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Abstract

Ray-based representations of shape have received little
attention in computer vision. In this paper we show that
the problem of recovering shape from silhouettes becomes
considerably simplified if it is formulated as a reconstruc-
tion problem in the space of oriented rays that intersect the
object. The method can be used with both calibrated and
uncalibrated cameras, does not rely on point correspon-
dences to compute shape, and does not impose restrictions
on object topology or smoothness.

1. Introduction

There has been considerable interest recently in repre-
senting 3D objects in terms of the rays of light leaving their
surface (e.g., the light field [9]). One common feature of
these ray-based representations is that they contain sufficient
information to synthesize arbitrary views of an object, yet
they can be built from multiple images without computing
point correspondences or 3D shape. Little is known, how-
ever, about what implicit 3D shape information is captured
by these representations, and about whether it is possible to
convert this information into an explicit 3D model.

This paper addresses these questions in the context of re-
covering shape from a dense sequence of silhouette images
of an unknown curved object. We show that the problem
of recovering shape from silhouettes becomes considerably
simplified if it is formulated as a reconstruction problem
in the space of oriented rays that intersect the object. In
particular, we show that by rotating an object about a sin-
gle axis, we can compute the shape of planar slices of the
object by (1) computing convex hulls on the oriented projec-
tive ray space T 2, and (2) computing planar arrangements
of lines. The only requirements are that (1) at least three
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points rigidly attached to the object can be tracked across
frames, (2) the object’s projection can be separated from the
background, and (3) the rotation of the object has a specific
relationship with the camera geometry. The method can be
used with both calibrated and uncalibrated cameras, does not
rely on point correspondences to compute shape, and does
not impose restrictions on object topology or smoothness.

Very little attention has been paid in the computer vision
literature to ray-based representations of shape. These rep-
resentations have been studied exclusively in the context of
the Hough transform [6, 15] and have been traditionally used
for detecting shapes in images. Our purpose is to show that
these representations become a powerful tool for recovering
3D shape because they describe objects in terms of quanti-
ties (optical rays) that can be extracted directly even from a
single image. Our work combines elements from previous
work on non-metric scene reconstruction [10], silhouette-
based shape recovery [4] and epipolar plane image analysis
[1], and motivates the use of oriented projective geometry
[8, 12] and convex duality theory [3, 12] for studying shape
recovery in ray space.

Our approach is based on the observation that a planar
slice of a 3D object can be represented implicitly by the light
field boundary, which is the manifold of rays that “graze” the
slice. This implicit representation can be converted into an
explicit shape description by computing the envelope of the
light field boundary, and samples of the light field boundary
can be readily obtained from the optical rays through the
silhouette.

The crucial issue that one must address is how to recon-
struct the light field boundary from a collection of samples.
The key contribution of this paper is to show that by rep-
resenting rays on the oriented projective sphere T 2 and by
exploiting results from convex duality theory, we can recon-
struct the light field boundary from a large set of images
and samples by manipulating entire sets of rays rather than
individual (and possibly noisy) ray samples. We provide
a detailed geometrical analysis of the problem and present
experimental results that involve recovering shape from a
few thousand silhouette images.



2. Shape from Silhouettes

Our approach attempts to overcome a number of difficul-
ties encountered in previous silhouette-based shape recov-
ery methods. These methods fall in roughly two categories,
surface-based and volumetric. Surface-based methods com-
pute local surface shape (e.g., curvature) by establishing
correspondences between curves on the silhouette across a
small number of frames and by computing the envelope of
optical rays through corresponding points [4]. While shape
can be recovered accurately under certain conditions [2, 16],
surface-based methods pose several difficulties:

� Tracking curves across frames: It is impossible to guaran-
tee the validity of inter-frame curve correspondences even for
simple shapes (Figure 1(a)). This inevitably leads to wrong
reconstructions.

� Detecting & handling degenerate cases: Shape computa-
tions are degenerate when the surface is flat or has creases.
Even though these cases are difficult to detect in practice,
accurate reconstruction relies on this ability [14, 17].

