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Abstract 
While intelligent environments are often cited as a 
reason for doing work on visual person-tracking, really 
making an intelligent environment exposes many real-
world problems in visual tracking that must be solved to 
make the technology practical. In the context of our 
EasyLiving project in intelligent environments, we 
created a practical person-tracking system that solves 
most of the real-world problems. It uses two sets of 
color stereo cameras for tracking multiple people 
during live demonstrations in a living room. The stereo 
images are used for locating people, and the color 
images are used for maintaining their identities. The 
system runs quickly enough to make the room feel 
responsive, and it tracks multiple people standing, 
walking, sitting, occluding, and entering and leaving the 
space. 
 
Keywords: multi- person tracking, multiple stereo/color 
cameras, intelligent environment 

1. Practical Problems of Tracking 
People in Rooms 
We are developing an intelligent environment called 
EasyLiving. Our goal is to create a software architecture 
and supporting technologies that aid everyday tasks in 
indoor spaces with unobtrusive computing. For instance, 
one of our demonstrations has a person sitting on a 
couch watching a movie. When the person leaves the 
couch, the movie pauses until he or she comes back. 
Our project requires work in distributed computing, 
geometric modeling, and sensing. Our main 
accomplishments to date have been shown in a series of 
live demonstrations in our offices and living room lab, 
shown in Figure 1. Our project’s main sensing modality 
is computer vision, which we use to determine the 
location and identity of people in a room. This paper 
describes our vision system, which uses multiple color 
stereo cameras to track multiple people simultaneously. 

Knowing the location and identity of people in the 
room is a vital prerequisite for many of the most 
compelling services that an intelligent environment can 
provide. These services include: 
• Triggering events based on location, such as the 

couch example and above. 

• Locating the right device to play an instant 
message, either audio or video, to a particular 
person. 

• Invoking a particular user’s preferences, such as 
lighting or audio, in a certain room. 

• Understanding a person’s behavior in order to assist 
him or her. 

With the output of our visual tracking system, we 
wrote a number of programs to demonstrate EasyLiving. 
One program is a game, called “Hotter/Colder”, in 
which a person uses a mouse to secretly select a point 
on a map of the room. Another person enters the room 
and tries to find the point by walking from place to 
place, with the room issuing spoken clues such as “You 
are cold” and “You’re getting warmer”. Another 
program lets a user carry a wireless mouse to different 
tables in the room. On each table, the mouse’s moves 
and clicks will be rerouted to the computer that controls 
the display nearest that table. A third program projects 
on the wall one pair of cartoon eyes for each person in 
the room. The eyes follow the person as he or she 
moves around. A fourth program automatically starts 
and stops a VCR or DVD movie when a person sits on 
or stands up from a couch. The movie is automatically 
rerouted to different displays in the room depending on 
where the person sits. 

Our live demonstrations let us experience what an 

 

 

Figure 1: We track multiple people using stereo 
cameras in the EasyLiving lab, which is an 
intelligent environment set up to look like a living 
room. 
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intelligent room really feels like, and they also force us 
to confront many practical issues simultaneously. For a 
vision-based tracking system to support a real-life 
intelligent environment, it must: 
1. Maintain the location and identity of people. In 

general, behaviors of the room are more compelling 
when this data is known accurately. Our system 
measures location to roughly 10 cm on the ground 
plane, and it maintains the identity of people based 
on color histograms taken as they move around the 
room. 

2. Run at reasonable speeds. A vision update rate 
below 1 Hz, combined with other processing 
delays, makes the room feel sluggish and error-
prone. Our system, running on three PCs, updates 
location and identity at about 3.5 Hz. 

3. Work with multiple people. With perhaps only one 
exception, all types of rooms are sometimes 
occupied by more than one person. We regularly 
track two people simultaneously for 
demonstrations, and the system works well with 
three. 

4. Allow creation and deletion of people 
representations. It is generally impossible to predict 
who will be entering a room. Our system 
automatically creates new instances of people as 
they cross through a special region in the room. It 
deletes instances of people that have not been seen 
for a certain period. 

5. Work with multiple cameras. No camera can see 
around corners, so multiple cameras are required 
for tracking people in general rooms. We use two 
sets of color stereo cameras to visually cover our 
living room lab. 

