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Abstract

This paper introduces a novel imaging system com-
posed of an array of spherical mirrors and a single high-
resolution digital camera. We describe the mechanical de-
sign and construction of a prototype, analyze the geome-
try of image formation, present a tailored calibration al-
gorithm, and discuss the effect that design decisions had
on the calibration routine. This system is presented as a
unique platform for the development of efficient multi-view
imaging algorithms which exploit the combined properties
of camera arrays and non-central projection catadioptric
systems. Initial target applications include data acquisition
for image-based rendering and 3D scene reconstruction.
The main advantages of the proposed system include: a rel-
atively simple calibration procedure, a wide field of view,
and a single imaging sensor which eliminates the need for
color calibration and guarantees time synchronization.

1. Introduction

Catadioptric systems are optical systems composed of
both mirrors and lenses. Most catadioptric cameras used
in computer vision applications contain only one or two
curved mirrors. In this paper we study an optical system
composed of a large number of identical spherical mirrors
forming a regular planar tiling, imaged by a single high res-
olution sensor. We describe the construction of the proto-
type shown in Figure 1, we analyze the multi-view geom-
etry of image formation, and we propose a calibration al-
gorithm. The literature on catadioptric systems is exten-
sive [5, 3, 4, 11, 13, 14, 17] but to our knowledge, systems
with large numbers of identical mirrors arranged in regu-
lar configurations have not been presented. Other methods
for simultaneously acquiring multiple images from differ-
ent viewpoints have included arrays of cameras and mov-
ing cameras [9, 6, 2, 19, 18] as well as inexpensive ar-
rays of lenses mounted on flatbed scanners [20]. The main
advantages of our system are the wide field of view and
single-image data capture, which makes the time synchro-
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nization issues associated with multi-camera systems van-
ish. On the other hand, frame-rate video processing is cur-
rently not possible with the high resolution consumer-grade
digital camera used in our prototype.

Most calibration algorithms for catadioptric systems are
designed for single mirror systems [8, 21]. More recently,
non-parametric general imaging models have been pro-
posed to describe non-pinhole cameras, as well as for cal-

Figure 1: Spherical catadioptric array. (A) Mechanical de-
sign. (B) Constructed prototype. (C) Typical image cap-
tured by the 8 megapixel digital camera. The four corner
pins marked in red are used to estimate the plate coordinate
system (as discussed in Section 3).



ibrating such systems [7, 16, 15]. It is appropriate to use
these methods when the geometry of the optical system
components is unknown. In systems such as the one pre-
sented in this paper, where complete geometric design data
is available, a parametric description of the process of im-
age formation produces better results.

The paper is organized as follows: in Section 2 we de-
scribe the construction of the system. Section 3 presents the
calibration algorithm. In Section 4 we review the geome-
try of image formation for spherical catadioptric systems.
Section 5 presents the multi-view geometry equations used
for calibration and 3D reconstruction. In Section 6 we de-
scribe implementation details and calibration results. Sec-
tion 7 discusses results for some preliminary applications.
Finally, in Section 8, we elaborate on our future plans.

2. Mechanical Design and Construction

We designed and built the system shown in Figure 1. It
consists of a black anodized aluminum plate,1/4′′ thick,
with cylindrical stainless steel pins pressed into holes.
These holes, drilled at precise locations on the plate, are
used to hold and align 31 spherical mirrors. The pins are
cut to equal length and inserted into the plate with high pre-
cision, so that the pin heads are coplanar to machine shop
precision. The inexpensive plastic mirrors shown in Figure
2 are glued to the aluminum plate using a synthetic silicon
rubber adhesive. This mounting method prevents damage
to the reflective layer, but it also causes inaccuracies in the
positioning of mirrors with respect to the plate. As a result,
the mirror parameters (i.e., the location of the sphere centers
and their radii) are not known in advance with high preci-
sion, and must be refined by the calibration algorithm. The
plate is positioned in space to roughly fill the field of view
of an Olympus C-8080 8 megapixel digital camera and at an
angle such that the camera cannot see its own image in any
of the mirrors. The structure shown in Figure 1(A), built
out of standard industrial aluminum extrusions, is used as
the system skeleton. A single image captures all 31 mirrors.
Figure 1(C) shows a typical image captured by the cam-
era. The Olympus SDK provided by the manufacturer [12]
is used to automate the capture and calibration processes.
Captured images are downloaded directly to the computer
through the USB 2.0 interface.

