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Abstract

In order to digitize the whole surface of a three-
dimensional object by means of an optical range
sensor, usually multiple range images are ac-
quired from different viewpoints. We demon-
strate how the range images can be accurately
merged into a single triangular mesh with curva-
ture dependent density by the use of local topo-
logical mesh operations. A new filter, that is spe-
cially adapted to the requirements of geometrical
data, has been designed. This enables smoothing
of measuring errors like noise, aliasing, outliers,
and registration errors with minimum interfer-
ence of real object features like edges. Curvature
variations are minimized and surface undulations
are avoided in order to produce high quality sur-
faces for rendering and NC milling.

1 Introduction

The last few years optical 3D-sensors have be-
come powerful tools for reverse engineering. The
shape of a three-dimensional object is sampled
and turned into a CAD description. Figure 1
shows 8 single range images of a helmet and
its reconstructed CAD surface (center). The
reconstructed model can be handled like syn-
thetic CAD data. This enables the processing
of old design models on a computer. Using CAM
techniques like NC milling or stereolithography,
three-dimensional replicas of the digitized objects
can be made. In dentistry such methods are used
to scan teeth or plaster casts and to produce
crowns and inlays from the data automatically.
Registered range images are not well suited
to be used directly as input for CAD systems.
They do not really describe surfaces, but clouds
of point coordinates in 3D-space, in particular

Figure 1: CAD-surface of a helmet, reconstructed
from 8 range images.

if multiple range images were taken from differ-
ent views. The amount of data points may be
very large (from millions to hundreds of millions).
Furthermore the data are usually distorted by
measuring errors like noise, aliasing, outliers, etc.
Mainly two problems have to be solved for surface
reconstruction: the reconstruction of the topol-
ogy of the sampled object (triangulation) and the
processing of the surface geometry in order to
eliminate measuring errors and reduce data, (sur-
face modeling). At present, the most frequently
used method is approximation of tensor prod-
uct surfaces! (reconstruction of smooth surfaces).
Unfortunately such methods require much inter-
active control. A simpler and more accurate way
is to generate a polyhedral surface (e.g. a trian-
gular mesh), which is sufficient for visualization
(virtual reality) or CAM. Tensor product surfaces

'rectangular patches of spline or Bézier surfaces



are necessary only for “real” reverse engineering,
where designers want to handle free form surfaces
of digitized objects equal to synthetic surfaces
(e.g. surface manipulation by control points).
We propose a new method for modeling range
data by using meshes of curved or flat triangles
with curvature dependent density. Our method
allows to eliminate data distortions by measuring,
calibration or registration errors with minimum
interference of real object features. Curvature
variations are minimized and surface undulations
are avoided in order to produce high quality sur-
faces for rendering and NC milling or as a pre-
processing step for “real” reverse engineering. A
more detailed description can be found in [8].

2 Related Work

The reconstruction of the object topology from
a cloud of sampled data points can be solved by
means of graph theory. At present this approach
has only little importance, as it is difficult to
handle the amount of data, which are provided
by modern optical 3D-sensors. Furthermore it is
possible only to interpolate the measured data
points exactly, but not to smooth errors. The
best results are achieved using a-shapes [5] and
v-graphs [15].

Since a few years mainly volumetric approaches
are used. These are based on well established
algorithms of computer tomography like march-
ing cubes [10] and therefore are easy to imple-
ment. They produce approximated surfaces, so
that error smoothing is carried out automatically.
Hoppe et al. [7, 6] and Curless and Levoy [2] have
achieved good results. The method of Hoppe et
al. is able to detect and model sharp object fea-
tures. It generates thinned, CAD-incompatible
meshes of curved triangles, which approximate
the original point cloud with high accuracy. Un-
fortunately the computational costs allow only
a few 10000 points to be processed, even on
fast work stations. The approach of Curless and
Levoy is able to handle millions of data points.
In contrast with the previous methods, it can-
not process unstructured point clouds. It requires
topological information provided by the matrix-
like structure of range images. The results are
nearly the same as for Hoppe et al., but sharp fea-
tures are not modeled exactly. As neither curved
triangles nor mesh thinning techniques are used,

dense meshes containing a huge amount of small
triangles are usually produced.

