
SUMMARY

A NEW METHOD FOR SMOOTHING

PIECE-WISE LINEAR CURVES AND SURFACES

� APPLIES TO PIECE-WISE LINEAR SHAPES

OF ANY DIMENSION AND TOPOLOGY

� ITS COMPUTATIONAL COMPLEXITY IS LINEAR

BOTH IN TIME AND IN SPACE

� PRODUCES LOW-PASS FILTER EFFECT AS A FUNCTION

OF CURVATURE

� DOES NOT PRODUCE SHRINKAGE

� IT IS VERY SIMPLE TO IMPLEMENT

� SIMPLE MODIFICATIONS MAKE IT SATISFY

DIFFERENT TYPES OF CONSTRAINTS

SUBDIVISION + SMOOTHING + SMOOTH INTERPOLATION
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Frs DENOTES THE SUB-MATRIX OF F = f(K)N DETERMINED BY THE

FIRST r ROWS AND THE FIRST s COLUMNS.

SMOOTH INTERPOLATION (2)
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C
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� WRITE DESIRED CONSTRAINED SMOOTH SIGNAL x
N
C
AS SUM OF

UNCONSTRAINED SMOOTH SIGNAL x
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SMOOTH DEFORMATION d1
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DEFORMATION d1 IS ITSELF ANOTHER DISCRETE SURFACE SIG-

NAL, AND THE CONSTRAINT (xN
C
)1 = x1 IS SATISFIED IF (d1)1 = 1.

� DEFORMATION d1 IS CONSTRUCTED BY APPLYING SMOOTHING

ALGORITHM TO �1
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�
1 j = i
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;

AND THEN RESCALING THE RESULT TO MAKE IT SATISFY THE

CONSTRAINT

d1 = Fn1F
�1
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Frs DENOTES THE SUB-MATRIX OF F = f(K)N DETERMINED BY THE

FIRST r ROWS AND THE FIRST s COLUMNS.

SMOOTH INTERPOLATION (1)

HIERARCHICAL CONSTRAINTS



INTERPOLATORY CONSTRAINTS (2)

INTERPOLATORY CONSTRAINTS (1)

x = (x1; : : : ; xn)
t
FUNCTION DEFINED ON VERTICES OF SURFACE

USE NON-SYMMETRIC NEIGHBORHOODS

1) TO FIX A VERTEX MAKE ITS NEIGHBORHOOD EMPTY

SMOOTHNESS IS LOST AT THE VERTEX

2) TO SMOOTH A SURFACE WITH BOUNDARY DO NOT MAKE

INTERNAL VERTICES NEIGHBORS OF BOUNDARY VERTICES

CAN BE USED TO DESIGN SURFACES WITH INTERNAL RIDGE CURVES

3) HIERARCHICAL NEIGHBORHOODS:

ASSIGN A NUMERIC LABEL li TO EACH VERTEX vi AND

IF lj > li DO NOT CONSIDER vj A NEIGHBOR OF vi

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4)

20 STEPS OF NEW ALGORITHM WITH �= 0:33 �= 0:34

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (3)

10 STEPS OF GAUSSIAN SMOOTHING WITH �= 0:5

20 STEPS OF GAUSSIAN SMOOTHING WITH �= 0:5

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (2)

ONE STEP OF GAUSSIAN SMOOTHING WITH �= 0:5

NOT ENOUGH SMOOTHING :

HEXAGONAL SYMMETRY OF SKELETON REMAINS



FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (1)

APPLY SUBDIVISION AND SMOOTHING STEPS

SKELETON (S0) SUBDIVIDED SMOOTHED (S1)

