
Multiresolution Surface Modeling

Course Notes for SIGGRAPH ’97
Los Angeles, California

5 August 1997

Course organizer:

Paul Heckbert

Speakers:

Paul Heckbert
Jarek Rossignac
Hugues Hoppe

William Schroeder
Marc Soucy

Amitabh Varshney

1

Preface

Course Summary
This course summarizes the best current techniques for simplifying complex polygonal surface models
in order to accelerate rendering, speed network transmission, and conserve memory. The construction
and use of multiresolution models that describe 3-D shapes at multiple levels of detail will be covered.
Applications in CAD, Web publishing, geographic information systems, computer vision, and virtual
reality will be discussed.

Course Objectives
Attendees will learn techniques for simplifying complex models and building multiresolution models.
The algorithms covered include methods for terrains, methods for manifolds (simple 3-D surface mod-
els), and non-manifold surfaces (any set of polygons). Attendees will learn about free and commercial
software, how the best algorithms work, and about open research problems.

Course Prerequisites
Understanding of 3-D geometry, simple polygon modeling techniques, and simple spatial data struc-
tures.

Intended Audience
Users, developers, and researchers working with complex polygonal models.

Level
Intermediate.

Course Notes
The papers include previously published and forthcoming papers and technical reports, and notes writ-
ten specially for this course. Material is grouped by speaker, with slides following papers. The printed
notes and SIGGRAPH ’97 CD ROM contain identical material, except that some papers and slides on
the CD ROM contain color images that appear in grayscale in the printed notes, and there is one set of
slides on the CD ROM that does not appear in the printed notes.

Software
Other information (software, data, etc.) associated with this course that is not in these course notes is
available on the World Web Web at http://www.cs.cmu.edu/∼ph/mcourse97.html .

2

Contents

Paul Heckbert

• Survey of Polygonal Surface Simplification Algorithms,
Paul S. Heckbert and Michael Garland, tech. report, CS Dept., Carnegie Mellon U., to appear.

• Multiresolution Modeling for Fast Rendering,
Paul S. Heckbert and Michael Garland, Proc. Graphics Interface ’94, Canadian Inf. Proc. Soc., Banff, May
1994, pp. 43–50.

• Fast Triangular Approximation of Terrains and Height Fields,
Michael Garland and Paul S. Heckbert, submitted for publication.

• Algorithms for Surface Simplification,
Paul Heckbert and Michael Garland, slides.

Jarek Rossignac

• Geometric Simplification and Compression,
Jarek Rossignac.

Hugues Hoppe

• Mesh Optimization,
Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle, SIGGRAPH ’93 Proc.,
Aug. 1993, pp. 19–26.

• Progressive Meshes,
Hugues Hoppe, SIGGRAPH ’96 Proc., Aug. 1996, pp. 99–108.

• View-Dependent Refinement of Progressive Meshes,
Hugues Hoppe, SIGGRAPH ’97 Proc., Aug. 1997.

• Progressive Simplicial Complexes,
Jovan Popović and Hugues Hoppe, SIGGRAPH ’97 Proc., Aug. 1997.

• Progressive Meshes and Recent Extensions,
Hugues Hoppe, slides, 6 per page.

• Progressive Meshes and Recent Extensions,
Hugues Hoppe, slides, 1 per page, with notes. This document is not in the printed notes.

3

William Schroeder

• Decimation of Triangle Meshes,
William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen, SIGGRAPH ’92 Proc., July 1992, pp. 65–
70.

• A Compact Cell Structure for Scientific Visualization,
William J. Schroeder and Boris Yamrom. (From the book The Visualization Toolkit, An Object-Oriented Ap-
proach To 3D Graphics, Will Schroeder, Ken Martin, and Bill Lorensen, Prentice Hall, 1996.)

• A Topology Modifying Progressive Decimation Algorithm,
William J. Schroeder, submitted for publication.

• Decimation of Triangle Meshes,
William J. Schroeder, slides.

Marc Soucy

• InnovMetric’s Multiresolution Modeling Algorithms,
Marc Soucy.

Amitabh Varshney

• A Hierarchy of Techniques for Simplifying Polygonal Models,
Amitabh Varshney.

• Optimizing Triangle Strips for Fast Rendering,
F. Evans, S. Skiena, and A. Varshney, IEEE Visualization ’96 Proc., Oct. 1996.

• Simplification Envelopes,
J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P. Brooks, Jr., and W. V. Wright, SIG-
GRAPH ’96 Proc., Aug. 1996, pp. 119–128.

• Controlled Topology Simplification,
T. He, L. Hong, A. Varshney, and S. Wang, IEEE Trans. on Visualization & Computer Graphics, 2(2), June
1996, pp. 171–184.

• Adaptive Real-Time Level-of-detail-based Rendering for Polygonal Models,
J. Xia, J. El-Sana, and A. Varshney, IEEE Trans. on Visualization & Computer Graphics, June 1997.

• A Hierarchy of Techniques for Simplifying Polygonal Models,
Amitabh Varshney, slides.

4

Speaker Biographies

Paul S. Heckbert
Assistant Professor
Computer Science Dept.
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh PA 15213-3891

Email: ph@cs.cmu.edu
Web: http://www.cs.cmu.edu/∼ph

Paul Heckbert is an Assistant Professor of Computer Science at Carnegie Mellon University. His research
interests are computer graphics and rendering and modeling, specifically multiresolution surface modeling,
radiosity, mesh generation, and texture mapping. Heckbert has a BS in Mathematics from MIT, and MS and
PhD in Computer Science from the University of California at Berkeley. Previously he worked at the New
York Institute of Technology Computer Graphics Lab and at Pixar, and he edited the book Graphics Gems
IV.

Hugues Hoppe
Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphics/hoppe/

Hugues Hoppe is a researcher in the Computer Graphics Group of Microsoft Research. His main area of
interest is geometric modeling. Recently, his efforts have focused on level-of-detail (multiresolution) repre-
sentations for storage, transmission, and rendering of complex polygonal models. He has also done research
on the reconstruction of geometric models from 3D scanned data. He received a BS in electrical engineering
in 1989 and a PhD in computer science and engineering in 1994 from the University of Washington.

5

Jarek Rossignac
Director of GVU Center, Professor in the College of Computing
Graphics, Visualization, and Usability Center
Georgia Institute of Technology, CoC 241
Atlanta, GA 30332-0280

Email: jarek@cc.gatech.edu
Web: http://www.cc.gatech.edu/gvu/people/jarek.rossignac

Jarek Rossignac is Professor in the College of Computing at Georgia Institute of Technology and the Director
of GVU, Georgia Tech’s Graphics, Visualization, and Usability Center. Prior to joining Georgia Tech, Jarek
was the strategist for Visualization and the Senior Manager of the Visualization, Interaction, and Graphics
department at IBM Research, where he managed research groups involved in 3D modeling, design review,
scientific visualization, medical imaging, and VR. His research interests focus on 3D geometric modeling
and on interactive and intuitive techniques for collaborative 3D design and inspection. Jarek co-invented
simplification and 3D compression techniques currently used in IBM’s 3D Interaction Accelerator, an inter-
active viewer for the collaborative inspection of highly complex 3D CAD models, which he managed, along
with two other IBM visualization products. Jarek holds a PhD in EE from the University of Rochester, New
York in the area of Solid Modeling.

William (Will) J. Schroeder
Computational Scientist
GE Corporate R&D Center, KW-C219
1 Research Circle
Niskayuna, NY 12309

Email: schroeder@crd.ge.com
Web: http://www.crd.ge.com/∼schroede/

Will Schroeder is a computational scientist at GE’s Research & Development Center. He has designed the
object-oriented VISAGE visualization system used throughout GE. Will’s contributions to the visualization
field include the decimation polygon reduction algorithm, the stream polygon for vector/tensor visualization,
and swept surfaces for motion representation. Dr. Schroeder received a BS in mechanical engineering at the
University of Maryland, and MS and PhD in applied mathematics at Rensselaer Polytechnic Institute.

6

Marc Soucy
President
InnovMetric Software Inc.
2065 Charest Ouest, Suite 218
Ste-Foy, Quebec
CANADA G1N 2G1

Email: msoucy@innovmetric.com
Web: http://www.innovmetric.com

Marc Soucy is President and R&D Director at InnovMetric Software Inc. He has designed and supervised
the development of POLYWORKS, an integrated suite of software tools for building 3-D models from 3-D
digitizer data. His research interests include registration and integration of 3-D data obtained from multiple
viewpoints, decimation of large polygonal models, and the use of texture mapping for creating compact ge-
ometric representations that can be displayed in real-time. Marc Soucy received the BSc and PhD degrees
in Electrical Engineering from Laval University, Quebec, Canada, in 1988 and 1992 respectively.

Amitabh Varshney
Assistant Professor
Dept. of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794-4400, USA

Email: varshney@cs.sunysb.edu
Web: http://www.cs.sunysb.edu/∼varshney/

Amitabh Varshney is an Assistant Professor of Computer Science at the State University of New York at
Stony Brook. Varshney’s research focus is on exploring the applications of virtual reality in engineering,
science, medicine, and commerce. His research interests are in three-dimensional interactive graphics, geo-
metric modeling, molecular graphics, and scientific visualization. Varshney received a B. Tech. in Computer
Science from the Indian Institute of Technology, Delhi in 1989 and a M.S. and Ph.D. in Computer Science
from the University of North Carolina at Chapel Hill in 1991 and 1994.

7

Survey of Polygonal Surface Simplification Algorithms

Paul S. Heckbert and Michael Garland

1 May 1997

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Multiresolution Surface Modeling Course
SIGGRAPH ’97

This is a draft of a Carnegie Mellon University technical report, to appear. See
http://www.cs.cmu.edu/∼ph for final version.

Send comments or corrections to the authors at: fph,garlandg@cs.cmu.edu

Abstract

This paper surveys methods for simplifying and approximating polygonal surfaces. A polygonal surface is a piecewise-
linear surface in 3-D defined by a set of polygons; typically a set of triangles. Methods from computer graphics, com-
puter vision, cartography, computational geometry, and other fields are classified, summarized, and compared both
practically and theoretically. The surface types range from height fields (bivariate functions), to manifolds, to non-
manifold self-intersecting surfaces. Piecewise-linear curve simplification is also briefly surveyed.

This work was supported by ARPA contract F19628-93-C-0171 and NSF Young Investigator award CCR-9357763.

Keywords: multiresolution modeling, surface approx-
imation, piecewise-linear surface, triangulated irregular
network, mesh coarsening, decimation, non-manifold,
cartographic generalization, curve simplification, level of
detail, greedy insertion.

Contents

1 Introduction 1
1.1 Characterizing Algorithms 2
1.2 Background on Application Areas 2

2 Curve Simplification 4

3 Surface Simplification 5
3.1 Height Fields and Parametric Sur-

faces 6
3.2 Manifold Surfaces 16
3.3 Non-Manifold Surfaces 22
3.4 Related Techniques 23

4 Conclusions 23

5 Acknowledgements 23

6 References 24

1 Introduction

The simplification of surfaces has become increasingly
important as it has become possible in recent years to cre-
ate models of greater and greater detail. Detailed sur-
face models are generated in a number of disciplines. For
example, in computer vision, range data is captured us-
ing scanners; in scientific visualization, isosurfaces are
extracted from volume data with the “marching cubes”
algorithm; in remote sensing, terrain data is acquired
from satellite photographs; and in computer graphics and
computer-aided geometric design, polygonal models are
generated by subdivision of curved parametric surfaces.
Each of these techniques can easily generate surface mod-
els consisting of millions of polygons.

Simplification is useful in order to make storage, trans-
mission, computation, and display more efficient. A com-
pact approximation of a shape can reduce disk and mem-
ory requirements and can speed network transmission. It
can also accelerate a number of computations involving
shape information, such as finite element analysis, colli-
sion detection, visibility testing, shape recognition, and
display. Reducing the number of polygons in a model can
make the difference between slow display and real time

display.

A variety of methods for simplifying curves and sur-
faces have been explored over the years. Work on this
topic is spread among a number of fields, making literature
search quite challenging. These fields include: cartogra-
phy, geographic information systems (GIS), virtual real-
ity, computer vision, computer graphics, scientific visual-
ization, computer-aided geometric design, finite element
methods, approximation theory, and computational geom-
etry.

Some prior surveys of related methods exist, notably a
bibliography on approximation [45], a survey of spatial
data structures for curves and surfaces [106], and surveys
of triangulation methods with both theoretical [6] and sci-
entific visualization [89] orientations. None of these sur-
veys surface simplification in depth, however.

The present paper attempts to survey all previous work
on surface simplification and place the algorithms in a tax-
onomy. In this taxonomy, we intermix algorithms from
various fields, classifying algorithms not according to the
application for which they were designed, but according
to the technical problem they solve. By doing so, we
find great similarities between algorithms from disparate
fields. For example, we find common ground between
methods for representing terrains developed in cartogra-
phy, methods for approximating bivariate functions devel-
oped in computational geometry and approximation the-
ory, and methods for approximating range data developed
in computer vision. This is not too surprising, since these
are fundamentally the same technical problem. By calling
attention to these similarities, and to the past duplication
of work, we hope to facilitate cross-fertilization between
disciplines.

Our emphasis is on methods that take polygonal sur-
faces as input and produce polygonal surfaces as output,
although we touch on curved parametric surface and vol-
ume techniques. Our polygons will typically be planar tri-
angles. Although surface simplification is our primary in-
terest, we also discuss curve simplification, because many
surface methods are simple generalizations of curve meth-
ods.

1

1.1 Characterizing Algorithms

Methods for simplifying curves and surfaces vary in their
generality and approach – among surface methods, some
are limited to height fields, for example, while others are
applicable to general surfaces in 3-D. To systematize our
taxonomy, we will classify methods according to the prob-
lems that they solve and the algorithms they employ. Be-
low is a list of the primary characteristics with which we
will do so:

Problem Characteristics

Topology and Geometry of Input: For curves, the
input can be a set of points, a function y(x), a
planar curve, or a space curve. For surfaces, the
input can be a set of points, samples of a height
field z(x, y) in a regular grid or at scattered
points, a manifold1, a manifold with boundary,
or a set of surfaces with arbitrary topology (e.g.
a set of intersecting polygons).

Other Attributes of Input: Color, texture, and sur-
face normals might be provided in addition to
geometry.

Domain of Output Vertices: Vertices of the output
can be restricted to be a subset of the input
points, or they can come from the continuous
domain.

Structure of Output Triangulation: Meshes can
be regular grids, they can come from a hier-
archical subdivision such as a quadtree, or
they can be a general subdivision such as a
Delaunay or data-dependent triangulation.

Approximating Elements: The approximating
curve or surface elements can be piecewise-
linear (polygonal), quadratic, cubic, high
degree polynomial, or some other basis
function.

Error Metric: The error of the approximation is
typically measured and minimized with respect

1A manifold is a surface for which the infinitesimal neighborhood of
every point is topologically equivalent to a disk. In a triangulated mani-
fold, each edge belongs to two triangles. In a triangulated manifold with
boundary, each edge belongs to one or two triangles.

to L2 or L∞ error2. Distances can be measured
in various ways, e.g., to the closest point on a
given polygon, or closest point on the entire sur-
face.

Constraints on Solution: One might request the
most accurate approximation possible using a
given number of elements (e.g. line segments
or triangles), or one might request the solu-
tion using the minimum number of elements
that satisfies a given error tolerance. Some
algorithms give neither type of guarantee, but
give the user only indirect control over the
speed/quality tradeoff. Other possible con-
straints include limits on the time or memory
available.

Algorithm Characteristics

Speed/Quality Tradeoff: Algorithms that are opti-
mal (minimal error and size) are typically slow,
while algorithms that generate lower quality or
less compact approximations can generally be
faster.

Refinement/Decimation: Many algorithms can
be characterized as using either refinement, a
coarse-to-fine approach starting with a minimal
approximation and building up more and more
accurate ones, or decimation, a fine-to-coarse
approach starting with an exact fit, and dis-
carding details to create less and less accurate
approximations.

1.2 Background on Application Areas

The motivations for surface simplification differ from field
to field. Terminology differs as well.

2In this paper, we use the following error metrics: We define the L2

error between two n-vectors u and v as ||u−v||2 =
[∑n

i=1(ui − vi)
2
]1/2

.
The L∞ error, also called the maximum error, is ||u − v||∞ =
maxn

i=1 |ui − vi|. We define the squared error to be the square of the L2
error, and the root mean square or RMS error to be the L2 error divided
by
√

n. Optimization with respect to the L2 and L∞ metrics are called
least squares and minimax optimization, and we call such solutions L2–
optimal and L∞–optimal, respectively.

2

Cartography. In cartography, simplification is one
method among many for the “generalization” of geo-
graphic information [86]. In that field, curve simplifica-
tion is called “line generalization”. It is used to simplify
the representations of rivers, roads, coastlines, and other
features when a map with large scale is produced. It is
needed for several reasons: to remove unnecessary detail
for aesthetic reasons, to save memory/disk space, and to
reduce plotting/display time. The principal surface type
simplified in cartography is, of course, the terrain. Map
production was formerly a slow, off-line activity, but it
is currently becoming more interactive, necessitating the
development of better simplification algorithms.

The ideal error measures for cartographic simplification
include considerations of geometric error, viewer interest,
and data semantics. Treatment of the latter issues is be-
yond the scope of this study. The algorithms summarized
here typically employ a geometric error measure based on
Euclidean distance. The problem is thus to retain features
larger than some size threshold, typically determined by
the limits of the viewer’s perception, the resolution of the
display device, or the available time or memory.

Computer Vision. Range data acquired by stereo or
structured light techniques (e.g. lasers) can easily produce
millions of data points. It is desirable to simplify the sur-
face models created from this data in order to remove re-
dundancy, save space, and speed display and recognition
tasks. The acquired data is often noisy, so tolerance of and
smoothing of noise are important considerations here.

