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Abstract In our approach, raw range data points which lie on the

. . . surface of the tracked object are matched to the underlying
This paper describes a system which can perform full 3-Dopject surface model using an iterative least squares tech-
pose estimation of a single arbitrarily shaped, rigid object nique (the ICP algorithm). This approach eliminates the
at rates up to 10Hz. A triangular mesh model of the objectneed to perform any feature extraction, or to specify feature
to be tracked is generated offline using conventional rangecorrespondence.
sensors. Real-time range data of the object is sensed by the 145 our knowledge, no previous approaches have suc-
CMU high speed VLSI range sensor. Pose estimation is perceeded in combining both high speed acquisition of 3-D
formed by registering the real-time range data to the trian- data with high speed 3-D pose computation. Several re-
gular mesh model using an enhanced implementation of theearchers have utilized range data in the 3-D pose estimation
Iterative Closest Point (ICP) Algorithm introduced by Bes| problem [8][13]. Yamamoto [13] discusses a system for es-
and McKay. The method does not require explicit feature extimating the shape and pose of deformable objects using a
traction or specification of correspondence. Pose estimationvideo rate range camera, but the required computations are
accuracies on the order of 1% of the object size in transla-"°t Performed at high speed.

tion, and 1 degree in rotation have been measured. The remainder of this paper is organized as follows.
Section 2 describes the Iterative Closest Point algorithm and
1 Introduction enhancements which allow it to be used for real-time pose

o o estimation. Section 3 outlines the algorithm for real-time
_ The problem of determining the 3-D pose of a rigid ob- pose estimation. Section 4 describes the experimental setup
ject at high speed has been approached by a number of rersed to demonstrate the approach. Section 5 contains exper-

searchers [10][12]. However, there are few systems capabl@gnental results, and Section 6 contains the conclusion.
of full 3-D pose estimation of arbitrarily shaped objects in

real-time. There are three reasons why this goal has beed Registration

difficult to attain. First, the 2-D data provided by conven- ¢ registration algorithm used in this system is strongly
tional video cameras lacks the sensitivity requirecému- motivated by the work of Besl and McKay [2]. Their paper
describes a general purpose method for the registration of
Second, many approaches to 3-D pose estimation requirgiq'3.p shapes which they refer to as the Iterative Closest
two operations which are difficult to perform: feature ex- pgint aigorithm. Zhang [14] has independently developed a
traction and correspondence specification. Third, in order gjnjjar algorithm which is better at handling outliers and oc-
perform 3-D pose estimation in real-time, each step in thegsjons in the data. Since these were not a major concern in
underlying algorithm must be computationally efficient. o, \ork, the formulation presented below parallels that of
Direct use of 3-D data simplifies the pose estimation Besl and McKay.

roblem by providing shape structure which would other- .
\l?vise needyth)) be infegrred ﬁom 2-D data. As noted in [12], 2-1 The ICP algorithm
while 2-D data is useful for estimating object motion in  Suppose that we have two independently derived sets of
planes normal to a camera’s optical axis, it is less sensitive3-D points which correspond to a single shape. We will call
to motions which deviate from these planes. Direct use ofone of these sets teodelsetM, and the other theataset
3-D data should provide more precise object pose estimates). Assume that for each point in the data set, the corre-
especially for general 3-D motions. sponding point in the model set is known. The problem is to

Many previous approaches to 3-D pose estimation arelind @ 3-D transformation which when applied to the data set
feature based [8][10][12]. Such approaches, however, Suﬁe|1[_), minimizes a distance measure between the two point sets.
from some common difficulties. Typically, the steps in fea- he goal of this problem can be stated more formally as fol-
ture based pose estimation are: 1) extract features such aQws:
points or lines from the underlying data; 2) specify corre- ; _ 2
spondence between data and model features; 3) compute the ?;'? Z HMi (RD; + T)H @
pose estimate from the derived correspondence. Unfortu- _ o . _
nately, the extraction of reliable features from images ofwhereR is a 3x3 rotation matrix] is a 3x1 translation vec-
real-world objects is difficult. Even when such features cantor, and the subscriptrefers to corresponding elements of
be found, solution of the correspondence problem can béhe setsVl andD as shown in Figure 1. Efficient, non-itera-
complex and computationally expensive. tive solutions to this problem, both employing unit quater-