3. Calibration

We use a pinhole perspective camera model for the dig-
ital camera and select its local coordinate system as the
world coordinate system. The purpose of the calibration
procedure is to determine the precise mapping from camera
pixel coordinates to light rays in three-dimensional space
[7, 16]. We divide the calibration process into three steps:

Figure 2: Spherical mirrors. (A) Adhesive-backed rear view
mirrors used in the construction of the mirror array. (B)
Detail of mirror array plate showing the steel pins that hold
the mirrors in place.

(1) intrinsic calibration of the digital camera, (2) estimation
of the plate pose with respect to the world coordinate sys-
tem, and (3) calibration of the spherical mirrors with respect
to the plate. The last step includes estimating the location
of the sphere centers and their radii, as well as the pose of
a calibration object. In a more complex model, it also in-
cludes estimating the thickness of the refractive layer in the
mirrors, as well as their index of refraction of the protective
mirror coating.

3.1 Intrinsic pinhole camera calibration

For this step we use the well-established Camera Cal-
ibration Toolbox for Matlab [1]. This step also includes
distortion correction for the camera lens.

3.2 Plate pose estimation

This step is completed using a single input image and
does not require a calibration object. In fact, the reflected
images in each mirror are ignored. An ellipse detection al-
gorithm is used to locate the four pins closest to the four
corners of the image, marked in red in Figure 1(C). Conser-
vative search areas for these pins can be predicted from the
mechanical design data. Since we know the precise location
of these four pins in the plate and their relative distances,
we compute a homography from the four point correspon-
dences, and from this homography we obtain a first estimate
of the equation of the plane in space. We subsequently pre-
dict the locations of the rest of the pins in the image. These
predictions are then used to search for the remaining pins.
The same ellipse detection algorithm is used to refine the lo-
cation estimates for all the remaining pins; afterwards, we
recompute a more precise homography from this data. This
step has to be repeated every time the camera moves with
respect to the plate, or when intrinsic camera parameters
(e.g., focal length) are changed.
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3.3 Calibration of spherical mirrors

This step requires a single image of a calibration target.
We use a standard planar checkerboard pattern which we
position so that most of its corners are visible in the reflec-
tion from every mirror surface. We model the mirrors as
perfect spheres with centers lying approximately in a plane
located behind the plane of the steel pin heads. In this step,
we determine the location of the spherical mirror centers
(with respect to the plate and with respect to the world co-
ordinate system), the radii of the mirrors, and the location
of the calibration target in world coordinates. Initial esti-
mates for the sphere centers and sphere radii are available
from the mechanical design data, but the exact radii and pre-
cise center locations are not known because of the imprecise
mounting method used.

3.3.1 Bundle adjustment

We propose a straightforward method for the final calibra-
tion step based on a new bundle adjustment formulation. In
Section 4 we derive the equations of image formation for
a catadioptric system composed of a pinhole camera and
a spherical mirror. These equations determine a mapping
which assigns an image pointu to a directedreflected ray

Ru = {p = q(u, Λi) + λ v(u, Λi) : λ > 0} (1)

incident on theith spherical mirror, whereΛi is a set of pa-
rameters including the sphere center and radius, andp is a
3D point whose image on theith mirror isu, andλ > 0 is a
constant. A similar parametric form, but with different pa-
rameter valuesΛj , describes the process of image formation
for thejth mirror.

For every identifiable pointpj in a calibration target
(e.g., a checkerboard corner) and each corresponding im-
age pointuij associated with theith mirror, we have one
ray equation

q(uij ,Λi) + λij v(uij ,Λj) = qij + λij vij = pj . (2)

All of these equations must be satisfied simultaneously, but
due to measurement errors they can only be satisfied in the
least squares sense. In Section 5 we show that this problem
is equivalent to minimizing the error function

E(P,Λ) =
∑

(i,j)∈I

‖v(uij ,Λi)× (pj − q(uij ,Λi))‖2 (3)

whereP = {p1, . . . , pN}, the unknownsλij have been
eliminated, andI is the set of pairs(i, j) such that point
pj is visible in theith mirror.

3.3.2 Estimating point locations

In general, minimizingE(P,Λ) is a non-linear least squares
problem which requires initial estimates for both the point
locations and the intrinsic parameters. Note that the me-
chanical design data provides accurate initial estimates for
the intrinsic parameters, however the point location esti-
mates are not available. We compute initial estimates for
the point positions using the following procedure, which
uses the initial estimates for the intrinsic parameters.