Computer Graphics. In computer graphics and the
closely related fields of virtual reality, computer-aided ge-
ometric design, and scientific visualization, compact stor-
age and fast display of shape information are vital. For
interactive applications such as military flight simulators,
video games, and computer-aided design, real time perfor-
mance is a very important goal. For such applications, the
geometry can be simplified to multiple levels of detail, and
display can switch or blend between the appropriate lev-
els of detail as a function of the screen size of each object
[13, 52]. This technique is called multiresolution model-
ing. Redisplaying a static scene from a moving viewpoint
is often called a walkthrough. For off-line, more realistic

simulations such as special effects in entertainment, real
time is not vital, but reasonable speed and storage are nev-
ertheless important.

When 3-D shape models are transmitted, compression is
very important. This applies whether the channel has very
low bandwidth (e.g. a modem) or higher bandwidth (e.g.
the Internet backbone). The rapid growth of the World
Wide Web is spurring some of the current work in surface
simplification.

Finite Element Analysis. Engineers use the finite ele-
ment method for structural analysis of bridges, to simulate
the air flow around airplanes, and to simulate electromag-
netic fields, among other applications. A preprocess to
simulation is a “mesh generation” step. In 2-D mesh gen-
eration, the domain, bounded by curves, is subdivided into
triangles or quadrilaterals. In 3-D mesh generation, the do-
main is given by boundary surfaces. Surface meshes of tri-
angles or quadrilaterals are first constructed, and then the
volume is subdivided into tetrahedra or hexahedra. The
criteria for a good mesh include both geometric fidelity
and considerations of the physical phenomena being simu-
lated (stress, flow, etc). To speed simulation, it is desirable
to make the mesh as coarse as possible while still resolving
the physical features of interest. In 3-D simulations, sur-
face details such as bolt heads might be eliminated, for ex-
ample, before meshing the volume. This community calls
simplification “mesh coarsening”.

Approximation Theory and Computational Geometry.
What is called a terrain in cartography or a height field in
computer graphics is called a bivariate function or a func-
tion of two variables in more theoretical fields. The goal in
approximation theory is often to characterize the error in
the limit as the mesh becomes infinitely fine. In compu-
tational geometry the goal is typically to find algorithms
to generate approximations with optimal or near-optimal
compactness, error, or speed or to prove bounds on these.
Implementation of algorithms and low level practical op-
timizations receive less attention.

3

2 Curve Simplification

Curve simplification has been used in cartography, com-
puter vision, computer graphics, and a number of other
fields.

A basic curve simplification problem is to take a poly-
gonized curve with n vertices (a chain of line segments or
“polyline”) as input and produce an approximating poly-
gonized curve with m vertices as output. A closely related
problem is to take a curve with n vertices and approximate
it within a specified error tolerance.

Douglas-Peucker Algorithm. The most widely used
high-quality curve simplification algorithm is probably the
heuristic method commonly called the Douglas-Peucker3

algorithm. It was independently invented by many peo-
ple [99], [31], [30, p. 338], [5, p. 92], [125], [91, p.
176], [3]. At each step, the Douglas-Peucker algorithm at-
tempts to approximate a sequence of points by a line seg-
ment from the first point to the last point. The point far-
thest from this line segment is found, and if the distance
is below threshold, the approximation is accepted, other-
wise the algorithm is recursively applied to the two sub-
sequences before and after the chosen point. This algo-
rithm, though not optimal, has generally been found to
produce the highest subjective- and objective-quality ap-
proximations when compared with many other heuristic
algorithms [85, 130]. Its best case time cost4 is �(n), its
worst case cost is O(mn), and its expected time cost is
about 2(n logm). The worst case behavior can be im-
proved, with some sacrifice in the best case behavior, us-
ing a2(n logn) algorithm employing convex hulls [54].

A variant of the Douglas-Peucker algorithm described
by Ballard and Brown [4, p. 234] on each iteration splits
at the point of highest error along the whole curve, instead
of splitting recursively. This yields higher quality approx-
imations for slightly more time. If this subdivision tree is

3Pronounced, and later spelled, due to name change, “Poiker”.
4A function is in O(f (n)) if it is less than or equal to c f (n) as n→∞,

for some positive constant c. “O” is used for upper bounds.
A function is in2(f (n)) if it is between c1 f (n) and c2 f (n) as n→∞,
for some positive constants c1, c2.
A function is in�(f (n)) if it is greater than or equal to c f (n) as n→∞,
for some positive constant c. “�” is used for lower bounds.

saved, it is possible to dynamically build an approximation
for any larger error tolerance very quickly [18].

A potential problem is that simplification can cause a
simple polygon to become self-intersecting. This could be
a problem in cartographic applications.

Faster or Higher Quality Algorithms. There are faster
algorithms than Douglas-Peucker, but all of these are
generally believed to have inferior quality [84]. One
such algorithm is the trivial method of regular subsam-
pling (known as the “nth-point algorithm” in cartography),
which simply keeps every kth point of the input, for some
k, discarding the rest. This algorithm is very fast, but will
sometimes yield very poor quality approximations.

Least squares techniques are commonly used for curve
fitting in pattern recognition and computer vision, but they
do not appear to be widely used for that purpose in cartog-
raphy.

Polygonal Boundary Reduction. While the Douglas-
Peucker algorithm and its variants are refinement algo-
rithms, curves can also be simplified using decimation
methods. Boxer et al. [8] describe two such algorithms
for simplifying 2-D polygons. The first, due to Leu and
Chen [75], is a simple decimation algorithm. It considers
boundary arcs of 2 and 3 edges. For each arc, it computes
the maximum distance between the arc and the chord con-
necting its endpoints. It then selects an independent set of
arcs whose deviation is less than some threshold, and re-
places them by their chords. The second algorithm is an
improvement of this basic algorithm which guarantees that
the approximate curve is always within some bounded dis-
tance from the original. They state that the running time of
the simple algorithm is 2(n), while the bounded-error al-
gorithm requires O(n+ r2) time where r is the number of
vertices removed.

Optimal Approximations. Algorithms for optimal
curve simplification are much less common than heuristic
methods, probably because they are slower and/or more
complicated to implement. In a common form of optimal
curve simplification, one searches for the approximation
of a given size with minimum error, according to some

4

definition of “error”. Typically the output vertices are
restricted to be a subset of the input vertices. A naive,
exhaustive algorithm would have exponential cost, since
the number of subsets is exponential, but using dynamic
programming and/or geometric properties, the cost can be
reduced to polynomial. The L2–optimal approximation
to a function y(x) can be found in O(mn2) time, worst
case, using dynamic programming. Remarkably, a slight
variation in the error metric permits a much faster algo-
rithm: the L∞–optimal approximation to a function can
be found in O(n) time [63], using visibility techniques
(see also [123, 91]). When the problem is generalized
from functions to planar curves, the complexity of the best
L∞–optimal algorithms we know of jumps to O(n2 log n)
[63]. These methods use shortest-path graph algorithms
or convex hulls. For space curves (curves in 3-D), there
are O(n3 log m) L∞–optimal algorithms [62].

Asymptotic Approximation. In related work, McClure
and de Boor analyzed the error when approximating
a highly continuous function y(x) using piecewise-
polynomials with variable knots [82, 21]. We discuss
only the special case of piecewise-linear approximations.
They analyzed the asymptotic behavior of the Lp error of
approximation in the limit as m, the number of vertices
(knots) of the approximation, goes to infinity. They
showed that the asymptotic Lp error with regular subsam-
pling is proportional to m−2, for any p. The Lp–optimal
approximation has the same asymptotic behavior, though
with a smaller constant. McClure showed that the spacing
of vertices in the optimal approximation is closely re-
lated to the function’s second derivative. Specifically, he
proved that as m→∞, the density of vertices at each point
in the optimal L2 approximation becomes proportional to
|y′′(x)|2/5. For optimal L∞ approximations, the density is
proportional to |y′′(x)|1/2. Also, as m→∞, all intervals
have equal error in an Lp–optimal approximation.

The density property and the balanced error property
described above can be used as the basis for curve sim-
plification algorithms [82]. Although adherence to nei-
ther property guarantees optimality for real simplification
problems with finite m, iterative balanced error methods
have been shown to generate good approximations in prac-
tice [91, p. 181]. Another caveat is that many curves in na-
ture do not have continuous derivatives, but instead have

some fractal characteristics [80]. Nevertheless, these theo-
retical results suggest the importance of the second deriva-
tive, and hence curvature, in the simplification of curves
and surfaces.

Summary of Curve Simplification. The Douglas-
Peucker algorithm is probably the most commonly
used curve simplification algorithm. Most implemen-
tations have O(mn) cost, worst case, but typical cost
of 2(n logm). An optimization with worst case cost of
O(n logn) is available, however. Optimal simplification
typically has quadratic or cubic cost, making it impractical
for large inputs.

3 Surface Simplification

Surfaces are more difficult to simplify than curves. In the
flight simulator field, lower level of detail models have
traditionally been prepared by hand [17]. The results can
be excellent, but the process can take weeks. Automatic
methods are preferable for large and dynamic databases,
however.

If only a single level of detail is needed, then in some
cases, simplification can be obviated by simply avoiding
generation of redundant data in the first place. In scientific
visualization, for example, the marching cubes algorithm
[90] is widely used. It generates many tiny triangles with-
out testing for coplanarity between neighbors. A more so-
phisticated alternative is adaptive polygonization that sub-
divides finely only where the surface is highly curved [7].
In computer aided geometric design, when polygonizing
parametric surfaces, rather than subdivide and polygonize
a surface with a regular (u, v) grid, better results are of-
ten possible by subdividing adaptively based on curvature
[10].

When simplification is needed however, one of the al-
gorithms summarized below can be used.

Taxonomy of Surface Simplification Algorithms. We
categorize algorithms at the highest level according to the
class of surfaces on which they operate:

• height fields and parametric surfaces,

5

• manifold surfaces, and

• non-manifold surfaces.

Within each surface class we often group algorithms ac-
cording to whether they work by refinement or decima-
tion. Within the subclasses, methods are generally listed
chronologically. We have attempted to be fairly compre-
hensive, so consequently the good methods are described
along with the bad. As we summarize algorithms, we
list their computational complexities and quote empirical
times, where known (of course, hardware, compilers, lan-
guages, and programming styles differ between individu-
als, so we must be careful when judging based on this in-
formation). Complexities are given in terms of n, the num-
ber of vertices in the input, and m, the number of vertices
in the output. Typically, m� n.

3.1 Height Fields and Parametric Surfaces

Height fields and parametric surfaces are the simplest
class of surfaces. Within this class of surfaces, we divide
methods into the following six sub-classes: regular grid
methods, hierarchical subdivision methods, feature meth-
ods, refinement methods, decimation methods, and opti-
mal methods.

Regular grid methods are the simplest techniques, us-
ing a grid of samples equally and periodically spaced in
x and y. The hierarchical subdivision methods are based
on quadtree, k-d tree, and hierarchical triangulations us-
ing a divide and conquer strategy. They recursively subdi-
vide the surface into regions, constructing a tree-structured
hierarchy. The next four categories employ more general
subdivision and triangulation methods, most commonly
Delaunay triangulation. Feature methods select a set of
important “feature” points in one pass and use them as
the vertex set for triangulation. Refinement methods are
essentially generalizations of the Douglas-Peucker algo-
rithm from curves to surfaces, where intervals are replaced
by triangles and splitting is replaced by retriangulating.
They start with a minimal approximation and use multiple
passes of point selection and retriangulation to build up the
final triangulation. Decimation methods use an approach
opposite that of refinement methods: they begin with a tri-
angulation of all of the input points and iteratively delete

vertices from the triangulation, gradually simplifying the
approximation. Refinement methods thus work top-down,
while decimation methods work bottom-up. The final cat-
egory, “optimal methods” are distinguished more for their
theoretical focus than for their method.

For many height field simplification tasks, the input is a
height field and the output is a general triangulation, called
a triangulated irregular network, or TIN, in cartography.
A TIN is a mesh of triangles where height is a function of
x and y: H(x, y). Examples of a height field and general
triangulation are shown in Figures 1 and 2.

3.1.1 Triangulation

Most polygonal surface simplification methods employ
triangles as their approximating elements when construct-
ing a surface. For height fields and parametric surfaces,
there is a natural 2-D parameterization of the surface. Ba-
sic triangulation methods are described in a 2-D domain,
or in a 3-D domain where height z is a function of x and y.

In general, the topology of the triangulation can be cho-
sen using only the xy projections of the input points, or it
can be chosen using the heights of the input points as well.
The latter approach is called data-dependent triangulation
[32].

The most popular triangulation method that does not use
height values is Delaunay triangulation; it is a purely two-
dimensional method. Delaunay triangulation finds the tri-
angulation that maximizes the minimum angle of all tri-
angles, among all triangulations of a given point set. This
helps to minimize the occurrence of very thin sliver trian-
gles. Delaunay triangulations have a number of nice the-
oretical properties that make them very popular in com-
putational geometry. In a Delaunay triangulation, the cir-
cumscribing circle (circumcircle) of each triangle contains
no vertices in its interior [71]. Delaunay triangulations
of m points can either be computed whole, using divide-
and-conqueror sweepline algorithms, or incrementally, by
inserting vertices one at a time, updating the triangula-
tion after each insertion [48]. The former approach has
cost O(m logm), while the latter, incremental method has
worst case cost of O(m2). Typical costs for the incremen-
tal approach are much better than quadratic, however.

6

Figure 1: Top view of a regular grid triangu-
lation of 65× 65 height field.

Figure 2: A triangulation using 512 vertices
approximating the height field.

Sometimes equilateral triangles are not optimal, and
maximization of the minimum angle is not the appropriate
goal. Triangulation methods that attempt to optimize the
approximation of z or other data associated with the trian-
gulation are called data-dependent triangulation methods.
Several researchers have shown that slivers can be good
when the surface being approximated is highly curved in
one direction, but not the other [102, 88, 20, 32]. Such
slivers would not be generated by Delaunay triangulation,
which minimizes slivers by tending to choose “fat” trian-
gles.

3.1.2 Regular Grid Methods

The simplest method for approximation of surface grids
is regular subsampling, in which the points in every kth
row and column are kept and formed into a grid, and all
other points are discarded. Regular grids are also known
as uniform grids, and sometimes the term DEM (digital el-
evation model) is used in the specific sense of a regular
grid terrain model. As with curves, regular subsampling
is simple and fast, but low quality, since the points dis-
carded might be the most important ones. The results are

improved if a low pass filter [51] is run across the data be-
fore subsampling, but this still does not fix the basic prob-
lem with this method, its non-adaptive nature.

Kumler 94. An extensive comparison of regular grids
(DEMs) and general triangulations (TINs), and the
space/error tradeoffs between them, was done by Kumler
[70]. He concluded, surprisingly, that for a given amount
of storage space, regular grids approximate terrains
better than general triangulations. His comparison seems
biased against general triangulations, however, since
he compares models of equal memory size, not equal
rendering time, and the simplification algorithms he uses
are not the best known [39]. Kumler assumes that general
triangulations require three to ten times the memory of
regular grids with the same number of vertices.

Pyramids. Regular subsampling can be done hierarchi-
cally, forming a pyramid of samples [131, 121]. Despite
the wealth of research on hierarchical triangulations and
TINs, pyramids are probably the most widely used type
of multiresolution terrain model in the simulator commu-

7

nity [16, 17] and in the visualization/animation commu-
nity [60], because of their simplicity and compactness.

3.1.3 Hierarchical Subdivision Methods

Hierarchical subdivision methods construct a triangula-
tion by recursively subdividing a surface. They are the
adaptive form of pyramids. The hierarchical pattern of
subdivision, even if not stored explicitly in the data struc-
ture, forms a tree, each node of which has no more than one
parent. With Delaunay triangulation and other general tri-
angulation algorithms, the topology is not hierarchical, be-
cause a triangle might have multiple parents. Hierarchical
subdivision methods are generally fast, simple, and they
facilitate multiresolution modeling. In perspective scenes
where nearby portions of the terrain require more detail
than distant regions, the hierarchy facilitates rendering at
adaptive levels of detail. Nearby portions are drawn at at a
fine level, while distant regions are drawn at a coarse level.
The penalty for their simplicity and speed is that hierar-
chical subdivision methods typically yield poorer quality
approximations than more general triangulation methods.

Quadtrees and k-d Trees. Terrains and parametric sur-
faces are easily simplified using adaptive quadtree and k-d
tree subdivision methods [106, 105]. DeHaemer and Zyda
used quadtree and k-d tree splitting at the point of max-
imum error within each cell to approximate general 3-D
surfaces described by a grid [27]. Taylor and Barrett de-
scribed a similar method for terrains [122]. Von Herzen
and Barr discuss a method for crack-free adaptive triangu-
lation of parametric surfaces using quadtrees [128]. Gross,
Gatti, and Staadt have used wavelets to construct quadtree
approximations of height fields [44]. With an unoptimized
implementation, they were able to simplify a 256×256 ter-
rain in about 2 seconds on an SGI Indy.

Gómez-Guzmán 79. A quaternary triangulation
method for height field approximation was proposed by
Gómez and Guzmán [42]. In their method, each triangle
is recursively subdivided into four subtriangles until
a maximum error tolerance is met. To subdivide each
triangle, a “significant” point near the midpoint of each
edge is chosen (in some unspecified way), and the triangle

is split into four nearly congruent triangles (Figure 3).
Since the new vertices are not constrained to lie on the
edges, however, the surface develops unsightly cracks,
rendering the method unsuitable for most purposes.

De Floriani-Falcidieno-Nagy-Pienovi 84. In 1984, De
Floriani et al. published a hierarchical ternary triangula-
tion method in which points are inserted in triangle inte-
riors and each triangle is split into three subtriangles by
adding edges to its vertices [23]. No edge swapping is
done (Figure 4). Consequently, all of the initial edges
remain in the triangulation forever, most notably the di-
agonal across the entire grid rectangle, leading to spuri-
ous knife-edge ridges and valleys through the terrain. The
flaws of this method make it unacceptable.

Schmitt 85. Schmitt and Gholizadeh simplified a grid
with rectangular topology in 3-D using a triangulated sur-
face [112]. Their method is similar to that of Faugeras
et al. [34], described later. Having the input points in a
grid allows the partition of points into triangles to be done
in a two dimensional parametric space. The method be-
gins with a small number of triangles and repeatedly splits
those triangles whose associated input points are above the
error tolerance. Triangles are subdivided into 2–4 subtri-
angles by splitting one, two, or three edges of the triangle.
Triangle splitting is done in no particular order. They re-
port that simplifying a grid of n=288×360 points down
to about m=3,500 points takes 1.5 hours on a DEC VAX
780. The computational complexity of their algorithm is
O(mn).