nions, were presented in two papers, one by Faugeras and While the ICP algorithm is only guaranteed to converge
Hebert [4] and the other by Horn [7]. to a local minima, there is no guarantee that this local mini-
ma will correspond to the actual global minima. How well
the algorithm performs is a function of the initial pose esti-
mate and the characteristics of the shape being registered.
Besl and McKay discuss in detail the problem of finding the
global minimum in situations where initial pose error is
large. We have found that the ICP algorithm converges to
the global minimum even with fairly large initial pose dis-
crepancies. For the purposes of the system described in this
paper, the initial pose discrepancies are usually small.

2.2 Speed enhancements to ICP

A basic implementation of the ICP algorithm lacks the
speed required to perform pose estimation in real-time. We
Figure 1: Corresponding Point Set Registration have implemented several enhancements: kd-trees, closest
point caching, efficient point to surface computation, and
The general 3-D shape registration problem that we ad-acceleration.
dress here, however, differs from the corresponding point,
set registration problem in two important regards. First, the2-2.1 Kd-trees

point correspondence which was assumed to be known in - The most computationally expensive step in the ICP al-

the above problem is unknown in the general case. SE_’CO”Eorithm is finding the closest point sets. In general, if there
general 3-D shapes to be registered are not necessarily re feNp points in the data set axig geometric entities (i.e.:
resented as point sets [2]. points, lines, triangles) in the model set, then the complexity

Suppose that we are again given two betndD corre- of the closest point computation@{ Np Ny,) . However, as
sponding to a single shape, wh&és a set of 3-D points  suggested in [2] and demonstrated in [14], this complexity
andM is a triangular faceted surface. Assume that the cor-can be reduced t@(NplogNy,) by the use of a k-dimen-
respondence between points in the two sets is initially un-sional binary tree, or simply kd-tree [1]. The use of kd-trees
known. As seen in Figure 2, for each pdyt ~ from the setfor closest point computation allows us at each node of a bi-
D, there exists at least one point on the surfadé which nary tree to decide which side of a hyperplane the closest
is closer toD; than all other pointshh This is theclosest ~ point will lie on. Thus, large regions of the search space can
point, M;. be pruned at each level in the search. We have implemented
a closest point algorithm based on the kd-tree [5]. The re-
sulting performance improvement is significant as will be
shown below in Table 1.

2.2.2 Closest point caching

A second small speed improvement was realized by
caching closest points. Points in the $¢tandD which are
proximal at timek, are highly likely to be proximal at time
k+1. Thus, rather than finding the single closest poiM in
for a given poinD;[K], we can finch closest points iVl and
cache these points together with the pd@ifjk]. Note that
there is little overhead involved in findingclosest points
Fi 5 Cl t Point Set Redistrati whenn is a small number like 5. On the next iteration, since

lgure 2. Llosest Foint set registration the pointD;[k+1] is likely to be close to the poibX[K], it is
o i , ) also likely that the closest point v to D;[k+1] will be one

The basic idea behind the ICP algorithm is that underof the points cached on the previous iteration. It is possible
certain conditions, the point correspondence provided byto determine conclusively whether the closest point is con-
sets of closest points is a reasonable approximation to theained in the cached set by performing a simple test. This
true point correspondence. Besl and McKay proved that iftest compares the magnitude of the previous incremental
the process of finding closest point sets and then solving (1jransformation to the distance between the closest cached
is repeated, the solution is guaranteed to convergtah point and thenth closest cached point (wherés the num-

minimum. The ICP algorithm can now be stated: ber of cached points). A variation on this test can also deter-
1. For each point iD, compute the closest pointhf mine whether the closest point at tiktel is thesameas the

