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AbstractÐThe Ball-Pivoting Algorithm (BPA) computes a triangle mesh interpolating a given point cloud. Typically, the points are

surface samples acquired with multiple range scans of an object. The principle of the BPA is very simple: Three points form a triangle if

a ball of a user-specified radius � touches them without containing any other point. Starting with a seed triangle, the ball pivots around

an edge (i.e., it revolves around the edge while keeping in contact with the edge's endpoints) until it touches another point, forming

another triangle. The process continues until all reachable edges have been tried, and then starts from another seed triangle, until all

points have been considered. The process can then be repeated with a ball of larger radius to handle uneven sampling densities. We

applied the BPA to datasets of millions of points representing actual scans of complex 3D objects. The relatively small amount of

memory required by the BPA, its time efficiency, and the quality of the results obtained compare favorably with existing techniques.

Index TermsÐ3D scanning, shape reconstruction, point cloud, range image.
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1 INTRODUCTION

ADVANCES in 3D data-acquisition hardware have facili-
tated the more widespread use of scanning to docu-

ment the geometry of physical objects for archival purposes
or as a step in new product design. A typical 3D data
acquisition pipeline consists of the following steps (adapted
from [1]):

. Scanning: Acquisition of surface samples with a
measurement device, such as a laser range scanner
or a stereographic system.

. Data registration: Alignment of several scans into a
single coordinate system.

. Data integration: Interpolation of the measured
samples or points derived from the measured
samples with a surface representation, usually a
triangle mesh.

. Model conversion: Mesh decimation/optimization,
fitting with higher-order representations, etc.

This paper focuses on the data integration phase. We
present a new method for finding a triangle mesh that
interpolates an unorganized set of points. Fig. 1 shows a
closeup view of a 14M triangle mesh obtained by running
our algorithm on hundreds of scans of Michelangelo's
Florentine PietaÁ. The model took 30 minutes to compute on
a Pentium II PC.

The method makes two mild assumptions about the
samples that are valid for a wide range of acquisition
techniques: that the samples are distributed over the entire
surface with a spatial frequency greater than or equal to
some application-specified minimum value, and that an

estimate of the surface normal is available for each
measured sample.

1.1 Main Contributions

. The method is conceptually simple. Starting with a
seed triangle, it pivots a ball around each edge on the
current mesh boundary until a new point is hit by
the ball. The edge and point define a new triangle,
which is added to the mesh, and the algorithm
considers a new boundary edge for pivoting.

. The output mesh is a manifold subset of an alpha-
shape [2] of the point set. Some of the nice properties
of alpha-shapes can also be proved for our
reconstruction.

. The Ball Pivoting Algorithm (BPA for short) is
efficient in terms of execution time and storage
requirements. It exhibited linear time performance
on datasets consisting of millions of input samples.
It has been implemented in a form that does not
require all of the input data to be loaded into
memory simultaneously. The resulting triangle
mesh is incrementally saved to external storage
during its computation, and does not use any
additional memory.

. The BPA proved robust enough to handle the noise
present in real scanned 3D data. It was tested on
several large scanned datasets, and in particular was
used to create models of Michelangelo's Florentine
PietaÁ [3] from hundreds of scans acquired with a
structured light sensor (Visual Interface's Virtuoso
ShapeCamera supplemented with our own
photometric system).

The rest of the paper is structured as follows: In
Section 2, we define the problem and discuss related
work. In Section 3, we discuss the concepts underlying
the Ball-Pivoting Algorithm, and in Section 4, we
describe the algorithm in detail. We present results in
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Section 5, and discuss open problems and future work in
Section 6.

2 BACKGROUND

Recent years have seen a proliferation of scanning
equipment and algorithms for synthesizing models from
scanned data. We refer the reader to two recent reviews
of research in the field [4], [5]. In this section, we focus
on the role interpolating meshing schemes can play in
scanning objects and why they have not been used in
practical scanning systems.

2.1 Interpolating Meshes in Scanning Systems

We define the scanning problem: Given an object, find a
continuous representation of the object surface that captures
features of a length scale 2d or larger. The value of d is
dictated by the application. Capturing features of scale 2d
requires sampling the surface with a spatial resolution of d
or less. The surface may consist of large areas that can be
well approximated by much sparser meshes; however, in
the absence of a priori information, we need to begin with a
sampling resolution of d or less to guarantee that no feature
is missed.