We show in Section 5 that if the intrinsic mirror para-
metersΛ are known, the location of the pointpj can be
estimated in homogeneous coordinates as the right singu-
lar vector associated with the smallest singular value of a
matrix Wpj . We use the SVD algorithm to compute ini-
tial estimates for the points using the initial estimates for
the intrinsic parameters. If the pointpj is visible in all the
mirrors, then the matrixWpj

has the following expression

Wpj
=

 v̂1j −v̂1jq1j

...
...

v̂Nj −v̂NjqNj

 .

If not, then the rows corresponding to mirrors wherepj is
not observed should be removed.

3.3.3 Rigid motion model

A local descent algorithm can be used to refine the point
locations and intrinsic spherical mirror parameter estimates.
In our experience, this procedure does not produce accurate
results, mainly because some points are only visible in a few
mirrors. The main limitation of this approach is that it does
not impose as a constraint the fact that the spatial relation
between the pointspj is known.

Since calibration featurespj are points on a known cali-
bration object, which in our case are the corners of a planar
checkerboard, we can write each point with respect to a co-
ordinate system that describes the pose of the calibration
object

pj = R ξj + T ,

whereR is a three-dimensional rotation matrix,T a three-
dimensional translation vector, andξj is a known three-
dimensional vector which describes the coordinates of the
point pj in the calibration object coordinate system. As
usual, for a planar object such as a checkerboard pattern,
we can choose the local coordinate system such that one
coordinate of the vectorsξj is equal to zero. With this sub-
stitution, the3N free variables in the energy function corre-
sponding to the coordinates of the pointspj are reduced to
just6, resulting in a new energy functionE(R, T, Λ).

Again, to locally minimize this new energy function, we
need initial estimates. We already have initial estimates for
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Figure 3: The geometry of a reflected ray. The incident ray,
normal vector, and reflected ray are coplanar.

Λ. These are the same ones used in the previous formula-
tion. To compute initial estimates forR andT , we choose
three pointspj , pk, pl which are seen in most mirrors, and
which are not very close together on the checkerboard. We
use the SVD-based estimation algorithm described above to
estimate their positions. From these three positions we can
estimate the pose(R, T ). Then we locally minimize the en-
ergy functionE(R, T,Λ) with respect to all the variables
simultaneously.

Since the mirrors are not expected to move with respect
to the plate, this process needs to be performed only once in
a laboratory environment.

4 The Ray Equations

In this Section we derive an analytic form for the map-
ping from pixel coordinates to 3D reflected rays with re-
spect to the world coordinate system. We first analyze the
case of a first surface mirror (i.e., a mirror without a layer of
transparent material in front of the reflective coating). Af-
terwards, we modify this model to account for refraction.

4.1 Model for a first surface mirror

The reflection of rays by a spherical mirror is governed
by the classical law of reflection: the incident ray, the nor-
mal vector to the mirror surface at the point of incidence,
and the reflected ray are coplanar. In addition, the incident
and reflected rays are symmetric with respect to the normal

vector. This means that the optical system has cylindrical
symmetry with respect to the line joining the pinhole and
the center of the spherical mirror. We call this line theopti-
cal axisof the system. This symmetry is broken if the image
plane is not orthogonal to this line. This is not a problem
because the images formed on two different image planes
are related by a homography. In fact, what is important is
not where the ray hits an image plane, but its direction as
it passes through the pinhole. We avoid this uncertainty by
representing image points as unit length vectorsu, after cor-
recting for intrinsic camera calibration. This is equivalent to
saying that we use a pinhole camera with a spherical retina.

To analyze the process of image formation in this system
we consider rays traveling in the opposite direction, from
the camera through the pinhole to space, hitting the mirror,
and then reflected off of the spherical mirror, as illustrated
in Figure 3. Here we denoteo the pinhole,c the center of
the spherical mirror,d the distance between the pinhole and
the center of the sphere,r the radius of the spherical mirror,
andw the vector fromo to c normalized to unit length, so
thatc− o = dw. The origin of the world coordinate system
is o.

Let u be an arbitrary unit length vector, letα be the angle
formed by the vectorsu andw, and let Iu be theincident
ray that goes through the pinhole in the direction ofu.

Again, because of the law of reflection, the incident ray,
the reflected ray, the normal vector, and the optical axis are
all coplanar. In particular, the line supporting thereflected
ray Ru intersects the optical axis. But not all these rays
intersect the axis at the same point. This is illustrated in
Figure 3. In fact, the location along the optical axis is only
a function of the angle between the vectorsu andw. Two
vectorsu1 andu2 are congruent modulo a rotation around
the optical axis, if and only if their corresponding reflected
rays intersect the optical axis at the same point. Ifu1 and
u2 are not congruent modulo a rotation around the optical
axis, the corresponding reflected rays aretwisted(i.e., the
two supporting lines are not coplanar).