Scarlatos-Pavlidis 92a. The hierarchical triangulation
algorithm for height fields developed by Scarlatos and
Pavlidis employs a recursive triangulation approach [108,
107]. Their method begins with a minimal triangulation
(typically two triangles) as level of detail 0. Error toler-
ances for each level of detail in the tree are specified by the
user. To create level i from level i−1, the point of highest
error along each triangle edge and in each triangle interior
is found, those points with error above the threshold for
level i are taken as new vertices, and each triangle is retri-
angulated using one of five simple subdivision templates
(Figure 5). Passes of vertex selection and retriangulation

8

Figure 3: Quaternary triangulation. Figure 4: Ternary triangulation.

or or or or

Figure 5: Subdivision templates for Scarlatos and Pavlidis’ hierarchical triangulation.

for level i are repeated until no more candidates for that
level are found. All levels of the hierarchy are retained in
the data structure, facilitating adaptive display at any de-
sired detail level. In their analysis, Scarlatos and Pavlidis
suggest that the cost of the algorithm is O(n logn). Our
analysis of their algorithm is that their expected case is
O(n logm), but if the hierarchy is very unbalanced, the
worst case cost is O(mn).

De Floriani-Puppo 92. A similar method was devel-
oped by De Floriani and Puppo [26]. The triangle subdivi-
sion is more general, however. To subdivide a triangle for
a given level in the hierarchy, a curve approximation algo-
rithm [4] is used to add new vertices along the edges, then
additional points are inserted in the interior of the trian-
gle until the error threshold is met throughout the triangle,
and the interior of the triangle is retriangulated using De-
launay triangulation. The method appears to have nearly
identical flexibility and speed compared to Scarlatos and
Pavlidis’ method [108], but it will probably yield slightly
better simplification for a given error threshold.

3.1.4 Feature Methods

A simple, intuitive approach to height field simplification
is to make one pass over the input points, ranking each of
them using some “importance” measure, to select the most
important points as the vertex set, and construct a triangu-
lation of these points. Typically, Delaunay triangulation
is used. Feature methods are quite popular in cartogra-
phy. Overall, our conclusion is that their quality relative
to many of the other methods is inferior, so we only sur-
vey them briefly here.

Important points, also known as “features” or “criti-
cal points” and the edges between them, often known as
“break lines”, include such topographic features as peaks,
pits, ridges, and valleys. The philosophy of many of the
feature approaches is that some knowledge about the na-
ture of terrains is essential for good simplification [129,
108]. In a feature approach, the chosen features become
the vertex set, and the chosen break lines (if any) become
edges in a constrained triangulation [6]. The most com-
monly used feature detectors are 2 × 2 and 3 × 3 lin-
ear or nonlinear filters, sometimes followed by a weeding
process that discards features that are too close together,

9

such as a sequence of points along a ridge line. Such ap-
proaches were employed by Peucker-Douglas and Chen-
Guevara [92, 12]. Some methods examine larger neigh-
borhoods of points in an attempt to measure importance
more globally.

Southard 91. One of the more interesting feature meth-
ods is Southard’s [120]. He uses the Laplacian as a mea-
sure of curvature. The rank of each point’s Laplacian is
computed within a moving window, analogous to a me-
dian filter in image processing, and all points whose rank
is below some threshold are selected. This is an im-
provement over the selection criteria of Peucker-Douglas
and Chen-Guevara cited earlier, because it is less sus-
ceptible to noise and high frequency variations, but un-
fortunately, Southard’s ranking approach tends to dis-
tribute points roughly uniformly across the domain, wast-
ing points and leading to inferior approximations, in many
cases. After computing the Delaunay triangulation of the
selected points, Southard performs a data-dependent re-
triangulation, swapping edges where that would reduce the
sum of the absolute errors along the edges in the triangu-
lation.

3.1.5 Refinement Methods

Refinement methods are multi-pass algorithms that begin
with a minimal initial approximation, on each pass they
insert one or more points as vertices in the triangulation,
and repeat until the desired error is achieved or the desired
number of vertices is used. For input data in a rectangular
grid, the minimal approximation is two triangles; for other
topologies, the initial approximation might be more com-
plex. Incremental methods are typically used to maintain
the triangulation as refinement proceeds.

To choose points, importance measures much like those
of the feature methods can be used. Whereas feature meth-
ods typically use importance measures that are indepen-
dent of the approximation, in refinement algorithms, the
importance of a given point is usually a measure of the
error between it and the approximation. For a height
field, the most common metric for the error is simply
the maximum absolute value of the vertical error, the L∞
norm. This is the error measure most closely related to the

Douglas-Peucker algorithm.

Greedy Insertion. We call refinement algorithms that
insert the point(s) of highest error on each pass greedy in-
sertion algorithms, “greedy” because they make irrevoca-
ble decisions as they go [15], and “insertion” because on
each pass they insert one or more vertices into the trian-
gulation. Methods that insert a single point in each pass
we call sequential greedy insertion and methods that in-
sert multiple points in parallel on each pass we call paral-
lel greedy insertion. The words “sequential” and “paral-
lel” here refer to the selection and re-evaluation process,
not to the architecture of the machine. Many variations on
the greedy insertion algorithm have been explored over the
years; apparently the algorithm has been reinvented many
times.

Fowler-Little 79. In 1979, Fowler and Little published
a hybrid algorithm that uses an initial pass of feature
selection using 2 × 2 filters to “seed” the triangulation,
followed by multiple passes of parallel greedy insertion
[37]. On each of these latter passes, for each triangle, the
point with highest error, or candidate point, is found, and
all candidate points whose error is above the requested
threshold are inserted into the triangulation. (When the
point of highest error falls on an edge, they expand their
search for the candidate to a sector of the triangle’s circum-
circle, a quirk unique to their algorithm.)

Fowler and Little discussed two methods for finding
candidates. In their exhaustive search method, the error at
each input point is computed and tested against the high-
est error seen so far for that triangle. In the initial passes
of a greedy insertion method, the triangles are big, neces-
sitating the testing of many points, but in later passes the
triangles shrink and less testing per triangle is required.
As a way to speed the selection of candidates, they pro-
pose an alternative method using hill-climbing, in which a
test point is initialized to the center of the triangle, and it
repeatedly steps to the neighboring input point of highest
error until it reaches a local maximum, where it becomes
the candidate. This latter method can be much faster, espe-
cially for the initial passes, but it would also yield poorer
quality approximations in many cases, because the hill
climbing might fail to find the global maximum within the

10

triangle. Unfortunately, Fowler and Little did not show a
comparison of the results of the two methods, and did not
analyze the speed of their algorithm. An approach similar
to Fowler and Little’s was very briefly described by Lee
and Schachter [72].

De Floriani-Falcidieno-Pienovi 83. In 1983, De Flo-
riani et al. presented a sequential greedy insertion algo-
rithm [24, 25]. Their method is purer than Fowler and
Little’s: it does not seed the triangulation using feature
points, and it inserts a single point on each pass, not multi-
ple points. Consequently, the quality of its approximations
can be higher than Fowler and Little’s. The point inserted
in each pass is the point of highest absolute error from the
input point set. To find this point they apparently visit all
input points on each pass, computing errors. Their paper
says that their algorithm has worst case cost of O(n2), but
too few details of the algorithm or its data structures are
provided to verify this. We will refer to this paper and al-
gorithm as “DeFloriani83”.

De Floriani 89. In later work, De Floriani published
an algorithm to build a “Delaunay pyramid” [22], a hier-
archy of Delaunay triangulations, using a variant of her
1983 greedy insertion algorithm to construct each level
of the pyramid. Her 1989 paper describes the greedy in-
sertion algorithm in greater detail than her earlier papers
([24, 25]).

Each triangle stores the set of input points it contains
and the error of its candidate point. On each pass, the set of
triangles is scanned to find the candidate of highest error,
this point is inserted using incremental Delaunay triangu-
lation, and the candidates of all the triangles in the mod-
ified region are recomputed. Recomputing the candidate
of a triangle requires calculating the error at each point in
the triangle’s point set.

De Floriani states that the worst case time cost to create
a complete pyramid of all n points is O(n2). We believe
that the expected time cost of her algorithm, to select and
triangulate m points, is O(n logm+m2) (compare to Al-
gorithm III in [40]).

Because point set traversal is used, rather than triangle
scan conversion [36], this algorithm is not limited to input

points in a regular grid, as are most height field approxima-
tion algorithms. The price of this generality is speed; the
inner loops of a set traversal method cannot be optimized
as much as those of a scan conversion approach.

Heller 90. Heller explored a hybrid technique that he
called “adaptive triangular mesh filtering” [53, p. 168].
This technique is much like Fowler and Little’s. The prin-
cipal difference is that the features are chosen not with
a fixed-size local filter but by checking a variable-sized
neighborhood to determine if each point is a local ex-
tremum within some height threshold. This feature selec-
tion method, while more expensive than Fowler and Lit-
tle’s, probably yields higher quality approximations.

His insertion method is sequential, like that of DeFlo-
riani83. He optimizes the algorithm by storing the set of
candidates, one candidate from each triangle, in a heap5.
Below is an excerpt of Heller’s brief explanation of his al-
gorithm [53, p. 168]:

The [insertion] of a point requires a local retrian-
gulation which consists of swapping all neces-
sary triangles, and readjusting the [importances]
of all affected points. It is clear that the time for
retriangulation is proportional to the number of
readjusted points and the logarithm of the num-
ber of queued points. It is, therefore, advisable
to start the process with as many [feature] points
as possible.

Due to his optimizations, Heller’s algorithm is probably
faster than most others of comparable quality, such as
DeFloriani83, but unfortunately, beyond the statements
quoted above he does not analyze the speed of his algo-
rithm theoretically or empirically. It appears that the ex-
pected complexity of the greedy insertion portion of his
algorithm is O((m+n) logm), like Algorithm III in [40].

Schmitt-Chen 91. In order to segment computer vision
range data into planar regions, Schmitt and Chen use a
two stage process called split-and-merge [110, 91]. The

5Christoph Witzgall has also employed a heap. Personal communi-
cation. 1994.

11

splitting stage is a form of greedy insertion with Delau-
nay triangulation similar to DeFloriani83. The merging
stage joins together adjacent regions with similar normals,
in the process destroying the triangulation, but yielding a
segmentation of the image. Their splitting stage approxi-
mated a height field with n=2562 points using about m=
3,060 vertices in 67 seconds on a DEC VAX 8550.

Scarlatos-Pavlidis 92a and De Floriani-Puppo 92.
The hierarchical triangulation methods of Scarlatos-
Pavlidis [108] and De Floriani-Puppo [26] discussed
earlier are analogous to greedy insertion in many ways,
although their triangulations are quite different. Their
techniques will typically use more triangles to achieve a
given error than sequential greedy insertion with Delau-
nay triangulation, but on the other hand, they have the
advantage of a hierarchy.

Rippa 92. Rippa generalized the greedy insertion algo-
rithm of DeFloriani83 to explore data-dependent triangu-
lation and least squares fitting [101].

In place of incremental Delaunay triangulation, Rippa’s
algorithm computes a data-dependent triangulation using
a version of Lawson’s local optimization procedure [71],
repeatedly swapping edges around a new vertex until the
global error reaches a local minimum. He tested two defi-
nitions of global error. The first is a purely geometric mea-
sure: the sum of the absolute values of the angles between
normals of all pairs of adjacent triangles in the triangula-
tion, and the second is a simple L2 measure: the sum of
squares of absolute vertical errors over all input points.

From experiments with Delaunay and data-dependent
triangulation on several smooth, synthetic functions,
Rippa concluded that data-dependent triangulation usu-
ally yields more accurate approximations using a given
number of vertices than Delaunay triangulation. The
angle criterion performed well in most cases, so he mildly
recommended it over both the L2 criterion and Delaunay
triangulation. Rippa observed that the L2 criterion oc-
casionally allowed long, extremely thin sliver triangles
that did not fit the surface well to enter and remain in
the triangulation. The algorithm failed to eliminate such
triangles because they were so thin that they contained no
input points, and hence they contributed zero error to the

L2 measure.

The angle criterion also made poor choices in some
cases, so Rippa tried a hybrid scheme that on each pass
compares the errors resulting from Delaunay triangula-
tion and data-dependent triangulation with the angle crite-
rion, and updates using the one with the smaller global er-
ror. The hybrid scheme generated high quality approxima-
tions more consistently than the other methods that Rippa
tested. Unfortunately, the hybrid is less elegant, and it ap-
pears slower than the other methods. Margaliot and Gots-
man reported an error measure yielding a better fit than the
angle criterion [81].

Rippa also explored least squares methods that approx-
imate the input points instead of interpolating them. The
(x, y) coordinates of the vertices are frozen, but their
heights are allowed to vary, and the combination of heights
that minimizes the global sum of squared errors is found.
This involves solving a large, sparse, m×m system of lin-
ear equations. He found that high quality results could be
achieved fairly efficiently, on low-noise data, if the least-
squares fitting was done as a post-process to greedy in-
sertion. His empirical tests on simple functions showed
that least squares fitting roughly halved the error of the
standard interpolative methods. Overall, Rippa’s methods
appear expensive (data-dependent triangulation, particu-
larly so) but the resulting approximations are higher qual-
ity than those of simpler sequential greedy insertion meth-
ods. The least squares technique appears to be particularly
effective at improving the approximation.

Rippa tested his algorithm on rather small height fields
and did not discuss computational costs of data-dependent
triangulation much.

Polis-McKeown 93. Polis and McKeown explored
a somewhat parallel variation of the greedy insertion
method [95]. Their basic algorithm, in each pass, com-
putes the absolute error at each input point. The set of
points of maximal absolute error is found, and these are
inserted into the triangulation, one at a time, rejecting
any that are within a tolerance distance of vertices al-
ready in the triangulation (see paper for details). This
method might insert multiple points per triangle, unlike
the greedy insertion algorithms previously discussed. It
would typically insert fewer points per pass than Fowler

12

and Little’s algorithm, however.

Several practical issues in the creation of large ter-
rain models for simulators are raised by Polis and McK-
eown. To facilitate dynamic loading of the terrain as a
viewer roams, many display programs require that ter-
rain databases be broken into small square blocks or “load
modules”. This necessitates extra care along block bound-
aries to avoid cracks between polygons. Polis and McKe-
own also proposed selective fidelity, in which regions of
the terrain could be assigned error weights according to
their visual importance, their likelihood of being seen, or
some other criterion. Thus, for example, for a tank simu-
lator, one might weight navigable valleys more than inac-
cessible mountain slopes.

Polis and McKeown tried a data-dependent triangu-
lation method involving summing the squares of er-
rors along all edges of the triangulation [94], much like
Southard’s method. They found Delaunay triangulation
to be preferable to data-dependent triangulation, however,
because the former was much faster [95].

Polis and McKeown’s algorithm appears to have an ex-
pected cost of O(mn) (like Algorithm I in [40]). They re-
ported a compute time of 18 hours to select m= 76,500
points total from an n=1,9792 terrain broken into 36 tiles
on a DECstation 5000. Speed was not the major issue for
them, however, since they were creating their TINs off-
line. They later optimized their algorithm to select m=
50,000 points from a terrain of n= 8,966,001 points in
89 minutes on a DEC Alpha [93].

Franklin 93. Franklin has released code for a sequen-
tial greedy insertion algorithm (PL/I code from 1973, C
code from 1993) [38]. His algorithm is quite similar to De-
Floriani83, but optimized in a manner similar to De Flo-
riani’s Delaunay pyramid method ([22]). With each tri-
angle, Franklin stores a candidate pointer, and he updates
only the candidates of new or modified triangles on each
pass. He stores an array of input points with each triangle,
as in [22], so the algorithm is more general but typically
slower than a comparable surface simplification algorithm
limited to height fields.

Between his two implementations, Franklin has exper-
imented with several triangulation methods: swapping an

edge if it reduces the maximum error of the approximation,
swapping an edge if it has shorter length, and Delaunay tri-
angulation.

Unfortunately, Franklin has not published his results
and conclusions. By comparison to De Floriani’s De-
launay pyramid algorithm and Algorithm III of [40], we
conclude that the expected cost of Franklin’s algorithm is
O(n logm+ m2). Franklin’s program can select m=100
points from an n=2572 height field in 7 seconds on an SGI
Indy.

Puppo-Davis-DeMenthon-Teng 94. Puppo et al. ex-
plored terrain approximation algorithms for the Connec-
tion Machine that are parallel both in the computer archi-
tecture sense and also in the greedy insertion sense [98].
Their algorithm is much like that of DeFloriani83, except
they insert all candidate points with error above the re-
quested threshold on each pass, like Fowler and Little.
They found that the number of points inserted on each pass
grew exponentially, so the number of passes required to
insert m points would typically be2(log m). On a Think-
ing Machines CM-2 with 16,384 processors, they reported
compute times of 8 seconds to select m=379 points from
an n=1282 terrain [98], or 86 seconds to select m=2,933
points from an n=5122 terrain [97].

The algorithm was parallelized by assigning each in-
put point to a different logical processor. Most of the par-
allelization was straightforward, but parallel incremental
triangulation required the use of special mutual exclusion
techniques to handle simultaneous topology changes in
neighboring triangles.

Puppo et al. implemented both sequential and parallel
greedy insertion and concluded, surprisingly, that the latter
is better. Our own experiments have indicated otherwise
[40].

Chen-Schmitt 93. Chen and Schmitt explored a hybrid
feature/refinement approach for triangulation of computer
vision range data [11]. To best approximate the step and
slope discontinuities that are common in range data, they
first use edge detection to identify significant discontinu-
ity features. These then become constraint curves during
greedy insertion of additional vertices, using either con-

13

strained Delaunay or data-dependent triangulation. Chen
and Schmitt found that data-dependent triangulation sim-
plified better on surfaces with a preferred direction, such
as cylinders.

