SMOOTH INTERPOLATION (2)
ONE CONSTRAINT (z}); = x1;

e WRITE DESIRED CONSTRAINED SMOOTH SIGNAL zY¥ AS SUM OF
UNCONSTRAINED SMOOTH SIGNAL &V = Fz (F = f(K)N) PLUS
SMOOTH DEFORMATION d;

=2 + (21— 2)d;
DEFORMATION d; IS ITSELF ANOTHER DISCRETE SURFACE SIG-
NAL, AND THE CONSTRAINT (2X); = z1 IS SATISFIED IF (dy); = 1.

e DEFORMATION d; IS CONSTRUCTED BY APPLYING SMOOTHING
ALGORITHM TO 61

N1 =i
@i={5 121,
AND THEN RESCALING THE RESULT TO MAKE IT SATISFY THE
CONSTRAINT
di = Fp Fit .

Frs DENOTES THE SUB-MATRIX OF F = f(K)Y DETERMINED BY THE
FIRST r ROWS AND THE FIRST s COLUMNS.

SUMMARY

A NEW METHOD FOR SMOOTHING
PIECE-WISE LINEAR CURVES AND SURFACES

e APPLIES TO PIECE-WISE LINEAR SHAPES
OF ANY DIMENSION AND TOPOLOGY

e ITS COMPUTATIONAL COMPLEXITY IS LINEAR
BOTH IN TIME AND IN SPACE

¢ PRODUCES LOW-PASS FILTER EFFECT AS A FUNCTION
OF CURVATURE

¢ DOES NOT PRODUCE SHRINKAGE
e IT IS VERY SIMPLE TO IMPLEMENT

e SIMPLE MODIFICATIONS MAKE IT SATISFY
DIFFERENT TYPES OF CONSTRAINTS

SMOOTH INTERPOLATION (1)

SUBDIVISION + SMOOTHING + SMOOTH INTERPOLATION

HIERARCHICAL CONSTRAINTS

SMOOTH INTERPOLATION (2)
SEVERAL CONSTRAINTS (z))1 = z1,...,(@¥)m = zm

1 —zjlv
zg =z +anF,;$L : v

T — Ty

F,s DENOTES THE SUB-MATRIX OF F = f(K)N DETERMINED BY THE
FIRST r ROWS AND THE FIRST s COLUMNS.




FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4)

20 STEPS OF NEW ALGORITHM WITH A =0.33 = 0.34

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (3)

10 STEPS OF GAUSSIAN SMOOTHING WITH A=0.5

=

20 STEPS OF GAUSSIAN SMOOTHING WITH A =0.5

S

INTERPOLATORY CONSTRAINTS (2)

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (2)

ONE STEP OF GAUSSIAN SMOOTHING WITH A = 0.5

NOT ENOUGH SMOOTHING :
HEXAGONAL SYMMETRY OF SKELETON REMAINS

INTERPOLATORY CONSTRAINTS (1)

z = (21,...,2,)! FUNCTION DEFINED ON VERTICES OF SURFACE
USE NON-SYMMETRIC NEIGHBORHOODS

1) TO FIX A VERTEX MAKE ITS NEIGHBORHOOD EMPTY
SMOOTHNESS IS LOST AT THE VERTEX

2) TO SMOOTH A SURFACE WITH BOUNDARY DO NOT MAKE
INTERNAL VERTICES NEIGHBORS OF BOUNDARY VERTICES

CAN BE USED TO DESIGN SURFACES WITH INTERNAL RIDGE CURVES

3) HIERARCHICAL NEIGHBORHOODS:
ASSIGN A NUMERIC LABEL I; TO EACH VERTEX v; AND
IF [; >1; DO NOT CONSIDER v; A NEIGHBOR OF v;




IF TOO NARROW BAND-PASS REGION

+ N 2sin(n(0pg + o))
Iy =wo BB 1 2y + Z e PE T (1~ k/2)
((1- )Jc)(l — ,uk))N RECTANGULAR HANNING
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FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (1)

APPLY SUBDIVISION AND SMOOTHING STEPS

SKELETON (Sg) SUBDIVIDED SMOOTHED (S7)

USUALLY ONLY ONE STEP OF GAUSSIAN SMOOTHING WITH A =0.5

FILTER DESIGN (2)

e TO ATTENUATE GIBBS PHENOMENON USE WEIGHTS

N
In(k) = wo (Opp/m) To(1 — k/2) + Y wa (2sin(nbpp)/nm) Tn(l - k/2) ,

n=1

RECTANGULAR WINDOW

wnp =1.
HANNING WINDOW
wp, = 0.54 0.5 cos(n* /(N +1)).

