
1

Abstract

This paper describes a system which can perform full 3-D
pose estimation of a single arbitrarily shaped, rigid object
at rates up to 10Hz. A triangular mesh model of the object
to be tracked is generated offline using conventional range
sensors. Real-time range data of the object is sensed by the
CMU high speed VLSI range sensor. Pose estimation is per-
formed by registering the real-time range data to the trian-
gular mesh model using an enhanced implementation of the
Iterative Closest Point (ICP) Algorithm introduced by Besl
and McKay. The method does not require explicit feature ex-
traction or specification of correspondence. Pose estimation
accuracies on the order of 1% of the object size in transla-
tion, and 1 degree in rotation have been measured.

1 Introduction
The problem of determining the 3-D pose of a rigid ob-

ject at high speed has been approached by a number of re-
searchers [10][12]. However, there are few systems capable
of full 3-D pose estimation of arbitrarily shaped objects in
real-time. There are three reasons why this goal has been
difficult to attain. First, the 2-D data provided by conven-
tional video cameras lacks the sensitivity required foraccu-
rate 3-D pose estimation of arbitrarily shaped objects.
Second, many approaches to 3-D pose estimation require
two operations which are difficult to perform: feature ex-
traction and correspondence specification. Third, in order to
perform 3-D pose estimation in real-time, each step in the
underlying algorithm must be computationally efficient.

Direct use of 3-D data simplifies the pose estimation
problem by providing shape structure which would other-
wise need to be inferred from 2-D data. As noted in [12],
while 2-D data is useful for estimating object motion in
planes normal to a camera’s optical axis, it is less sensitive
to motions which deviate from these planes. Direct use of
3-D data should provide more precise object pose estimates,
especially for general 3-D motions.

Many previous approaches to 3-D pose estimation are
feature based [8][10][12]. Such approaches, however, suffer
from some common difficulties. Typically, the steps in fea-
ture based pose estimation are: 1) extract features such as
points or lines from the underlying data; 2) specify corre-
spondence between data and model features; 3) compute the
pose estimate from the derived correspondence. Unfortu-
nately, the extraction of reliable features from images of
real-world objects is difficult. Even when such features can
be found, solution of the correspondence problem can be
complex and computationally expensive.

In our approach, raw range data points which lie on the
surface of the tracked object are matched to the underlying
object surface model using an iterative least squares tech-
nique (the ICP algorithm). This approach eliminates the
need to perform any feature extraction, or to specify feature
correspondence.

To our knowledge, no previous approaches have suc-
ceeded in combining both high speed acquisition of 3-D
data with high speed 3-D pose computation. Several re-
searchers have utilized range data in the 3-D pose estimation
problem [8][13]. Yamamoto [13] discusses a system for es-
timating the shape and pose of deformable objects using a
video rate range camera, but the required computations are
not performed at high speed.

The remainder of this paper is organized as follows.
Section 2 describes the Iterative Closest Point algorithm and
enhancements which allow it to be used for real-time pose
estimation. Section 3 outlines the algorithm for real-time
pose estimation. Section 4 describes the experimental setup
used to demonstrate the approach. Section 5 contains exper-
imental results, and Section 6 contains the conclusion.

2 Registration
The registration algorithm used in this system is strongly

motivated by the work of Besl and McKay [2]. Their paper
describes a general purpose method for the registration of
rigid 3-D shapes which they refer to as the Iterative Closest
Point algorithm. Zhang [14] has independently developed a
similar algorithm which is better at handling outliers and oc-
clusions in the data. Since these were not a major concern in
our work, the formulation presented below parallels that of
Besl and McKay.

2.1 The ICP algorithm
Suppose that we have two independently derived sets of

3-D points which correspond to a single shape. We will call
one of these sets themodelsetM, and the other thedataset
D. Assume that for each point in the data set, the corre-
sponding point in the model set is known. The problem is to
find a 3-D transformation which when applied to the data set
D, minimizes a distance measure between the two point sets.
The goal of this problem can be stated more formally as fol-
lows:

(1)

whereR is a 3x3 rotation matrix,T is a 3x1 translation vec-
tor, and the subscripti refers to corresponding elements of
the setsM andD as shown in Figure 1. Efficient, non-itera-
tive solutions to this problem, both employing unit quater-

min
R T,

Mi RDi T+()–
2

i
∑

Real-time 3-D Pose Estimation
Using a High-Speed Range Sensor

David A. Simon, Martial Hebert and Takeo Kanade

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3891

2

nions, were presented in two papers, one by Faugeras and
Hebert [4] and the other by Horn [7].

