Implicit surfaces

- Set of zeros of a function
- \(\{(x,y,z) : f(x,y,z) = 0\} \)
- Good for boolean operations (CSG)
- Difficult to render (ray-tracing)
- Iso-surface
 - Function defined by piecewise function
 - Volumetric mesh
 - 1 function value per vertex
- Iso-surface algorithm
 - Conversion to triangle or polygon mesh representation

Implicit Linear Surfaces / Curves

- \(f(p) = \lambda_0 f(p_0) + \lambda_1 f(p_1) + \lambda_2 f(p_2) + \lambda_3 f(p_3) \)

Implicit Linear Surfaces / Curves

- \(f(p) = \lambda_0 f(p_0) + \lambda_1 f(p_1) + \lambda_2 f(p_2) + \lambda_3 f(p_3) \)

Affine bases / Linear function

\[
p = \lambda_0 p_0 + \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3
\]

\[
\begin{bmatrix}
\lambda_0 \\
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{bmatrix}
= \begin{bmatrix}
p_0 & p_1 & p_2 & p_3
\end{bmatrix}^{-1}
\begin{bmatrix}
p
\end{bmatrix}
\]

Piecewise Linear Functions

- Triangle: Barycentric coordinates
- Triangle / Tetrahedron / Simplex

- Every point in 3D can be written as a unique affine combination of 4 non-coplanar points (affine basis)

- Every linear function in 3D can be specified by its values at the 4 vertices of an affine basis

- A piecewise-linear function is specified in 3D by its values at the vertices of a tetrahedral mesh (volumetric).

Surface Representations

- Volumetric Models

EN-193s08 3D Photography
Brown Fall 2003
Gabriel Taubin

Implicit surfaces

- Can be used to represent the probability that a point belongs to a surface
 - Occupancy grid
- Can be used to integrate multiple measurements
- Can be used to merge multiple 3D scans

Implicit Linear Surfaces / Curves

- \(f(p) = \lambda_0 f(p_0) + \lambda_1 f(p_1) + \lambda_2 f(p_2) + \lambda_3 f(p_3) \)

Implicit Linear Surfaces / Curves

- \(f(p) = \lambda_0 f(p_0) + \lambda_1 f(p_1) + \lambda_2 f(p_2) + \lambda_3 f(p_3) \)

Affine bases / Linear function

\[
p = \lambda_0 p_0 + \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3
\]

\[
\begin{bmatrix}
\lambda_0 \\
\lambda_1 \\
\lambda_2 \\
\lambda_3
\end{bmatrix}
= \begin{bmatrix}
p_0 & p_1 & p_2 & p_3
\end{bmatrix}^{-1}
\begin{bmatrix}
p
\end{bmatrix}
\]

Piecewise Linear Functions

- Triangle: Barycentric coordinates
- Triangle / Tetrahedron / Simplex

- Every point in 3D can be written as a unique affine combination of 4 non-coplanar points (affine basis)

- Every linear function in 3D can be specified by its values at the 4 vertices of an affine basis

- A piecewise-linear function is specified in 3D by its values at the vertices of a tetrahedral mesh (volumetric).
Iso-surfaces on tetrahedral meshes
- Piecewise linear function defined on vertices of tetrahedral mesh \(f(i) \)
- For each edge \((i,j)\) such that \(f(i)f(j)<0 \)
 - create a surface vertex \(v(i,j) \)
- For each tetrahedron \((i,j,k,l)\)
 - Skip if all vertices are positive or negative
 - Else if 3 positive or 3 negative create a triangle
 - Else (if 2 positive and 2 negative) create two triangles
- Output triangle mesh is IndexedFaceSet
- Is it a manifold mesh? Why?

Iso-surfaces on hexahedral meshes
- Function defined on vertices of regular grid
- For each edge \((i,j)\) such that \(f(i)f(j)>0 \)
 - create a surface vertex \(v(i,j) \)
- For each intersecting cube
 - Polygonize intersection
- Output triangle mesh is IndexedFaceSet
- Is it a manifold mesh? Why?
- Main problem: storage
- Solution: do not represent the mesh explicitly
Interpolation

- Linear interpolation
- Triangle: Barycentric coordinates
 - Triangle
 - Tetrahedron
- Quadrilateral?
 - Bi-linear interpolation
- Cube?
 - Tri-linear interpolation
Extensions

- Iso-surface algorithm assumes smooth surface without singularities
- How to represent ridges?
- Iso-surface algorithm produces regular face sizes even in regions where fewer faces would produce equally good approximation
- Adaptive iso-surfaces?