A new approach uses a special kind of de-
formable polyhedral mesh, the simplex mesh [3].
A coarse initial mesh is “shrunk” upon the point
cloud, until the desired compromise of smooth-
ness and accuracy is achieved. This method re-
quires user interactions, in particular when sur-
faces with holes or objects with non-zero genus
are to be modeled.

The usage of topology information provided
by the range images enables faster algorithms
and more accurate results. For that reason,
researchers have proposed several methods for
merging multiple range images into a single trian-
gular mesh. The mesh zippering method of Turk
and Levoy [14] generates dense meshes of flat tri-
angles, whereas our approach produces meshes
of flat or curved (but CAD-incompatible) trian-
gles with curvature dependent density. Merging
methods usually work incrementally. Further-
more, pure topology reconstruction without any
interference of the data points is possible. On
the other hand, special efforts for error smooth-
ing are necessary. Our method includes an effec-
tive smoothing filter. In contrast to other sur-
face reconstruction methods it is able to smooth
single images without significant loss of details.
All the other methods require redundant infor-
mation. High quality smoothing is possible only
in overlapping areas of different images.

Filters for smoothing polyhedral meshes with-
out usage of redundant information are still in the
state of intense research. Lounsbery [11] uses a
generalization of a multiresolution analysis based
on wavelets for this purpose. Unfortunately this
approach works solely on triangular meshes with
subdivision connectivity.? A filter that works on
general meshes was proposed by Taubin [13]. He
has generalized the discreet Fourier transforma-
tion, in order to realize low pass filters. How-
ever, translation of concepts of linear signal the-
ory is not the optimal choice. Surfaces of three-
dimensional objects usually consist of segments
with low bandwidth and transients with high fre-
quency between them. They have no “reason-
able” shape, as it is preconditioned for linear fil-
ters. “Optimal” filters like Wiener or matched
filters usually minimize the RMS-error. Oscilla-

2All vertices (with singular exceptions) have the same
number of neighbors.



tions of the signal are allowed, if they are small.
For visualization or milling of surfaces curvature
variations are much more disturbing than small
deviation from the ideal shape. A smoothing fil-
ter for geometric data should therefore minimize
curvature variations and try to reinduce an error,
that is smaller than the original distortion of the
data. These are the requirements we considered,
when we designed our new smoothing method.

Beyond that, for “real” reverse engineering
the reconstruction of tensor product surfaces like
NURBS? is necessary. Stoddart et al. [12] and
Eck and Hoppe [4] have proposed solutions that
work fully automatically. Unfortunately, such
methods cannot model highly structured sur-
faces. The semi-automatic method of Krish-
namurthy and Levoy [9] uses distance maps to
overcome this limitation. It requires triangular
meshes as input data. Therefore polyhedral sur-
face reconstruction is needed for data preprocess-
ing.

3 Overview

The new method requires “calibrated” range im-
ages as input data. These consist of a matrix of
coordinate triples (z,y,2);;. They are arranged
in the same manner as the original chip matrix
(i,7). The sensor may be placed in arbitrary po-
sitions, the object surface may be sampled incom-
pletely, and The sampling density may vary, but
should be as high as possible. Beyond that, the
object may have arbitrary shape, and the field
of view may contain several objects. The images
must be registered, which means that the differ-
ent views must be adjusted to each other by a
matching process. The following processing steps
are used to turn this data into a single mesh of
curved or flat triangles:

1. Mesh Generation: Because of the matrix-
like structure of the range images, it is trivial
to turn them into triangular meshes with the
data points as vertices. For each vertex the
surface normals are calculated from the nor-
mals of the surrounding triangles. If neces-
sary, the normals are smoothed by weighted
averaging. They are mainly used for interpo-
lation of curved triangles and for curvature
computation.
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Figure 2: Thinned mesh of a bust with curva-
ture dependent density. The permitted approx-
imation error in highly curved areas (shoulders,
forehead, cheeks, etc.) is less than in areas with
low curvature.