The general 3-D shape registration problem that we ad-
dress here, however, differs from the corresponding point
set registration problem in two important regards. First, the
point correspondence which was assumed to be known in
the above problem is unknown in the general case. Second,
general 3-D shapes to be registered are not necessarily rep-
resented as point sets [2].

Suppose that we are again given two setsM andD corre-
sponding to a single shape, whereD is a set of 3-D points
andM is a triangular faceted surface. Assume that the cor-
respondence between points in the two sets is initially un-
known. As seen in Figure 2, for each point from the set
D, there exists at least one point on the surface ofM which
is closer to than all other points inM. This is theclosest
point, .

The basic idea behind the ICP algorithm is that under
certain conditions, the point correspondence provided by
sets of closest points is a reasonable approximation to the
true point correspondence. Besl and McKay proved that if
the process of finding closest point sets and then solving (1)
is repeated, the solution is guaranteed to converge to alocal
minimum. The ICP algorithm can now be stated:

1. For each point inD, compute the closest point inM

2. With the correspondence from step 1, compute the
incremental transformation (R, T) from (1).

3. Apply the incremental transformation from step 2
to the dataD.

4. Compute the change in total mean square error. If
the change in error is less than a threshold,ε, ter-
minate. Else goto step 1.

While the ICP algorithm is only guaranteed to converge
to a local minima, there is no guarantee that this local mini-
ma will correspond to the actual global minima. How well
the algorithm performs is a function of the initial pose esti-
mate and the characteristics of the shape being registered.
Besl and McKay discuss in detail the problem of finding the
global minimum in situations where initial pose error is
large. We have found that the ICP algorithm converges to
the global minimum even with fairly large initial pose dis-
crepancies. For the purposes of the system described in this
paper, the initial pose discrepancies are usually small.

2.2 Speed enhancements to ICP
A basic implementation of the ICP algorithm lacks the

speed required to perform pose estimation in real-time. We
have implemented several enhancements: kd-trees, closest
point caching, efficient point to surface computation, and
acceleration.

2.2.1 Kd-trees

The most computationally expensive step in the ICP al-
gorithm is finding the closest point sets. In general, if there
are points in the data set and geometric entities (i.e.:
points, lines, triangles) in the model set, then the complexity
of the closest point computation is . However, as
suggested in [2] and demonstrated in [14], this complexity
can be reduced to by the use of a k-dimen-
sional binary tree, or simply kd-tree [1]. The use of kd-trees
for closest point computation allows us at each node of a bi-
nary tree to decide which side of a hyperplane the closest
point will lie on. Thus, large regions of the search space can
be pruned at each level in the search. We have implemented
a closest point algorithm based on the kd-tree [5]. The re-
sulting performance improvement is significant as will be
shown below in Table 1.

2.2.2 Closest point caching

A second small speed improvement was realized by
caching closest points. Points in the setsM andD which are
proximal at timek, are highly likely to be proximal at time
k+1. Thus, rather than finding the single closest point inM
for a given pointDi[k], we can findn closest points inM and
cache these points together with the pointDi[k]. Note that
there is little overhead involved in findingn closest points
whenn is a small number like 5. On the next iteration, since
the pointDi[k+1] is likely to be close to the pointDi[k], it is
also likely that the closest point inM to Di[k+1] will be one
of the points cached on the previous iteration. It is possible
to determine conclusively whether the closest point is con-
tained in the cached set by performing a simple test. This
test compares the magnitude of the previous incremental
transformation to the distance between the closest cached
point and thenth closest cached point (wheren is the num-
ber of cached points). A variation on this test can also deter-
mine whether the closest point at timek+1 is thesame as the
closest point at timek. The overall result of caching is that
closest points can often be found without requiring a full
search of the kd-tree. Rather, only the points in the cached
set must be tested.