USUALLY ONLY ONE STEP OF GAUSSIAN SMOOTHING WITH � = 0:5

OVERVIEW

SURFACE SMOOTHING AS LOW-PASS FILTERING

� LOW-PASS FILTERING AS A LINEAR PROJECTION

� EXTENSION TO SIGNALS DEFINED ON SURFACES

� A SIMPLE SURFACE SIGNAL LOW-PASS FILTERING ALGORITHM

� FILTER DESIGN

APPLICATIONS TO FREE-FORM SURFACE DESIGN

� SUBDIVISION AND SMOOTHING

� INTERPOLATORY CONSTRAINTS

� SMOOTH INTERPOLATION

PARTIAL SUMMARY

A NEW METHOD FOR SMOOTHING

PIECE-WISE LINEAR CURVES AND SURFACES

� APPLIES TO PIECE-WISE LINEAR SHAPES

OF ANY DIMENSION AND TOPOLOGY

� ITS COMPUTATIONAL COMPLEXITY IS LINEAR

BOTH IN TIME AND IN SPACE

� PRODUCES LOW-PASS FILTER EFFECT AS A FUNCTION

OF CURVATURE

� DOES NOT PRODUCE SHRINKAGE

� IT IS VERY SIMPLE TO IMPLEMENT

IF TOO NARROW BAND-PASS REGION

fN(k) = w0
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n �
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((1� �k)(1� �k))N RECTANGULAR HANNING
N = 10 N = 10; 20 N = 10; 20

((1� �k)(1� �k))N HAMMING BLACKMAN
N = 20 N = 10; 20 N = 10; 20

FILTER DESIGN (2)

� TO ATTENUATE GIBBS PHENOMENON USE WEIGHTS

fN(k) = w0 (�PB=�) T0(1� k=2) +

NX

n=1

wn (2 sin(n �PB)=n�) Tn(1� k=2) ;

� RECTANGULAR WINDOW

wn = 1 :

� HANNING WINDOW

wn = 0:5+ 0:5 cos(n � �=(N +1)) :

� HAMMING WINDOW

wn = 0:54+ 0:46 cos(n � �=(N +1)) :

� BLACKMAN WINDOW WINDOW

wn = 0:42+ 0:5 cos(n�=(N +1)) + 0:08 cos(2n�=(N +1)) :

� OTHER FIR DIGITAL FILTER DESIGN TECHNIQUES:

EQUIRIPPLE FILTERS, MAXIMALLY FLAT FILTERS, ETC.

FILTER DESIGN (1)

(WITH GENE GOLUB AND TONG ZHANG, STANFORD)

� WE LOOK FOR OPTIMAL POLYNOMIAL APPROXIMATION OF

fLP(k) =

�
1 if 0 � k < kPB
0 if kPB � k < &2

;

� CHANGE VARIABLES k = 2(1� cos(�)) AND EXPAND

hLP(�) = h0+2

1X
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(2 sin(n �PB)=n�) cos(n�) :

� USE CHEBYSHEV POLYNOMIALS cos(n �) = Tn(cos(�))
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(
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TO GET APPROXIMATION IN ORIGINAL VARIABLE

f
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NEW SMOOTHING ALGORITHM IS A LOW-PASS FILTER
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A : Graph of the polynomial f(k) = (1� �k)(1� �k).

B : Graph of the transfer function f(k)N .
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WEIGHT MATRIX

W = (wij )

SYMMETRIC NEIGHBORHOOD STRUCTURE ) W IS NORMAL )

W HAS REAL EIGENVALUES

P
j2i? wij = 1 ) W IS STOCHASTIC )

EIGENVALUES OF W IN fz : jzj � 1g

EIGENVALUES AND RIGHT EIGENVECTORS OF K = I �W

0 � k1 � � � � � knV � 2  NATURAL FREQUENCIES

u1; : : : ; unV  NATURAL VIBRATION MODES

IF f(k) POLYNOMIAL TRANFER FUNCTION ) f(K)ui = f(ki)ui )

x0 = f(K)x =

nX

i=1

f(ki) �i ui

FOR GAUSSIAN SMOOTHING f(k) = (1� �k) WITH 0 < � < 1=2
THIS IS NOT A LOW-PASS FILTER

FOR NEW ALGORITHM f(k) = (1� �k)(1� �k) WITH 0 < � < ��
THIS IS A LOW-PASS FILTER

EXTENSION TO SIGNALS DEFINED ON SURFACES

x = (x1; : : : ; xn)
t
FUNCTION DEFINED ON VERTICES OF SURFACE

1) REPLACE DISCRETE LAPLACIAN BY

�xi =

X

j2i?

