Camera Calibration

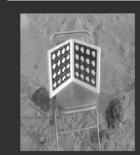
EN193s08 3D Photography Brown Fall 2003 Gabriel Taubin

Geometric Camera Calibration Augmented pin-hole camera model • Focal point, orientation • Focal length, aspect ratio, center, lens distortion 2D ⇔ 3D correspondence "Classical" calibration

Camera Calibration

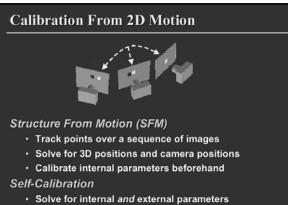
- Geometry
 - Where is the camera located ?
 - How is the camera oriented ?
 - What are the internal parameters ?
- Radiometry
 - What is the relation from incident light intensity to pixel values ?
- Parameters are estimated by observing objects of known dimensions and measuring their projections on the image plane

Calibration Patterns

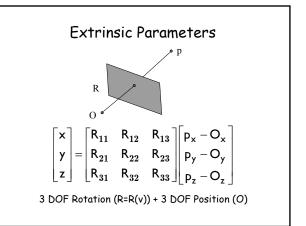


Calibration grid Z. Zhang, Microsoft Research

Chromaglyphs Bruce Culbertson, HP-labs



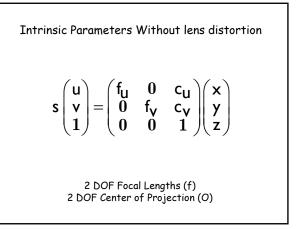
• E.g., [Polleyfeys, 98]

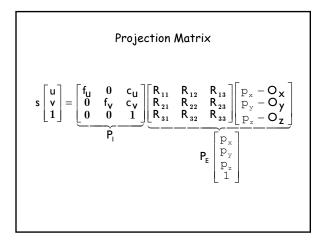


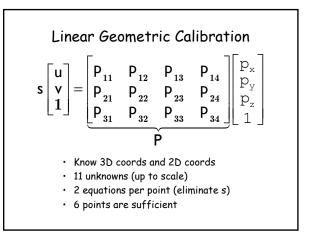
Intrinsic Parameters Without lens distortion

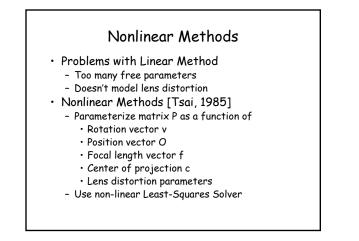
$$u = f_{U} (x/z) + c_{U}$$

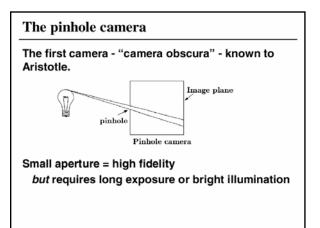
$$v = f_{V} (y/z) + c_{V}$$
² DOF Focal Lengths (f)
² DOF Center of Projection (O)

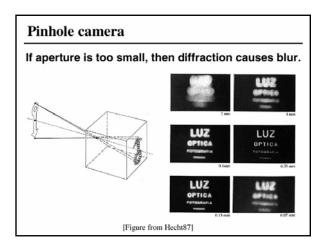


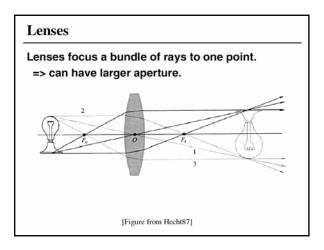


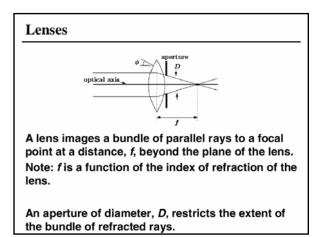












Lenses

For economical manufacture, lens surfaces are usually spherical.

A spherical lens is behaves ideally if ϕ is small:

$$\sin\phi = \phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots \approx \phi$$

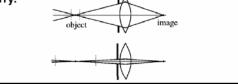
The angle restriction means we consider rays near the optical axis -- "paraxial rays."

Depth of field

Lens systems do have some limitations.

First, points that are not in the object plane will appear out of focus.

The *depth of field* is a measure of how far from the object plane points can be before appearing "too blurry."



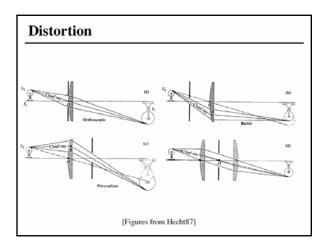
Monochromatic aberrations

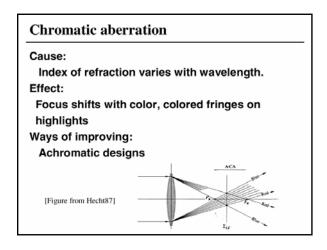
Allowing for the next higher terms in the $\sin \phi$ approximation:

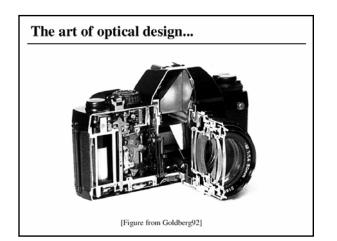
$$\sin \phi = \phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots \approx \phi - \frac{\phi^3}{3!}$$

...we arrive at the third order theory. Deviations from ideal optics are called the *primary* or *Seidel aberrations*:

- Spherical aberration
 Petzval curvature
- Coma
- Distortion
- Astigmatism



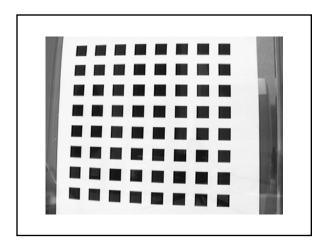


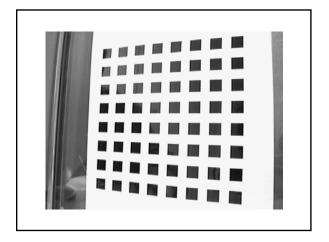


Intrinsic Parameters With Lens Distortion

$$u = f_{U} \phi_{U}(x/z, y/z) + c_{U}$$

$$v = f_{V} \phi_{V}(x/z, y/z) + c_{V}$$
² DOF Focal Lengths (f)
² DOF Center of Projection (O)
² DOF Lens Distortion Function (ϕ)





Intrinsic Parameters With Lens Distortion

$$\begin{aligned} \mathbf{u}' &= \mathbf{f}_{\mathbf{U}} \ (\mathbf{x}/\mathbf{z}) + \mathbf{c}_{\mathbf{U}} \\ \mathbf{v}' &= \mathbf{f}_{\mathbf{V}} \ (\mathbf{y}/\mathbf{z}) + \mathbf{c}_{\mathbf{V}} \\ \mathbf{u} &= \rho_{\mathbf{U}} \ (\mathbf{u}', \mathbf{v}') \\ \mathbf{v} &= \rho_{\mathbf{V}} \ (\mathbf{u}', \mathbf{v}') \end{aligned}$$

If lens distortion is moved to the last step, It can be estimated independently as the first step, And images can be warped after capture to remove distortion

Why is lens distortion independent?

- Projection is now
 - a projective transformation from 3D to 2D
 - Followed by a 2D to 2D warping (lens distortion)
- Warping can be estimated and corrected by looking at the image of a planar pattern or lines because
- Homography from plane containing the pattern to image plane preserves straight lines
- So, the problem is to find the warping parameters that straighten all the lines as much as possible