A similar caching technique can be applied tospatially
(rather thantemporally) adjacent points. If two data points
Di[k] and Di+ 1[k] are proximal, then it is likely that their
corresponding closest pointsMi[k] andMi+ 1[k] will also be

 Figure 1: Corresponding Point Set Registration

D

M M / D

Di

Di
Mi

 Figure 2: Closest Point Set Registration

D

M

ND NM

O ND NM()

O ND NMlog()

3

proximal. An analogous caching technique can be applied
for this situation, however we have not yet implemented
caching for spatially adjacent points.

2.2.3 Closestsurface point computation

WhenM is a triangular faceted surface, computation of
the closest point requires an additional step. The output of
the kd-tree based closest point algorithm will return the
closestvertex Vi on the surface ofM, as shown in Figure 3.
GivenVi, the closest pointMi will lie within, or on the bor-
der of, one of the triangles to which the vertex belongs.1 In
order to findMi, Di is projected into the plane of each trian-
gle, and the closest point betweenDi and that triangle is
computed. This is repeated for all triangles containingVi,
and the overall closest point is selected. In order to perform
these computations quickly, onceDi is projected into the
plane, all computations are performed in 2-D rather than
3-D. Thus, during initialization each triangle must be saved
in both its 2-D and 3-D representations.

2.2.4 Acceleration

A final speed improvement was realized using a modified
version of theaccelerated ICP algorithm described in [2].
The accelerated ICP algorithm adds the following step to the
basic algorithm (after step 2):

2b. If the incremental transformations (R, T) at times
k-1, k-2, andk-3 arewell aligned, extrapolate the
current incremental transformation.

The well aligned condition above tests that the solution
has been moving in an approximately constant direction.
Extrapolation is performed by scaling the current incremen-
tal transformation. The scale factor is a function of the mean
square error and the magnitude of the incremental transfor-
mations at the previous three iterations.

Besl and McKay calculate a single acceleration scale fac-
tor for both translation and rotation. We achieved better re-
sults by decoupling the acceleration of translation and
rotation. There are two reasons for doing this. First, in Besl’s
approach, the well aligned condition above is tested once for
both rotation and translation. Thus, for example, if rotation
was well aligned but translation was not, no acceleration
would be performed. However, an acceleration on rotation
alone seems desirable in this situation. A second reason for
decoupling is related to the scale factor used in extrapola-
tion. Besl and McKay used the same scale factor to extrap-
olate both rotation and translation components. This scale
factor is designed to extrapolate the solution as much as pos-
sible in a single step without overshoot. In the coupled ver-

1. This is not strictly true, as there are pathological cases for
whichMi will lie in a totally different triangle. We have found
that we can ignore such cases.

sion, the size of the scale factor is governed by the
component (translation or rotation) which would cause the
solution to overshoot first. The other component could usu-
ally be accelerated further. By decoupling, translation and
rotation are independently accelerated as much as possible
without overshoot.

2.2.5 Enhancement results

Four speed enhancements were described in this section:
closest point computation via kd-trees, closest point cach-
ing, efficient computation of closest facet points, and decou-
pled acceleration. The results of applying each of these
enhancements to a single registration problem are summa-
rized in Table 1. In this problem,D was a point set contain-
ing 2432 points andM was a triangular mesh containing
4860 facets. The initial pose error was roughly 10 degrees
of rotation about each axis, and about 10% of object size in
each translation. The ICP termination threshold,ε, was
small.2

In the table,Type indicates the enhancements used: a -
coupled acceleration; kd - kd-tree search; d - decoupled ac-
celeration; c - closest point caching; 2d - 2d calculation of
closest facet points.Time is the total ICP execution time in
seconds. %T is the percentage of execution time relative to
the longest time.Iter is the number of ICP iterations.R-Acc
andT-Acc are the number of accelerations for rotation and
translation respectively.