6. Use cameras in the room. Using cameras looking 
down from high overhead simplifies the tracking 
problem, but is impractical in most rooms. Our 
cameras are mounted on the wall at a height of 
approximately 2.3 meters. 

7. Work for extended periods. It is not enough to 
process just a few thousand frames of video to 
show practical tracking. Our tracker can track 
multiple people indefinitely. 

8. Tolerate partial occlusions and variable postures. 
People sometimes walk behind tables and chairs, 
and they sit and stand. Our system maintains 
tracking despite these wide variations in people’s 
appearance. 

2. The State of the Art 
One way to achieve all the requirements of practical 
tracking in real-world environments is with active 
badges. Originating with work on infrared-transmitting 
badges at Olivetti Research[1] and Xerox PARC[2], 
active badges are small, electronic devices worn by 

people. The badges transmit an ID signal to receivers 
placed around the building. The ID signal corresponds 
to the identity of the badge’s wearer, and the received 
signals are used to compute the wearer’s location. The 
Olivetti initiative is continuing with ultrasonic badges at 
AT&T Laboratories in Cambridge, UK[3]. There are 
also commercial asset-tracking systems, like the radio 
frequency tags from PinPoint 
(http://www.pinpointco.com/) and wired and unwired 
motion trackers from Ascension Technology 
(http://www.ascension-tech.com/) and Polhemus 
(http://www.polhemus.com/). However, it is not clear 
that regular consumers would be willing to don any sort 
of device to interact with their intelligent environment. 
Tracking based on cameras, while not yet as reliable, 
has the advantage of leaving the users unencumbered. In 
addition, having cameras in a room is also valuable for 
modeling the room’s geometry, cataloging its contents, 
and detecting unbadged occupants. 

The area of vision-based tracking is very active, with 
work in face tracking, gesture understanding, body-part 
tracking, and whole-body tracking. We concentrate here 
on work in multi-person whole-body tracking. The work 
most closely related to ours is that of Haritaoglu and 
Davis, with a series of outdoor person-trackers named 
W4[4] (separated people, grayscale camera), W4S[5] 
(separated people, stereo camera), and Hydra[6] 
(clumped people, grayscale camera). Combined, these 
trackers fulfill most elements in our list of requirements 
in the section above, with the only exceptions being 
tolerating variable postures and using multiple cameras. 
Their systems include grayscale appearance modeling, 
the ability to add and delete people over time, and the 
ability to track people whose silhouettes overlap 
(Hydra). 

Another closely related system is that of Darrell et 
al.[7] who, in addition to using color and stereo like our 
system, also use face detection. They were able to 
evaluate the relative effectiveness of these three cues. 

In the tracking system presented by J. Orwell et 
al.[8], multiple cameras track multiple people walking 
in a parking lot. A software agent is created for each 
person detected in each camera. Reasoning about 
trajectory geometry in the ground plane of the parking 
lot, the agents communicate to determine whether or not 
they are assigned to the same person being seen from 
different cameras. 

In their part of the DARPA VSAM project, CMU has 
created an elaborate system for video-based 
surveillance[9]. Using multiple pan/tilt/zoom cameras, 
their system classifies and tracks multiple people and 
vehicles as they move about outdoors. 

Rosales and Sclaroff[10] describe a multi-person 
tracking system that unifies object tracking, 3D 
trajectory estimation, and action recognition from a 
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single video camera. It uses an extended Kalman filter 
for computing trajectories, which are in turn used to 
reason about occlusion. Kettnaker and Zabih[11] have 
developed a system that reasons about trajectories at a 
higher level using a Bayesian formulation to compute 
likely paths of multiple people as seen occasionally 
from separate cameras in a building’s hallways. 

In their “Closed-World” scheme for tracking multiple 
people, Intille and Bobick[12] and Intille, Davis, and 
Bobick[13] maintain local contexts that help track 
individual blobs and a global context for understanding 
the state of the whole space. A context is a set of 
constraining assumptions covering a specific time 
period and region that aid tracking. 

Rehg, Loughlin, and Waters[14] present a multi-
person tracking system for an interactive kiosk that uses 
a pair of widely space color cameras. Like us, they use 
color and stereo for tracking. 