Silva-Mitchell-Kaufman 95. A rather different ap-
proach to height field triangulation was proposed by
Silva et al. [117]. We classify it here as a refinement
method, although it is different in spirit from the previous
methods. Their method uses greedy cuts, triangulating
the domain from the perimeter inward, on each pass
“biting” out of the perimeter the triangle of largest area
that fits the input data within a specified maximum error
tolerance. The method is thus a generalization of greedy
visibility techniques for curve simplification [123, 63],
and also a form of data-dependent triangulation. In a
comparison with Franklin’s greedy insertion algorithm,
their unoptimized program was about two to four times
slower, but produced triangulations of a given quality
using fewer vertices. They reported running times of
about 8 seconds to select m=1,641 points from grids of
n=1202 points on a one-processor SGI Onyx.

Garland-Heckbert 95. Our own work in height field
simplification has explored fast and accurate variations of
the greedy insertion algorithm [40, 39].

We explored two optimizations of the most basic greedy
insertion algorithm (as in DeFloriani83). First, we ex-
ploited the locality of mesh changes, and only recalcu-
lated the errors at input points for which the approxima-
tion changed, and second, we used a heap to permit the
point of highest error to be found more quickly. When ap-
proximating an n point grid using an m vertex triangulated
mesh, these optimizations sped up the algorithm from an
expected time cost of O(mn) to O((m + n) logm). We
were able to approximate an n=10242 grid to high quality
using 1% of its points in about 21 seconds on a 150 MHz
SGI Indigo2.

We also explored a data-dependent greedy insertion
technique similar to Rippa’s method. We found an algo-
rithm that yielded, in a fairly representative test, a solu-
tion with 88% the error of Delaunay greedy insertion at a
cost of about 3–4 times greater. Source code for these al-
gorithms is available.

In that paper, we propose several ideas for future work
that could improve the performance of the greedy inser-
tion algorithm in the presence of cliff discontinuities, high
frequencies, and noise.

Arc/Info Latticetin. The geographic information sys-
tem Arc/Info sold by the Environmental Systems Research
Institute (ESRI) can approximate terrain grids. Its “Lat-
ticetin” command employs a hybrid feature/refinement ap-
proach that starts with a regular grid of equilateral trian-
gles and refines it with parallel greedy insertion [70, 95].

3.1.6 Decimation Methods

In contrast to refinement methods, the decimation ap-
proach to surface simplification starts with the entire input
model and iteratively simplifies it, deleting vertices, trian-
gles, or other geometric features on each pass. The deci-
mation approach is not so common for height field simpli-
fication; we will see far more decimation methods in the
section on manifold simplification.

Lee 89. A “drop heuristic” method for simplifying ter-
rains was proposed by Lee [73]. We call it a vertex deci-
mation approach because on each pass it deletes a vertex.
The algorithm takes the height field grid as input and cre-
ates an initial triangulation in which each 2× 2 square be-
tween neighboring input points is split into two triangles
[73]. On each pass, the error at each vertex is computed
and the vertex with lowest error is deleted. The error at a
vertex is found by temporarily deleting the vertex from the
triangulation, doing a local Delaunay retriangulation, and
measuring the vertical distance from the vertex to its con-
taining triangle. The process continues until the error ex-
ceeds the desired level, or the desired number of vertices is
reached. Deletion in a Delaunay triangulation can be done
incrementally to avoid excessive cost [68].

The drop heuristic method yields high quality approx-
imations, but its computational cost and memory cost ap-
pear very high. When Lee compared his algorithm to Chen
and Guevara’s method and to De Floriani’s ternary trian-
gulation method [23], he found, not surprisingly, that his
method yielded superior results [74]. The drop heuristic

14

method is expensive because of the need to visit each ver-
tex on every pass. Its memory cost is high because a tri-
angulation with n vertices must be created6.

Scarlatos-Pavlidis 92b. Scarlatos and Pavlidis explored
a method for adjusting a triangulation in order to equalize
the curvature of the input data within each triangle [109],
extending McClure’s and Pavlidis’ earlier work [82, 91,
83]. Their algorithm takes an initial triangulation and ap-
plies three passes: shrinking triangles with high curvature,
merging adjacent coplanar triangles, and swapping edges
to improve triangle shape and fit. In tests, the method
achieved little improvement when applied to the output
of their hierarchical triangulation algorithm [108, 107]: in
most cases, the method reduced the number of triangles,
but it also increased the maximum error unless explicit er-
ror tests were added [109]. Curvature equalization was
more successful at improving regular subsampling meshes
[107, p. 89]. No unshaded pictures of the resulting meshes
were given, however, so it is difficult to compare the qual-
ity of the results to other methods.

Scarlatos 93. In addition to the recursive subdivision
method described earlier, Scarlatos also developed a ver-
tex decimation method for constructing hierarchical trian-
gulations [107]. The method begins with an initial trian-
gulation and, to generate each level of the hierarchy, com-
putes the “significance” of each vertex and deletes vertices
in increasing order of significance until no more can be
deleted. Significance is an (unspecified) function of the er-
ror between a vertex and a weighted average of its neigh-
bors, and the degree of a vertex. The method is similar to
that of Schroeder et al., discussed later, except that Scar-
latos’ method is limited to height fields, and it takes more
precautions to minimize error accumulation. Scarlatos re-
ported a running time of 7.75 minutes to build a complete
hierarchy for about n=5,900 points on a VAX 8530.

Hughes-Lastra-Saxe 96. The simplification algorithm
described by Hughes, Lastra, and Saxe [59] is targeted
towards simplifying global illumination meshes resulting

6We find that storing a triangulation with n vertices uses 5 to 100
times the memory of a height field of n points because of the extra ad-
jacency information required.

from radiosity systems. Consequently, the algorithm must
simplify both the mesh geometry and the color values as-
sociated with each mesh vertex. They rejected a greedy in-
sertion algorithm because of its inability to deal well with
sharp discontinuities (i.e., shadow borders). Instead, they
chose a combination of local vertex decimation and sim-
plification envelopes as in [126, 14]. Interestingly, they
chose to select vertices for removal at random rather than
in order of increasing error. They claim that this provides
more uniform meshes, which they believe to be advan-
tageous. Their method also uses higher-order elements
(quadratic, cubic, etc.) for reconstructing the surface, a
possibility which most simplification methods ignore.

3.1.7 Optimal Methods

The error of an optimal piecewise-linear, triangulated ap-
proximation to a smooth function of two variables has
been analyzed in the limit as the number of triangles goes
to infinity. Nadler showed that the L2–optimal approxima-
tion has L2 error proportional to m−1 [88].

Finding the optimal approximation of a grid or surface
using triangulations of a subset of the input points could be
done by enumerating all possible subsets and all possible
triangulations, but this would take exponential time, and
it would clearly be impractical. As with curves, certain
problems in optimal surface approximation are well under-
stood, while others are not. It is known that L∞–optimal
polygonal approximation of convex surfaces is NP-hard
(requires exponential time, in practice) [19, 9]. This im-
plies, of course, that L∞–optimal approximation of height
fields and more general surfaces (in the space of all tri-
angulations) is also NP-hard, since they are a superset of
convex surfaces. We do not know if there are polyno-
mial time algorithms for optimal surface simplification us-
ing any other error metric (such as L2), or within a more
restricted class of triangulations. Even if some form of
this problem permits an optimal algorithm with polyno-
mial time, it would be surprising if it were as fast as the
heuristic methods we have summarized above.

Polynomial time algorithms are known, however, for
sub-optimal solutions with provable size and quality
bounds. If the optimal L∞ solution for a given error
tolerance has mo vertices, there is an O(n7) algorithm

15

to find an approximation with the same error using m=
O(mo log mo) vertices [87, 1], but this is far too slow to be
practical for large problems.

3.2 Manifold Surfaces

We now turn our attention from height fields and paramet-
ric surfaces to manifolds and manifolds with boundary. In
general, the manifold can have arbitrary genus and be non-
orientable7 unless stated otherwise. Manifolds are more
difficult to simplify than height fields or parametric sur-
faces because there is no natural 2-D parameterization of
the surface. Delaunay triangulation is thus less easily ap-
plied. We group manifold simplification methods into two
classes: refinement methods and decimation methods.

3.2.1 Refinement Methods

Faugeras-Hebert-Mussi-Boissonnat 84. Faugeras
et al. developed a technique somewhat similar to De
Floriani’s 1984 algorithm, but it does not have persistent
long edges, and it is applicable to the simplification of any
3-D triangulated mesh of genus 0, not just height fields
[34]. The method begins with a pancake-like two-triangle
approximation defined by three vertices of the input mesh.
Associated with each triangle of the approximation is a
set of input points. In successive passes, for each triangle
of the approximation, the input point farthest from the
triangle is found, and if the distance is above threshold,
the triangle is split into 3–6 subtriangles by inserting
new vertices at the interior point of highest error. Edges
common to two subdivided triangles are split at their
points of highest error (Figure 6). Splitting in this way
eliminates the long edges of ternary triangulation.

During subdivision, each triangle’s point set must be
partitioned into 3–6 subsets. In methods that are limited to
height fields, the partition of input points to subtriangles is
done with simple projection and linear splitting. To parti-
tion point sets on a surface in 3-D, Faugeras et al. instead
split using the shortest path along edges of the input mesh.

7A manifold is orientable if its two sides can be consistently labeled
as “inside” and “outside”. A Möbius strip is non-orientable.

The method simplified an n= 2,000 point model in 1
minute on a Perkin Elmer computer. The approximations
generated were sometimes poor, however, and the method
had particular problems with concavities [96]. A later sub-
division data structure, the “prism tree”, addressed these
problems by recursively subdividing surface points into
truncated pyramidal volumes [96].

Delingette 94. A related method for the simplification
of orientable manifolds was developed by Delingette [28].
He fits surfaces to sets of 3-D points by minimizing an en-
ergy function which is a sum of an error term, an edge
length term, and a curvature term. The algorithm starts
with a mesh that is the dual to a subdivided icosahedron.
It then iteratively adjusts the geometry, attempting to min-
imize the global energy [29]. After a good initial fit is
achieved with this fixed topology, the mesh is refined. Re-
gions of the mesh with high curvature, high local fit er-
ror, or elongated faces are subdivided and vertices migrate
to points of high curvature [28]. Delingette reports that it
takes 2 to 7 minutes to approximate a set of n=260,000
points with a mesh of m= 1,700 vertices on a DEC Al-
pha. The method is much faster than the related method
of Hoppe et al. [58], but it does not achieve comparable
simplification, and it has a number of parameters that ap-
pear to require careful tuning.

Lounsbery-Eck-et al. 95. A two-stage method for mul-
tiresolution wavelet modeling of arbitrary triangulated
polyhedra was developed by Lounsbery, Eck, et al. [76,
33]. The method is not limited to height fields or even to
triangulated meshes with spherical topology; it can be ap-
plied to any triangulated manifold with boundary. The ap-
proach first constructs a base mesh which is a triangulated
polyhedron with the same topology as the input surface.
Geodesic-like distance measures are used in this step, rem-
iniscent of the method of Faugeras et al.. It then uses re-
peated quaternary subdivision of the base mesh to con-
struct a new mesh that approximates the input surface very
closely. A multiresolution model of the new mesh is then
built using wavelet techniques, after which an approxima-
tion at any desired error tolerance can be quickly gener-
ated. Eck et al. simplified a model with about n=35,000
vertices to m=5,400 vertices in 22 minutes of resampling

16

or or or

Figure 6: Subdivision pattern of Faugeras et al..

plus 5 minutes of wavelet analysis/synthesis, on an SGI
Onyx. The intermediate, approximating mesh had about
twice as many vertices as the original.

While the approach is very attractive for interactive sur-
face design and surface optimization, it may not be the best
method for multiresolution modeling of static surfaces be-
cause of the cost of resampling. For the approximation of
height fields, resampling is not needed, and simpler ten-
sor product wavelet techniques could be used instead [79].
Another disadvantage is that the method does not resolve
creases at arbitrary angles well, since the final mesh sub-
divides the triangles of the base mesh on a regular grid.

3.2.2 Decimation Methods

The next class of surface simplification algorithms we will
consider is decimation methods: algorithms that start with
a polygonization (typically a triangulation) and succes-
sively simplify it until the desired level of approximation
is achieved. Most decimation algorithms fall into one of
the following categories:

vertex decimation methods delete a vertex and retriangu-
late its neighborhood,

edge decimation methods delete one edge and two trian-
gles, and merge two vertices,

triangle decimation methods delete one triangle and three
edges, merge three vertices, and retriangulate the
neighborhood, and

patch decimation methods delete several adjacent trian-
gles and retriangulate their boundary.

Several variants of the decimation approach have been
used for the problem of simplifying manifolds, particu-

retessellate

Before After

Figure 7: Vertex decimation. The target vertex and its ad-
jacent triangles are removed. The resulting hole is then
retessellated.

larly for thinning the output of isosurface polygonizers.

Kalvin 91. Kalvin et al. developed a two phase method
to create surface models from medical data [65]. The first
phase approximates a surface with tiny polygons using an
algorithm similar to marching cubes [90], and the second
phase then does patch decimation on the model by merg-
ing adjacent coplanar rectangles. Since it only merges pre-
cisely coplanar faces, the method does not allow control
over the degree of simplification, so it is quite limited.

Schroeder-Zarge-Lorensen 92. Schroeder et al. devel-
oped a general vertex decimation algorithm primarily for
use in scientific visualization [116]. Their method takes
a triangulated surface as input, typically a manifold with
boundary. The algorithm makes multiple passes over the
data until the desired error is achieved. On each pass, all
vertices that are not on a boundary or crease that have er-
ror below the threshold are deleted, and their surrounding
polygons are retriangulated (see Figure 7). The error at

17

a vertex is the distance from the point to the approximat-
ing plane of the surrounding vertices. Note that errors are
measured with respect to the previous approximation, not
relative to the input points, so errors can accumulate (this
flaw was fixed in later versions of the algorithm). Their
paper demonstrated simplifications of models containing
as many as 1,700,000 triangles. The computation time to
simplify a model of n= 400,000 vertices to m= 40,000
vertices is about 14 minutes on an R4000 processor [115].
This method uses significant memory, like Lee’s. To con-
serve memory, compact data structures were developed
[115]. Source code for this algorithm is available [114].

Relative to Lee’s method, the technique of Schroeder et
al. is more general since it is not limited to height fields,
it uses a less expensive and less accurate error measure,
and it deletes multiple vertices per pass. Consequently, it
is faster, but probably has lower quality.

Soucy and Laurendeau 92. To simplify manifolds with
boundary, Soucy and Laurendeau also developed a vertex
decimation algorithm [118, 119]. Their application was
the construction of surface models from multiple range
views. On each pass, the vertex with least error is deleted,
and its neighborhood (the set of adjacent triangles) is
retriangulated. The process stops when the error rises
above a specified tolerance or the desired size of model is
achieved.

To compute rigorous error bounds, a set of deleted ver-
tices is stored with each triangle. We will call these points
the ancestors of the triangle. To compute the error at a
vertex, a temporary vertex deletion and retriangulation are
done. The error of a vertex is a measure of the error that
would result from its removal. More precisely, it is de-
fined to be the maximum distance between either an an-
cestor from the neighborhood or the vertex itself to the re-
triangulated surface. Deletion of a non-boundary vertex is
considered legal if the neighborhood triangles can be pro-
jected to 2-D without foldover.

To retriangulate, Soucy and Laurendeau first compute
a constrained Delaunay triangulation in a 2-D projection,
then this triangulation is improved using a version of Law-
son’s local optimization procedure [71] adapted to sur-
faces in 3-D. To update the data structures after retriangu-
lation, first the ancestor lists are redistributed among the

new triangles, then the error of each formerly neighboring
vertex is updated.

We can relate the method to several of its precursors.
Like Lee’s method, this algorithm does vertex decimation
by “one move lookahead”, but unlike his technique, it is
not limited to height fields. Like Faugeras et al. and De
Floriani et al. (1989), it stores a point set with each trian-
gle, but unlike those methods, it is a decimation algorithm,
and it is more general: it can simplify any manifold with
boundary.

Soucy and Laurendeau estimate the expected complex-

ity of their algorithm to be O
(

n log (n/(n−m))
)

. Their

method appears to yield higher quality results than the
method of Schroeder et al., but it is slower and it uses more
memory, since it maintains lists of all deleted points. A re-
vised version of this algorithm is used in the IMCompress
software sold by InnovMetric [64].

Turk 92. Another method for simplifying a manifold
with boundary is due to Turk [124]. This algorithm is not
a decimation method in the same sense as the previous
methods, but we list it here because it also starts with a full
triangulation and simplifies.

Turk’s algorithm takes a triangulated surface as input,
sprinkles a user-specified number of points on these tri-
angles at random, and uses an iterative repulsion proce-
dure to spread the points out nearly uniformly. The points
remain on the surface as they move about. After these
points are inserted into the original surface triangulation,
the original vertices are deleted one by one, yielding a tri-
angulation of the new vertices that has the same topology
as the original surface. Turk also demonstrated an im-
proved variant of this technique that groups points most
densely where the surface is highly curved.

Turk’s method appears to be best for smooth surfaces,
since it tends to blur sharp features8. Overall, it appears
that Turk’s algorithm is quite complex and that it will yield
results inferior in quality to the methods of Schroeder et al.
or Soucy-Laurendeau.

8William Schroeder, SIGGRAPH ’94 tutorial talk.

18

Hinker-Hansen 93. Hinker and Hansen developed a
patch decimation algorithm for use in scientific visualiza-
tion [55]. It is a one pass method that first finds patches of
triangles with nearly parallel normal vectors, and then re-
triangulates each patch. The method has O(nlogn) time
cost in practice. A model with about n= 510,000 ver-
tices was simplified to m = 321,000 vertices in 9 min-
utes on a CM-5. The method is “largely ineffective when
faced with surfaces of high curvature”, however [55]. It
appears to work best on piecewise-ruled surfaces: those
with zero curvature in at least one direction, such as cylin-
ders, cones, and planes. Therefore the method is not as
general as that of Schroeder et al. or Soucy-Laurendeau.