wij (xj � xi) WHERE wij > 0

X
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2) GAUSSIAN SMOOTHING IS STILL

x
0
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OR IN MATRIX FORM

x
0
= (I � �K)x ;

WHERE K = I �W IS NO LONGER A CIRCULANT MATRIX

3) LOW-PASS FILTERING IS STILL

x
0
= f(K)x ;

FOR SOME TRANSFER FUNCTION f(k)

FOURIER ANALYSIS AND THE LAPLACIAN
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WHERE K IS THE CIRCULANT MATRIX
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3) LOW-PASS FILTERING IS

x
0

= f(K)x ;

FOR SOME TRANSFER FUNCTION f(k)

LOW-PASS FILTERING AS A LINEAR PROJECTION

x(t)

0 2�
1) FOURIER DESCRIPTORS (COMPLEXITY O(n log(n)))

COMPUTE FOURIER SERIES AND DISCARD TAIL

x(t) =
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EXACT PROJECTION ONTO SUBSPACE OF LOW FREQUENCIES

2) GAUSSIAN FILTERING (COMPLEXITY O(n))
CONVOLVE WITH GAUSSIAN KERNEL

x(t) 7! x
0(t) =

Z
g�(t� s)x(s) ds

NOT A LOW-PASS FILTER : PRODUCES SHRINKAGE

3) LOW-PASS FILTERING (COMPLEXITY O(n))
CONVOLVE WITH LOW-PASS FILTER KERNEL

x(t) 7! x
0(t) =

Z
k(t� s)x(s) ds

APPROX PROJECTION ONTO SUBSPACE OF LOW FREQUENCIES

OVERVIEW

SURFACE SMOOTHING AS LOW-PASS FILTERING

� LOW-PASS FILTERING AS A LINEAR PROJECTION

� EXTENSION TO SIGNALS DEFINED ON SURFACES

� A SIMPLE SURFACE SIGNAL LOW-PASS FILTERING ALGORITHM

� FILTER DESIGN

APPLICATIONS TO FREE-FORM SURFACE DESIGN

� SUBDIVISION AND SMOOTHING

� INTERPOLATORY CONSTRAINTS

� SMOOTH INTERPOLATION



EXAMPLE

A B C

A : An iso-surface appears faceted.

B : Gaussian smoothing.

C : Smoothing as low-pass �ltering.

MOTIVATED BY THE PROBLEM OF SMOOTHING

MANY ALGORITHMS (BOUNDARY FOLLOWING, ISO-SURFACES, ETC.),

PRODUCE INACCURATE OR NOISY PIECE-WISE LINEAR

APPROXIMATIONS OF CONTINUOUS CURVES AND SURFACES

HOW TO FORMULATE SURFACE SMOOTHING AS LOW-PASS FILTERING ?

� CURVE AND SURFACE SMOOTHING WITHOUT SHRINKAGE ,

by G. Taubin,

Fifth International Conference on Computer Vision (ICCV'95).

� A SIGNAL PROCESSING APPROACH TO FAIR SURFACE DESIGN ,

by G. Taubin,

SIGGRAPH'95.

� FAST POLYHEDRAL SURFACE SMOOTHING ,

by G. Taubin, T. Zhang (Stanford), and G. Golub (Stanford),

(in preparation).

DISCRETE SURFACE SIGNAL PROCESSING

FOR FREE-FORM SURFACE DESIGN

GABRIEL TAUBIN

IBM T.J.Watson Research Center

April 1995


