Homework II

Instructor : Gabriel Taubin*

1 Transformations

Exercise 1. An Euclidean transformation is a transformation of the plane that preserves the distance. A Similar transformation is an Euclidean transformation followed by a scaling (same scaling for each component). Such a transformation can be represented as p' = Sp, where S is a 3x3 matrix, $p = [x, y, 1]^T$ is a point expressed in homogeneous coordinated and $p' = [x', y', 1]^T$ is its transformation. Consider S as a block matrix and gives an expression and a geometric interpretation of each block. (Hint: start from a vector $e_1 = [1, 0]^T$ and see how such vector is transformed according to the similar transformation).

Exercise 2. An Affine transformation is a non singular linear transformation followed by a translation. Such transformation can be represented as p' = Ap, where A is a 3x3 matrix, p and p' are defined as above. Consider A as a block matrix and gives an expression and a geometric interpretation of each block. (Hint: start from 2 vectors $e_1 = [1, 0]^T$ and $e_2 = [0, 1]^T$ and see how such vectors are transformed according to the affine transformation. If $p = e_1 + e_2$ then the transformation of e_2 .)

Exercise 3. i) Prove that, given 3 non-collinear points p_a , p_b and p_c belonging to a plane π , any point $p \in \pi$ can be written in a unique way as an affine combination of p_a , p_b and p_c :

$$p = p_a \lambda_a + p_b \lambda_b + p_c \lambda_c, \forall p \tag{1}$$

where λ_a , λ_b , λ_c are called the affine coordinates of p with respect to p_a , p_b and p_c and where the lambda's satisfy the constraint $\lambda_a + \lambda_b + \lambda_c = 1$.

ii) Consider the set of points defined by positive affine coordinates (λ_a , λ_b , $\lambda_c > 0$). Locate those points in the plane π .

iii) Compute the affine coordinates attached to the points p_a , p_b and p_c .

iv) Give an expression of λ_a , λ_b , λ_c as function of p, p_a , p_b and p_c .

v) Prove that affine coordinates are invariant with respect to an affine transformation. That is, show that if p' = Ap and $p = p_a\lambda_a + p_b\lambda_b + p_c\lambda_c$, then p' is an affine combination of p'_a , p'_b and p'_c with the same λ 's

Exercise 4. A *Perspective transformation* is a non singular linear transformation of homogeneous coordinates. Such transformation can be represented as p' = Hp, where H is a 3x3 matrix, $p = [x, y, 1]^T$ is a point expressed in homogeneous coordinated and $p' = [x', y', z']^T$ is its transformation. Consider H as a block matrix and gives an expression and a geometric interpretation of each block. (Hint: start from an unitary square (defined by the points $[0, 0]^T$, $[1, 0]^T$, $[0, 1]^T$ and $[1, 1]^T$ and see how the unitary square is transformed according to the perspective transformation.)

Exercise 5. A 3D scene is distorted under the perspective projection into the image plane. The image in *whiteboard.jpg* does not appear as a rectangular board even though the original is so. The goal of this exercise is to undo the perspective transformation Hby computing an inverse transformation H^{-1} . If we apply H^{-1} to whiteboard.jpg we get a synthesized image which represents the whiteboard in its correct geometric shape. This operation is called *rectification*. Note that we are not interested in estimating a scale factor but only the shape geometry according to its real proportions. The matrix H can be estimated as follows. Let us call a', b', c' and d' the 4 corners of the whiteboard in whiteboard.jpg and a, b, c and d the corresponding corners in the corrected image. a, b, c and d must be the corners of a rectangle whose height/width ratio is 1.35. Remember that we do no need the estimate the scale factor. For each pair of corners between the 2 images, we can write the following relationship (in particular for the 1^{st} corner):

$$\lambda a' = Ha \tag{2}$$

where λ is multiplicative factor, $a' = [x', y', 1]^T$, H is the 3x3 perspective transformation matrix, $a = [x, y, 1]^T$. Furthermore assume that the entry $h_{3,3}$ of H is 1 (what is the geometrical meaning of this assumption?). By writing the above relationship for the 4 corners and by eliminating λ , we can get a system of 8 equations in 8 unknowns. By solving the system we can estimate H.