Hoppe-DeRose-Duchamp-McDonald-Stuetzle 93.
Hoppe et al. developed an optimization-based algorithm
for general 3-D surface simplification [58]. Their method
takes a set of points and an initial, fine triangulated
surface approximation to those points as input, and
outputs a coarser triangulation of the points with the
same topology as the input mesh. The method attempts
to minimize a global energy measure consisting of three
terms: a complexity term that penalizes meshes with
many vertices, an error term that penalizes geometric
distance of the surface from the input points, and a spring
term that penalizes long edges in the triangulation. The
method proceeds in three nested loops, the outermost
one decreasing the spring constant, the middle one doing
an optimization over mesh topologies, and the inner one
doing an optimization over geometries. The topological
optimization uses heuristics and random selection to
pick an edge and either collapse it, split it, or swap it.
The geometric optimization uses nonlinear optimization
techniques to find the vertex positions that minimize the
global error for a given topology. Topological changes
are kept if they reduce the global error, otherwise they are
discarded. In other words, the method makes repeated
semi-random changes to the mesh, keeping those that
allow better fit and/or a simpler mesh.

Unlike most general surface simplification methods, the
method of Hoppe et al. does not constrain output vertices
to be a subset of the input points. Their method appears
to be less sensitive to noise in the input points than most
other methods because of its freedom in choosing vertices
and because the geometric error measure uses an L2 norm,

and not an L∞ norm.

Their method is slow, but it is capable of very good sim-
plifications. They simplified a mesh with m1=4,059 ver-
tices to m2=262 vertices while fitting to n=16,864 points
in 46 minutes on a 1-processor DEC Alpha. They have
released their code. Their algorithm yields higher quality
approximations than that of Eck et al., but it is slower [33].

Hamann 94. A triangle decimation method was ex-
plored by Hamann [49]. In this algorithm, triangles are
deleted in increasing order of weight, where weight is
the product of “equi-angularity” and curvature, roughly
speaking. Thus, slivers and low curvature triangles are
deleted first. The method appears rather complex, how-
ever, since second degree surface fitting is used to position
the new vertices, and a number of geometric checks are re-
quired to prevent topological changes.

Kalvin 94. In later work, Kalvin and Taylor developed a
patch decimation method called “superfaces” to simplify
manifolds within a given error tolerance [66, 67]. The al-
gorithm operates in a single pass. This pass consists of
three phases. The first phase segments the surface into ap-
proximately planar patches. Each patch is found by pick-
ing a face at random and merging in adjacent faces until the
patch’s faces can no longer be fit by a plane within the error
tolerance. Additional tests prevent degenerate or highly
elongated patches from being created. The second phase
simplifies the curves common to adjacent patches using
the Douglas-Peucker algorithm. The third phase retrian-
gulates the patches by subdividing them into star polygons
and then triangulating each star polygon.

When a face is merged into a patch, the set of feasible
approximating planes ax+ by+ cz + 1 = 0 of the patch
must be updated. This set could be represented using lin-
ear programming, as a convex polytope in the 3-D (a, b, c)
parameter space of planes, but the complexity of this data
structure could grow quite large. Instead, Kalvin and Tay-
lor use an ellipsoidal approximation that supports constant
time updates and queries.

At a high level, this method is quite similar to Hinker-
Hansen, in that it employs a single pass to find nearly
coplanar sets and then retriangulates them. Hinker-

19

Hansen define patches based on angles between normal
vectors, however, while Kalvin-Taylor define them based
on distance-to-plane. Distance to plane is probably a bet-
ter method for defining patches, since it is less sensitive
to noise. Guéziec reports that Kalvin and Taylor’s algo-
rithm can simplify a model with about n=90,000 vertices
to m=5,000 vertices in 3 to 5 minutes on an IBM RS6000.

Varshney 94. Using visibility techniques from compu-
tational geometry, Varshney developed a patch decimation
algorithm for simplifying orientable triangulated mani-
folds with boundary [127, 126]. The method has bounded
error. Instead of simplifying in a fast, greedy manner, as
most other decimation methods do, it is much more brute
force, exhaustively testing to find the largest triangle to in-
sert on each pass.

First, the input surface is offset inwards and outwards
by a tolerance distance ε to create two offset surfaces. All
triangles defined by three vertices of the input surface are
checked for validity by testing that they do not intersect
either offset surface and that they do not overlap previ-
ously inserted triangles. On each pass of the algorithm, the
valid triangle that “covers” the greatest number of previ-
ously uncovered input vertices is inserted, the old triangu-
lation of this portion of the surface is deleted, and small
triangles are added to fill the cracks between the old and
the new. The algorithm generates good approximations
when it works, but problems arise when the offset surfaces
collide. So far, the method has not been demonstrated for
simplifications below 30% of the input size, and it is very
slow. The time costs of this algorithm and its variants
range from O(n2) to O(n6)9

Guéziec 95. Guéziec developed a method for simplify-
ing orientable manifolds that employs edge decimation
[46]. He defines the edge collapse, or edge contraction,
operator to delete an edge and merge its two endpoints
into a single vertex (Figure 8). Guéziec’s algorithm or-
ders edges by “importance” (in some unspecified way),
and makes a single pass through the edges in increasing
order of importance, doing edge collapses where legal.

9Personal communication, Pankaj K. Agarwal and Amitabh Varsh-
ney, 1995.

Before After

contract

Figure 8: A simple edge contraction. The highlighted
edge is contracted into a single point. The shaded trian-
gles become degenerate and are removed during the con-
traction.

Testing legality entails most of the work required to do
an edge collapse. The provisional new vertex is positioned
to fit the old faces well and to preserve volume. During
simplification, an error radius is associated with each ver-
tex. By interpolating spheres with these radii across the
surface, a error volume is defined. At any step during sim-
plification, the error volume encloses the original surface.
When an edge collapse is being considered, the error ra-
dius for the provisional new vertex is set so that the new
error volume encloses the old error volume.

The collapse is considered legal if it meets four condi-
tions: (1) the topology of the surface is preserved, (2) the
normals of the modified faces change little, (3) the new tri-
angles are well shaped (not slivers), and (4) the error radius
for the new vertex is below an error threshold.

Use of the error volume could give the user local control
of error tolerance at each vertex. No examples of this are
shown in the paper, however.

Guéziec reports a time of 10 minutes to simplify a
model with about n= 90,000 vertices to m= 5,000 ver-
tices on an IBM RS6000 model 350. He says that Kalvin
and Taylor’s algorithm yields more compact approxima-
tions for small error tolerances, but that his algorithm per-
forms better for large error tolerances, and that his trian-
gles are better shaped. Closely related algorithms are il-
lustrated with better pictures in another paper [47]. In that
work, a model with about n=181,000 vertices was sim-
plified to m=26,000 vertices in 53 minutes, on the same
type of machine. The quality of the resulting meshes ap-
pears good.

20

Gourdon 95. Gourdon explored a method for simplify-
ing orientable surface meshes resulting from surface re-
construction [43]. His algorithm differs from almost all
other simplification algorithms in that it does not assume
the surface mesh to be a triangulation. The algorithm is de-
signed to preserve the Euler characteristic10 of the model;
this implies that the topology is preserved. Topological
preservation is important for simplifying medical data,
which is the focus of this technique. The algorithm iter-
atively removes edges based on an unspecified curvature
criterion. Because the algorithm supports non-triangular
facets, no retessellation is required after removing edges.
Gourdon observes that simply removing a sequence of
edges can lead to undesirable, irregular meshes. To con-
trol the regularity of the tessellation, he restricts the degree
of vertices to be at most 6 and facet may have at most 12
edges. Following simplification, a “regularization” step is
performed. Regularization attempts to improve the mesh
by moving points to minimize an energy function, in this
case the sum of squared edge lengths. A simple regulariza-
tion step would move a vertex towards the barycenter of its
neighbors. However, this can produce significant shrink-
age of the surface. To avoid this, Gourdon uses a regular-
ization step that moves the vertex towards the barycenter,
but constrains the vertex to move parallel to the average
plane of its neighbors.

Klein-Liebich-Strasser 96. The algorithm described by
Klein, Liebich, and Strasser [69] is very similar to the
method of Soucy and Laurendeau [119]. It simplifies an
oriented manifold by iteratively removing a vertex a retri-
angulating the resulting hole using a constrained Delaunay
triangulation. Each deleted vertex is linked to the closest
face in the approximation. These links are used to com-
pute the distance between the original and approximate
surfaces. To select a vertex for removal, each vertex is
tentatively removed and the additional error introduced by
the removal is computed. The vertex which introduces the
least error is selected for removal. After the vertex is re-
moved, the links and projected additional errors within its
neighborhood must be recomputed.

10The Euler characteristic of a model is defined as χ = F − E + V
where F, E, and V are, respectively, the number of faces, edges, and
vertices.

Algorri-Schmitt 96. Algorri and Schmitt developed an
algorithm for simplifying closed, dense triangulations re-
sulting from surface reconstruction [2]. Their algorithm
begins with a pre-processing phase which smooths the ini-
tial mesh by swapping edges based on a G1-continuity cri-
terion as in [32]. After this initial smoothing, every edge
whose dihedral angle exceeds some user-specified pla-
narity threshold is classified as a feature edge. Each ver-
tex is subsequently labeled according to its number of inci-
dent feature edges. An independent set of edges connect-
ing “0” vertices is collected, and all the edges are collapsed
simultaneously. This simplification phase is followed by
a smoothing phase were all non-feature edges are consid-
ered for swapping based on the G1-continuity criterion. If
further simplification is desired, edges are reclassified and
the process outlined above is repeated. Since only edges in
mostly planar regions are selected for decimation, the ba-
sic step will not simplify “characteristic curves” (e.g., the
edges of a cube) and there will always be a single vertex
left in the midst of planar regions. Algorri and Schmitt de-
scribe additional iterative steps which simplify these cases
separately from the basic step outlined above.

Ronfard-Rossignac 96. Another algorithm based on
edge collapse was described by Ronfard and Rossignac
[103]. The fundamental observation underlying their al-
gorithm is that each vertex in the original model lies at the
intersection of a set of planes, in particular, the planes of
the faces that adjoin the vertex. They associate a set of
planes with each vertex; they call this set the zone of the
vertex. A vertex’s zone is initialized to be the set of planes
of the adjoining faces. The error at a vertex is measured by
the maximum distance between the vertex and the planes
in its zone. When contracting an edge, the zone of the re-
sulting vertex is the union of the zones of the original end-
points. The error of this resulting vertex characterizes the
cost of contracting the edge. At each iteration, the edge of
lowest cost is selected and contracted. The complexity of
this algorithm would seem to be O(n logn).

Hoppe 96. The simplification algorithm presented by
Hoppe [56] for the construction of progressive meshes is
a simplified version of the algorithm of Hoppe et al. [58].
Rather than performing a more general search, it simply

21

Before After

Figure 9: Uniform vertex clustering. Note the triangle
which as collapsed to a single point, and the now dangling
edge at the bottom. Also note how separate components
have been joined together.

selects a sequence of edge contractions. The algorithm
uses essentially the same error formulation of the earlier
method, although it is augmented to handle surface at-
tributes such as colors. Hoppe suggests that the resulting
meshes are just as good, and perhaps even better, than the
results of the more general mesh optimization algorithm.

3.3 Non-Manifold Surfaces

The most general class of surfaces is the non-manifold sur-
face, which permits three or more triangles to share an
edge, and permits arbitrary polygon intersections. Rel-
atively few surface simplification algorithms can handle
models of this generality.

Rossignac-Borrel 93. A very general technique for sim-
plifying general 3-D triangulated models was described
by Rossignac and Borrel [104]. They subdivide the ob-
ject’s bounding volume into a regular grid of boxes of user-
specified size. All vertices are graded (or weighted) ac-
cording to some scheme, and all vertices within each box
are merged together into a new representative vertex. A
simplified model is then synthesized from these represen-
tative vertices by forming triangles according to the origi-
nal topology (see Figure 9). This method is extremely gen-
eral, as it can operate on any set of triangles (not just man-

contract

Before After

Figure 10: Pair contraction joining unconnected vertices.
The dashed line indicates the two vertices being contracted
together.

ifolds), it can achieve arbitrary simplification levels, and
it can even eliminate small objects or otherwise change
the topology of a surface. Unfortunately, it does not pre-
serve detail well [52]. When applied to height fields, it
is roughly equivalent to blurring followed by regular sub-
sampling. This software is being sold as part of IBM’s “3D
Interaction Accelerator” [61]. This method has been ex-
tended using octrees instead of regular grids [78].

Low-Tan 97. Low and Tan [77] developed a clustering
algorithm that is intended to provide higher quality than
the uniform clustering described by Rossignac and Borrel
while maintaining its generality. Their first improvement
was to suggest a better weighting criterion. More impor-
tantly, they replaced the uniform grid with a set of cluster
cells. These cells can be any simple shape, such as cubes
or spheres. Cells are centered around their vertex of high-
est weight. When a vertex falls within the intersection of
multiple cells, it is placed in the cell whose center is clos-
est. In addition to these algorithmic improvements, they
improved the appearance of simplified models by render-
ing stray edges as thick lines whose area approximates the
area of the original model in that region.

Garland-Heckbert 97. We have developed an algo-
rithm for simplifying surfaces based on iterative vertex-
pair contractions [41]. A pair contraction is a natural gen-
eralization of edge contraction (Figure 8) where the vertex
pair need not be connected by an edge (see Figure 10). A
4×4 symmetric matrix Qi is associated with each vertex
vi. The error at the vertex is defined to be vTQv, and when
a pair is contracted, their matrices are added together to

22

form the matrix for the resulting vertex. We derive these
matrices to calculate the sum of squared distances of the
vertex to a set of planes (this is similar to the error metric
of Ronfard and Rossignac [103]).

Our technique for tracking vertex error is quite efficient,
and the algorithm is correspondingly fast. The quality
of the approximations is similar to those of Ronfard and
Rossignac, although the algorithm is more general in that
it can join model components.

3.4 Related Techniques

We have focused on approximation of surfaces by poly-
gons, but there has been related work in fitting curved sur-
faces to a set of points on a surface, and approximation of
volumetric data. We include a partial survey.

Fitting a Curved Surface Model. Polygon models for
curved surfaces can be bulky. More compact representa-
tions for surfaces are often possible using curved surface
primitives such as piecewise-polynomial surfaces. The
next class of models beyond piecewise-linear surfaces are
surfaces with tangent continuity. Schmitt and others have
developed adaptive refinement methods for fitting rectan-
gular Bézier patches [113] and triangular Gregory patches
[111] to a grid of points in 3-D. The latter method is supe-
rior to the former because it is better able to adapt to fea-
tures at an angle to the grid. Another curved surface prim-
itive, the subdivision surface, has been fit to points in 3-
D by Hoppe et al., with very nice results [57]. Piecewise
quadratic surfaces have been fit to range data using least
squares techniques [35].

Fitting to a Volume. A generalization of the feature ap-
proach to the approximation of volumes (scalar functions
of three variables) was explored by Hamann and Chen
[50]. They ranked points according to an estimate of the
curvature of the function f (x, y, z) at each point, and in-
crementally inserted vertices into a data-dependent tetra-
hedrization, in decreasing order of curvature, until a given
error tolerance was met. The errors for data-dependent
tetrahedrization were measured using L2 or L∞ norms on
all points inside each tetrahedron. The surface decima-

tion approach has also been generalized to tetrahedriza-
tions [100].

4 Conclusions

Surface simplification is not as well understood as
curve simplification. Whereas there appears to be fairly
widespread agreement that one algorithm, Douglas-
Peucker, does a high quality job of curve simplification at
acceptable speeds, there is little agreement about the best
approach for surface simplification. No thorough empir-
ical comparison of surface simplification methods has
been done analogous to the studies for curves ([85, 130]).
Furthermore, surface simplification seems inherently
much more difficult than curve simplification.

Why are surfaces so much harder? The biggest quali-
tative difference we observe is that curves inherently lend
themselves to divide and conquer strategies like Douglas-
Peucker, since splitting a curve at the point of highest er-
ror yields two curves, breaking the task into two smaller
subtasks of the same type. Splitting a surface at the point
of highest error is an ambiguous concept. Certain meth-
ods arbitrarily choose some way of splitting at a point, as
with the hierarchical subdivision methods that split a tri-
angle into three or more subtriangles; and other methods
abandon the divide and conquer strategy and employ the
more complex general triangulations.

Our purpose has been primarily to survey the existing
methods, not to evaluate them, so we offer few conclu-
sions here. Instead we hope that this survey, by collecting
references and descriptions to the large body of work on
this topic, will draw attention to similar lines of research
in disparate fields, and facilitate future cross-fertilization.

5 Acknowledgements

We thank Frank Bossen, Marshall Bern, Jon Webb, and
Anoop Bhattacharjya for their comments on drafts of this
survey. The CMU Engineering & Science library has been
very helpful in locating obscure papers.

23

6 References

[1] Pankaj K. Agarwal and Subhash Suri. Surface approxi-
mation and geometric partitions. In Proc. 5th ACM-SIAM
Sympos. Discrete Algorithms, pages 24–33, 1994. (Also
available as Duke U. CS tech report, ftp://ftp.cs.duke.edu/
dist/techreport/1994/1994-21.ps.Z).

[2] Marı́a-Elena Algorri and Francis Schmitt. Mesh simpli-
fication. Computer Graphics Forum, 15(3), Aug. 1996.
Proc. Eurographics ’96.

[3] Dana H. Ballard. Strip trees: A hierarchical representa-
tion for curves. Communications of the ACM, 24(5):310–
321, 1981.

[4] Dana H. Ballard and Christopher M. Brown. Computer
Vision. Prentice Hall, Englewood Cliffs, NJ, 1982.

[5] Bruce G. Baumgart. Geometric Modeling for Computer
Vision. PhD thesis, CS Dept, Stanford U., Oct. 1974.
AIM-249, STAN-CS-74-463.

[6] Marshall Bern and David Eppstein. Mesh generation and
optimal triangulation. Technical report, Xerox PARC,
March 1992. CSL-92-1. Also appeared in “Computing in
Euclidean Geometry”, F. K. Hwang and D.-Z. Du, eds.,
World Scientific, 1992.

[7] Jules Bloomenthal. Polygonization of implicit surfaces.
Computer Aided Geometric Design, 5:341–355, 1988.