We consider acquisition systems that produce sets of
range images, i.e., arrays of depths, each of which covers a
subset of the full surface. Because they are height fields with
regular sampling, individual range images are easily
meshed. The individual meshes can be used to compute
an estimated surface normal for each sample point.

An ideal acquisition system would return samples lying
exactly on the object surface, but any real measurement
system introduces some error. However, if a system returns
samples with an error that is orders of magnitude smaller
than the minumum feature size, the sampling can be
regarded as perfect. A surface can then be reconstructed by
finding an interpolating mesh without additional opera-
tions on the measured data. Most scanning systems still
need to account for acquisition error. There are two sources
of error: error in registration; and error along the sensor line

of sight. Estimates of actual surface points are usually
derived by averaging samples from redundant scans. These
estimates are then connected into a triangle mesh.

Most methods for estimating surface points depend on
data structures that facilitate the construction of the mesh.
Two classes of methods have been used successfully for
large datasets; both assume negligible registration error
and compute estimates to correct for line-of-sight error.
The first of these classes is volumetric methods, such as
that introduced by Curless and Levoy [6]. In these
methods, individual aligned meshes are used to compute
a signed-distance function on a volume grid encompass-
ing the object. Estimated surface points are computed as
the points on the grid where the distance funtion is zero.
The structure of the volume then facilitates the construc-
tion of a mesh using the marching cubes algorithm [7].

The second class of methods are mesh stitching methods,
such as the technique of Soucy and Laurendeau [8]. Disjoint
height-field meshes are stitched into a single surface.
Disjoint regions are defined by finding areas of overlap of
different subsets of the set of scans. Estimated surface
points for each region are computed as weighted averages
of points from the overlapping scans. Estimated points in
each region are then re-triangulated, and the resulting
meshes are stitched into a single mesh. Turk and Levoy
developed a similar method [9], which first stitches (or
zippers) the disjoint meshes and then computes estimated
surface points.

We observe that in both cases of methods, the method of
estimating surface points need not be so closely linked to
the method for constructing the final mesh. In the
volumetric approach, a technique other than marching
cubes could be used for finding a triangle mesh passing
through the estimated surface points. In the mesh-joining
approaches, a technique for finding a mesh connecting all
estimated surface points could be used in place of stitching
together the existing meshes. Most importantly, with an
efficient algorithm for computing a mesh which joins
points, any method for computing estimated surface points
could be used, including those that do not impose
additional structure on the data and do not treat registration
and line-of-sight error separately. For example, it has been
demonstrated that reducing error in individual meshes
before alignment can reduce registration error [10].

We are developing a method that moves samples
within known scanner error bounds to conform the
meshes to one another as they are aligned. Our current
implementation of this method was used to preprocess
the data shown in the results section. The method will be
described in a future paper.

Finally, it may be desirable to find an interpolating mesh
from measured data even if it contains uncompensated
error. The preliminary mesh could be smoothed, cleaned,
and decimated for use in planning functions. A mesh
interpolating measured points could also be used as a
starting point for computing consensus points.

2.2 State of the Art for Interpolating Meshes

Existing interpolating techniques fall into two categories:
sculpting-based [11], [12], [4] and region-growing [13],
[14], [15], like the BPA. In sculpting-based methods, a
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Fig. 1. Section of Michelangelo's Florentine PietaÁ. This 14M triangle

mesh was generated from more than 700 scans using the ball pivoting

algorithm.



volume tetrahedralization is computed from the data
points, typically the 3D Delaunay triangulation. Tetra-
hedra are then removed from the convex hull to extract
the original shape. Region-growing methods start with a
seed triangle, consider a new point and join it to the
existing region boundary, and continue until all points
have been considered.

The strength of sculpting-based approaches is that they
often provide theoretical guarantees for the quality of the
resulting surface, e.g., that the topology is correct and that
the surface converges to the true surface as the sampling
density increases (see e.g., [16], [17]). However, computing
the required 3D Delaunay triangulation can be prohibitively
expensive in terms of time and memory required and can
lead to numerical instability when dealing with datasets of
millions of points. The goal of the BPA is to retain the
strengths of previous interpolating techniques in a method
that exhibits linear time complexity and robustness on real
scanned data.