; closest point at tim&. The overall result of caching is that
2. ¥]V(':tr|;i‘gﬂ?gﬂ?:ﬁ;g?ﬁ]g?%g?% ?:grg]l(,l;;ompute the  Closest points can often be found without requiring a full

' _ ' _ : search of the kd-tree. Rather, only the points in the cached
3. Apply the incremental transformation from step 2 set must be tested.

to the datd. A similar caching technique can be appliedspatially
4. Compute the change in total mean square error. If ~ (rather thartemporally adjacent points. If two data points
the change in error is less than a threshglter- Di[k] and Di+ 1[k] are prOX|maI, then it is I|ker that their

minate. Else goto step 1. corresponding closest poirl[k] andM;, 1[K] will also be



proximal. An analogous caching technique can be appliedsion, the size of the scale factor is governed by the
for this situation, however we have not yet implemented component (translation or rotation) which would cause the

caching for spatially adjacent points. solution to overshoot first. The other component could usu-
. i ally be accelerated further. By decoupling, translation and
2.2.3 Closessurfacepoint computation rotation are independently accelerated as much as possible

WhenM is a triangular faceted surface, computation of without overshoot.
the closest point requires an additional step. The output 0b 5 5 Enhancement results
the kd-tree based closest point algorithm will return the
closestvertex Y on the surface dfl, as shown in Figure 3. Four speed enhancements were described in this section:
GivenV,, the closest pointl; will lie within, or on the bor-  closest point computation via kd-trees, closest point cach-
der of, one of the triangles to which the vertex beldnigs.  ing, efficient computation of closest facet points, and decou-
order to findM;, D; is projected into the plane of each trian- pled acceleration. The results of applying each of these
gle, and the closest point betweBpand that triangle is  enhancements to a single registration problem are summa-
computed. This is repeated for all triangles contaiMpg  rized in Table 1. In this problerd was a point set contain-
and the overall closest point is selected. In order to performing 2432 points and/ was a triangular mesh containing
these computations quickly, on& is projected into the 4860 facets. The initial pose error was roughly 10 degrees
plane, all computations are performed in 2-D rather thanof rotation about each axis, and about 10% of object size in
3-D. Thus, during initialization each triangle must be savedeach translation. The ICP termination threshaldwas

in both its 2-D and 3-D representations. small?
M; Type Time  %T lter R-Acc T-Acc

Vi none 908.8 100.0 122 0 0
L4 D. a 261.2 28.7 35 11 11
: kd 62.2 6.8 122 0 0
kd/a 18.0 2.0 35 11 11
kd/a/d 13.1 1.4 25 13 7
Figure 3: Closest Facet Point Computation kd/a/dic  11.9 1.3 25 13 7
kd/a/d/c/2d 8.3 0.9 25 13 7

2.2.4 Acceleration Table 1: Enhancement Comparisons

A final speed improvement was realized using a modified
version of theacceleratedCP algorithm described in [2].
The accelerated ICP algorithm adds the following step to th
basic algorithm (after step 2):

In the table,Typeindicates the enhancements used: a -
coupled acceleration; kd - kd-tree search; d - decoupled ac-
€eleration; ¢ - closest point caching; 2d - 2d calculation of
closest facet point§imeis the total ICP execution time in

2b. If the incremental transformation®, (T) at times seconds%T is the percentage of execution time relative to
k-1, k-2, andk-3 arewell aligned extrapolate the the longest timdter is the number of ICP iteratiorR-Acc
current incremental transformation. andT-Accare the number of accelerations for rotation and

The well aligned condition above tests that the squtiontranSlatlon respectwely. ) ) )
has been moving in an approximately constant direction. = The speed improvements shown in Table 1 give an idea
Extrapolation is performed by scaling the current incremen-of the relative utility of each of the described enhancements.
tal transformation. The scale factor is a function of the mean! he actual relative utility is a function of the underlying da-
square error and the magnitude of the incremental transforta, the initial pose, and the termination threshold. Accelera-
mations at the previous three iterations. tion and kd-tree search are always the two most important
enhancements. The relative utility of kd-tree search increas-