[8] Laurence Boxer, Chun-Shi Chang, Russ Miller, and An-
drew Rau-Chaplin. Polygonal approximation by bound-
ary reduction. Pattern Recognition Letters, 14(2):111–
119, February 1993.

[9] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. In Proc. 10th Annual
ACM Symp. on Computational Geometry, pages 293–302,
1994.

[10] Edwin E. Catmull. A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD thesis, Dept. of CS, U.
of Utah, Dec. 1974.

[11] Xin Chen and Francis Schmitt. Adaptive range data
approximation by constrained surface triangulation. In
B. Falcidieno and T. Kunii, editors, Modeling in Com-
puter Graphics: Methods and Applications, pages 95–
113. Springer-Verlag, Berlin, 1993.

[12] Zi-Tan Chen and J. Armando Guevara. Systematic se-
lection of very important points (VIP) from digital terrain
model for constructing triangular irregular networks. In
N. Chrisman, editor, Proc. of Auto-Carto 8 (Eighth Intl.
Symp. on Computer-Assisted Cartography), pages 50–56,

Baltimore, MD, 1987. American Congress of Surveying
and Mapping.

[13] James H. Clark. Hierarchical geometric models for vis-
ible surface algorithms. CACM, 19(10):547–554, Oct.
1976.

[14] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha,
Greg Turk, Hans Weber, Pankaj Agarwal, Frederick
Brooks, and William Wright. Simplification envelopes.
In SIGGRAPH ’96 Proc., pages 119–128, Aug. 1996.
http://www.cs.unc.edu/∼geom/envelope.html.

[15] Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, Cam-
bridge, MA, 1990.

[16] Michael A. Cosman, Allan E. Mathisen, and John A.
Robinson. A new visual system to support advanced re-
quirements. In Proceedings of the 1990 Image V Con-
ference, pages 371–380. Image Society, Tempe, AZ, June
1990.

[17] Michael A. Cosman and Robert A. Schumacker. System
strategies to optimize CIG image content. In Proceedings
of the Image II Conference, pages 463–480. Image Soci-
ety, Tempe, AZ, June 1981.

[18] Robert G. Cromley. Hierarchical methods of line simpli-
fication. Cartography and Geographic Information Sys-
tems, 18(2):125–131, 1991.

[19] Gautam Das and Michael T. Goodrich. On the complex-
ity of approximating and illuminating three-dimensional
convex polyhedra. In Proc. 4th Workshop Algorithms
Data Struct., Lecture Notes in Computer Science.
Springer-Verlag, 1995. To appear.

[20] Eduardo F. D’Azevedo. Optimal triangular mesh gen-
eration by coordinate transformation. SIAM J. Sci. Stat.
Comput., 12(4):755–786, July 1991.

[21] Carl de Boor. A Practical Guide to Splines. Springer,
Berlin, 1978.

[22] Leila De Floriani. A pyramidal data structure for triangle-
based surface description. IEEE Computer Graphics and
Appl., 9(2):67–78, March 1989.

[23] Leila De Floriani, Bianca Falcidieno, George Nagy, and
Caterina Pienovi. A hierarchical structure for surface ap-
proximation. Computers and Graphics, 8(2):183–193,
1984.

[24] Leila De Floriani, Bianca Falcidieno, and Caterina Pien-
ovi. A Delaunay-based method for surface approxima-
tion. In Eurographics ’83, pages 333–350. Elsevier Sci-
ence, 1983.

24

[25] Leila De Floriani, Bianca Falcidieno, and Caterina Pien-
ovi. Delaunay-based representation of surfaces de-
fined over arbitrarily shaped domains. Computer Vision,
Graphics, and Image Processing, 32:127–140, 1985.

[26] Leila De Floriani and Enrico Puppo. A hierarchical
triangle-based model for terrain description. In A. U.
Frank et al., editors, Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, pages 236–
251, Berlin, 1992. Springer-Verlag.

[27] Michael DeHaemer, Jr. and Michael J. Zyda. Simplifi-
cation of objects rendered by polygonal approximations.
Computers and Graphics, 15(2):175–184, 1991.

[28] Hervé Delingette. Simplex meshes: a general rep-
resentation for 3D shape reconstruction. Technical
report, INRIA, Sophia Antipolis, France, Mar. 1994.
No. 2214, http://zenon.inria.fr:8003/epidaure/personnel/
delingette/delingette.html.

[29] Hervé Delingette, Martial Hebert, and Katsushi Ikeuchi.
Shape representation and image segmentation using de-
formable surfaces. Image and Vision Computing,
10(3):132–144, Apr. 1992.

[30] David H. Douglas and Thomas K. Peucker. Algorithms
for the reduction of the number of points required to rep-
resent a digitized line or its caricature. The Canadian Car-
tographer, 10(2):112–122, Dec. 1973.

[31] Richard O. Duda and Peter E. Hart. Pattern Classification
and Scene Analysis. Wiley, New York, 1973.

[32] Nira Dyn, David Levin, and Shmuel Rippa. Data de-
pendent triangulations for piecewise linear interpolation.
IMA J. Numer. Anal., 10(1):137–154, Jan. 1990.

[33] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues
Hoppe, Michael Lounsbery, and Werner Stuetzle.
Multiresolution analysis of arbitrary meshes. In SIG-
GRAPH ’95 Proc., pages 173–182. ACM, Aug. 1995.
http://www.cs.washington.edu/research/projects/grail2/
www/pub/pub-author.html.

[34] Olivier Faugeras, Martial Hebert, P. Mussi, and Jean-
Daniel Boissonnat. Polyhedral approximation of 3-D ob-
jects without holes. Computer Vision, Graphics, and Im-
age Processing, 25:169–183, 1984.

[35] Olivier D. Faugeras, Martial Hebert, and E. Pauchon.
Segmentation of range data into planar and quadratic
patches. In Proc. IEEE Intl. Conf. on Computer Vision
and Pattern Recognition, pages 8–13, June 1983.

[36] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics: Principles and
Practice, 2nd ed. Addison-Wesley, Reading MA, 1990.

[37] Robert J. Fowler and James J. Little. Automatic extrac-
tion of irregular network digital terrain models. Computer
Graphics (SIGGRAPH ’79 Proc.), 13(2):199–207, Aug.
1979.

[38] W. Randolph Franklin. tin.c, 1993. C code, ftp://
ftp.cs.rpi.edu/pub/franklin/tin.tar.gz.

[39] Michael Garland and Paul S. Heckbert. Fast triangular ap-
proximation of terrains and height fields. Submitted for
publication.

[40] Michael Garland and Paul S. Heckbert. Fast polygonal
approximation of terrains and height fields. Technical re-
port, CS Dept., Carnegie Mellon U., Sept. 1995. CMU-
CS-95-181, http://www.cs.cmu.edu/∼garland/scape.

[41] Michael Garland and Paul S. Heckbert. Surface simpli-
fication using quadric error metrics. In SIGGRAPH ’97
Proc., August 1997. To appear. http://www.cs.cmu.edu/
∼garland/.

[42] Dora Gómez and Adolfo Guzmán. Digital model
for three-dimensional surface representation. Geo-
Processing, 1:53–70, 1979.

[43] Alexis Gourdon. Simplification of irregular surface
meshes in 3D medical images. In Computer Vision, Vir-
tual Reality, and Robotics in Medicine (CVRMed ’95),
pages 413–419, Apr. 1995.

[44] Markus H. Gross, R. Gatti, and O. Staadt. Fast multireso-
lution surface meshing. In Proc. IEEE Visualization ’95,
July 1995. (Also ETH Zürich CS tech report 230, http://
www.inf.ethz.ch/publications/tr.html).

[45] Eric Grosse. Bibliography of approximation algo-
rithms. ftp://netlib.att.com/netlib/master/readme.html,
link=“catalog”.

[46] André Guéziec. Surface simplification with variable
tolerance. In Second Annual Intl. Symp. on Medical
Robotics and Computer Assisted Surgery (MRCAS ’95),
pages 132–139, November 1995.

[47] André Guéziec and Robert Hummel. Exploiting trian-
gulated surface extraction using tetrahedral decomposi-
tion. IEEE Trans. on Visualization and Computer Graph-
ics, 1(4):328–342, 1995.

[48] Leonidas Guibas and Jorge Stolfi. Primitives for the ma-
nipulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphics,
4(2):75–123, 1985.

[49] Bernd Hamann. A data reduction scheme for triangulated
surfaces. Computer-Aided Geometric Design, 11:197–
214, 1994.

25

[50] Bernd Hamann and Jiann-Liang Chen. Data point se-
lection for piecewise trilinear approximation. Computer-
Aided Geometric Design, 11:477–489, 1994.

[51] Richard W. Hamming. Digital Filters. Prentice-Hall, En-
glewood Cliffs, NJ, 1983.

[52] Paul S. Heckbert and Michael Garland. Multiresolution
modeling for fast rendering. In Proc. Graphics Interface
’94, pages 43–50, Banff, Canada, May 1994. Canadian
Inf. Proc. Soc. http://www.cs.cmu.edu/∼ph.

[53] Martin Heller. Triangulation algorithms for adaptive ter-
rain modeling. In Proc. 4th Intl. Symp. on Spatial Data
Handling, volume 1, pages 163–174, Zürich, 1990.

[54] John Hershberger and Jack Snoeyink. Speeding up
the Douglas-Peucker line-simplification algorithm. In
P. Bresnahan et al., editors, Proc. 5th Intl. Symp. on
Spatial Data Handling, volume 1, pages 134–143,
Charleston, SC, Aug. 1992. Also available as TR-92-07,
CS Dept, U. of British Columbia, http://www.cs.ubc.ca/
tr/1992/TR-92-07, code at http://www.cs.ubc.ca/spider/
snoeyink/papers/papers.html.

[55] Paul Hinker and Charles Hansen. Geometric optimiza-
tion. In Proc. Visualization ’93, pages 189–195, San
Jose, CA, October 1993. http://www.acl.lanl.gov/Viz/
vis93 abstract.html.

[56] Hugues Hoppe. Progressive meshes. In SIG-
GRAPH ’96 Proc., pages 99–108, Aug. 1996. http:/
/www.research.microsoft.com/research/graphics/hoppe/.

[57] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark
Halstead, Hubert Jin, John McDonald, Jean Schweitzer,
and Werner Stuetzle. Piecewise smooth surface recon-
struction. In SIGGRAPH ’94 Proc., pages 295–302,
July 1994. http://www.research.microsoft.com/research/
graphics/hoppe/.

[58] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. In
SIGGRAPH ’93 Proc., pages 19–26, Aug. 1993. http://
www.research.microsoft.com/research/graphics/hoppe/.

[59] Merlin Hughes, Anselmo A. Lastra, and Edward Saxe.
Simplification of global-illumination meshes. Computer
Graphics Forum, 15(3):339–345, August 1996. Proc. Eu-
rographics ’96.

[60] Peter Hughes. Building a terrain renderer. Computers in
Physics, pages 434–437, July/August 1991.

[61] IBM. IBM 3D Interaction Accelerator, 1995. Commer-
cial software, http://www.research.ibm.com/3dix.

[62] Insung Ihm and Bruce Naylor. Piecewise linear approx-
imations of digitized space curves with applications. In
N. M. Patrikalakis, editor, Scientific Visualization of Phys-
ical Phenomena, pages 545–569, Tokyo, 1991. Springer-
Verlag.

[63] Hiroshi Imai and Masao Iri. Polygonal approximations
of a curve – formulations and algorithms. In G. T. Tou-
ssaint, editor, Computational Morphology, pages 71–86.
Elsevier Science, 1988.

[64] InnovMetric. Commercial software, http://
www.innovmetric.com.

[65] Alan D. Kalvin, Court B. Cutting, B. Haddad, and M. E.
Noz. Constructing topologically connected surfaces for
the comprehensive analysis of 3D medical structures. In
Medical Imaging V: Image Processing, volume 1445,
pages 247–258. SPIE, Feb. 1991.

[66] Alan D. Kalvin and Russell H. Taylor. Superfaces: Poly-
hedral approximation with bounded error. In Medical
Imaging: Image Capture, Formatting, and Display, vol-
ume 2164, pages 2–13. SPIE, Feb. 1994. (Also IBM Wat-
son Research Center tech report RC 19135).

[67] Alan D. Kalvin and Russell H. Taylor. Super-
faces:polygonal mesh simplification with bounded
error. IEEE Computer Graphics and Appl., 16(3), May
1996. http://www.computer.org/pubs/cg&a/articles/
g30064.pdf.

[68] Thomas Kao, David M. Mount, and Alan Saalfeld. Dy-
namic maintenance of Delaunay triangulations. Techni-
cal report, CS Dept., U. of Maryland at College Park, Jan.
1991. CS-TR-2585.

[69] Reinhard Klein, Gunther Liebich, and W. Straßer. Mesh
reduction with error control. In Proceedings of Visualiza-
tion ’96, pages 311–318, October 1996.

[70] Mark P. Kumler. An intensive comparison of triangulated
irregular networks (TINs) and digital elevation models
(DEMs). Cartographica, 31(2), Summer 1994. Mono-
graph 45.

[71] Charles L. Lawson. Software for C1 surface interpolation.
In John R. Rice, editor, Mathematical Software III, pages
161–194. Academic Press, NY, 1977. (Proc. of symp.,
Madison, WI, Mar. 1977).

[72] D.T. Lee and Bruce J. Schachter. Two algorithms for con-
structing a Delaunay triangulation. Intl. J. Computer and
Information Sciences, 9(3):219–242, 1980.

[73] Jay Lee. A drop heuristic conversion method for ex-
tracting irregular network for digital elevation models.

26

In GIS/LIS ’89 Proc., volume 1, pages 30–39. American
Congress on Surveying and Mapping, Nov. 1989.

[74] Jay Lee. Comparison of existing methods for building tri-
angular irregular network models of terrain from grid dig-
ital elevation models. Intl. J. of Geographical Informa-
tion Systems, 5(3):267–285, July-Sept. 1991.

[75] J.-G. Leu and L. Chen. Polygonal approximation of 2-D
shapes through boundary merging. Pattern Recognition
Letters, 7(4):231–238, April 1988.

[76] Michael Lounsbery. Multiresolution Analysis for Sur-
faces of Arbitrary Topological Type. PhD thesis, Dept.
of Computer Science and Engineering, U. of Washington,
1994. http://www.cs.washington.edu/research/projects/
grail2/www/pub/pub-author.html.

[77] Kok-Lim Low and Tiow-Seng Tan. Model simplification
using vertex-clustering. In 1997 Symposium on Interac-
tive 3D Graphics. ACM SIGGRAPH, 1997. To appear,
http://www.iscs.nus.sg/∼tants/.

[78] David Luebke. Hierarchical structures for dynamic
polygonal simplification. TR 96-006, Department
of Computer Science, University of North Carolina at
Chapel Hill, 1996.

[79] Stephane G. Mallat. A theory for multiresolution signal
decomposition: The wavelet representation. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 11(7):674–
693, July 1989.

[80] Benoit Mandelbrot. Fractals – form, chance, and dimen-
sion. Freeman, San Francisco, 1977.

[81] Michael Margaliot and Craig Gotsman. Approximation
of smooth surfaces and adaptive sampling by piecewise-
linear interpolants. In Rae Earnshaw and John Vince, ed-
itors, Computer Graphics: Developments in Virtual Envi-
ronments, pages 17–27. Academic Press, London, 1995.

[82] Donald E. McClure. Nonlinear segmented function ap-
proximation and analysis of line patterns. Quarterly of
Applied Math., 33(1):1–37, Apr. 1975.

[83] Donald E. McClure and S. C. Shwartz. A method of im-
age representation based on bivariate splines. Technical
report, Center for Intelligent Control Systems, MIT, Mar.
1989. CICS-P-113.

[84] Robert B. McMaster. Automated line generalization.
Cartographica, 24(2):74–111, 1987.

[85] Robert B. McMaster. The geometric properties of numer-
ical generalization. Geographical Analysis, 19(4):330–
346, Oct. 1987.

[86] Robert B. McMaster and K. S. Shea. Generalization in
Digital Cartography. Assoc. of American Geographers,
Washington, D.C., 1992.

[87] Joseph S. B. Mitchell. Approximation algorithms for ge-
ometric separation problems. Technical report, Dept. of
Applied Math. and Statistics, State U. of New York at
Stony Brook, July 1993.

[88] Edmond Nadler. Piecewise linear best L2 approximation
on triangulations. In C. K. Chui et al., editors, Approxima-
tion Theory V, pages 499–502, Boston, 1986. Academic
Press.

[89] Gregory M. Nielson. Tools for triangulations and
tetrahedrizations and constructing functions defined over
them. In Gregory M. Nielson, Hans Hagen, and Hein-
rich Mueller, editors, Scientific Visualization: Overviews,
Methodologies, and Techniques. IEEE Comput. Soc.
Press, 1997.

[90] Paul Ning and Jules Bloomenthal. An evaluation of im-
plicit surface tilers. Computer Graphics and Applica-
tions, pages 33–41, Nov. 1993.

[91] Theodosios Pavlidis. Structural Pattern Recognition.
Springer-Verlag, Berlin, 1977.

[92] Thomas K. Peucker and David H. Douglas. Detection of
surface-specific points by local parallel processing of dis-
crete terrain elevation data. Computer Graphics and Im-
age Processing, 4:375–387, 1975.

[93] Michael F. Polis, Stephen J. Gifford, and David M. McK-
eown, Jr. Automating the construction of large-scale vir-
tual worlds. Computer, pages 57–65, July 1995. http://
www.cs.cmu.edu/∼MAPSLab.

[94] Michael F. Polis and David M. McKeown, Jr. Iterative
TIN generation from digital elevation models. In Conf.
on Computer Vision and Pattern Recognition (CVPR ’92),
pages 787–790. IEEE Comput. Soc. Press, 1992. http://
www.cs.cmu.edu/∼MAPSLab.

[95] Michael F. Polis and David M. McKeown, Jr. Issues
in iterative TIN generation to support large scale simu-
lations. In Proc. of Auto-Carto 11 (Eleventh Intl. Symp.
on Computer-Assisted Cartography), pages 267–277,
November 1993. http://www.cs.cmu.edu/∼MAPSLab.

