Strategies in Structured Light Systems. Pattern Recognition, April 2004.
- 9. S. Inokuchi, K. Sato, and F. Matsuda. Range Imaging System for 3D Object Recognition. *Proceedings of the International Conference on Pattern Recognition*, 1984.

Projector and Camera Calibration Methods

- 10. R. Legarda-Sáenz, T. Bothe, and W. P. Jüptner. Accurate Procedure for the Calibration of a Structured Light System. *Optical Engineering*, 2004.
- 11. R. Raskar and P. Beardsley. A Self-correcting Projector. CVPR 2001.
- 12. S. Zhang and P. S. Huang. Novel Method for Structured Light System Calibration. *Optical Engineering*, 2006.
- **13**. J.-Y. Bouguet. Complete Camera Calibration Toolbox for Matlab. *http://www.vision.caltech.edu/bouguetj/calib_doc.*

Visual Hull: Silhouette-based 3D Reconstruction

14. A. Laurentini. The Visual Hull Concept for Silhouette-based Image Understanding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 1994.

References

Real-time Shape Acquisition

- 15. S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D Model Acquisition. SIGGRAPH 2002.
- 16. L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition using Color Structured Light and Multi-pass Dynamic Programming. *3DPVT 2002*.
- 17. S. Zhang and P. S. Huang. High-resolution, Real-time Three-dimensional Shape Measurement. *Optical Engineering*, 2006.