2. First Smoothing: In order to utilize as
much of the sampled information as possi-
ble, the smoothing of measuring errors like
noise and aliasing is done before mesh thin-
ning.

3. First Mesh Thinning: Ideally the com-
plete data should be preserved for the fol-
lowing steps. Mesh thinning should be done
until the end of the processing chain, but
merging of dense meshes usually requires too
much memory, so that mesh reduction must
be carried out in advance. Therefore the
permitted approximation error should be as
small as possible. Figure 2 shows a thinned
mesh with curvature dependent density.

4. Merging: The meshes from different views
are merged by pairs using local mesh op-
erations like wvertez insertion, gap bridging
and surface growth (see Fig. 3). Usually one
starts with a master image, which includes as
much object surface as possible. The other
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Figure 3: Merging of two meshes using vertex
insertion, gap bridging and surface growth opera-
tions.

images are merged into the master succes-
sively. Only those new vertices are inserted,
whose absence would cause an approxima-
tion error bigger than a given threshold.

5. Final Mesh Thinning: The mesh thinning
is continued, until the given approximation
error is reached.

6. Geometrical Mesh Optimization: The
mesh thinning usually causes awkward dis-
tributions of the remaining vertices, so that
elongated triangles occur. Geometrical mesh
optimization moves the vertices along the
curved surface, in order to produce a better
balanced triangulation.

7. Topological Mesh Optimization: At last
the surface triangulation is reorganized using
edge swap operations (see Fig. 4), in order
to optimize certain criteria. Usually, the in-
terpolation error is minimized. If the results
are to be translated into a mesh of Bézier tri-
angles, a criterion is used, that avoids elon-
gated triangles. Otherwise the computation
of the Bézier points may become unstable.

The result of this process is a mesh of curved

triangles. Our new modeling method is able to
interpolate curved surfaces solely from the vertex

Figure 4: Topological optimization of the mesh
from Fig. 3 using edge swap operations. Trian-
gles, that are as equilateral as possible were as-
pired (2D Delaunay triangulation).

coordinates and the assigned normal coordinates.
This enables a compact description of the mesh,
as modern data exchange formats like Wavefront
OBJ and VRML* support this data structure.
Unfortunately all known external software uti-
lizes vertex normals only for visual smoothing via
Gouraud or Phong shading, not for geometrical
interpolation.

4 Modeling of Scattered Data

Most of the errors that are caused by the measur-
ing process (noise, aliasing, outliers, etc.) can be
filtered at the level of raw sensor data. The the-
ory of digital signal processing shows how to treat
such grid data, therefore it is possible to derive
filters which are good, or even optimal for certain
purposes. A special class of errors (calibration
and matching errors) first appear after merging
of the different views. As the data are no longer
represented on a grid, conventional filters for dig-
ital signal processing do not work. Unfortunately
no basic theory exists for handling scattered data,
hence smoothing is usually done by surface ap-
proximation. This approach requires time con-
suming user interaction, otherwise it would pro-
duce poor results because of smoothed object fea-
tures like edges. We introduce a new approach
based on the basic local characteristic of the sam-
pled surface which is viewpoint independent: the
curvature.

In zero order approximation it is assumed, that
the sampling density is high enough to neglect
the variations of surface curvature between adja-
cent sample points. If this is true, the underlying

*Virtual Reality Modeling Language



Figure 5: Cross section S;; through a constantly
curved surface.

surface can be approximated by a mesh of circu-
lar arcs. This simplified model provides a basis
for all computations that our reverse engineer-
ing method requires: e.g. normal and curvature
estimation, interpolation of curved surfaces, or
smoothing of polyhedral surfaces.