Omnidirectional cameras are attractive for tracking 
because of their wide coverage. Boult et al.[15] track 
multiple, camouflaged soldiers from an omnidirectional 
camera. They maintain tracks from frame to frame using 
spatial proximity and similarity of simple features. 
Stiefelhagen et al.[16] track multiple meeting 
participants around a table using skin color to detect 
faces from an omnidirectional camera placed on the 
table. 

A statistical representation of tracking gives a 
principled method of dealing with uncertain data and 
multiple targets. MacCormick and Blake[17] describe a 
modification of CONDENSATION tracking that 
incorporates an exclusion principle to keep multiple 
head tracks from coalescing onto one head. Cai and 

Aggarwal[18] use a Bayesian technique to match 
features on human figures between frames and between 
multiple cameras. 

Halevi and Weinshall[19] present a novel tracking 
algorithm called “motion of disturbances” which uses 
temporal differencing to create an image of “waves” 
showing tracks of multiple moving objects. 

Using an articulated 3D model of the human body, 
Gavrila and Davis[20] show how to track a pair of 
people dancing closely using image sequences from 
multiple viewpoints. 

Clearly there are many different approaches to 
tracking multiple people. Each researcher works under a 
different set of constraints, and there are few widely 
agreed-upon principles. 

3. The EasyLiving Tracker 
We designed our tracking system to support 
demonstrations of an intelligent environment. Our 
laboratory is set up like a living room, with two 
couches, a coffee table, an entertainment center, a PC, 
and various flat panel displays. The room is shown in 
Figure 1. The output of the person tracker is the 
locations and identities of people in the room. By 
“identity” we do not necessarily mean the absolute 
identity of the person, but rather that the tracker 
maintains a consistent, internally generated ID for each 
person during each run of the program. This ability to 
do identity maintenance means that the same person is 
recognized as the same person wherever he or she is in 
the room. 

The remainder of this section describes the parts of 
our tracker and how they work together. In summary, 
our tracker uses two color Triclops stereo cameras 
(Point Grey Research, http://www.ptgrey.com/), each 
connected to its own PC. Using the registered depth and 
color images from the cameras, we do background 
subtraction to locate 3D blobs in each camera’s field of 
view. These blobs, which are normally broken up over 
the regions of peoples’ bodies, are merged into person 
shapes by examining the space of blob clusterings. The 
program that takes the stereo camera output and locates 
people-shaped blobs is called the Stereo Module, and 
there is one instance of this program running for each of 
the two Triclops cameras. Each Stereo Module reports 
the 2D ground plane locations of its person-shaped 
blobs to a tracking program, called the Person Tracker, 
on a third PC. The relationship between the cameras, 
PCs, and programs is shown in Figure 2. The Person 
Tracker uses knowledge of the two cameras’ relative 
locations, fields of view, and heuristics on the 
movements of people to produce a final report on the 
locations and identities of people in the room. We also 
maintain color histograms of the person-shaped blobs, 

 

 

Figure 2: Hardware for tracking consists of two 
Triclops stereo cameras each connected to a PC 
running our stereo module. The two Stereo Modules 
both communicate with our Person Tracker on a 
third PC. 
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which the tracking program uses to disambiguate people 
when they are close together. 

3.1. Stereo Cameras and Calibration 
We chose to use stereo cameras rather than regular color 
cameras to make it easier to segment people in the 
room. If the regions projected onto the image from two 
people overlap, it is very difficult to segment them 
correctly using only a color image, while a depth image 
from stereo makes it relatively easy. Each of our two 
Triclops cameras contains three small color cameras. 
The PC software bundled with the stereo cameras 
computes dense disparity images of size 320x240 pixels 
at a rate of about 4 Hz on a 450 MHz PC. The Triclops 
software also reports the textureless regions of the 
image for which disparity could not be reliably 
computed. Since the cameras inside each Triclops are 
color, we also get a color image that is registered with 
the disparity image. We describe later how we use 
histograms from the color image for identity 
maintenance. 