3 SURFACE RECONSTRUCTION AND BALL-PIVOTING

The main concept underlying the Ball-Pivoting Algorithm is
quite simple. Let the manifold M be the surface of a three-
dimensional object and S be a point-sampling of M. Let us
assume for now that S is dense enough that a �-ball (a ball
of radius �) cannot pass through the surface without
touching sample points (see Fig. 3 for a 2D example). We
start by placing a �-ball in contact with three sample points.
Keeping the ball in contact with two of these initial points,
we ªpivotº the ball until it touches another point, as
illustrated in Fig. 2 (more details are given in Section 4.3).
We pivot around each edge of the current mesh boundary.
Triplets of points that the ball contacts form new triangles.
The set of triangles formed while the ball ªwalksº on the
surface constitutes the interpolating mesh.

The BPA is closely related to alpha-shapes [18], [2]. In
fact every triangle � computed by the �-ball walk obviously
has an empty smallest open ball b� whose radius is less than
� (see [2], page 50). Thus, the BPA computes a subset of the
2-faces of the �-shape of S. These faces are also a subset of
the 2-skeleton of the three-dimensional Delaunay triangula-
tion of the point set. Alpha shapes are an effective tool for
computing the ªshapeº of a point set. The surface
reconstructed by the BPA retains some of the qualities of
alpha-shapes: It has provable reconstruction guarantees
under certain sampling assumptions, and an intuitively
simple geometric meaning.

However, the 2-skeleton of an alpha-shape computed
from a noisy sampling of a smooth manifold can contain
multiple nonmanifold connections. It is nontrivial to filter
out unwanted components. Also, in their original for-
mulation, alpha-shapes are computed by extracting a
subset of the 3D Delaunay triangulation of the point set, a
data structure that is not easily computed for datasets of
millions of points. With the assumptions on the input
stated in the introduction, the BPA efficiently and
robustly computes a manifold subset of an alpha-shape
that is well suited for this application.

In [16], sufficient conditions on the sampling density of a
curve in the plane were derived which guarantee that the

alpha-shape reconstruction is homeomorphic to the original
manifold and that it lies within a bounded distance. The
theorem can be easily extended to surfaces (stated here
without proof): suppose that for the smooth manifold M,
the sampling S satisfies the following properties:

1. The intersection of any ball of radius � with the
manifold is a topological disk.

2. Any ball of radius � centered on the manifold
contains at least one sample point in its interior.

The first condition guarantees that the radius of
curvature of the manifold is larger than �, and that the
�-ball can also pass through cavities and other concave
features without multiple contacts with the surface. The
second condition tells us that the sampling is dense
enough that the ball can walk on the sample points
without leaving holes (see Fig. 3 for 2D examples). The
BPA then produces a homeomorphic approximation T of
the smooth manifold M. We can also define a home-
omorphism h : T 7!M such that the distance jjpÿ h�p�jj < �.

In practice, we must often deal with less-than-ideal
samplings. What is the behavior of the algorithm in these
cases? Let us consider the case of real scanned data. Typical
problems are missing points, nonuniform density, imper-
fectly-aligned overlapping range scans, and scanner line-of-
sight error.1

BERNARDINI ET AL.: THE BALL-PIVOTING ALGORITHM FOR SURFACE RECONSTRUCTION 351

1. Some types of scanners also produce ªoutliersº, points that lie far from
the actual surface. These outliers occur more frequently at the boundaries of
range images, or in the presence of sharp discontinuites. Outlier removal is
best done with device-dependent preprocessing. The scanner used to aquire
this data presented in Section 5 is not affected by this problem.

Fig. 2. Ball pivoting operation. See Section 4.3 for further details.
The pivoting ball is in contact with the three vertices of triangle
� � ��i; �j; �o�, whose normal is n. The pivoting edge e�i;j� lies on
the z axis (perpendicular to the page and pointing towards the
viewer), with its midpoint m at the origin. The circle sijo is the
intersection of the pivoting ball with z � 0. The coordinate frame is
such that the center cijo of the ball lies on the positive x axis.
During pivoting, the �-ball stays in contact with the two edge
endpoints �i; �j, and its center describes a circular trajectory  with
center in m and radius jjcijo ÿmjj. In its pivoting motion, the ball
hits a new data point �k. Let sk be the intersection of a �-sphere
centered at �k with z � 0. The center ck of the pivoting ball when it
touches �k is the intersection of  with sk lying on the negative
halfplane of oriented line lk



The BPA is designed to process the output of an accurate
registration/conformance algorithm (see Section 2), and
does not attempt to average out noise or residual

registration errors. Nonetheless, the BPA is robust in the
presence of imperfect data.