� Handling dense image sequences: Local shape cannot be
computed when optical rays through corresponding curves
are almost coincident. Reconstruction accuracy can therefore
degrade as the density of the image sequence increases.

� Using uncalibrated cameras: Surface-based methods have
so far been formulated within a Euclidean framework and
cannot be used when the camera is affinely- or projectively-
calibrated [10].

� Enforcing global shape constraints: Surface-based meth-
ods rely on local shape computations that cannot impose
global constraints such as convexity.

� Building global surface models: A post-processing step is
needed to merge or reconcile local shape estimates [16].

Volumetric methods, on the other hand, incrementally
refine a volumetric object representation by intersecting the
volumes bounded by optical rays through each silhouette
image [13]. Even though volumetric reconstruction does
not involve curve tracking and produces a global object
description, current methods require calibrated cameras and
raise two additional issues:

� Intersecting volumes accurately & efficiently: The diffi-
culty of computing volume intersections has forced analytic
methods to rely on few input images [11] and has motivated
the use of voxel-based representations of space that limit
reconstruction accuracy to the size of individual voxels [13].

� Recovering unexposed surface regions: Volumetric meth-
ods cannot recover the shape of regions that project to oc-
cluding contour curves [2] that are not part of the silhouette.

As in surface-based methods, we recover shape by com-
puting the envelope of families of rays (the light field bound-
ary). Rather than relying on successive images to determine
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Figure 1. (a) It is impossible to decide locally whether or
not the rays through silhouette points q1 and q2 touch the
same connected region. If q1; q2 are always matched, the
reconstructed shape may erroneously merge two or more
regions (right figure) [16]. (b) Geometry of the visual hull.
The visual hull’s boundary is indicated by a thick solid line.
Also shown are rays grazing the slice S. The visual hull in
general consists of segments of S and segments of rays that
are tangent to multiple points on S (rightmost figure).

these families, however, we map the set of rays defining the
entire silhouette sequence to a set of points in ray space,
and approximate the points in that set with curves whose
envelopes are non-degenerate and consistent with all the
image data. Here we show that this approach (1) leads
to a weaker tracking problem that can always be resolved,
(2) eliminates degeneracies that are hard to detect, (3) ex-
tracts accurate shape information from dense sequences that
contain several hundred images, (4) can be used with both
calibrated and uncalibrated cameras, (5) does not limit accu-
racy by requiring an a priori voxelization of 3D space, and
(6) produces a globally-consistent 3D shape. Furthermore,
even though this paper focuses on the problem of recovering
shape from silhouettes, the approach can be generalized to
recover unexposed surface regions from occluding contour
curves that do not belong to the silhouette.

3. Viewing Geometry

Suppose that viewpoint is constrained to move on a plane
� whose intersection with the object is a non-empty slice
S. We restrict our attention to the problem of computing
the shape of S from its one-dimensional image on �. This
image consists of a collection of connected segments of
object pixels and background pixels.

For every viewpoint, the optical rays defining the silhou-
ette bound an infinite region on � that contains the slice S.
The 2D visual hull of S is the intersection of these infinite
regions for all viewpoints outside S’s convex hull [7]. In



general, the visual hull is a collection of convex supersets of
the connected regions in S and represents the best approx-
imation to S that can be obtained from silhouette images
(Figure 1(b)). The visual hull of a slice does not change if
the slice’s connected regions are replaced by their convex
hulls. We assume for simplicity that S contains a collection
of convex connected regions, S1; : : : ; SN which give rise to
N distinct components in the visual hull.

Every component of the visual hull is the envelope [4] of
the family of rays that graze region Si and do not intersect
the interior of S. Our goal is to compute this family for
every connected component of the visual hull. We therefore
need a way to map pixels in the image to rays on �.