Two stereo camera units are required to adequately 
cover the demonstration space in the room, which 
requires calibrating the relative position and orientation 
of the cameras. Since the Stereo Module reports only 
the ground plane locations of blobs, it is only necessary 
to know the cameras’ relative position and orientation in 
the ground plane. We have two techniques for making 
this measurement. One is an interactive program that 
lets a user click on points in images from the two 
cameras to establish correspondences and ground plane 
points. The other technique starts by recording, from 
each camera, the 2D ground plane locations of a 
person’s path as he or she walks around the room. A 
calibration program then computes the translation and 
rotation that give the best overlap between the two 
recorded paths. A typical pair of paths is shown in 
Figure 3 both before and after calibration. Since the path 
can sometimes go beyond the field of view of either of 
the cameras, this program is robust to missing data. The 
result of both of these calibration techniques is a 
translation and rotation that is applied to ground plane 
reports from one camera to put them in the same ground 
plane frame as the other camera. 

3.2. Background Subtraction 
We segment human figures from the background with 
background subtraction in both depth and color. One of 
the main benefits of using depth images is that they are 
relatively insensitive to shadows and other changes in 
illumination, which tend to confound purely color-based 
background subtraction. We model the background by 
computing the mean and variance for each pixel in the 
depth and color images over a sequence of 30 frames 
with the room empty. For the color pixels these statistics 

are calculated separately for each of the RGB 
components. 

To compute a foreground image we consider the 
depth data first. All pixels with invalid depth values 
(generally due to lack of texture) in the current live 
image are not considered part of the foreground. This is 
because people generally have enough texture on their 
clothes and skin to give valid depth values. The 
remaining pixels are only considered part of the 
foreground if at least one of the following applies: 
• The mean depth of the corresponding pixel in the 

background model is not valid. This is the case 
where a valid depth pixel appears over an invalid 
depth pixel in the background. 

• The mean depth of the corresponding pixel in the 
background model is valid and the depth pixel in 
the live image is outside of the tolerance range of 
the background depth pixel. The tolerance range is 
set based on a multiple of the standard deviation in 
depth. This is the case of normal depth image 
background subtraction. 

• Any one of the color components in the live color 
image is outside of the tolerance range of the 
corresponding color component of the background 
color pixel. This is the case of normal color 
background subtraction. 

These rules are designed to work in the nominal case 
of a person walking around in a static room, and also in 
the frequent case of a person sitting on a couch and 
sinking back into the cushions, thus becoming 
unnoticeable in depth. In this case the color component 
of the background subtraction will ensure that the 
person is still considered part of the foreground. The 
rules are not as good in the case of a person walking in 
front of an animated video display screen. We are 
careful to turn on the room’s display screens during 
background modeling in order to get valid depth values 
in those regions. According to our rules above, a display 
showing animation will be considered part of the 
foreground even though its depth values are identical to 
the background’s. We can normally eliminate this 
problem in our blob processing, described in Section 
3.3. We note that the rules above work well for displays 

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 

Figure 3: Left plot shows path of person on ground 
plane from two cameras before calibration. Right 
plot shows calibration that best aligns the two 
paths. 
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that turn uniform (including completely dark) during a 
live run. In this case the live depth values will become 
invalid and the screen will be kept in the background. 

Beymer and Konolige[21] use only disparity (and not 
color) for background modeling. Gordon et al.[22] give 
a sophisticated algorithm for combining both. 

3.3. Making People-Shaped Blobs 
Background subtraction gives a list of pixels, some 
subset of which likely correspond to people in the 
image. We grow blobs by connecting four-connected 
pixels whose disparities are within a certain, small 
range. There are usually several blobs falling on each 
person on the image, rather than the more favorable case 
of one large blob per person. This breakup is due to 
image noise and missing disparities from textureless 
regions on people. 

We group blobs into people-shaped clusters of blobs 
by searching through the space of possible groupings. A 
sketch of this process appears in Figure 5. We test each 
hypothesized grouping against a person-model, which is 
simply the expected height and width of a person. 

Rather than test all possible blob groupings, which 
would take too long, we start with a grouping based on 
the minimum spanning tree, shown in Figure 5. The 
minimum spanning tree is the graph that spans all the 
blobs with the minimum sum of arc lengths. To measure 
arc length between two blobs, we connect the 3D 
centroid of the blobs with a line segment. The length is 
the Euclidian distance between the point where the line 
leaves one blob and enters the other. 

The first step in generating hypothesized clusters is to 
eliminate all links whose length is greater than a 

threshold, as shown in Figure 5 with the linked marked 
�. The next step is to mark the n  longest links, shown 
in the figure as �-�. We chose 5=n  as a good 
compromise between speed and correctness. This set of 
n  longest links are broken in each of its n2  possible 
combination to generate n2  hypothesized blob 
clusterings. 