We augment the data points with approximate surface
normals computed from the range maps to disambiguate

cases that occur when dealing with missing or noisy data.
For example, if parts of the surface have not been scanned,
there will be holes larger than � in the sampling. It is then
impossible to distinguish an interior and an exterior region

with respect to the sampling. We use surface normals (for
which we assume outward orientation) to decide surface
orientation. For example, when choosing a seed triangle we
check that the surface normals at the three vertices are

consistently oriented.
Areas of density higher than � present no problem. The

pivoting ball will still ªwalkº on the points forming small
triangles. If the data is noise-free and � is smaller than the
local curvature, all points will be interpolated. More likely,

points are affected by noise and some of those lying below
the surface will not be touched by the ball and will not be
part of the reconstructed mesh (see Fig. 4a).

Missing points create holes that cannot be filled by the
pivoting ball. Any postprocessing hole-filling algorithm

could be employed; in particular, BPA can be applied

multiple times, with increasing ball radii, as explained in
Section 4.6. However, we do need to handle possible
ambiguities that missing data can introduce. When pivoting

around a boundary edge, the ball can touch an unused
point lying close to the surface. Again, we use surface
normals to decide whether the point touched is valid or not
(see Fig. 4b). A triangle is rejected if the dot product of its

normal with the surface normal is negative.
The presence of misaligned overlapping range scans

can lead to poor results if the registration error is similar
to the pivoting ball size. Undesired small connected

components lying close to the main surface will be
formed, and the main surface will be affected by high
frequency noise (see Fig. 4c). Our seed selection strategy
avoids creating a large number of such small components.

A simple postprocessing that removes small components
and surface smoothing [19] can significantly improve the
result in these cases, at least aesthetically.

Regardless of the defects in the data, the BPA is
guaranteed to build an orientable manifold. Notice that

the BPA will always try to build the largest possible
connected manifold from a given seed triangle.

Choosing a suitable value for the radius � of the pivoting
ball is typically easy. Current structured-light or laser
triangulation scanners produce very dense samplings,

exceeding our requirement that intersample distance be

352 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 3. The Ball Pivoting Algorithm in 2D. (a) A circle of radius � pivots from sample point to sample point, connecting them with edges. (b) When the

sampling density is too low, some of the edges will not be created, leaving holes. (c) When the curvature of the manifold is larger than 1=�, some of

the sample points will not be reached by the pivoting ball, and features will be missed.

Fig. 4. Ball pivoting in the presence of noisy data. (a) Surface samples lying ªbelowº surface level are not touched by the pivoting ball and remain
isolated (and are discarded by the algorithm). (b) Due to missing data, the ball pivots around an edge until it touches a sample that belongs to a
different part of the surface. By checking that triangle and data point normals are consistently oriented, we avoid generating a triangle in this case. (c)
Noisy samples form two layers, distant enough to allow the � ball to ªwalkº on both layers. A spurious small component is created. Our seed selection
strategy avoids the creation of a large number of these small components. Remaining ones can be removed with a simple postprocessing step. In all
cases, the BPA outputs an orientable, triangulated manifold.



less than half the size of features of interest. Knowledge of
the sampling density characteristics of the scanner, and of
the feature size one wants to capture, are enough to choose
an appropriate radius. Alternatively, one could analyze a
small subset of the data to compute the point density. An
uneven sampling might arise when scanning a complex
surface with regions that project into small areas in the
scanner direction. The best approach is to take additional
scans with the scanner perpendicular to such regions to
acquire additional data. Notice, however, that the BPA can
be applied multiple times, with increasing ball radii, to
handle uneven sampling densities, as described in
Section 4.6.

4 THE BALL-PIVOTING ALGORITHM

The BPA follows the advancing-front paradigm to incre-
mentally build an interpolating triangulation. BPA takes as
input a list of surface-sample data points �i, each associated
with a normal ni (and other optional attributes, such as
texture coordinates), and a ball radius �. The basic
algorithm works by finding a seed triangle (i.e., three data
points ��i; �j; �k� such that a ball of radius � touching them
contains no other data point) and adding one triangle at a
time by performing the ball pivoting operation introduced
in Section 3.