The mapping from pixels to rays depends on the camera
model and on whether or not the camera is calibrated or
uncalibrated. The specific choices do not affect our method.
Here we assume that the camera is orthographic and un-
calibrated [10], and determine the pixel-to-ray mapping by
tracking the projection of three points on �. Under these
assumptions, Proposition 1 defines the mapping from pixels
to rays in terms of image measurements:

Proposition 1 Let p1; p2; p3 be three non-collinear points defin-
ing an affine reference frame on �, and let q1; q2; q3; be their
projections. The ray through pixel q satisfies the equation

�
q1 � q0 q2 � q0 q0 � q

�
�
�
x y 1

�T
= 0; (1)

where [x y 1]T is a point along the ray.

Definition 1 (Pixel-to-Ray Mapping) Pixel q is mapped to the
vector of coefficients of Eq. (1).

Shape is recovered in our approach by computing the
envelope of a discrete set of rays. The envelope is an op-
erator that maps an ordered sequence of rays to the ordered
sequence of their pairwise intersection points. Given two
linearly-independent and consecutive rays �1; �2 in the se-
quence, the homogeneous coordinates of their intersection
are given by the vector product �1^�2. If �1; �2 are vectors
defined by the Pixel-to-Ray Mapping,�1^�2 gives the affine
coordinates of pwith respect to the affine frame of p1; p2; p3
[10]. We assume in the following that the projections of the
affine basis points p1; p2; p3 are known.

3.1. Oriented Projective Ray Representation

A key step in our shape recovery method is to map the
optical rays that define the silhouette at a given viewpoint to
points on the oriented projective sphere T 2 [12]. The result-
ing oriented projective ray representation plays a crucial role
in our approach because, unlike other line representations
commonly used in computer vision (e.g., the (r; �) repre-
sentation [15]), it guarantees that the light field boundary
is always a collection of finite, non-degenerate, and convex
curves in ray space. The representation is derived directly
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Figure 2. The oriented projective ray representation. (a)
Rays on �. Ray � separates � into a left half-plane (shaded)
and a right half-plane. (b) Rays on T

2. (c) Convexity on
T
2. (d) Top: Spatiotemporal image of a slice of the object

in Figure 4(a). Bottom: The warped spatiotemporal im-
age. Since the image is warped onto a sphere, only part of
it is visible. Note that the warped spatiotemporal trajecto-
ries of individual points are always great circles. The black
vertical bands across the warped image correspond to view-
points from which no images were taken. (e) The light field
boundary of a connected region. The warped spatiotempo-
ral image carves two empty areas on T

2. The upper area is
the convex dual of S (Section 5). (f) Top view of plane �.

from the Pixel-to-Ray Mapping and is general enough to
represent rays with respect to Euclidean, affine, and pro-
jective reference frames [10]. The main elements of the
representation are briefly described next.

The Pixel-to-Ray Mapping assigns a vector to every ray �
through the silhouette. This vector is a signed homogeneous
vector: vector k� is equivalent to � when k is a positive
constant, and � and �� are antipodal rays, i.e., rays of
opposite orientation. The space T 2 of signed homogeneous
vectors is an oriented projective space homeomorphic to the
unit sphere [12]. Every homogeneous vector can be mapped
uniquely onto the unit sphere via the mapping

�!
�

k�k
: (2)

Together with the Pixel-to-Ray Mapping, Eq. (2) allows us
to map pixels in the image to points on T 2 (Figure 2).

Since T 2 is an orientable manifold the notions of “orien-
tation” and “convexity” are well-defined. Convexity in T 2

extends the familiar notion of convexity inR3. In particular,
� is a convex set on T 2 if and only if the conical volume
defined by � and the origin of the unit sphere is convex in
R3 [12] (Figure 2(c)). We exploit this definition in Section
6 to compute the convex hull of rays on T 2.



4. The Light Field Boundary

The visual hull of a slice S is completely determined by
the set of rays that graze S. We call this set the light field
boundary, B(S), of S. Our goal is to compute the visual
hull by first recovering a representation of the light field
boundary from a collection of images. When mapped to the
oriented projective sphere, B(S) bounds the set of all rays
that intersect S. We exploit this property of B(S) to express
it in terms of the spatiotemporal image of a rotating object.