[96] Jean Ponce and Olivier Faugeras. An object centered hi-
erarchical representation for 3D objects: The prism tree.
Computer Vision, Graphics, and Image Processing, 38:1–
28, 1987.

[97] Enrico Puppo, Larry Davis, Daniel DeMenthon, and
Y. Ansel Teng. Parallel terrain triangulation using the

27

Connection Machine. Technical Report CAR-TR-561,
CS-TR-2693, Center for Automation Research, Univer-
sity of Maryland, College Park, Maryland, June 1991.

[98] Enrico Puppo, Larry Davis, Daniel DeMenthon, and
Y. Ansel Teng. Parallel terrain triangulation. Intl. J. of
Geographical Information Systems, 8(2):105–128, 1994.

[99] Urs Ramer. An iterative procedure for the polygonal ap-
proximation of plane curves. Computer Graphics and Im-
age Processing, 1:244–256, 1972.

[100] Kevin J. Renze and James H. Oliver. Generalized sur-
face and volume decimation for unstructured tessellated
domains. In VRAIS ’96 (IEEE Virtual Reality Annual Intl.
Symp.), Mar. 1996. Submitted.

[101] Shmuel Rippa. Adaptive approximation by piecewise lin-
ear polynomials on triangulations of subsets of scattered
data. SIAM J. Sci. Stat. Comput., 13(5):1123–1141, Sept.
1992.

[102] Shmuel Rippa. Long and thin triangles can be good for
linear interpolation. SIAM J. Numer. Anal., 29(1):257–
270, Feb. 1992.

[103] Rémi Ronfard and Jarek Rossignac. Full-range approx-
imation of triangulated polyhedra. Computer Graphics
Forum, 15(3), Aug. 1996. Proc. Eurographics ’96.

[104] Jarek Rossignac and Paul Borrel. Multi-resolution 3D ap-
proximations for rendering complex scenes. In B. Fal-
cidieno and T. Kunii, editors, Modeling in Computer
Graphics: Methods and Applications, pages 455–465,
Berlin, 1993. Springer-Verlag. Proc. of Conf., Genoa,
Italy, June 1993. (Also available as IBM Research Report
RC 17697, Feb. 1992, Yorktown Heights, NY 10598).

[105] Hanan Samet. Applications of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1990.

[106] Hanan Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

[107] Lori Scarlatos. Spatial Data Representations for Rapid
Visualization and Analysis. PhD thesis, CS Dept, State
U. of New York at Stony Brook, 1993.

[108] Lori Scarlatos and Theo Pavlidis. Hierarchical triangu-
lation using cartographic coherence. CVGIP: Graphi-
cal Models and Image Processing, 54(2):147–161, March
1992.

[109] Lori L. Scarlatos and Theo Pavlidis. Optimizing triangu-
lations by curvature equalization. In Proc. Visualization
’92, pages 333–339. IEEE Comput. Soc. Press, 1992.

[110] Francis Schmitt and Xin Chen. Fast segmentation of
range images into planar regions. In Conf. on Computer
Vision and Pattern Recognition (CVPR ’91), pages 710–
711. IEEE Comput. Soc. Press, June 1991.

[111] Francis Schmitt and Xin Chen. Geometric modeling from
range image data. In Eurographics ’91, pages 317–328,
Amsterdam, 1991. North-Holland.

[112] Francis Schmitt and Behrouz Gholizadeh. Adaptative
polyhedral approximation of digitized surfaces. In Com-
puter Vision for Robots, volume 595, pages 101–108.
SPIE, 1985.

[113] Francis J. M. Schmitt, Brian A. Barsky, and Wen-Hui
Du. An adaptive subdivision method for surface-fitting
from sampled data. Computer Graphics (SIGGRAPH ’86
Proc.), 20(4):179–188, Aug. 1986.

[114] Will Schroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit, An Object-Oriented Approach To
3D Graphics. Prentice Hall, 1996. Code at http://
www.cs.rpi.edu:80/∼martink/.

[115] William J. Schroeder and Boris Yamrom. A compact
cell structure for scientific visualization. In SIGGRAPH
’94 Course Notes CD-ROM, Course 4: Advanced Tech-
niques for Scientific Visualization, pages 53–59. ACM
SIGGRAPH, July 1994.

[116] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. Com-
puter Graphics (SIGGRAPH ’92 Proc.), 26(2):65–70,
July 1992.

[117] Cláudio T. Silva, Joseph S. B. Mitchell, and Arie E. Kauf-
man. Automatic generation of triangular irregular net-
works using greedy cuts. In Proc. Visualization ’95. IEEE
Comput. Soc. Press, 1995. http://www.cs.sunysb.edu:80/
∼csilva/claudio-papers.html.

[118] Marc Soucy and Denis Laurendeau. Multi-resolution sur-
face modeling from multiple range views. In Conf. on
Computer Vision and Pattern Recognition (CVPR ’92),
pages 348–353, June 1992.

[119] Marc Soucy and Denis Laurendeau. Multiresolution
surface modeling based on hierarchical triangulation.
Computer Vision and Image Understanding, 63(1):1–14,
1996.

[120] David A. Southard. Piecewise planar surface models
from sampled data. In N. M. Patrikalakis, editor, Sci-
entific Visualization of Physical Phenomena, pages 667–
680, Tokyo, 1991. Springer-Verlag.

28

[121] Steven L. Tanimoto and Theo Pavlidis. A hierarchical
data structure for picture processing. Computer Graphics
and Image Processing, 4(2):104–119, June 1975.

[122] David C. Taylor and William A. Barrett. An algorithm
for continuous resolution polygonalizations of a discrete
surface. In Proc. Graphics Interface ’94, pages 33–42,
Banff, Canada, May 1994. Canadian Inf. Proc. Soc.

[123] Ivan Tomek. Two algorithms for piecewise-linear contin-
uous approximation of functions of one variable. IEEE
Trans. Computers, C-23:445–448, Apr. 1974.

[124] Greg Turk. Re-tiling polygonal surfaces. Com-
puter Graphics (SIGGRAPH ’92 Proc.), 26(2):55–64,
July 1992.

[125] K. J. Turner. Computer perception of curved objects using
a television camera. PhD thesis, U. of Edinburgh, Scot-
land, November 1974.

[126] Amitabh Varshney. Hierarchical Geometric Approxima-
tions. PhD thesis, Dept. of CS, U. of North Carolina,
Chapel Hill, 1994. TR-050.

[127] Amitabh Varshney, Pankaj K. Agarwal, Frederick P.
Brooks, Jr., William V. Wright, and Hans Weber.
Generating levels of detail for large-scale polygonal
models. Technical report, Dept. of CS, Duke U.,
Aug. 1995. CS-1995-20, http://www.cs.duke.edu/
department.html#techrept.

[128] Brian Von Herzen and Alan H. Barr. Accurate trian-
gulations of deformed, intersecting surfaces. Computer
Graphics (SIGGRAPH ’87 Proceedings), 21(4):103–110,
July 1987.

[129] Robert Weibel. Models and experiments for adap-
tive computer-assisted terrain generalization. Cartog-
raphy and Geographic Information Systems, 19(3):133–
153, 1992.

[130] Ellen R. White. Assessment of line-generalization algo-
rithms using characteristic points. The American Cartog-
rapher, 12(1):17–27, 1985.

[131] Lance Williams. Pyramidal parametrics. Computer
Graphics (SIGGRAPH ’83 Proc.), 17(3):1–11, July 1983.

29

Multiresolution Modeling for Fast Rendering

Paul S. Heckbert and Michael Garland
Computer Science Department

Carnegie Mellon University
Pittsburgh, Pennsylvania, 15213-3891, USA

ph@cs.cmu.edu, garland@cs.cmu.edu

Abstract
Three dimensional scenes are typically modeled using

a single, fixed resolution model of each geometric ob-
ject. Renderings of such a model are often either slow or
crude, however: slow for distant objects, where the cho-
sen detail level is excessive, and crude for nearby objects,
where the detail level is insufficient. What is needed is a
multiresolution model that represents objects at multiple
levels of detail. With a multiresolution model, a render-
ing program can choose the level of detail appropriate
for the object’s screen size so that less time is wasted
drawing insignificant detail. The principal challenge is
the development of algorithms that take a detailed model
as input and automatically simplify it, while preserving
appearance. Multiresolution techniques can be used to
speed many applications, including real time rendering
for architectural and terrain simulators, and slower, higher
quality rendering for entertainment and radiosity. This pa-
per surveys existing multiresolution modeling techniques
and speculates about what might be possible in the future.

Keywords: multiresolution model, level of detail, ren-
dering, simplification, approximation.

The first section of this paper discusses the goals and
computational cost of complex scene rendering and ex-
plains why the use of a model with the appropriate level
of detail is important. Section 2 summarizes the goals of
multiresolution modeling and section 3 summarizes sev-
eral data structures for achieving these goals. The paper
concludes with a comparison of these data structures.

1 Rendering Complex Scenes

In computer graphics, we would like to render com-
plex scenes such as terrains, cities, building interiors,
molecules, and biological structures as quickly as possi-
ble. These might contain millionsof geometric primitives
(polygons, spheres, etc.).

1.1 Optimized Rendering

Early rendering algorithms performed transformation,
clipping, sorting, and hidden line or hidden surface re-
moval. For a scene of n primitives, such algorithms
had costs of O(n2) or O(n logn). In the late 70’s and
early 80’s, flight simulators capable of displaying several
thousand polygons in real time became available, but at
a price of several million dollars. Advances in graph-
ics hardware and memory technology have allowed brute
force algorithms such as the z-buffer to supplant the ear-
lier, sorting-based algorithms. These advances have sped
rendering dramatically, so that it is now possible to draw
ten thousand shaded polygons in real time on a $40,000
workstation.

The time cost of rendering a scene ofn primitiveswith a
total screen area of ac1 with a simple z-buffer algorithm is
�(n+ac)2. The cost is linear in the number of primitives
because of transforming and clipping, and linear in the
screen area due to scan conversion and shading. When
the scene is very detailed and most surfaces project to an
area smaller than a pixel, the transformation and clipping
cost (n) dominates. Algorithms with costs that are linear
in n are an improvement over earlier algorithms, but they
are still slower than necessary.

In highly complex scenes, the user cannot see all of the
primitives at one time because many of them are either
off-screen, occluded, or too small to be seen. If a simple
z-buffer algorithm is used, as described above, then each
of the primitives in the scene must be transformed and
clipped, even if it is way off screen, and each on-screen
primitivemust be scan converted and (potentially)shaded,
even if it is occluded. Off-screen primitives can be culled
quickly using hierarchical bounding volumes [4], octrees,

1ac is the sum of screen areas of clipped primitives, ignoring occlu-
sion. It could be much greater than the number of pixels in the image if
the depth complexity is high.

2Asymptotic complexity notation: O(f(n)) is an upper bound,
�(f(n)) is both an upper bound and lower bound. We discuss only
worst case cost in this paper.

43

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 44

ba c

Figure 1: Three views out a window. a) Building is off-screen. b) Building is on-screen, but occluded by wall.
c) Building is on-screen, and visible through window.

or other spatial data structures.
Occluded objects can be weeded out either with sophis-

ticated visibility analysis techniques [24] or more brute
force z-buffer pyramids [10]. Together, these optimiza-
tions would reduce the cost of renderingn primitives with
clipped screen area of ac from �(n+ac) to �(nv+av)
not counting preprocessing, where nv is the number of
visible primitives, and av is their total screen area. Note
that 0 � nv � n and 0 � av � ac, but the relative sizes
of these variables are very scene-dependent.

The third optimization for complex scenes, speedier
handling of small objects, is employed by few existing
rendering systems. It is the focus of this paper.

Figure 1 shows three views that illustrate the differ-
ences between these optimizations of the z-buffer algo-
rithm. The scene is a building that is (sometimes) visible
through a window in a wall. Suppose the visible facade
of the building is modeled using n polygons, the wall and
ground plane are modeled using a small, bounded number
of polygons, and the number of pixels in the image is a.
The costs of various z-buffer-based algorithms on these
three views are:

ALGORITHM Fig. 1a Fig. 1b Fig. 1c

unoptimized �(n+a) �(n+a) �(n+a)
with off-screen culling �(a) �(n+a) �(n+a)
with off-screen & visibility
culling

�(a) �(a) �(n+a)

with off-screen & visibil-
ity culling, & multiresolu-
tion modeling (projection)

�(a) �(a) �(a)

Figure 1a, where the building is off-screen, is optimized
by simple off-screen culling. Figure 1b is more difficult
to optimize; visibility culling is required to generate this
picture quickly. Figure 1c is the most difficult of all. In
the case where n � a, there are many more polygons
than necessary to model the building, and they’re almost
all visible, so neither off-screen nor visibility culling will
render this view efficiently.

What is needed are methods for simplifying an object
that has been modeled with excessive detail so that arbi-
trary views can be rendered quickly, ideally with a cost

(not counting preprocessing) proportional to the number
of pixels, but independent of scene complexity. Such an
algorithm would be optimal on a computer where writ-
ing a pixels takes �(a) time3. For any particular view,
this goal is trivially achievable, since the scene could be
modeled as a plane tiled with one rectangular polygon per
screen pixel. The challenge is to find a model that works
for any viewpoint, while remaining fast and compact.

2 Multiresolution Modeling

Geometric models typically describe each shape in a scene
with a single representation. The scale or level of detail
at which each object is modeled is fixed. Such a model
is called a fixed resolution model. When rendering with
a perspective projection, distant objects project to a small
screen area and nearby objects project to a large area.
In a complex scene, the dynamic range of these screen
areas can be very great. Rendering such a scene using
a fixed resolution model can be very inefficient, as seen
with figure 1c.

The best method for optimizing the rendering of small
and distant objects is multiresolution modeling: the de-
scription of geometry and surface attributes such as color
and texture at a variety of scales. Depending on the screen
size of a given object or cluster of objects, the appropriate
level of detail within the model would be chosen [4]. The
appropriate level for a given view is the coarsest level that
looks the same as the finest level. Thus, nearby objects
would be rendered using a detailed model, while distant
objects would be rendered using a coarse model.

2.1 Applications

Multiresolutionmodeling has many applications. The pri-
mary one is fast display, both for real-time rendering and
for high quality images that might take minutes or hours

3On a parallel machine with �(a) processors, we might be able to
render in constant time.

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 45

of compute time. Architectural walkthroughs, flight sim-
ulators, scientific visualization, computer-aided design,
movie special effects, and virtual reality are natural ap-
plications.

In the past, the person who models a 3-D scene has often
been the one who runs the renderer. Since this person
knows what the camera will see, he or she can model the
scene appropriately, including only those details that will
be seen.

For 3-D animation, objects that are seen at widely vary-
ing scales are often modeled at two or more levels of de-
tail: a “fine” model for closeups and a “coarse” model
for distant shots. As the object recedes into the distance
during animation, the scene description will often be man-
ually altered to switch from the fine model to the coarse
model. This procedure can be automated by including
both the coarse and fine models in the scene description,
and using a measure of screen size, such as the area of
the projected bounding volume of the object, to choose
between the levels of detail.

In flight simulators and virtual reality, the person
preparing the model is not the person choosing the view-
points (i.e. the pilot). For these applications, the modeler
must include enough detail that the user can move through
the whole scene without losing the illusion of reality.

Multiresolutionmodeling is also useful in radiosity and
other global illuminationalgorithms. In rendering, we de-
termine the visible surfaces within a viewing pyramid and
create a picture of them, while in radiosity, we determine
the visible surfaces within a hemisphere and integrate
them. These tasks are very similar.

Radiosity algorithms subdivideeach input polygon into
many elements. Early radiosity algorithms had a cost that
was quadratic in the number of elements because they
used a fixed subdivision and they calculated the amount
of light reflected between each pair of elements. These
algorithms wasted most of their time computing insignifi-
cant light transfers between distant objects. The hierarchi-
cal radiosity algorithm uses adaptive subdivision instead:
when gathering light into each element, it subdivides dis-
tant polygons coarsely and nearby polygons finely [11].
With this improvement, the algorithm’s cost is linear in
the number of elements, but it is still quadratic in the num-
ber of polygons, since pairwise subdivision starts with the
given polygons. Thus, the algorithm is fast only for sim-
ple scenes consisting of a few large polygons. This is
unacceptable for complex scenes.

The quadratic cost term of hierarchical radiosity could
be eliminated, yielding an algorithm whose complexity
would be linear in the number of polygons or better, if
multiresolution modeling were used, clustering distant
objects and treating them as a single unit. Rushmeier
et al. have recently employed multiresolution models

for radiosity, but their model creation system was not
automated [20].

2.2 Model Use

Selection of the appropriate level of detail during render-
ing is easy, requiring only hierarchical bounding volumes
and fast estimates of screen area. If levels of detail are se-
lected discretely, however, this will cause visible artifacts
in the spatial or temporal continuity of images. Experi-
ence has shown that consistency is often more important
than correctness in computer graphics. Level-switching
artifacts can be eliminated by smoothing the transitions
using linear interpolation of geometry and color.

2.3 Model Creation

Creation of a multiresolution model is quite difficult. Al-
though multiresolution modeling is an old idea, most
existing such databases have been created by hand. In
flight simulator and architectural walkthrough systems
that employ multiresolution modeling, laborious manual
database preparation is still required, to the best of our
knowledge [29, 9, 8]. Renderman can render multireso-
lution models but it supplies no automatic tools for gen-
erating them [26].

The principal challenge of multiresolution modeling is
to find a set of algorithms that can take a complex scene
description as input, including both geometry and surface
attributes such as color and texture, and automatically
generate data structures that allow rapid rendering of the
scene from any viewpoint. For greatest flexibility, the
system should allow arbitrary input (e.g. a set of polygons
with no topological information) and not assume that the
input comes with a hierarchy. It is most important that
the rendering be fast and the appearance of the scene be
preserved, but it is also desirable that the preprocessing
time and memory requirements be low.