As an example we show how easy curvature es-
timation can be, when using this model. Figure
5 shows a cross section S;; through a constantly
curved object surface between two adjacent ver-
tices V; and Vj. The curvature ¢;; of the curve
Sij is (cij > 0 for concave and ¢;; < 0 for convex
surfaces)

—

Cij =Ft-— = + Y + arccos(f; - i), (1)
r ij

which can be easily computed if the surface nor-
mals 1; and 1; are known. The principal curva-
tures x1(4) and ko (i) of V; are the extreme values

of ¢;j with regard to all its neighbors V;:
k1(i) = mjin(cij) and  ko(i) = mjax(cij). (2)
The surface normals are computed separately,
hence it is possible to eliminate noise by smooth-
ing the normals without any interference of the
data points. Therefore this method is much less
sensitive to noise then the usual method for cur-
vature estimation from sampled data which is
based on differential geometry [1]. It can be
shown that approximation of a mesh of circular
arcs requires a sampling density which is at least
four times higher than the smallest object details
to be modeled. This means that the minimum
sampling rate must be twice as high as the theo-
retical minimum given by the Nyquist frequency.
Therefore further investigations are necessary to

extend the new modeling method to higher orders
of curvature variations, in order to get closer to
the theoretical limit.

5 Smoothing Polyhedral Sur-

faces

We now demonstrate how this new approach can
be used for smoothing of measuring errors with
minimum interference of real object features like
edges. If curvature variations of the sampled sur-
face are actually negligible, but the measured
data vary from the approximation of circular
arcs, this must be caused by measuring errors.
Therefore it is possible to smooth these errors by
minimizing the variations.

For this purpose a measure ¢ is defined to quan-
tify the variation of a vertex from the approxima-
tion model. Figure 6 shows a constellation similar
to Fig. 5. Now the vertex V; is falsely measured
at a wrong position. The correct position would
be V'; if V; and the surface normals 1i; and 1,
match the simplified model perfectly (There ex-
ist different ideal positions V';; for every neighbor
V;). The deviation of V; with regard to V;, given
by
cos(Bij — %)

ry (3)

cos( =t

can be eliminated by translating V; into V’;;. The
sum over all J;; defines a cost function for global
minimization of the variations from the approx-

Figure 6: Cross section S;; through a constantly
curved surface. The position of vertex V; is not
measured correctly.



imation model over the whole surface. Minimiz-
ing that cost function leads to a mesh with min-
imum curvature variations for fixed vertex nor-
mals. This procedure can be used for surface
smoothing if the surface normals describe the
sampled surfaces more accurately than the data
points. In case of calibration and matching er-
rors the previous assumption is realistic. This
class of errors usually causes local displacements
of the overlapping parts of the surfaces from dif-
ferent views, while any torsions are locally negli-
gible. Oscillating distortion of the merged surface
with nearly parallel normal vectors at the sample
points are the result. Figures 7 and 8 demon-
strate that such errors can be smoothed without
seriously affecting any object details.

In case of noise or aliasing errors (Moiré) the
surface normals are also distorted, but can simply
be smoothed by weighted averaging. So filtering
is done by first smoothing the normals and then
using the described surface filter to adapt the po-
sitions of the data points to these defaults (see
Fig. 9).

6 Interpolation of Curved Sur-
faces

Interpolation of curved surfaces (e.g. curved tri-
angles) can simply be done by interpolation be-
tween circular arcs. For that purpose, a new sur-
face normal for the new vertex is computed by
linear interpolation between all surrounding nor-
mals. The angles between the new normal and
the surrounding ones define the radii of the arcs
as it is shown in Fig. 5. Our method uses this
simple interpolation scheme mainly for geometri-
cal mesh optimization.

7 Experiments

In our experiments it turned out that the prac-
ticability of any surface reconstruction method
depends strongly on the efficiency of its smooth-
ing algorithms. Our method works best in case
of registration and calibration errors. Figure 7
and 8 demonstrate that such errors in fact can
be smoothed without seriously affecting any ob-
ject details. The mesh on the left side of Fig. 7
was reconstructed from 7 badly matched range
images. The mean registration error is 0.14 mm,

Figure 7: Distorted mesh of a human tooth, re-
constructed from 7 badly matched range images
(left), and the result of smoothing (right).