The front F is represented as a collection of linked lists of
edges and is initially composed of a single loop containing
the three edges defined by the first seed triangle. Each edge
e�i;j� of the front is represented by its two endpoints ��i; �j�,
the opposite vertex �o, the center cijo of the ball that touches
all three points, and links to the previous and next edge
along in the same loop of the front. An edge can be active,
boundary, or frozen. An active edge is one that will be used
for pivoting. If it is not possible to pivot from an edge, it is
marked as boundary. The frozen state is explained below, in
the context of our out-of-core extensions. Keeping all this
information with each edge makes it simpler to pivot the
ball around it. The reason the front is a collection of linked
lists, instead of a single one, is that as the ball pivots along
an edge, depending on whether it touches a newly
encountered data point or a previously used one, the front
changes topology. BPA handles all cases with two simple
topological operators, join and glue, which ensure that at
any time the front is a collection of linked lists.

The basic BPA algorithm is shown in Fig. 5. Below we
detail the functions and data structures used. In particular,
we later describe a simple modification necessary to the
basic algorithm to support efficient out-of-core execution.
This allows BPA to triangulate large datasets with minimal
memory usage.

4.1 Spatial Queries

Both ball_pivot and find_seed_triangle (lines 3 and 10 in
Fig. 5) require efficient lookup of the subset of points
contained in a small spatial neighborhood. We imple-
mented this spatial query using a regular grid of cubic
cells, or voxels. Each voxel has sides of size � � 2�. Data
points are stored in a list, and the list is organized using
bucket-sort so that points lying in the same voxel form a
contiguous sublist. Each voxel stores a pointer to the

beginning of its sublist of points (to the next sublist if the
voxel is empty). An extra voxel at the end of the grid
stores a NULL pointer. To visit all points in a voxel it is
sufficient to traverse the list from the node pointed to by
the voxel to the one pointed to by the next voxel.

Given a point p, we can easily find the voxel V it lies
in by dividing its coordinates by �. We usually need to
look up all points within 2� distance from p, which are a
subset of all points contained in the 27 voxels adjacent to
V (including V itself).

The grid allows constant-time access to the points. Its
size would be prohibitive if we processed a large dataset in
one step; but an out-of-core implementation, described in
Section 4.5, can process the data in manageable chunks.
Memory usage can be further reduced, at the expense of a
slower access, using more compact representations, such as
a sparse matrix data structure.

4.2 Seed Selection

Given data satisfying the conditions of the reconstruction
theorem of Section 3, one seed per connected component
is enough to reconstruct the entire manifold (function
find_seed_triangle at line 10 in Fig. 5). A simple way to
find a valid seed is to:

. Pick any point � not yet used by the reconstructed
triangulation.

. Consider all pairs of points �a; �b in its neighborhood
in order of distance from �.

. Build potential seed triangles �; �a; �b.
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Fig. 5. Skeleton of the BPA algorithm. Several necessary error tests
have been left out for readability, such as edge orientation checks. The
edges in the front F are generally accessed by keeping a queue of
active edges. The join operation adds two active edges to the front. The
glue operation deletes two edges from the front, and changes the
topology of the front by breaking a single loop into two, or combining two
loops into one. See text for details. The find_seed_triangle function
returns a �-exposed triangle, which is used to initialize the front.



. Check that the triangle normal is consistent with the
vertex normals, i.e., pointing outward.

. Test that a �-ball with center in the outward
halfspace touches all three vertices and contains no
other data point.

. Stop when a valid seed triangle has been found.

In the presence of noisy, incomplete data, it is important to
select an efficient seed-searching strategy. Given a valid
seed, the algorithm builds the largest possible connected
component containing the seed. Noisy points lying at a
distance slightly larger than 2� from the reconstructed
triangulation could form other potential seed triangles,
leading to the construction of small sets of triangles lying
close to the main surface (see Fig. 4c). These small
components are an artifact of the noise present in the data
and are usually undesired. While they are easy to eliminate
by postfiltering the data, a significant amount of computa-
tional resources is wasted in constructing them.

We can, however, observe the following: If we limit
ourselves to considering only one data point per voxel as a
candidate vertex for a seed triangle, we cannot miss
components spanning a volume larger than a few voxels.
Also, for a given voxel, consider the average normal n of
points within it. This normal approximates the surface
normal in that region. Since we want our ball to walk ªonº
the surface, it is convenient to first consider points whose
projection onto n is large and positive.

We therefore simply keep a list of nonempty voxels. We
search these voxels for valid seed triangles, and when one is
found, we start building a triangulation using pivoting
operations. When no more pivoting is possible, we continue
the search for a seed triangle from where we had stopped,
skipping all voxels containing a point that is now part of the
triangulation. When no more seeds can be found, the
algorithm stops.