The matlab code rectificator.m allows you to load an image (*whiteboard.jpg*) and to select the 4 corners a', b', c' and d'. Write the routine to compute H. Once H is known, synthesize the correct image from *whiteboard.jpg*. That is, write a routine that for each pixel p of the correct image computes the coordinates of the corresponding pixel p' in *whiteboard.jpg* and assigns to p the color information attached to p'. This is basically a color mapping transformation. Turn in the code, the estimated H and a print out of the rectified image.

Exercise 6. In this exercise we want to estimate the distortion factor present in the image *chessboard-dist.jpg*. We assume to deal with a radial distortion centered in the middle of the image. Write a dist-estimator.m program in order to: i) load *chessboard-dist.jpg* and select 4 corners from the image (in order to define a rectangle in the real chessboard); ii) use the 4 corners to estimate H (each square of the chessboard has a height/width ratio = 1). iii) by using H, map points of the rectified grid (defined by the 4 corners) into points p_m in the distorted image; iv) by using p_m , the corresponding grid points of the distorted image and the radial distortion correction equation used in last lecture, try to estimate k in the least square sense.

Exercise 7. [Additional credit] In this exercise we perform full camera calibration using the linear estimation method. The result of this estimation can be used as initial estimates for the non-linear least squares minimization process. We denote the projection matrix

$$P = \begin{array}{ccccc} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{array} \right) = \begin{array}{cccc} p_1^t & | & p_{14} \\ p_2^t & | & p_{24} \\ p_3 & | & p_{34} \end{array}$$

^{*}taubin@brown.edu

where p_1 , p_2 , and p_3 are 3 dimensional vectors. Since the matrix P is determined modulo a multiplicative factor, it has 11 degrees of freedom. Each calibration point $(x_i, y_i, z_i)^t$ projects onto an image plane point with coordinates $(u_i, v_i)^t$ determined by the equation

$$\begin{array}{cc} u_i \\ \lambda_i & v_i \\ 1 \end{array} \right) = P \begin{pmatrix} x_i \\ y_i \\ z_i \\ 1 \end{pmatrix}$$

where λ_i is a non-zero multiplicative factor. The following equation produces two linear equations with the elements of *P* as unknowns

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -u_i & -v_i \end{pmatrix} P \begin{pmatrix} x_i \\ y_i \\ z_i \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

.

How many calibration points are needed to estimate P? Estimate P in the least squares sense by imposing the additional linear constraint $p_{34} = 1$. Is it acceptable to impose this additional constraint? If not, what other constraint can be imposed?

Ignoring lens distortion, the projection matrix P can be factorized as follows

$$P = \begin{pmatrix} f_u & 0 & c_u \\ 0 & f_v & c_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_1^t & | & t_1 \\ r_2^t & | & t_2 \\ r_3^t & | & t_3 \end{pmatrix}$$
$$\begin{pmatrix} (f_u r_1 + c_u r_3)^t & | & f_u t_1 + c_u t_3 \\ (f_v r_2 + c_v r_3)^t & | & f_v t_2 + c_v t_3 \\ r_3^t & | & t_3 \end{pmatrix}$$

where r_1, r_2, r_3 are 3 dimensional vectors so that

$$R = (r_1 \quad r_2 \quad r_3)^t ,$$

t = -RO, R is the camera orientation matrix, and O is the center of projection of the camera in object coordinates. Prove that

$$P \quad \begin{array}{c} O \\ 1 \end{array} = \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

and use the equation to estimate O from P. Prove that

$$\begin{array}{rcl} p_3^t(p_1 - c_u p_3) &=& 0\\ p_3^t(p_2 - c_v p_3) &=& 0 \end{array}$$

and use the equation to estimate c_u and c_v . Prove that if P is normalized so that $|p_3| = 1$, then

$$\begin{array}{rcl} |f_u| &=& |p_1 - c_u p_3| \\ |f_v| &=& |p_2 - c_v p_3| \end{array}$$

and use the equations to estimate f_u and f_v . What can you say about the sign of f_u and f_v ?