The incident rayIu hits the mirror surface at the point
q = q(u), and reflects off according to the law of reflection
along a unit length vectorv = v(u). The reflected rayRu

can be written in parametric form as shown in Equation 1
above, wherev = v(u) is its direction. We can writeq =
ξu, for some positive numberξ. Since‖q − c‖2 = r2, and
c− o = dw, ξ must be the smallest positive real root of the
quadratic equation

0 = ‖ξu− dw‖2 − r2 .

Since and‖u‖2 = ‖w‖2 = 1, we have

0 = ‖ξu− dw‖2 − r2 = ξ2 − 2ξd(utw) + d2 − r2 .

Rearranging terms and completing squares

0 = (ξ − d(utw))2 − (r2 − d2(1− (utw)2)). (4)
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Note that, ifα is the angle formed by the vectorsu andw,
the maximum angleαMAX is achieved when the incident and
reflected rays are tangent to the sphere, in which case

0 < 1− (utw)2 = sin(α)2 ≤ sin(αMAX )2 = r2/d2 ,

and Equation 4 has two real roots

ξ = d(utw)±
√

r2 − d2(1− (utw)2) .

Sinceutw > 0, the root with the+ sign is clearly positive,
but so is the one with the− sign, because

0 < r < d ⇒
(d(utw))2 − (r2 − d2(1− (utw)2) = d2 − r2 > 0 ⇒
ξ = d(utw)−

√
r2 − d2(1− (utw)2) > 0 .

We conclude that

q(u) =
(
d(utw)−

√
r2 − d2(1− (utw)2)

)
u . (5)

We define the vectorv as the mirror image of the incident
vectoru with respect to tangent plane to the mirror surface
at q. Nayar [11] first proposed this derivation. To obtain an
expression forv we decompose the vectoru as the sum of a
normal vector to the mirror at the pointq, and an orthogonal
vector

u = nnt u + (I − nnt) u ,

and we invert the normal component

v = −nnt u + (I − nnt) u = (I − 2nnt)u .

4.2 Model for a second surface mirror

The inclusion of a refractive layer in front of the mirror
surface only requires a slight modification to the model out-
lined above. Surprisingly, a second surface spherical mirror
can be modeled as a first surface mirror with an identical
center and a modified radius (r′ = r + δ). This result is
graphically demonstrated in Figure 4. Here,u once again
denotes the direction of the ray traveling from the camera
pinholeo to the mirror.

At the first mirror surface, we must apply Snell’s Law

sin(α) = ν sin(β) , (6)

whereα is the angle of incidence (with respect to the sur-
face normaln), β is the angle of refraction, andν is the
index of refraction. Given the refracted ray, we can solve
for its intersection with the second mirror surface, located
a distancer from the mirror center. As demonstrated in
Figure 4, the path of the ray after reflection at the second
surface must be symmetric about the lines connecting the
mirror center to the point of intersection with the second
surface. This symmetry property is exploited to complete
the ray diagram.

o

q(u)

u
v(u)

α

β

γ

α

β

γ

α+γ

β+γ β+γ

n ns

α+γ

δ

ε

Figure 4: Refraction diagram for a second surface spheri-
cal mirror. The shaded region denotes the refractive layer
between the first and second surfaces.

Note that if we ignored the refraction at the first sur-
face, the incident rayu would intersect the symmetry axis
at r′ = r + δ. If there was a first surface mirror with radius
r′ centered atc, it would reflect this ray such that it would
coincide with the outgoing ray from the second surface mir-
ror. As a result, if we can solve forδ, then we can model
second surface mirrors by their equivalent first surface rep-
resentations.

In general,δ is a function of the angle of incidenceα
and the properties of the refractive layer: the indexν and
the thicknessε. Inspecting Figure 4, we find that the law of
sines produces the following equalities

(1 + ε) sin(α) = (1 + δ) sin(α + γ) (7)

(1 + ε) sin(β) = (1 + δ) sin(β + γ) , (8)

whereγ is the angle between the refracted ray and the sym-
metry axiss.