4.3 Ball Pivoting

A pivoting operation (line 3 in Fig. 5) starts with a triangle
� � ��i; �j; �o� and a ball of radius � that touches its three
vertices. Without loss of generality, assume edge e�i;j� is the
pivoting edge. The ball in its initial position (let cijo be its
center) does not contain any data point, either because � is a
seed triangle, or because � was computed by a previous
pivoting operation. The pivoting is in principle a contin-
uous motion of the ball, during which the ball stays in
contact with the two endpoints of e�i;j�, as illustrated in
Fig. 2. Because of this contact, the motion is constrained as
follows: The center cijo of the ball describes a circle  which
lies on the plane perpendicular to e�i;j� and through its
midpoint m � 1

2 ��j � �i). The center of this circular trajec-
tory is m and its radius is jjcijo ÿmjj. During this motion,
the ball may hit another point �k. If no point is hit, then the
edge is a boundary edge. Otherwise, the triangle ��i; �k; �j�
is a new valid triangle, and the ball in its final position does
not contain any other point, thus being a valid starting ball
for the next pivoting operation.

In practice, we find �k as follows: We consider all points
in a 2�-neighborhood of m. For each such point �x, we
compute the center cx of the ball touching �i; �j and �x, if
such a ball exists. Each cx lies on the circular trajectory 

around m and can be computed by intersecting a �-sphere
centered at �x with the circle . Of these points cx, we select
the one that is first along the trajectory . We report the first
point hit and the corresponding ball center. Trivial rejection
tests can be added to speed up finding the first hit-point.

4.4 The Join and Glue Operations

These two operations generate triangles while adding and
removing edges from the front loops (lines 5-7 in Fig. 5).

The simpler operation is the join, which is used when the
ball pivots around edge e�i;j�, touching a not_used vertex �k
(i.e., �k is a vertex that is not yet part of the mesh). In this
case, we output the triangle ��i; �k; �j�, and locally modify
the front by removing e�i;j� and adding the two edges e�i;k�
and e�k;j� (see Fig. 6).

When �k is already part of the mesh, one of two cases can
arise:

1. �k is an internal mesh vertex, (i.e., no front edge uses
�k). The corresponding triangle cannot be generated,
since it would create a nonmanifold vertex. In this
case, e�i;j� is simply marked as a boundary edge;

2. �k belongs to the front. We first check that adding
the candidate new triangle would not create a
nonmanifold or nonorientable manifold. This is
easily accomplished by looking at the existence
and orientation of edges incident on �k. Then we
apply a join operation, and output the new mesh
triangle ��i; �k; �j�. The join could potentially create
(one or two) pairs of coincident edges (with opposite
orientation), which are removed by the glue
operation.

The glue operation removes from the front pairs of
coincident edges, with opposite orientation (coincident
edges with the same orientation are never created by the
algortihm). For example, when edge e�i;k� is added to the
front by a join operation (the same applies to e�k;j�), if edge
e�k;i� is on the front, glue will remove the pair of edges
e�i;k�; e�k;i� and adjust the front accordingly. Four cases are
possible, as illustrated in Fig. 7.

A sequence of join and glue operations is illustrated in
Fig. 8.

4.5 Out-of-Core Extensions

Being able to use a personal computer to triangulate high-
resolution scans allows inexpensive on-site processing of
data. Due to their locality of reference, advancing-front
algorithms are suited to very simple out-of-core extensions.

We employed a simple data-slicing scheme to extend the
algorithm shown in Fig. 5. The basic idea is to cache the
portion of the dataset currently being used for pivoting, to
dump data no longer being used, and to load data as it is
needed. In our case, we use two axis-aligned planes �0 and
�1 to define the active region of work for pivoting. We
initially place �0 in such a way that no data points lie
ªbelowº it, and �1 above �0 at some user-specified distance.
As each edge is created, we test if its endpoints are ªaboveº
�1; in this case, we mark the edge frozen. When all edges
remaining in the queue are frozen, we simply shift �0 and �1

ªupwardsº, and update all frozen into active edges, and so
on. A subset of data points is loaded and discarded from
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memory when the corresponding bounding box enters and
exits the active slice. Scans can easily be preprocessed to
break them up into smaller meshes, so that they span only a
few slices, and memory load remains low.