Figure 8: Smoothing of a mesh containing cal-
ibration errors (left: mesh after merging of 12
range images; right: result of smoothing).

the maximum is 1.5 mm (19 times the sampling
distance of 0.08 mm!). The mean displacement of
a single vertex by smoothing was 0.06 mm, the
maximum was 0.8 mm. The displacement of the
barycenter was 0.002 mm. This indicates, that
the smoothed surface is placed perfectly in the
center of the difference volume between all range
images.

In Fig. 8 the meshes from the front and back-
side of a ceramic bust do not fit because of cal-
ibration errors (left). The mean deviation is 0.5
mm, the maximum is 4.2 mm (the size of the



Figure 9: Noisy range image of the ceramic bust
(left), smoothed by a 7 x 7 median filter (center),
and by the new filter (right).

bounding box is 11 x 22 x 8 cm?). The mean dis-
placement by smoothing was 0.05 mm, the maxi-
mum was 1.3 mm (right). In this example the dif-
ferent meshes were not really merged, but solely
connected at the borders, so that a displacement,
that was obviously smaller than the half of the
distance between the meshes was sufficient.

Figure 9 demonstrates smoothing of measur-
ing errors of a single range image in comparison
to a conventional median filter (The simplest and
most popular type of edge preserving filters). Al-
though the errors (variations of the smoothed sur-
face from the original data) of the median filter
are slightly larger in this example, the new fil-
ter shows much more noise reduction. Beyond
that, the median filter produces new distortions
at the borders of the surface. The new filter re-
duces the noise by a factor of 0.07, whereas the
median filter actually increases the noise because
of the produced artifacts. The only disadvantage
of our filter is a nearly invisible softening of small
details.

It turned out that the errors introduced by the
new filter are always less than the errors of the
original data. In particular no global shrinkage,
expansion or displacement takes place, a fact that
is not self-evident when using real 3D-filters.

We have tested our method by digitization of
many different objects, technical and natural as
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Figure 10: The triangular mesh of the helmet of
Fig. 1.

Figure 11: The helmet that was produced from
the CAD-data.

well. As an example we show the results for a de-
sign model of a firefighters helmet (Fig. 1, 10 and
11). The reconstructed CAD-data were used to
produce the helmet. For that purpose, the trian-
gular mesh was translated into a mesh of Bézier
triangles,® so that small irregularities on the bor-
der could be cleaned manually. Eight range im-
ages containing 900 000 data points (11.6 MByte)
were used for surface reconstruction. The stan-
dard deviation of the sensor noise is 0.03 mm
(10% of the sampling distance), the mean reg-
istration error is 0.2 mm. On a machine with
a Intel P90 processor and 64 MByte RAM, the

5This was done by software from the Computer Graph-
ics Group.



surface reconstruction took 49 minutes. The re-
sulting surface consists of 33000 triangles (800
kByte) and has a mean deviation of 0.07 mm from
the original (unfiltered) range data.

8 Conclusions

In our experiments the errors, that were rein-
duced by the modeling process, were smaller
than the errors in the original data (measuring,
calibration and registration errors). The new
smoothing method is specifically adapted to the
requirements of geometric data, as it minimizes
curvature variations. Undesirable surface undu-
lations are avoided. Surfaces of high quality for
visualization, NC milling and “real” reverse en-
gineering are reconstructed automatically. The
method is well suited for metrology purposes,
where high accuracy is desired. The complexity
is limited by the merging algorithm, which needs
at most O(ny/n) operations. For virtual reality
faster methods may be more suitable.

The main disadvantage of our method is its re-
quirement for matrix-like range images as input
data. It does not work with unstructured point
clouds, which are produced by some 3D-sensors
(e.g. point sensors). Beyond that, watertight sur-
faces, which are required for stereolithography,
are not produced automatically, as missing data
is usually not reconstructed (if desired, holes may
be closed by big triangles).
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