Suppose that the viewpoint’s motion is a rotation of at
least 2� radians about a point within the convex hull of S,
and let I(t) be the spatiotemporal image at viewpoint c(t).
The Pixel-to-Ray Mapping “warps” the spatiotemporal im-
age onto the oriented projective sphere by mapping every
pixel of I(t) to a ray on T 2 (Figure 2(d)). Since the view-
point’s motion guarantees that every ray that intersects S

contains c(t) for some t, the warped spatiotemporal image
is a representation for the set of all rays that intersect S. Its
boundary is equal to B(S) and is traced by the spatiotempo-
ral trajectory of the silhouette.

The topology of the light field boundary depends on the
connectivity of S. If S is connected, its warped spatiotem-
poral image is a strip and the light field boundary consists of
two curves (Figure 2(e),(f)). In this case, every image of S
contributes exactly two samples to its light field boundary,
each belonging to a distinct curve of the boundary. The two
curves of the light field boundary are distinguished by the
way their rays bound S :

Definition 2 The left light field boundary, BL(S), is the set of all
rays in B(S) that graze a region lying in their left half-plane. The
right light field boundary, BR(S), is the antipodal set of BL(S).

When S contains multiple connected regions Si; i =

1; : : : ; N , its warped spatiotemporal image is a superpo-
sition of the warped spatiotemporal images of the individual
regions (Figure 2(d)). As a result, the rays in BL(S) that
graze a regionSi and define the i-th component of the visual
hull are disconnected segments of BL(Si).

Our goal is to recover the shape of every component of
the visual hull by reconstructing the curve that defines its left
light field boundary,BL(Si); i = 1; : : : ; N . We achieve this
by rotating the object by at least 2� radians on �, mapping
the pixels on the silhouette to rays on T 2, and performing
three operations on the resulting set of rays:

� Ray grouping: Compute the number of regions in the slice
and group together all rays of BL(Si) (Section 7).

� Light field boundary reconstruction: Approximate
B
L(Si) by a closed polygonal curve (Sections 5 and 6).

� Visual hull reconstruction: Recover the shape of the i-th
component of the visual hull by computing the envelope of
the polygonal curves that approximate BL(Si).

Light field boundary reconstruction is the basic step of our
approach. Ray grouping reduces the problem of computing
the visual hull of a slice that contains N regions to the
case where S is a single connected region. Visual hull
reconstruction amounts to intersecting adjacent rays in the
polygonal curve that approximates BL(Si).

5. Shape from the Convex Dual

The basic step of our approach is to compute a polygonal
curve that approximates the left light field boundary of a
connected slice S. We use results from the theory of convex
duals to perform this step using a simple convex hull oper-
ation on T 2. See [12] for an introduction to convex duality
and [3] for applications in computational geometry.

The theory of convex duals studies convex sets in Rn

and T n. The basic tenet of the theory is to provide an
alternate representation for a convex set, called the convex
dual, in which the set is described in terms of the hyperplanes
that bound it. The theory becomes an important tool for
studying the left light field boundary because the left light
field boundary is also the boundary of the convex dual.
The results of the theory that serve as our starting point
are summarized in the following two theorems. Theorem 1
shows that the convex duality mapping from sets of points
to sets of rays preserves convexity, and Theorem 2 shows
that the intersection of a set of half-planes can be expressed
as a convex hull operation on T 2 [12]:

Definition 3 (Convex dual) LetS be a convex region on the plane.
The set of all rays whose left half-planes contain S is a set on T

2

and is called the convex dual, (S)�, of S.

Theorem 1 (S)� is a convex set on T
2.

Theorem 2 Let � be a finite or infinite subset of the convex dual
of a convex region S, and let S0 be the intersection of all left
half-planes of rays in �. The envelope of �’s convex hull is the
boundary of S0. Furthermore, S � S

0.