The only change required in the algorithm to implement
this refinement is an outer loop to move the active slice, and
the addition of the instructions to unfreeze edges between
lines 1-2 of Fig. 5.

4.6 Multiple Passes

To deal with unevenly sampled surfaces, we can easily
extend the algorithm to run multiple passes with increasing
ball radii. The user specifies a list of radii f�0; . . . ; �ng as input parameters. In each slice, for increasing

�i; i � 0; . . . ; n, we start by inserting the points in a grid of
voxel size � � 2�i. We let BPA run until there are no more
active edges in the queue. At this point we increment i, go
through all front edges, and check whether each edge with
its opposite vertex �o forms a valid seed triangle for a ball of
radius �i. If it is, then it is added to the queue of active
edges. Finally, the pivoting is started again.

4.7 Remarks

The BPA algorithm was implemented in C++ using the
Standard Template Library. The whole code is less than
4,000 lines, including the out-of-core extensions.

The algorithm is linear in the number of data points and
uses linear storage, under the assumption that the data
density is bounded. This assumption is appropriate for
scanned data, which is collected by equipment with a
known sample spacing. Even if several scans overlap, the
total number of points in any region will be bounded by a
known constant.

Most steps are simple O�1� state checks or updates to
queues, linked lists, and the like. With bounded density, a
point need only be related to a constant number of
neighbors. So, for example, a point can only be contained
in a constant number of loops in the advancing front. The
two operations ball_pivot and find_seed_triangle are more
complex.

Each ball_pivot operates on a different mesh edge, so the
number of pivots is O�n�. A single pivot requires identify-
ing all points in a 2� neighborhood. A list of these points
can be collected from 27 voxels surrounding the candidate
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Fig. 6. A join operation simply adds a new triangle, removing edge

e�i;j�from the front and adding the two new edges e�i;k� and e�k;j�.

Fig. 7. A glue operation is applied when join creates an edge identical to
an existing edge, but with opposite orientation. The two coincident
edges are removed and the front adjusted accordingly. There are four
possible cases: (a) The two edges form a loop. The loop is deleted from
the front. (b) Two edges belong to the same loop and are consecutive.
The edges are removed and the loop shortened. (c) The edges are not
consecutive and they belong to the same loop. The loop is split into two.
(d) The edges are not consecutive and belong to two different loops. The
loops are merged into a single loop.

Fig. 8. Example of a sequence of join and glue operations. (a) A new
triangle is to be added to the existing front. The four front vertices inside
the dashed circle all represent a single data point. (b) A join removes an
edge and creates two new front edges, coincident with existing ones. (c),
(d) Two glue operations remove coincident edge pairs. (d) Also shows
the next triangle added. (e) Only one of the edges created by this join is
coincident with an existing edge. (f) One glue removes the duplicate
pair.



point in our grid. With bounded density, this list has
constant size B. We perform a few algebraic computations
on each point in the list and select the minimum result, all
O�1� operations on a list of size O�1�.

Each find_seed_triangle picks unused points one at a time
and tests whether any incident triangle is a valid seed. No
point is considered more than once, so this test is performed
only O�n� times. To test a candidate point, we gather the
same point-list discussed above, and consider pairs of
points until we either find a seed triangle or reject the
candidate. Testing one of these triangles may require
classifying every nearby point against a sphere touching
the three vertices, in the worst case, O�B3� � O�1� steps. In
practice, we limit the number of candidate points and
triangles tested by the heuristics discussed in Section 4.2.

An in-core implementation of the BPA uses O�n� L�
memory, where L is the number of cells in the voxel grid.
The O�n� term includes the data, the advancing front
(which can only include each mesh edge once), and the
candidate edge queue. Our out-of-core implementation
uses O�m� L0� memory, where m is the number of data
points in the largest slice and L0 is the size of the smaller
grid covering a single slice. Since the user can control the
size of slices, memory requirements can be tailored to the
available hardware. The voxel grid can be more com-
pactly represented as a sparse matrix, with a small
(constant) increase in access time.

5 EXPERIMENTAL RESULTS

Our experiments for this paper were all conducted on one
450MHz Pentium II Xeon processor of an IBM IntelliStation
Z Pro running Windows NT 4.0.

In our experiments we used several datasets: ªcleanº
dataset (i.e., points from analytical surface, see Fig. 9); the
datasets from the Stanford scanning database (see
Figs. 11a-c); and a very large dataset we acquired ourselves
(and the main motivation of this work), a model of
Michelangelo's Florentine PietaÁ [3] (see Fig. 11d).