We evaluate a hypothesized clustering by first 
computing a 33×  covariance matrix of the 3D ),,( zyx  

coordinates of each of the clustering’s constituent 
connected blobs. For instance, one of the n2  
hypothesized blob clusters breaks all the marked links in 
the figure. In this case there would be seven blob 
clusters, and we would compute a covariance matrix for 
each of the seven. We evaluate each cluster of blobs 
based on the two largest eigenvalues, 1λ  and 2λ , of the 

covariance matrix, which are in rough proportion to the 
length of the two largest axes of an ellipsoid 
surrounding the 3D points. The eigenvalues are 
insensitive to the rotation of the ellipsoid and easy to 
compute. If the product of the eigenvalues, 21λλ , is 

below a threshold, the cluster is judged as too small and 
eliminated from further consideration. This tends to 
eliminate random outlier blobs and blobs that come 
from small changes in the background like a moved 
pillow. The clusters that survive this test are likely to 
represent people. In our example figure, the clusters 
outlined in dotted ellipses would come up as surviving 
clusters after breaking links �, �, and � (and �). The 
first two eigenvalues of the c  surviving clusters are 

compared with ideal values *

1λ  and *

2λ  using 

( ) ( )[ ]∑
=

−+−=
c

i
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1
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Here 1,iλ  and 2,iλ  are the two eigenvalues from the 
thi cluster. Of the n2  hypothesized clusterings, the one 

with the smallest value of d  is chosen for further 
processing. An actual instance of this clustering 
procedure is shown in Figure 4. 

The centroids of the people-shaped clusters are 
projected into the camera’s ground plane and then 

 

  

Figure 4: Left image shows raw blobs after 
background subtraction, and right image shows 
blobs grouped into two people-shaped clusters with 
spurious blobs eliminated. 

 

Figure 5: Blobs are grouped to form people-
shaped clusters of blobs. 
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reported from the Stereo Modules to the Person Tracker, 
described in Section 3.5. 

3.4. Histograms for Identity Maintenance 
Each of the two Stereo Modules maintains a color 
histogram model for each person in the room. These 
color histograms are used by the Person Tracker to 
disambiguate certain configurations of people when 
spatial tracking is not enough. (The Person Tracker’s 
use of color histograms is described in Section 3.5.) 

The Triclops camera produces spatially and 
temporally registered images of disparity and RGB. We 
use a coarsely quantized version of the RGB image for 
color histograms. For a person-shaped cluster of depth 
blobs, we histogram the color pixels corresponding to 
the blob regions. The RGB axes are each quantized into 
four equal-length ranges, giving a 444 ××  color cube 
and a 64-bin color histogram. This coarse quantization 
reduces the effects of spatially varying illumination 
color in the room. 

Each Stereo Module maintains a grid of 1010×  
square cells on the ground plan. It receives reports of 
people’s identity and location from the Person Tracker. 
When one of these reports places a person in a cell they 
have not yet visited, the Stereo Module stores a new 
histogram for that person in that cell. Thus there are 
several histograms stored for each person in different 
parts of the room, reducing the effect of spatially 
varying illumination color and intensity. 

Each Stereo Module compares histograms from the 
current image to stored histograms using histogram 
intersection[23], which measures how well one 
histogram accounts for the counts in another histogram. 
The intersections are normalized such that the 
maximum possible intersection is one. These 
normalized comparisons are reported to the Person 
Tracker. 

CMU’s VSAM tracker[9] uses frame-to-frame 
matching of blobs based on the blob’s trajectory, image 
template, size, and histogram, all in image coordinate 
frames of each camera. While we also maintain 
separate sets of histograms for each camera, we 
maintain trajectories in a single global frame, as 
described in the next section. 

3.5. Tracking People 
As described in Section 3.3, the Stereo Module reports 
the 2D ground plane location of people-shaped clusters 
of blobs to the Person Tracker module. The Person 
Tracker runs on a PC that is separate from the two PCs 
that run the two Stereo Modules, and communication 
between the PCs is via DCOM. 