The immediate consequence of Theorem 1 is that the left
light field boundary of a connected slice is a convex curve
on T 2. This provides a formal explanation for the light
field’s structure in Figure 2(e). The convexity of the light
field boundary makes it particularly easy to approximate the
boundary from a collection of ray samples—we simply need
to compute the convex hull of those samples on the oriented
projective sphere. Moreover, Theorem 2 tells us that (1)
such an approximation is equivalent to approximating the
visual hull of a slice by intersecting the left half-planes
of all the available ray samples, and (2) as the number of
available samples increases, the approximation converges
monotonically to the slice’s visual hull.

Theorems 1 and 2 emphasize the special significance of
the Oriented Projective Ray Representation for represent-
ing rays on the plane, since this representation preserves



convexity.1 We exploit these theorems in the next section to
reconstruct the left light field boundary of a connected slice.

6. Light Field Boundary Reconstruction

To apply Theorems 1 and 2 to the problem of recon-
structing the left light field boundary of a connected slice
we must answer two questions: (1) how to incorporate all
the available information about the shape of the slice into
the computation, and (2) how to compute the convex hull of
a set of rays on T 2?

Every image of S contributes two ray samples �L; �R

to its light field boundary, belonging to BL(S) and BR(S),
respectively. Since BL(S) and BR(S) are antipodal images
of each other, �L and ��R are both samples of BL(S).
We can therefore guarantee that all samples contribute to
S’s shape by separating the samples of the left and right
light field boundary into two sets �L;�R, respectively, and
computing the convex hull of the set � = �L [

�
��R

�
.

To compute the convex hull of � we exploit the rela-
tionship between �’s convex hull and the 3D convex hull
of �0 = � [ f(0; 0; 0)g. In particular, the convex hull of
�0 defines a conical polyhedron in R3 whose apex is at the
origin and whose intersection with T 2 is the convex hull of
�. Hence, the rays in � that define its convex hull are the
vertices of the conical polyhedron that share an edge with
the origin. These considerations lead to the following algo-
rithm for reconstructing the left light field boundary from a
collection of ray samples:

Light Field Boundary Reconstruction Algorithm

Step 1 Let �L
;�R be the ray samples of the left and right light

field boundary, respectively.

Step 2 Compute the conical polyhedron that defines the 3D convex
hull of �L [

�
��R

�
[ f(0; 0; 0)g.

Step 3 Let v0 be the polyhedron vertex that corresponds to the
origin, and let v1; : : : ; vn be all vertices that are adjacent to
v0 in the polyhedron’s adjacency graph.

Step 4 Return the vertices v1; : : : ; vn linked into a closed chain
according to the polyhedron’s adjacency graph.

The above algorithm fails when the convex hull polyhe-
dron is not conical, i.e., it does not have a vertex at the origin.
This happens only if (1) the rays in � span a region greater
than a hemisphere on T 2, or (2) all rays in � lie along a
great circle. A fundamental property of convex sets on T 2

is that they cannot span a region greater than a hemisphere.
Since � is a convex set, the algorithm will never fail due
to this condition. The second condition corresponds to the

1Wright et al [15] recently suggested a convex hull algorithm based
on the Hough transform. Unfortunately, the non-linearity of the (r; �)
line representation used in their approach obscures the global structure of
the Hough space. This results in sub-optimal convex hull algorithms and
methods that rely on explicit discretization of the space.
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Figure 3. Rays ��a ; �
�

d are separating bitangents. The seg-
ment � of background pixels shrinks to a point and disap-
pears for viewpoints along the two separating bitangents.
Rays ��a and �

�

d define an unbounded area E� on the plane
that contains no object regions (shaded area).

degenerate case of a slice consisting of a single point on the
plane. We detect this condition by checking whether the
matrix that holds the coordinates of all rays in � is rank-
deficient (Section 8). If the matrix is rank-deficient, the slice
is defined by the singleton f(x; y; z)g, where f(x; y; z)g is
the direction of the normal of �’s great circle. To compute
the 3D convex hull in all other cases we use qhull, a package
developed at the University of Minnesota Geometry Center.