To allow flexible input of multiple scans and out-of-core
execution, our program reads its input in four parts: A list
of individual scans to be converted into a single coherent

triangle mesh; and for each scan, a transformation matrix, a

posttransform bounding box (used to quickly estimate the

mesh position for assignment to a slice), and the actual scan,

which is loaded only when needed.

5.1 Experiments

The table in Fig. 10 summarizes our results. The ªcleanº

dataset is a collection of points from an analytical surface.
The Stanford Bunny, Dragon and Buddha datasets are

multiple laser range scans of small objects. The scanner

used to acquire the data was a CyberWare 3030MS.
These data required some minor preprocessing. We used

the Stanford vrip program to connect the points within each

individual range data scan to provide estimates of surface

normals. We also removed the plane carvers, large planes of

triangles used for hole-filling by algorithms described in [6].
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Fig. 9. Results. Triangle mesh computed by the BPA interpolating points

Fig. 10. Summary of results. # of Pts and # of Scans are the original number of data points and range images respectively. � lists the radii of the
pivoting balls, in mm. Multiple radii mean that multiple passes of the algorithm, with increasing ball size, were used. # Slices is the number of slices
into which the data is partitioned for out-of-core processing. # of Triangles is the number of triangles created by BPA. Mem. Usage is the maximum
amount of memory used at any time during mesh generation, in MB. I/O Time is the time spent reading the input binary files; it also includes the time
to write the output mesh, as an indexed triangle set, in binary format. CPU Time is the time spent computing the triangulation. All times are in
minutes, except where otherwise stated. All tests were performed on a 450MHz Pentium II Xeon.



This change was made only for aesthetic reasons; BPA has

no problem handling the full input.

In order to confirm the effectiveness of our out-of-core

capabilities, we modified the Stanford Dragon by

subdividing each range mesh into several pieces,

multiplying the original 71 meshes to over 1,452. A similar

preprocessing was also applied to the Buddha dataset. We

note that such decompositions can be performed efficiently

for arbitrarily large range scans (which do not necessarily

need to fit in memory) by the techniques described in [20].

The PietaÁ data has undergone extensive preprocessing

during and after scanning and registration that is out of the

scope of this paper. The data is large enough that it cannot

be processed in-core, and is only processed in slices. The

scanning of the PietaÁ also included the capture of multiple

color images with calibrated lighting, from which
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Fig. 11. Results. (a) Stanford bunny. (b) Stanford dragon. (c) Stanford Buddha. (d) Preliminary reconstruction of Michelangelo's Florentine PietaÁ.



reflectance and normals maps to augment the geometric

data are computed (see [21]).

6 CONCLUSIONS

In this paper, we introduced the Ball-Pivoting Algorithm,
an advancing-front algorithm to incrementally build an
interpolating triangulation of a given point cloud. BPA has
several desirable properties:

. Intuitive: BPA triangulates a set of points by
ªrollingº a �-ball on the point cloud. The user
chooses only a single parameter.

. Flexible, efficient, and robust: Our test datasets
ranged from small synthetic data to large real world
scans. We have shown that our implementation of
BPA works on datasets of millions of points
representing actual scans of complex 3D objects.
For our PietaÁ data, we found that on a Pentium II PC
the algorithm generates and writes to disk the output
mesh at a rate of roughly 500K triangles per minute.

. Theoretical foundation: BPA is related to
alpha-shapes [2], and given sufficiently dense
sampling, it is guaranteed to reconstruct a surface
homeomorphic to and within a bounded distance
from the original manifold.

There are some avenues for further work. It would be
interesting to evaluate whether BPA can be used to
triangulate surfaces sampled with particle systems. This
possibility was left as an open problem in [22], and further
developed in [23] in the context of isosurface generation.

By using weighted points, we might be able to generate
triangulations of adaptive samplings. The sampling density
could be changed depending on local surface properties,
and point weights accordingly assigned or computed. An
extension of our algorithm along the lines of the weighted
generalization of alpha-shapes [18] should be able to
generate a more compact, adaptive, interpolating
triangulation.

We have done some initial experiments in using a
smoothing algorithm adapted from [19] to preprocess the
data and to compute consensus points from multiple
overlapping scans to be used as input to the BPA, while
at the same time making small refinements to the rigid
alignment of the scans to each other. Datasets used in this
paper were preprocessed using our current implementation
of this algorithm.
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