The speed improvements shown in Table 1 give an idea
of the relative utility of each of the described enhancements.
The actual relative utility is a function of the underlying da-
ta, the initial pose, and the termination threshold. Accelera-
tion and kd-tree search are always the two most important
enhancements. The relative utility of kd-tree search increas-
es with the number of points in the data set. Caching is use-
ful when the termination threshold is small, since the
number of cache hits will be large during fine-tuning.

3 The tracking algorithm
An outline of the tracking algorithm is shown in

Figure 4. Each box in the diagram represents a processing
step, and the processing sequence is indicated by the large-
headed arrows. Inputs to a processing step are indicated by
the quantities to the left of each box, while outputs are indi-
cated by the quantities to the right.

During initialization, a precomputed triangular mesh
model,M, is loaded into memory, and a kd-tree is built from

2. The magnitude ofε determines the amount of “fine-tuning”
performed by the ICP algorithm. Smaller values ofε result in
pose estimates closer to the local minima.

Di

Mi

 Figure 3: Closest Facet Point Computation

Vi

Type Time %T Iter R-Acc T-Acc
none 908.8 100.0 122 0 0
a 261.2 28.7 35 11 11
kd 62.2 6.8 122 0 0
kd/a 18.0 2.0 35 11 11
kd/a/d 13.1 1.4 25 13 7
kd/a/d/c 11.9 1.3 25 13 7
kd/a/d/c/2d 8.3 0.9 25 13 7

Table 1: Enhancement Comparisons

4

M. For our experiments,M is constructed offline using a
technique based on deformable surfaces [3]. This technique
can fuse range data collected from multiple views into a sin-
gle triangular mesh surface model. The range data used to
createM is provided by several commercially available
light-stripe range finders [11]. These sensors have been cal-
ibrated so that all data points are expressed in a single,
world-centered coordinate frame.

To initialize the tracking algorithm, the transformation
between the model,M, and the initial object poseD[0], must
be calculated. This transformation, , can be found in
several seconds using the ICP algorithm with a starting
transformation provided by the user. (A fully automated ini-
tialization would be possible using one of the techniques for
global pose estimation discussed in [2]). In practice, we
have found that initial pose errors as large as 15 degrees of
rotation about each axis, and 50% of the object size in any
translation will typically converge to the global minimum.

Once has been calculated, it is used to transform
the model, M to the initial object position. Thus, all future
pose estimates are measured with respect to this initial start-
ing pose.

After initialization, the algorithm enters the tracking
loop. Within the loop, data are acquired by the high speed
range sensor, and the object pose is estimated via the ICP al-
gorithm in roughly 0.1 - 0.3 sec. These high speeds are pos-
sible for two reasons. First, the difference in object pose at
timek and timek-1 is typically small. For example, transla-
tional velocities of 10cm per second and rotational veloci-

ties of 20 degrees per second lead to incremental object pose
discrepancies of roughly 2cm and 4 degrees. Thus, since the
ICP algorithm uses as the starting point when
finding , the algorithm can perform the registration
in a small number of iterations, typically 3-10. Second, the
resolution of the range data used in the tracking loop, usual-
ly 16x16, is less than the full sensor resolution of 32x32.
The reduced number of data points in the setD[k] results in
a faster calculation of the pose estimate.

During each data acquisition cycle, two simple prepro-
cessing steps are performed on the range data. The first step
eliminates noisy range data. For the CMU high speed range
sensor, noisy data is associated with poor reflection of the
projected light from the object. Thus, noisy range data can
be eliminated by thresholding the reflected intensity values.
Since each cell in the range sensor has circuitry for measur-
ing intensity, this is a trivial operation. The second prepro-
cessing step determines which range data points lie on the
surface of the object to be tracked. Since our experiments
are performed in an uncluttered environment, range data on
the object surface can be distinguished by thresholding the
Z component of the range data. While this simple operation
works well for our experiments, a more sophisticated ap-
proach would be required if the object were in a cluttered
environment.

Using as the starting point for incremental
pose estimation works well when object motion is erratic
and unpredictable. In some situations, however, object mo-
tion may be smooth, continuous and thus easier to predict.
For such motions, improved results are possible using an ex-
trapolation scheme such as a Kalman filter. While we have
not implemented a Kalman filter for this purpose, we have
implemented both first and second order extrapolation.
Since the extrapolated pose is often closer to the true pose
than , the time required to compute the pose is
reduced.