Besl and McKay calculate a single acceleration scale fac¢ \yi e ey )
tor for both translation and rotation. We achieved better re-; 1 with the number of points in the data set. Caching is use

- . : ful when the termination threshold is small, since the
sults by decoupling the acceleration of translation and, mber of cache hits will be large during fine-tuning
rotation. There are two reasons for doing this. First, in Besl’s '
approach, the well aligned condition above is tested once fo3 The tracking algorithm
both rotation and translation. Thus, for example, if rotation . . . . .
was well aligned but translation was not, no acceleration_. AN outline of the tracking algorithm is shown in
would be performed. However, an acceleration on rotation//9ure 4. Each box in the diagram represents a processing
alone seems desirable in this situation. A second reason fapteP; @nd the processing sequence is indicated by the large-
decoupling is related to the scale factor used in extrapolall€@ded arrows. Inputs to a processing step are indicated by
tion. Besl and McKay used the same scale factor to extrapt€ quantities to the left of each box, while outputs are indi-
olate both rotation and translation components. This scalé@ted by the quantities to the right.
factor is designed to extrapolate the solution as much as pos- During initialization, a precomputed triangular mesh
sible in a single step without overshoot. In the coupled ver-model,M, is loaded into memory, and a kd-tree is built from

1. This is not strictly true, as there are pathological cases for 2. The magnitude af determines the amount of “fine-tuning”
which M; will lie in a totally different triangle. We have found performed by the ICP algorithm. Smaller values oésult in
that we can ignore such cases. pose estimates closer to the local minima.



ties of 20 degrees per second lead to incremental object pose
discrepancies of roughly 2cm and 4 degrees. Thus, since the

Load Precomputed Object ICP algorithm uses'Tp{k—1] as the starting point when
Model,M from disk; |y M k finding MTp[K] , the algorithm can perform the registration
Initialize Counterk = 1 in a small number of iterations, typically 3-10. Second, the
resolution of the range data used in the tracking loop, usual-
ly 16x16, is less than the full sensor resolution of 32x32.

The reduced number of data points in theD§&} results in

a faster calculation of the pose estimate.

During each data acquisition cycle, two simple prepro-
‘ cessing steps are performed on the range data. The first step

Acquire Sensor Datdq—» D[0]

eliminates noisy range data. For the CMU high speed range

M, DO] L — sensor, noisy data is associated with poor reflection of the
' E,_, Calculate Initial Pose | | My [0] projected light from the object. Thus, noisy range data can
MT[I usefl O Estimate via ICP D be eliminated by thresholding the reflected intensity values.
C Since each cell in the range sensor has circuitry for measur-
;4 ing intensity, this is a trivial operation. The second prepro-
cessing step determines which range data points lie on the

Acquire Sensor Dat DIK surface of the object to be tracked. Since our experiments
q > DI are performed in an uncluttered environment, range data on
‘ the object surface can be distinguished by thresholding the

Z component of the range data. While this simple operation
works well for our experiments, a more sophisticated ap-

L
M, DKL.O | calculate Incremental

M 1k proach would be required if the object were in a cluttered
MTJk— 1][D Pose Estimate via ICH>  1plKI environment.
O Using MTp[k—1] as the starting point for incremental
¢ pose estimation works well when object motion is erratic
and unpredictable. In some situations, however, object mo-

k=k+1 tion may be smooth, continuous and thus easier to predict.
For such motions, improved results are possible using an ex-
| trapolation scheme such as a Kalman filter. While we have

not implemented a Kalman filter for this purpose, we have

Figure 4: Tracking Algorithm implemented both first and second order extrapolation.