7. Ray Grouping

The Light Field Boundary Reconstruction Algorithm as-
sumes that all samples ofBL(S) belong to the left light field
boundary of a single connected region. This assumption
is violated when S contains multiple regions S1; : : : ; SN .
It is therefore necessary to organize the ray samples of
BL(S) into N convex groups, each defining the left light
field boundary of a single region.

To organize ray samples into groups we need to determine
the number of regions in S. Below we show that we can
compute N and perform the actual grouping operation by
partitioning� into cells defined by the slice’s separating bi-
tangents. The separating bitangents are the rays that belong
to BL(S) and contact the object at two distinct regions, with
the regions of contact lying on opposite half-planes (Figure
3). These rays mark the appearance and disappearance of
segments of background pixels in the image sequence.

7.1. Region counting

The separating bitangents partition plane � into a finite
collection of potentially-unbounded cells. To determine the
number of regions in the slice we observe that this partition-
ing is maximal—no cell may contain more than one region
and no region may span more than one cell. Hence, we
need to find the cells that contain a region of the slice. We
achieve this by pairing the separating bitangents in a way
that determines the occupancy of all cells in the partitioning.

Suppose that a segment � of background pixels first ap-



pears and then disappears during the object’s rotation. The
separating bitangents ��;a �

�
d that mark the appearance and

disappearance of �, respectively, separate the plane into two
parts, one of which, E�, is always empty (Figure 3). The-
orem 3 shows that E� contains all the information we need
to determine the occupancy of a cell C in the partitioning:

Theorem 3 Suppose that the object is rotated by an angle of at
least 2� radians and let �1; : : : ; �n be the segments of background
pixels that appear and disappear during the object’s rotation. Cell
C is empty if and only if it is contained in the union

S
k�n

E
�k .

The theorem suggests that we can determine the number
of object regions by simply rotating the object and tracking
segments of background pixels through the image sequence.
A rotation of at least 2� radians is required to detect all sepa-
rating bitangents. These considerations lead to the following
algorithm for counting the regions in a slice:

Region Counting Algorithm
Step 1 (Tracking) For every image i,

a. find all segments of background pixels,

b. for every background segment �, find its corresponding
segment in images i � 1 and i + 1; if no matching
segment is found in image i� 1, � appeared in image
i; if no matching segment is found in image i + 1, �
disappeared in image i+ 1

c. if � appeared in i, define �a to be the ray through the
midpoint of �

d. if � disappeared in i+ 1, define �d to be the ray through
the midpoint of �; compute the empty area E defined
by pair (�a; �d) and add it to the list of empty areas

Step 2 (Partitioning) Compute the partitioning of � induced by
the separating bitangents.

Step 3 (Counting) SetN = 0. For every cellC in the partitioning,

a. compute a point p in the interior of C,

b. if p 2 E for an empty area E in the list, C is empty;
otherwise, set N = N +1 and mark the cell occupied.

We establish segment correspondences in Step 1 by
searching for overlapping background segments in consecu-
tive images and by using sufficiently dense sequences. Step
2 is performed by computing the arrangement of N lines on
the plane [3] using an implementation due to Goldwasser
[5]. The complexity of this computation is O(N 2).

7.2. Group assignment

Every object region Si separates the samples of BL(S)
into two categories, those that belong to the convex hull
of BL(Si) and those that do not. Since the Light Field
Boundary Reconstruction Algorithm is based on a convex
hull computation, we must ensure that the algorithm is ap-
plied only to the samples of BL(S) that belong to BL(Si)’s
convex hull. Theorem 4 shows that this detection problem

is easy to solve given the plane partitioning computed by the
Region Counting Algorithm:

Theorem 4 Suppose Si is contained in cell C of the partitioning.
Ray � 2 B

L(S) intersects C if and only if � belongs to the convex
hull of BL(Si).