Using Equations 6, 7, and 8, we can solve forδ(α, ε, ν)
by eliminating the dependence on{β, γ}. From 7, we have

δ =
(1 + ε) sin(α)
sin(α + γ)

− 1 . (9)

The denominatorsin(α + γ) can be written as a function of
{α, ε, ν} as follows. First, note thatsin(α + γ) = sin[(β +
γ)+(α−β)]. This yields four trigonometric functions with
dependence on{α, β, γ}

sin(α + γ) = sin(α− β) cos(β + γ) +
= cos(α− β) sin(β + γ) .

Using the trigonometric identity,cos(θ) =
√

1− sin2(θ),
it is apparent that we only require a solution forsin(α− β)
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andsin(β+γ). We can solve forsin(β+γ) using Equations
6 and 8, giving

sin(β + γ) =
(1 + ε

ν

)
sin(α) .

Similarly, application of Snell’s law provides the following
solution for the remaining term

sin(α− β) =
sin(α)

ν

[√
ν2 − sin2(α)−

√
1− sin2(α)

]
.

Substituting these results into Equation 9, we obtain the de-
sired solution forδ as a function of the known parameters
{α, ε, ν}.

In conclusion, we find that the model for a second sur-
face mirror reduces to that of a first surface mirror, with a
modified radius. In general, the “effective” radius (r′ =
r + δ) of the second surface mirror will be dependent on
the angle of incidence and can be calculated following the
derivation given above.

5 Multi-Mirror View Geometry

Here we assume that we have a pinhole camera with a
spherical retina, that the intrinsic calibration of the pinhole
camera is known, and thatN mirrors are visible within the
camera field of view. Each spherical mirror has its own pa-
rameter vectorΛi (containing the location of its center and
radius, and optionally the refraction layer thickness and the
index of refraction), and its own parametric ray equation
p = q(u, Λi) + t v(u, Λi).

Suppose that a three-dimensional pointp is visible in all
the mirrors. Letui be the pixel coordinates of the image of
p produced by theith mirror, and let’s denoteqi = q(ui,Λi)
andvi = v(ui,Λi). Theqi’s andvi’s are not independent.
The following constraints, which generalize the epipolar
constraints, must be satisfied for them to define rays inter-
secting at a common point:

There existt1, . . . , tn ∈ IR and p ∈ IR3

so that p = qi + ti vi for i = 1, . . . , N .
(10)

This is a system of linear equations which can be written in
matrix form as follows

v1 · · · 0 · · · 0 −I q1
...

...
...

...
...

...
...

0 · · · vi · · · 0 −I qi
...

...
...

...
...

...
...

0 · · · 0 · · · vN −I qN




t1
...

tN
p
1

 = 0

(11)
whereI is the three-dimensional identity matrix. Let’s de-
note byNp the left hand side3N × (N + 4) matrix. All

the elements of this matrix are functions of measurements
and calibration parameters. If the calibration parameters
are know, the position of the pointp in space can be de-
termined by solving this system of linear equations. Since
3N ≥ N + 4 for N ≥ 2, in order for this linear system to
have a non-trivial solution, the columns ofNp must be lin-
early dependent. Equivalently, the following rank inequal-
ity must hold

rank(Np) ≤ N + 3 ,

with equality for a unique solution. In practice, the ma-
trix Np is usually full-rank due to measurement errors and
noise, and the problem must be solved in the least squares
sense. To estimatep we can compute the right singular vec-
tor of Np associated with its minimum singular value, and
then normalize it so that the last coordinate is equal to unity.
The three coordinates preceding the last one in this vector
are then the coordinates ofp.

A simpler approach is to first eliminate the parameters
t1, . . . , tN by observing that an equivalent condition for all
the rays to intersect atp is that

vi × (p− qi) = 0 for i = 1, . . . , N ,

which can be written in matrix form as v̂1 −v̂1q1
...

...
v̂N −v̂NqN

 (
p
1

)
= 0 (12)

wherev̂ is the3 × 3 skew-symmetric matrix representing
the vector product:̂v x = v × x, also called the covector
[10]. Let’s denote byWp the left hand side3N × 4 matrix
of Equation 12. Again, the elements of the matrixWp are
functions of the measurements and calibration parameters.
For this homogeneous linear system to have a non-trivial
solution it is necessary that the matrixWp satisfy the fol-
lowing condition

rank(Wp) ≤ 3 ,

with equality for a unique solution. In practice, to estimate
p we solve a linear least squares problem: we minimize the
following expression with respect top

E(p, Λ) =
N∑

i=1

‖v(ui,Λi)× (p− q(ui,Λi))‖2 (13)

whereΛ = (Λ1, . . . ,ΛN ), by computing the right singular
vector ofWp associated with the smallest singular value,
and normalizing the solution so that the last coordinate is
equal to unity.
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6 Implementation and Results