M. For our experimentsyl is constructed offline using a Since the extrapolated pose is often closer to the true pose

M B . .
technique based on deformable surfaces [3]. This techniqu ggﬂceLD[k_l] , the time required to compute the pose is
can fuse range data collected from multiple views into a sin- '
gle triangular mesh surface model. The range data used tg Experimental setup
createM is provided by several commercially available . . N
light-stripe range finders [11]. These sensors have been cal-. The experimental setup is shown in Figure 5. The CMU

ibrated so that all data points are expressed in a single)igh speed VLSI range sensor developed by Gruss, Tada
WOf'd_centered Coordinate frame_ and Kanade [6] consists Of two prlmary ComponentS: the

o . . . sensor head and the light stripe generator. The tracked ob-

To initialize the tracking algorithm, the transformation ject, in this case a small bust of the Greek goddess Venus, is
between the model, and the initial object pos2{0], must  mounted on the end effector of a Microbot robot. The CCD
be calculated. This transformatiofiTp[0] , can be found injmageris not a primary component of the system, but is used
several seconds using the ICP algorithm with a startingfor display purposes only. Not shown is a Sparc-10 worksta-
transformation provided by the user. (A fully automated ini- tion ysed for computing the pose estimate, and for graphi-
tialization would be possible using one of the techniques forca“y displaying a 3-D model of the tracked object. The pose

global pose estimation discussed in [2]). In practice, wWeqt the graphical 3-D model is updated at high speed to re-
have found that initial pose errors as large as 15 degrees Gject the current object pose estimate.

rotation about each axis, and 50% of the object size in any . . -
translation will typically converge to the global minimum. The CMU high speed range sensor is based on a modified

M has b lculated. it d ¢ version of the traditional light-stripe range imaging tech-

Once™ Tp[0] has been calculated, itis used to transformpique known as the cell-parallel light-stripe method. The
themode] M to the initial object position. Thus, all future jmary advantage of the cell-parallel method is that range
pose estimates are measured with respect to this initial star mage acquisition time is made independent of the number

ing pose. of data points in each frame.

After initialization, the algorithm enters the tracking — The current version of the CMU range sensor can acquire
loop. Within the loop, data are acquired by the high speed; complete 32x32 cell range image in as little as one milli-
range sensor, and the object pose is estimated via the ICP alacond. The range data is acquired at 10 bits of resolution,
gorithm in roughly 0.1 - 0.3 sec. These high speeds are posanq is accurate to 0.1% or better (0.5mm at 500mm). The
sible for two reasons. First, the difference in object pose alensor workspace is shaped like a four sided pyramid. As
timek and timek-1 is typically small. For example, transla- —¢yrrently configured, at a distance of 55cm from the sensor
tional velocities of 10cm per second and rotational veloci- 51ong the optical axis, a cross section of the workspace is an




Sensor Head __ CCD Imager 5 Pose estimation results

Tracked Object & Electronics ‘ There are two results presented in this section. The first

demonstrates the ability of our systematruratelyesti-
mate the pose of stationary, or slowly moving objects. The
second demonstrates the ability to track complex motions in
a highlyrepeatablemanner. Currently, we do not have the
ability to generate complex and accurately calibrated dy-
namic trajectories which are precisely known at each point
along the trajectory. Therefore, we can not currently demon-
strate that our system cancuratelytrack high-speedno-
tions.

5.1 Static accuracy results

The graphs in Figure 7 demonstrate the absolute accura-
cy of the system when the object is assumed to be stationary.
To collect this data, the object was manually positioned to
selected points along a trajectory using a high precision po-
sitioning device. At each point, 100 pose estimates were
computed, and corresponding mean and standard deviation

Positioning Device Light-stripe Generator values were palqulated. Each data point in the graphs com-
pares the object’s ground truth position to the mean of the
Figure 5: System Components corresponding estimated position. The solid line represents

the zero error case, and vertical deviations from this line can

11.5cm square. Thus, the sensor resolution at this distancee interpreted as error.
is about 2.8 range measurements per cm in each direction.  The object trajectory for these experiments consisted of