An incoming report from a Stereo Module triggers 
the Person Tracker to perform an update. In order to be 
able to compare reports, the Person Tracker transforms 

each one into a common 2D coordinate frame based on 
the calibration described in Section 3.1. The Person 
Tracker maintains a list of tracks, each corresponding to 
one person in the room. Each track contains a history of 
the person’s past locations, from which we compute a 
velocity that is used to predict the person’s current 
location. The Person Tracker searches the area around 
the predicted location for new reports from the Stereo 
Modules. If there is more than one report in the area, 
then the Stereo Module is called to match each reported 
cluster of blobs against its stored histograms. The 
response is used to disambiguate the reported clusters. 
This process iterates until all active person tracks are 
matched to reported clusters. 

Occasionally, there are person tracks for which there 
are no reported clusters nearby. Since the lack of a 
match is likely caused by occlusions or errors from the 
Stereo Module (rather than a person actually 
disappearing from the middle of the room), any 
unsupported person tracks are left active until they have 
been unsupported for a long period. This makes the 
Person Tracker robust to occasional dropouts from the 
Stereo Modules. 

Once the Person Tracker has finished the matching 
phase, it reports the matches back to the reporting 
Stereo Module. This allows the Stereo Module to update 
any stored histogram information with the actual 
person’s identity. 

Finally, the Person Tracker computes a new location 
for the person. The non-uniform size of the stereo 
disparities and the low rate of reporting results in 

 

Figure 6: The Person Tracker displays the locations 
and identities of tracked people on a hand-drawn 
map of the room. It also shows where the cameras’ 
fields of view intersect the ground plane and the 
locations of the people-shaped blob clusters reported 
from the two Stereo Modules. 
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discontinuities in the location data. To account for this 
the Person Tracker filters noise and averages each 
person’s velocity. It then uses the average velocity to 
update the person’s location information instead of the 
actual reading. 

In order for the system to start tracking new people, 
it uses a person creation/deletion zone. This area 
represents valid routes for people to enter and leave the 
room. The person creation zone may be at the door or 
even just the edge of the field of view of the camera. 
This region is evaluated for any reported person 
clusters. If the cluster doesn’t match any of the existing 
person tracks, then a new temporary track is created and 
monitored over time. If it continues to be supported by 
reports from the Stereo Module, it is converted into a 
new person track, otherwise it is deleted. Likewise, if a 
valid track enters the zone and then disappears from 
view, it is removed from the list of active tracks. This 
zone keeps the system from mistakenly creating new 
person tracks from extraneous blobs due to partial 
occlusions, moved furniture, or a coat left on the couch. 
Our person-creation zone is similar in concept to Intille 
et al’s[13] closed-world assumption of only allowing 
new people to enter and exit the space through a door. 

4. Performance 
Our person tracking system supports live 
demonstrations in our EasyLiving lab, which is set up to 
look like a residential living room. These 
demonstrations typically last about 20 minutes, with the 
person tracking software running continuously over the 
duration. The Person Tracker produces new results at a 
rate of about 3.5 Hz, limited ultimately by the speed of 
the stereo processing in the Stereo Modules. During the 
demonstration, people enter and leave the living room, 
with their tracks being created and deleted 
appropriately. Tracking works well with up to three 
people in the room, depending on how they behave. 
With more than three people moving around, the 
frequent occlusions cause enough poor clusterings in the 
Stereo Module that the Person Tracker cannot maintain 
coherent tracks. We do not require the demonstrators to 
wear special clothes, although similarly colored outfits 
can cause tracks to be misassigned due to 
indistinguishable histograms. The demonstrators can 
walk around, stand still, sit, and brush against each other 
without the system loosing track of them. There are also 
large areas of moving video in the cameras’ fields of 
view that the tracking system tolerates easily. 

5. Conclusion 
This paper describes our person-tracking system for our 
EasyLiving research project. The system reports the 
location and identity of people in a typical living room 
environment using images from two sets of color stereo 

cameras mounted on the room’s walls. Because we give 
live demonstrations, and because we are trying to create 
practical scenarios, we were prevented from making 
many simplifying assumptions. The system runs fast 
enough to make the room feel responsive. It works with 
multiple people as they walk, stand, and sit. People can 
enter and leave the space as the demonstration proceeds. 
Overall, our tracking system performs reliably, and we 
have used it to build demonstrations that let us explore 
issues of software architecture, geometric 
representation, and user interfaces for practical 
intelligent environments. 
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