HAMMING WINDOW

wp, = 0.54 + 0.46 cos(n x /(N + 1)) .

BLACKMAN WINDOW WINDOW

wpn = 0.42 4+ 0.5 cos(nn /(N + 1)) + 0.08 cos(2nw/(N + 1)) .

OTHER FIR DIGITAL FILTER DESIGN TECHNIQUES:
EQUIRIPPLE FILTERS, MAXIMALLY FLAT FILTERS, ETC.

OVERVIEW
SURFACE SMOOTHING AS LOW-PASS FILTERING
o LOW-PASS FILTERING AS A LINEAR PROJECTION
e EXTENSION TO SIGNALS DEFINED ON SURFACES
o A SIMPLE SURFACE SIGNAL LOW-PASS FILTERING ALGORITHM
e FILTER DESIGN
APPLICATIONS TO FREE-FORM SURFACE DESIGN
e SUBDIVISION AND SMOOTHING
¢ INTERPOLATORY CONSTRAINTS

¢ SMOOTH INTERPOLATION

FILTER DESIGN (1)
(WITH GENE GOLUB AND TONG ZHANG, STANFORD)
¢ WE LOOK FOR OPTIMAL POLYNOMIAL APPROXIMATION OF

_f10f 0 < k < keg
f'-P(’“)_{o if kps < k < &2 °

e CHANGE VARIABLES k = 2(1 — cos(f)) AND EXPAND

hLp(0) = ho+2 Y hn cos(nd) = (Bps/m)+ Y (2sin(nbpg)/n) cos(nd) .

n=0 n=0

¢ USE CHEBYSHEV POLYNOMIALS cos(n ) = Tn(cos(8))

1 n=0
Tn(w) = § w n=1
2wy () =T a(w) n>1

TO GET APPROXIMATION IN ORIGINAL VARIABLE
N

(k) = (Bpa/m) To(1 = k/2) + 3 (25in(nbpg) /nm) Tn(1 — k/2) .
n=1

PARTIAL SUMMARY

A NEW METHOD FOR SMOOTHING
PIECE-WISE LINEAR CURVES AND SURFACES

e APPLIES TO PIECE-WISE LINEAR SHAPES
OF ANY DIMENSION AND TOPOLOGY

ITS COMPUTATIONAL COMPLEXITY IS LINEAR
BOTH IN TIME AND IN SPACE

PRODUCES LOW-PASS FILTER EFFECT AS A FUNCTION
OF CURVATURE

DOES NOT PRODUCE SHRINKAGE

IT IS VERY SIMPLE TO IMPLEMENT




FOURIER ANALYSIS AND THE LAPLACIAN
z = (z1,...,2,)! DISCRETE TIME n-PERIODIC SIGNAL
1) THE DISCRETE LAPLACIAN OF z IS

1 1
Az = 5(%71 — ;) + E(zi+1 — ;)

2) GAUSSIAN SMOOTHING IS

z; =uz;+ NAz; .
OR IN MATRIX FORM

2= —-)\K)z,
WHERE K IS THE CIRCULANT MATRIX

2 -1 1

Y

2 1 2 -1
~1 1 2

3) LOW-PASS FILTERING IS
o= f(K)x,
FOR SOME TRANSFER FUNCTION f(k)

NEW SMOOTHING ALGORITHM IS A LOW-PASS FILTER

dpg
F(k) /J
x\ 1.0 1.0 JRN
1
_1 k==
k=4 A dsp
/ \
0 kpg?2 0 kpg ksg 2
A B

A : Graph of the polynomial f(k) = (1 — Ak)(1 — nk).
B : Graph of the transfer function f(k)V.