4 Experimental setup
The experimental setup is shown in Figure 5. The CMU

high speed VLSI range sensor developed by Gruss, Tada
and Kanade [6] consists of two primary components: the
sensor head and the light stripe generator. The tracked ob-
ject, in this case a small bust of the Greek goddess Venus, is
mounted on the end effector of a Microbot robot. The CCD
imager is not a primary component of the system, but is used
for display purposes only. Not shown is a Sparc-10 worksta-
tion used for computing the pose estimate, and for graphi-
cally displaying a 3-D model of the tracked object. The pose
of the graphical 3-D model is updated at high speed to re-
flect the current object pose estimate.

The CMU high speed range sensor is based on a modified
version of the traditional light-stripe range imaging tech-
nique known as the cell-parallel light-stripe method. The
primary advantage of the cell-parallel method is that range
image acquisition time is made independent of the number
of data points in each frame.

The current version of the CMU range sensor can acquire
a complete 32x32 cell range image in as little as one milli-
second. The range data is acquired at 10 bits of resolution,
and is accurate to 0.1% or better (0.5mm at 500mm). The
sensor workspace is shaped like a four sided pyramid. As
currently configured, at a distance of 55cm from the sensor
along the optical axis, a cross section of the workspace is an

 Figure 4: Tracking Algorithm

T
M

D
k[]

M D 0[],,

T
M

D
user[]

Load Precomputed Object
Model,M from disk;

Acquire Sensor Data

Calculate Initial Pose
Estimate via ICP

Calculate Incremental
Pose Estimate via ICP

k = k + 1

Acquire Sensor Data

M, k

D[0]

T
M

D
0[]

D[k]

M D k[],,

T
M

D
k 1–[]

Initialize Counter:k = 1

TM
D 0[]

TM
D 0[]

TM
D k 1–[]

TM
D k[]

TM
D k 1–[]

TM
D k 1–[]

5

11.5cm square. Thus, the sensor resolution at this distance
is about 2.8 range measurements per cm in each direction.

All of the results presented below were collected using
the face object shown in Figure 6. This object was manufac-
tured directly from a triangular mesh CAD model using a
stereolithographic process [9]. The advantage of this ap-
proach is that the physical object is very accurately repre-
sented by the corresponding CAD model. Thus, for
purposes of characterizing system accuracy, errors caused
by differences between the physical object and the CAD
model are minimized.

All pose estimates presented below are specified in an
object centered coordinate system as shown in Figure 6. The
object itself is roughly 8cm x 10cm x 6cm in the X, Y, and
Z directions respectively.

5 Pose estimation results
There are two results presented in this section. The first

demonstrates the ability of our system toaccurately esti-
mate the pose of stationary, or slowly moving objects. The
second demonstrates the ability to track complex motions in
a highly repeatable manner. Currently, we do not have the
ability to generate complex and accurately calibrated dy-
namic trajectories which are precisely known at each point
along the trajectory. Therefore, we can not currently demon-
strate that our system canaccurately track high-speedmo-
tions.

5.1 Static accuracy results
The graphs in Figure 7 demonstrate the absolute accura-

cy of the system when the object is assumed to be stationary.
To collect this data, the object was manually positioned to
selected points along a trajectory using a high precision po-
sitioning device. At each point, 100 pose estimates were
computed, and corresponding mean and standard deviation
values were calculated. Each data point in the graphs com-
pares the object’s ground truth position to the mean of the
corresponding estimated position. The solid line represents
the zero error case, and vertical deviations from this line can
be interpreted as error.

The object trajectory for these experiments consisted of
coupled translations along each axis, and rotations about the
Y axis. We were unable to generate rotations about the X
and Z axes due to limitations in our apparatus. The average
error between ground truth and estimated positions is
0.93mm in the translation components and 1.4 degrees in
the rotation components. The standard deviation of each po-
sition estimate is less than 0.06mm in translation and 0.1 de-
gree in rotation.