The calibration process outlined in Sections 3 and 5
was implemented using Matlab. As previously discussed,
our calibration procedure involves estimating a minimum
of 100 parameters: the checkerboard position and orienta-
tion, the centers of all 31 mirrors, and a single mirror ra-
dius. In its most complete form, our model also accounts
for the index of refraction, thickness of the dielectric layer,
and independent mirror radii – leading to a maximum of
132 parameters. These parameters are estimated using Mat-
lab’s lsqnonlin function to minimize Equation 13. In
the following discussion, we will focus on the 100 parame-
ter model, since it produced results nearly identical to the
complete model.

We seed the iterative optimization process using the mir-
ror positions estimated from the plate pose, as discussed in
Section 3, and a coarse estimate of the mirror radius. Given
these initial values, we determine the initial position of the
calibration grid by solving Equation 11. Figure 5 shows the
initial estimates obtained in a single calibration trial. Note
that the initial mirror centers, as estimated from the plate
pose, are biased from their optimized positions. This is due
to an error in the initial guess for the mirror radius. This er-
ror also results, through the application of Equation 11, in a
biased estimate of the checkerboard corners. These biases,
however, are removed if a more accurate initial estimate of
the mirror radius is available.

In Figure 6 we plot the optimized positions of the mirrors
and the checkerboard. In addition, we use Equation 11 to
once again reconstruct the individual checkerboard corners.
Using the calibrated mirror parameters, the reconstructed
checkerboard corners have a mean error of 2.3 mm when
compared with the centrally-optimized estimates.

7 Applications

A spherical catadioptric array is ideally-suited for data
acquisition in image-based rendering and 3D scene recon-
struction. In these contexts our system possesses several de-
sirable properties, including a relatively simple calibration
procedure (outlined in this paper), a wide field of view, and
a single imaging sensor – eliminating the need for color cal-
ibration and synchronization procedures. In order to moti-
vate these applications, we will demonstrate the application
of our system to 3D scene reconstruction.

As shown in Figure 7, a single image of a model house
was acquired using the spherical mirror array. A simple
mesh was constructed containing 11 vertices and 9 faces.
Each vertex was manually labeled in each mirror image (if
it was visible). Equation 11 was then applied to reconstruct
the 3D position of all vertices. In order to assign color to
each face, the ray equations, from Section 4, were used to

Figure 5: Calibration results. Red circles (•) represent ini-
tial estimates of checkerboard centers, green crosses (×)
represent initial mirror centers, and blue circles (•) repre-
sent optimized mirror centers. The checkerboard is in its
optimized position and orientation.

Figure 6: SVD-based reconstruction of the checkerboard.
Red circles represent the reconstructed positions of the
checkerboard corners. Individual mirrors are represented
by gray spheres.

project pixels in each mirror image onto the reconstructed
mesh. The resulting point cloud was rendering as an array
of oriented, colored disks.

Although relatively simple, this example illustrates the
inherent benefits of the proposed acquisition system, includ-
ing automatic color calibration and frame synchronization.
While pixels from five different mirrors were used to assign
colors to the mesh faces, no significant color discrepancies
were visually apparent in the synthesized model.
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Figure 7: 3D reconstruction using a spherical catadioptric
array. (A) Original scene. (B) Image of scene in spherical
mirror. (C) 3D reconstruction results.

8 Future Work

In this paper we have discussed the general construction
and application of an imaging system composed of an ar-
ray of spherical mirrors and a single perspective camera.
As discussed, this system was designed as a platform to
develop more efficient multi-view imaging algorithms ex-
ploiting the combined properties of camera arrays and non-
central projection catadioptric systems.

While preliminary experimental trials and reconstruction
attempts proved promising, it is apparent that future studies
will be hindered by the level of calibration precision cur-
rently provided by this system. One solution could involve
using a hemispherical mirror, which would simplify cali-
bration for single-mirror cases by allowing us to estimate
all extrinsic parameters by simply determining the position
of the silhouette of a sphere in an image. In addition, certain
optical systems (e.g. high barrel distortion lenses) result in
non-central imaging and may prove easier to calibrate.

In summary, we believe that inexpensive catadioptric ar-
rays, such as the one described in this paper, are a viable
acquisition platform for both the study and implementation
of multi-view and non-central imaging algorithms. Future
research should focus on refining both the construction and
calibration of these novel acquisition platforms.
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