Theorem 4 tells us that we can use the occupied cells
in the partitioning to “filter-out” all rays of BL(S) that ad-
versely affect the computation of the light field boundary of
individual regions. Specifically, given a regionSi contained
in cell Ci in the partitioning, it suffices to assign to Si’s
group all rays that intersect Ci.

8. Experimental Results

To demonstrate the effectiveness of our shape recovery
approach we have performed preliminary experiments with
real data. The experimental setup is shown in Figure 4(a).
In a typical run, we acquire over 2000 images during a
single object rotation (approximately two minutes of video).
Due to the amount of data involved, we process only a
small number of rows (slices) of the entire image. For
each frame, we track three affine basis points on a plane
parallel to the plane of the slice, and separate the object from
the background using a simple blue screen technique. The
output of this stage consists of trajectories of the basis points
and a spatiotemporal bitmap image indicating the object
regions in each frame. The only tunable parameters in the
entire system are those controlling background subtraction.

Results from an example run of the system are shown
in Figures 4(b)-(g). Processing time was approximately 20
seconds on an SGI R4400 workstation. The example was
chosen to illustrate several points. First, the object slice
contains four connected regions and therefore ray group-
ing is necessary. Second, the three thin regions in the slice
correspond to the case where the Light Field Boundary Re-
construction Algorithm is degenerate, i.e., when regions de-
generate to a single point on the plane. Third, we made no
effort to ensure regularity in the spacing between the 2040
images acquired, and in many instances, variations in the sil-
houette position due to noise were greater than the motion
of the silhouette across frames.

Figure 4(b) shows the ray samples plotted on the ori-
ented projective sphere and Figures 4(d),(e) show results of
the final reconstruction. Reconstruction accuracy can be
evaluated in terms of reprojection errors, i.e., the distance
between the silhouette predicted by the reconstructed region
and the silhouette in the spatiotemporal image (Figure 4(f)).
The average reprojection error across the entire sequence is
2.5 pixels. The large spikes correspond to viewpoints where
the silhouette of the duck region merges with one of the sil-
houettes of the thin regions. When all differences between
actual and predicted silhouettes above 5 pixels are removed,
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Figure 4. (a) Experimental setup. The object’s rotation plane is aligned with the image rows. The spatiotemporal image of the rotating
slice was shown in Figure 2(d). (b) The samples of BL(S). A total of 11395 sample rays were acquired. (c) The line arrangement
computed by the Region Counting Algorithm, projected onto a hemisphere. Sixteen bitangents were detected, partitioning the plane
into 133 cells. Eleven of these cells were classified as object regions. (d),(e) Reconstruction of the “duck” region. The polygon
defining the region has 64 vertices. (f) Reprojection errors. (g) Condition numbers of all ray groups. Group 4 corresponds to the
“duck” region. The remaining groups can be identified as degenerate from their condition number.

the mean pixel error drops to 1:46 pixels and the variance to
1:05 pixels. These errors are comparable to the noise in the
background subtraction process. Note that no smoothing
was performed on the input or the reconstructed data.

One observation of particular significance is that repro-
jection errors are low even though a very small fraction of
the available ray samples contributed to the region’s shape
(64 out of 3470). We do not have explicit control over the
number of points that will be reconstructed on a region’s
boundary—this is effectively determined by the data. This
suggests that a great deal of information about a region’s
shape is ignored by the convex hull computation, and that
even better accuracies should be attainable from the shape
information in the remaining ray samples. This topic is
currently under investigation.

9. Concluding Remarks

The main limitations of our approach are that (1) simulta-
neous reconstruction of multiple 2D slices can be performed
only under orthographic projection, and (2) the optical axis
of the camera must lie in the motion plane. We are cur-
rently investigating how the approach can be extended to
unrestricted camera geometries by considering the recon-
struction of closed curves on the object’s surface that are not
necessarily planar.
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