The results of Figure 7 demonstrate that the system can
generate accurate pose estimates for stationary or slowly
moving objects. In these experiments, the full resolution of
the sensor was used, and the ICP termination threshold,ε,
was small. In the current implementation, the system is only
capable of tracking very slowly moving objects using these
parameter settings. When tracking faster motions, such as
those described in Section 5.2, the sensor resolution is typi-
cally decreased by a factor of 2, while the ICP termination
threshold is increased.

5.2 Dynamic tracking results
Figure 8 contains plots of estimated pose as the object is

moved through a complex trajectory by the Microbot. Pose
estimates are specified with respect to the object’s initial
pose at time 0. Maximum object velocities are roughly
100 mm/sec in translation and 22 degrees/sec in rotation.

Each graph in these figures actually contains 2 overlaid
data sets corresponding to 2 different executions of the tra-
jectory. Furthermore, each single execution of the trajectory
is periodic with a period of 2. It is evident from these graphs
that therepeatability of the pose estimation system is quite
good. These results also demonstrate that the system can
perform pose estimation fast enough to track object motion
at the velocities specified above. The average cycle time in
these experiments was about 0.3 seconds (3.3Hz), with vari-
ation between about 0.1 seconds (10Hz) and 0.5 seconds
(2Hz). This variation in cycle time reflects the variation in
the initial pose estimate relative to the actual

Tracked Object
Sensor Head
& Electronics

CCD Imager

Light-stripe GeneratorPositioning Device

 Figure 5: System Components

 Figure 6: Face Object

Z

Y

X

TM
D k 1–[]

6

pose. Large transformations between initial and actual pose
result in an increased number of cycles required by the ICP
algorithm, and thus a longer overall cycle time. Thus, faster
object velocities typically lead to longer cycle times, while
slower velocities lead to shorter cycle times.

6 Conclusions
We have described and demonstrated an approach for

performing full 3-D pose estimation of arbitrarily shaped
rigid objects at speeds up to 10Hz. The approach utilizes a
high speed VLSI range sensor capable of acquiring 32x32
cell range images in 1 millisecond or less.

Three fundamental difficulties in real-time pose estima-
tion have been addressed by the current work. First, the di-
rect use of 3-D range data circumvents the need to infer
depth information from 2-D data. Second, direct matching
of object surface data avoids the need to solve the feature ex-
traction and correspondence problems. Third, computation-
ally efficient algorithms allow fast computation of the 3-D
pose.

Real-time 3-D pose estimation would be useful in a vari-
ety of situations. In manufacturing environments, it could be
used in feedback control loops to allow a mechanism (e.g. a
robot) to perform an operation (e.g. grasping) on a moving
part. In the area of Human Computer Interaction (HCI),
real-time pose estimation could be useful for tracking move-
ments of a body part for subsequent interpretation as input
to a computer. In medicine, a variety of problems involve the
need to register pre-operative, volumetric data with the cor-
responding anatomy of the actual patient. The approach de-
scribed in this paper may be useful in these cases.

Acknowledgments
The authors would like to thank Kazunori Higuchi for sup-
plying the triangular mesh CAD models, Mark Wheeler for
providing the kd-tree code, Andy Gruss and Shige Tada for
assistance with the high speed range sensor, and Lee Weiss
and Kevin Hartmann for producing the stereolithographed
object.

References
[1] Bentley, J.L. Multidimensional binary search trees

used for associative searching.Communications of
the ACM. 18(9):509-517, September, 1975.

[2] Besl, P.J. and McKay, N.D. A method for registra-
tion of 3-D shapes.IEEE Transactions on Pattern
Analysis and Machine Intelligence. 14(2):239-
256, February, 1992.

[3] Delingette, H., Hebert, M. and Ikeuchi, K. Shape
representation and image segmentation using
deformable surfaces.Image and Vision Comput-
ing. 10(3):132-144, April, 1992.

[4] Faugeras, O.D. and Hebert, M. The representation,
recognition, and locating of 3-D objects.The
International Journal of Robotics Research.
5(3):27-52, Fall, 1986.