All of the results presented below were collected using coupled translations along each axis, and rotations about the
the face object shown in Figure 6. This object was manufac-Y axis. We were unable to generate rotations about the X
tured directly from a triangular mesh CAD model using a a@nd Z axes due to limitations in our apparatus. The average
stereolithographic process [9]. The advantage of this ap£rror between ground truth and estimated positions is
proach is that the physical object is very accurately repre-0.93mm in the translation components and 1.4 degrees in
sented by the corresponding CAD model. Thus, for the rotation components. The standard deviation of each po-
purposes of Characterizing System accuracy, errors Cause@tlon_estlma_te is less than 0.06mm in translation and 0.1 de-
by differences between the physical object and the CADJree In rotation.
model are minimized. The results of Figure 7 demonstrate that the system can
generate accurate pose estimates for stationary or slowly
moving objects. In these experiments, the full resolution of
the sensor was used, and the ICP termination threshold,
was small. In the current implementation, the system is only
capable of tracking very slowly moving objects using these
parameter settings. When tracking faster motions, such as
those described in Section 5.2, the sensor resolution is typi-
cally decreased by a factor of 2, while the ICP termination
threshold is increased.

5.2 Dynamic tracking results

Figure 8 contains plots of estimated pose as the object is
moved through a complex trajectory by the Microbot. Pose
estimates are specified with respect to the object’s initial
pose at time 0. Maximum object velocities are roughly
100 mm/sec in translation and 22 degrees/sec in rotation.

Each graph in these figures actually contains 2 overlaid
data sets corresponding to 2 different executions of the tra-
jectory. Furthermore, each single execution of the trajectory
is periodic with a period of 2. It is evident from these graphs
that therepeatabilityof the pose estimation system is quite
good. These results also demonstrate that the system can

Figure 6: Face Object perform pose estimation fast enough to track object motion
at the velocities specified above. The average cycle time in
All pose estimates presented below are specified in arfhese experiments was about 0.3 seconds (3.3Hz), with vari-

object centered coordinate system as shown in Figure 6. Thlion between about 0.1 seconds (10Hz) and 0.5 seconds

object itself is roughly 8cm x 10cm x 6¢m in the X, Y, and 2Hz). This variation in cycle time reflects the variation in
Z directions respectively. T the initial pose estimat¥Tp[k—1] relative to the actual




pose. Large transformations between initial and actual pose [6]
result in an increased number of cycles required by the ICP
algorithm, and thus a longer overall cycle time. Thus, faster
object velocities typically lead to longer cycle times, while
slower velocities lead to shorter cycle times.

6 Conclusions

We have described and demonstrated an approach for
performing full 3-D pose estimation of arbitrarily shaped
rigid objects at speeds up to 10Hz. The approach utilizes a 8]
high speed VLSI range sensor capable of acquiring 32x32
cell range images in 1 millisecond or less.

Three fundamental difficulties in real-time pose estima-
tion have been addressed by the current work. First, the di-
rect use of 3-D range data circumvents the need to infer [©]
depth information from 2-D data. Second, direct matching
of object surface data avoids the need to solve the feature ex-
traction and correspondence problems. Third, computation-
ally efficient algorithms allow fast computation of the 3-D
pose.

Real-time 3-D pose estimation would be useful in a vari-
ety of situations. In manufacturing environments, it could be
used in feedback control loops to allow a mechanism (e.g. a
robot) to perform an operation (e.g. grasping) on a moving [11]
part. In the area of Human Computer Interaction (HCI),
real-time pose estimation could be useful for tracking move-
ments of a body part for subsequent interpretation as input
to a computer. In medicine, a variety of problems involve the
need to register pre-operative, volumetric data with the cor-
responding anatomy of the actual patient. The approach de-
scribed in this paper may be useful in these cases.
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Figure 8: Dynamic Repeatability Measurements