1,1
0< AL —pp = kpB—)\+#>o

LOW-PASS FILTERING AS A LINEAR PROJECTION

—

0 i

z(t) /
2

1) FOURIER DESCRIPTORS (COMPLEXITY O(nlog(n)))
COMPUTE FOURIER SERIES AND DISCARD TAIL
00 ksg
)= Gu®) — W)= Gut)
k=0 k=0
EXACT PROJECTION ONTO SUBSPACE OF LOW FREQUENCIES

2) GAUSSIAN FILTERING (COMPLEXITY O(n))

CONVOLVE WITH GAUSSIAN KERNEL ( \

z(t) — )= /gg(t —s)z(s)ds
NOT A LOW-PASS FILTER : PRODUCES SHRINKAGE

3) LOW-PASS FILTERING (COMPLEXITY O(n))
CONVOLVE WITH LOW-PASS FILTER KERNEL

oA A

o) e @) = /k:(t—s)z(s)ds
APPROX PROJECTION ONTO SUBSPACE OF LOW FREQUENCIES

WEIGHT MATRIX
W= (wi;)
SYMMETRIC NEIGHBORHOOD STRUCTURE = W IS NORMAL =
W HAS REAL EIGENVALUES

Y e wi; =1 = W IS STOCHASTIC =
EIGENVALUES OF W IN {z: |z| < 1}

EIGENVALUES AND RIGHT EIGENVECTORS OF K =1-W

0<ki<---<hkn, <2 « NATURAL FREQUENCIES
U1, tny, — NATURAL VIBRATION MODES

IF f(k) POLYNOMIAL TRANFER FUNCTION = f(K)u; = f(k)u; =
n
=)z =Y f(k) &
i=1
FOR GAUSSIAN SMOOTHING f(k)=(1—-Ak) WITHO<A<1/2
THIS IS NOT A LOW-PASS FILTER

FOR NEW ALGORITHM  f(k) = (1 — pk)(1 — k) WITHO<A< —p
THIS IS A LOW-PASS FILTER

OVERVIEW
SURFACE SMOOTHING AS LOW-PASS FILTERING
o LOW-PASS FILTERING AS A LINEAR PROJECTION
o EXTENSION TO SIGNALS DEFINED ON SURFACES
e A SIMPLE SURFACE SIGNAL LOW-PASS FILTERING ALGORITHM
e FILTER DESIGN
APPLICATIONS TO FREE-FORM SURFACE DESIGN
e SUBDIVISION AND SMOOTHING
¢ INTERPOLATORY CONSTRAINTS

¢ SMOOTH INTERPOLATION

EXTENSION TO SIGNALS DEFINED ON SURFACES
z = (x1,...,7,)! FUNCTION DEFINED ON VERTICES OF SURFACE
1) REPLACE DISCRETE LAPLACIAN BY
Avi= Y wij(zj—2;) WHERE w;>0 Y wj=1
jei* jei*

2) GAUSSIAN SMOOTHING IS STILL

o =+ A A,
OR IN MATRIX FORM

=U-)\K)z,
WHERE K=T-W IS NO LONGER A CIRCULANT MATRIX
3) LOW-PASS FILTERING IS STILL

al = (K,

FOR SOME TRANSFER FUNCTION f(k)




DISCRETE SURFACE SIGNAL PROCESSING
FOR FREE-FORM SURFACE DESIGN

GABRIEL TAUBIN

T.J.Watson Research Center

April 1995

EXAMPLE

A : An iso-surface appears faceted.
B : Gaussian smoothing.

C : Smoothing as low-pass filtering.

MOTIVATED BY THE PROBLEM OF SMOOTHING

MANY ALGORITHMS (BOUNDARY FOLLOWING, ISO-SURFACES, ETC.),
PRODUCE INACCURATE OR NOISY PIECE-WISE LINEAR
APPROXIMATIONS OF CONTINUOUS CURVES AND SURFACES

¢ CURVE AND SURFACE SMOOTHING WITHOUT SHRINKAGE ,
by G. Taubin,
Fifth International Conference on Computer Vision (ICCV’95).

e A SIGNAL PROCESSING APPROACH TO FAIR SURFACE DESIGN ,
by G. Taubin,
SIGGRAPH'95.

¢ FAST POLYHEDRAL SURFACE SMOOTHING ,
by G. Taubin, T. Zhang (Stanford), and G. Golub (Stanford),
(in preparation).