[5] Friedman, J.H., Bentley, J.L. and Finkel, R.A. An
algorithm for finding best matches in logarithmic
expected time.ACM Transactions on Mathemati-
cal Software. 3(3):209-226, 1977.

[6] Gruss, A., Tada, S. and Kanade, T. A VLSI smart
sensor for fast range imaging.International Con-
ference on Intelligent Robots and Systems (IROS
'92), pages 349-58. IEEE, Raleigh, NC, July, 1992.

[7] Horn, B.K.P. Closed-form solution of absolute ori-
entation using unit quaternions.Journal of the
Optical Society of America A. 4(4):629-642, April,
1987.

[8] Kehtarnavaz, N. and Mohan, S. A framework for
estimation of motion parameters from range
images.Computer Vision, Graphics, and Image
Processing. 45(1):88-105, January, 1989.

[9] Marcus, H. and Bourell, D. Solid free form fabri-
cation. Advanced Materials and Processes.
144(3):28-35, September, 1993.

[10] Papanikolopoulos, N.P., Nelson, B and Khosla,
P.K. Full 3-D tracking using the controlled active
vision paradigm.Proceedings of the International
Symposium on Intelligent Control. IEEE, Glasgow,
Scotland, U.K., August, 1992.

[11] Sato, K. and Inokuchi, S. Range-imaging system
utilizing nematic liquid crystal mask.Proc. ICCV,
pages 657-661. London, UK, 1987.

[12] Wang, J. and Wilson, W.J. 3D relative position and
orientation estimation using Kalman filter for
robot control.Proceedings of IEEE International
Conference on Robotics and Automation, pages
2638-2645. IEEE, Nice, France, May, 1992.

[13] Yamamoto, M. Direct estimation of range flow on
deformable shape from a video rate range camera.
IEEE Transactions on Pattern Analysis and
Machine Intelligence. 15(1):82-89, January, 1993.

[14] Zhang, Z. Iterative point matching for registration
of free-form curves and surfaces.The International
Journal of Computer Vision. To Appear.

7

0.0 10.0 20.030.0 40.0 50.0
Actual (mm)

0.0

10.0

20.0

30.0

40.0

50.0
M

ea
su

re
d

(m
m

)

X Translation

0.0 10.0 20.0 30.0 40.0 50.0
Actual (mm)

0.0

10.0

20.0

30.0

40.0

50.0

M
ea

su
re

d
(m

m
)

Y Translation

-25.0 -15.0 -5.0 5.0 15.0 25.0
Actual (mm)

-25.0

-15.0

-5.0

5.0

15.0

25.0

M
ea

su
re

d
(m

m
)

Z Translation

-2.0 -1.0 0.0 1.0 2.0
Actual (deg.)

-2.0

-1.0

0.0

1.0

2.0

M
ea

su
re

d
(d

eg
.)

X Rotation

-40.0 -20.0 0.0 20.0 40.0
Actual (deg.)

-40.0

-20.0

0.0

20.0

40.0

M
ea

su
re

d
(d

eg
.)

Y Rotation

-2.0 -1.0 0.0 1.0 2.0
Actual (deg.)

-2.0

-1.0

0.0

1.0

2.0

M
ea

su
re

d
(d

eg
.)

Z Rotation

 Figure 7: Static Accuracy Measurements

 Figure 8: Dynamic Repeatability Measurements

0.0 50.0 100.0 150.0
time (secs)

-100.0

0.0

100.0

200.0

po
si

tio
n

(m
m

)

X Translation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-100.0

0.0

100.0

200.0

po
si

tio
n

(m
m

)

Y Translation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-600.0
-400.0
-200.0

0.0
200.0
400.0
600.0

po
si

tio
n

(m
m

)

Z Translation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-30.0

-10.0

10.0

30.0

po
si

tio
n

(d
eg

.)

X Rotation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-25.0

-15.0

-5.0

5.0

15.0

25.0

po
si

tio
n

(d
eg

.)

Y Rotation
path 1
path 2

0.0 50.0 100.0 150.0
time (secs)

-200.0

-100.0

0.0

100.0

200.0

po
si

tio
n

(d
eg

.)

Z Rotation
path 1
path 2