2.4 Preservation of Appearance

Quantifying the “preservation of appearance” objective
can aid in the development of algorithms. The real mea-
sure of appearance is the raster image output by the ren-
derer. This is more important than precise preservation of
topology or geometry. We would therefore like an image
error metric that measures the overall difference between
two images. This metric should measure the difference
between an image f (x; y) rendered using the fully de-
tailed input model and an image f̂ (x; y) rendered using
the multiresolution model (the approximation). We’d like
the two images to be indistinguishable. Ultimately, hu-
man viewers are the judges, so the best error metric would
entail a model of the human visual system, a very complex

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 46

topic. Useful results can be obtained with much simpler
error metrics, however. These can be viewed as crude
approximations to human perception.

A simple starting point is the sum of squared distances
in RGB color space between corresponding pixels:

E(f; f̂) =
X

x;y

f (x; y)� f̂(x; y)
2

This error metric can be improved by adding differential
weighting for the color channels, nonlinear sensitivity to
radiance, and spatial filtering. Any multiresolution mod-
eling data structure that is developed should be validated
either with perceptual tests using human viewers, or with
a good image error metric.

3 Multiresolution Data Structures

For rendering, a model can be regarded as an abstract data
type that supports queries of the form:

what does this object look like when viewed
from a given viewpoint, with a given resolu-
tion?

Any fast, compact data structure for such queries would
suffice as a multiresolution representation. We discuss
the following six data structures as possible candidates:

1. image pyramids,

2. volume pyramids,

3. texture and reflectance,

4. pictures from multiple angles,

5. ray space, and

6. polygonal models.

Several of these are rather speculative.

3.1 Image Pyramids

In two dimensions, the most natural multiresolution
model is the image pyramid. Image pyramids are ubiqui-
tous in image processing and computer vision [18], and
are also widely used to optimize texture mapping [28, 12].
Image pyramids are an attractive multiresolution model
because they are so easily resampled. Unfortunately, they
are limited to 2-D.

3.2 Volume Pyramids

More natural as a 3-D multiresolution modeling data
structure is the 3-D volume pyramid. Volume pyramids
are very helpful for fast volume rendering [21], but as a
surface representation, they are bulky and crude.

3.3 Texture and Reflectance

Texture and reflectance models are a form of multiresolu-
tion modeling. They model the visibleeffects of fine-scale
variation in geometry and surface attributes that are too
small to be modeled using geometry. Texture mapping
is commonly used to model features whose geometry is
smaller than a pixel but whose visible patterns are big-
ger than a pixel, and reflectance models describe features
whose patterns are much smaller than a pixel.

In pictures or animation encompassing a wide range of
scales, the choice of representation should be allowed to
vary from frame to frame and from pixel to pixel. When
flying over a terrain, for example, mountains in the far
distance are best modeled as a textured plane, and the
appearance of the trees on the mountain are best modeled
statistically, in the reflectance model. In the near distance,
what was texture (the mountain) should become geometry,
and some of the larger features influencing reflectance (the
trees) should become texture. Finally, in a closeup, the
trees become geometry.

This idea has been proposed by Perlin [16], Kajiya [15],
and others, but has never been implemented in a general
way. The best progress along these lines has been made
in generating bidirectional reflectance distribution func-
tions (BRDF’s) from geometry [2, 7, 27] and in smoothing
the transitions between BRDF’s, bump mapping, and dis-
placement mapping [1].

3.4 Pictures from Multiple Angles

In architecture, initial design is typically done by sketch-
ing a building from multiple viewpoints. When we watch
film or video, we are seeing a sequence of still images of
objects from different viewpoints. Such representations
suffice, in a practical sense, to define a 3-D shape. Hence
the idea to represent an object not with a set of surface
primitives, but with a set of pictures.

This approach has the obvious advantages that the rep-
resentation is of the same form as the output of a renderer
(a picture) and that image pyramids could be used, allow-
ing quick extraction of an image of the desired resolution.
The major disadvantage is that the appearance of the ob-
ject from arbitrary viewpoints is not directly available; in
the process of generating the pictures, information is lost.

Intermediate views can differ from the chosen views
because of either occlusion or specular reflection. In a
scene where sunlight shines directly through a tunnel,
for example, only certain views see the sun, so if those
views were not chosen, the system would have difficulty
generating accurate intermediate views. And in a scene
containing mirrors, only certain views see a reflection of
the light sources, so again, intermediate views would be
difficult to interpolate correctly.

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 47

Approximate intermediate views can be generated au-
tomatically if the correspondence between pixels of the
chosen views is known, and the correspondences can be
derived if the z-buffers of the chosen views are avail-
able [3]. This technique does not solve the complications
caused by occlusion and specular reflection, however, so
there are large unsolved problems to make this approach
viable as a general multiresolution modeling data struc-
ture.

3.5 Ray Space

Another approach to multiresolution modeling is to treat
an object’s appearance in terms of ray queries, the type
of queries performed in a ray tracing algorithm. A ray
query takes a ray and returns the color traveling backward
along that ray. Existing data structures for fast ray queries
require huge memories, so this approach does not seem
as promising as the use of textures and polygons. This
approach is attractive, however, because it provides a
unified, high level abstraction that allows us to blur the
distinction between geometry and surface attributes such
as BRDF’s.

3.6 Polygonal Models

The final approach to multiresolution modeling that we
consider, polygonal models, has received the most work,
so we discuss it in the greatest detail.

The principal challenge when using a polygonal model
for multiresolution modeling is simplification: automati-
cally converting a detailed model into a simpler one that
faithfully represents the underlying object. We seek algo-
rithms that will minimize both the number of polygons in
the simplified model and the error of the approximation.

Simplification algorithms differ greatly depending on
the topology of the polygonal model. The simplest are
curve models, consisting of a sequence of points or line
segments (not really polygons at all). Next in complexity
are mesh models, which consist of a network of polygons
forming a single, continuous surface. The most general
class of polygonal models are polyhedral models, where
arbitrary topology is allowed. The latter class is the most
relevant to multiresolution modeling.

3.6.1 Curve Simplification

Numerous algorithms for approximating one piecewise
linear curve with another have been developed [6]. It
is possible to find the least squares optimal m-segment
approximation to an n-segment curve in timeO(n3

logm)
using dynamic programming [14]. Unfortunately, this
is too slow for use on complex curves, and it does not
appear to generalize to surfaces. Curve simplification

algorithms may be of some guidance in our search for
surface simplification methods, however.

3.6.2 Mesh Simplification

The aspect of polygonal simplification that has received
the most attention is the simplification of surface meshes.
Such models are commonly generated from digital sam-
pling of real world objects. The data tend to be dense and
redundant, so they can typically be drastically simplified
without significant loss of fidelity. We consider grids with
rectangular topology first, then height fields, and finally
general meshes.

If the mesh is a grid with rectangular topology then a
natural simplification technique is to low pass filter the
data and then discard every other row and every other
column from the grid, performing what is called “dec-
imation by 2” in signal processing. Williams proposed
this as a multiresolution modeling technique both to re-
duce the time needed to transform polygons and to reduce
the need for antialiasing [28].

Another area of research is the generation of compact
triangulations from digital terrain data and other height
fields [17, 22]. Given a regular grid of height samples,
the task is to construct a triangle mesh that closely approx-
imates the actual surface with a small number of vertices.
Typically, these algorithms are constructive; they begin
with a minimal set of points and then add new points
until the error of the approximation is below some thresh-
old. Various criteria are used to select which points to
add. Some of these algorithms are quite slow. For exam-
ple, Polis and McKeown’s algorithm required 18 hours
to achieve a 40-to-1 simplification of a 4,000,000 point
terrain. These applications compute the simplified model
off-line, however, so for them, preprocessing speed was
much less important than accuracy and simplification.

A broader problem is the simplification of general
meshes. The typical goal here is to digitize a real world
object and construct a compact surface description of it.
In [5], DeHaemer and Zyda present an adaptive subdivi-
sion algorithm that fits polygons to a set of samples. This
algorithm combines surface reconstruction and simplifi-
cation; it constructs a simple surface directly from the
data.

Other algorithms require a mesh as input. Schroeder,
Zarge, and Lorensen [23] propose a decimation algo-
rithm. They iteratively remove unimportant points from
the mesh, performing local retriangulations to preserve
the surface. Turk [25] describes a related approach. He
selects a set of points on the surface that will become the
vertices of a new mesh and uses point repulsion to achieve
good coverage of the surface. A new triangulated mesh
is generated by combining the old and new vertices. The

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 48

Figure 2: Original cow (5804 triangles)

Figure 3: Simplified cow (658 triangles)

old vertices are then iteratively deleted, using local retri-
angulations to preserve the topology of the surface. Most
recently, Hoppe et al. [13] present an algorithm for op-
timizing fairly general surface meshes. They cast the
problem in terms of minimizing an energy function that
captures the conflicting goals of mesh simplification and
error minimization.

3.6.3 Polyhedral Simplification

Rossignac and Borrel [19] have made one of the few
efforts to address the simplification of general, polyhe-
dral models with arbitrary topology. Their motivation
is to speed interactive viewing of complex objects, so
they seek a minimal set of polygons and lines that sug-
gests a shape to the user. Given a polyhedral model that
has been triangulated, they subdivide its bounding vol-
ume into a grid of boxes. All vertices within each box
are merged together into a new representative vertex. A
simplified model is then synthesized from these repre-
sentative vertices by forming triangles according to the
original topology.

This is essentially a signal processing approach: the
model is filtered, resampled, and reconstructed. As with

Figure 4: Original Beethoven (4998 triangles)

Figure 5: Simplified Beethoven (652 triangles)

all sampling algorithms, aliasing can arise. One weakness
of the algorithm is that averaging vertices removes high-
frequency details that might have significant importance
(features on a face, for example). Another weakness is
that the results are not invariant to rigid body motion of
the input model; if the model is rotated or translated, the
output model ripples like a point-sampled image.

Figures 2–5 show results from an algorithm based on
Rossignac and Borrel’s. Figure 2 shows the original
model of a cow and figure 3 is the result of simplifi-
cation. With this model, the results are good; viewed
from a distance the models are fairly similar. The second
example is a bust of Beethoven, figure 4, whose simplified
version, figure 5, illustrates the loss of important detail.
A better algorithm would use more polygons in areas of
high surface curvature and fewer polygons in areas of low
curvature.

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 49

4 Conclusions

Most current rendering algorithms are inefficient when
rendering very complex scenes. Their cost is linear in
scene complexity, and this is unacceptable when the com-
plexity is very high. When given a scene with many more
surface primitives than pixels, z-buffer algorithms waste
a lot of time transforming and clipping objects smaller
than a pixel that have negligible impact on the final pic-
ture. Using multiresolution modeling it may be possible
to render scenes in time proportional to screen area but
independent of scene complexity.

The six data structures for multiresolution modeling
that we have discussed are evaluated below:

Image Pyramids. Image pyramids are very good for pla-
nar and smoothly curved surfaces, but they do not
represent real 3-D features well.

Volume Pyramids. Total brute force. The results will
look blurry or blocky unless a huge memory is avail-
able.

Texture and Reflectance Models. Texture and reflect-
ance don’t represent geometry, but they are excel-
lent, compact representations for fine detail, so they
would be important components of any complete
multiresolution modeling system. Much work re-
mains to be done to derive textures from geometric
models, however.

Pictures from Multiple Angles. This approach is in-
triguing, but can the problems of specular objects
and occlusion be solved? Perhaps it should be used
primarily for diffuse, nearly-convex objects.

Ray Space. Also intriguing, but the memory require-
ments may be extreme.

Polygonal Models. Polygonal models will probably
form the core of a successful multiresolution model-
ing system, since they are the simplest, most versatile
representation for geometry.

The polygonal simplification methods we discussed
were developed with different goals in mind. Many
of the simplification algorithms are limited to
meshes, they are slow, and they consider shape
only when doing their simplification, not material
attributes such as color, specularity, or texture. Fur-
ther work is needed to adapt them to the goals of
multiresolution modeling.

Rossignac and Borrel’s simplification algorithm is
the most general, since it accepts polyhedral mod-
els with arbitrary topology as input. It can achieve

greater simplification since it is free to change the
topology of models. On the negative side, this al-
gorithm shows artifacts of the clustering grid and it
does not preserve detail as well as might be possible.
Nevertheless, this algorithm is a good starting point
for future research. With additional work on preser-
vation of appearance, a simplification algorithm well
suited for fast rendering could be developed.

A full multiresolution modeling system would need to
combine several of these data structures in order to repre-
sent objects using a combination of geometry, texture, and
reflectance, and it would need to smooth the transitions
between representations during rendering.

Acknowledgments

Thanks to Tom Funkhouser, Jon Webb, Andy Witkin,
Dave McKeown, and Jarek Rossignac for valuable dis-
cussions. This work was supported by ARPA contract
F19628-93-C-0171.

References

[1] Barry G. Becker and Nelson L. Max. Smooth tran-
sitions between bump rendering algorithms. In SIG-
GRAPH ’93 Proceedings, pages 183–189. ACM,
1993.

[2] Brian Cabral, Nelson Max, and Rebecca Spring-
meyer. Bidirectional reflection functions from sur-
face bump maps. Computer Graphics (SIGGRAPH
’87 Proceedings), 21(4):273–281, July 1987.

[3] Shenchang Eric Chen and Lance Williams. View
interpolation for image synthesis. In SIGGRAPH
’93 Proceedings, pages 279–288. ACM, 1993.

[4] James H. Clark. Hierarchical geometric models for
visible surface algorithms. CACM, 19(10):547–554,
Oct. 1976.

[5] Michael DeHaemer, Jr. and Michael J. Zyda. Sim-
plification of objects rendered by polygonal approx-
imations. Computers and Graphics, 15(2):175–184,
1991.

[6] James George Dunham. Optimum uniform piece-
wise linear approximation of planar curves. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 8(1):67–75, January 1986.

[7] Alain Fournier. Normal distribution functions and
multiple surfaces. In Graphics Interface ’92 Work-
shop on Local Illumination,pages 45–52, May 1992.

Proceedings of Graphics Interface ’94, Banff, Alberta, Canada, May 1994 50

[8] Thomas A. Funkhouser. Database and Display Al-
gorithms for Interactive Visualization of Architec-
tural Models. PhD thesis, CS Division, UC Berke-
ley, 1993.

[9] Thomas A. Funkhouser, Carlo H. Sequin, and Seth J.
Teller. Management of large amounts of data in
interactive building walkthroughs. In 1992 Sym-
posium on Interactive 3D Graphics, pages 11–20,
1992. Special issue of Computer Graphics.

[10] Ned Greene, Michael Kass, and Gavin Miller. Hier-
archical z-buffer visibility. In SIGGRAPH ’93 Pro-
ceedings, pages 231–238. ACM, 1993.

[11] Pat Hanrahan, David Salzman, and Larry Aup-
perle. A rapid hierarchical radiosity algorithm.
Computer Graphics (SIGGRAPH ’91 Proceedings),
25(4):197–206, July 1991.

[12] Paul S. Heckbert. Survey of texture mapping. IEEE
Computer Graphics and Applications, 6(11):56–67,
Nov. 1986.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimiza-
tion. In SIGGRAPH ’93 Proceedings, pages 19–26,
Aug. 1993.

[14] Insung Ihm and Bruce Naylor. Piecewise linear ap-
proximations of digitized space curves with appli-
cations. In N. M. Patrikalakis, editor, Scientific Vi-
sualization of Physical Phenomena, pages 545–569,
Tokyo, 1991. Springer-Verlag.

[15] James T. Kajiya. Anisotropic reflection models.
Computer Graphics (SIGGRAPH ’85 Proceedings),
19(3):15–21, July 1985.

[16] Ken Perlin. A unified texture/reflectance model. In
SIGGRAPH ’84 Advanced Image Synthesis seminar
notes, July 1984.

[17] Michael F. Polis and David M. McKeown, Jr. Is-
sues in iterative TIN generation to support large
scale simulations. In Proc. of 11th Intl. Symp.
on Computer Assisted Cartography (AUTOCARTO
11), pages 267–277, November 1993.

[18] Azriel Rosenfeld, editor. Multiresolution Image
Processing and Analysis. Springer, Berlin, 1984.
Leesberg, VA, July 1982.

[19] Jarek Rossignac and Paul Borrel. Multi-resolution
3D approximations for rendering complex scenes.
Technical report, Yorktown Heights, NY 10598,
February 1992. IBM Research Report RC 17697

(#77951). Also appeared in the IFIP TC 5.WG 5.10
II Conference on Geometric Modeling in Computer
Graphics, Genova, Italy, 1993.

[20] Holly E. Rushmeier, Charles Patterson, and Aravin-
dan Veerasamy. Geometric simplification for indi-
rect illumination calculations. In Proc. Graphics In-
terface ’93, pages 227–236, Toronto, Ontario, May
1993. Canadian Inf. Proc. Soc.

[21] Georgios Sakas and Matthias Gerth. Sampling and
anti-aliasing of discrete 3-D volume density tex-
tures. In Eurographics ’91, pages 87–102, 527,
Amsterdam, 1991. North-Holland.

[22] Lori Scarlatos and Theo Pavlidis. Hierarchi-
cal triangulation using cartographic coherence.
CVGIP: Graphical Models and Image Processing,
54(2):147–161, March 1992.

[23] William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle
meshes. Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), 26(2):65–70, July 1992.

[24] Seth J. Teller. Visibility Computations in Densely
Occluded Polyhedral Environments. PhD thesis, CS
Division, UC Berkeley, October 1992. Tech. Report
UCB/CSD-92-708.

[25] Greg Turk. Re-tiling polygonal surfaces. Computer
Graphics (SIGGRAPH ’92 Proceedings), 26(2):55–
64, July 1992.

[26] Steve Upstill. The Renderman Companion. Addison
Wesley, Reading, MA, 1990.

[27] Stephen H. Westin, James R. Arvo, and Kenneth E.
Torrance. Predicting reflectance functions from
complex surfaces. Computer Graphics (SIGGRAPH
’92 Proceedings), 26(4):255–264, July 1992.

[28] Lance Williams. Pyramidal parametrics. Computer
Graphics (SIGGRAPH ’83 Proceedings), 17(3):1–
11, July 1983.

[29] Michael J. Zyda. Course notes, book 10. Tech-
nical report, Graphics & Video Laboratory, Dept.
of Computer Science, Naval Postgraduate School,
Monterey, CA, November 1991.

Fast Triangular Approximation of Terrains and Height Fields

Michael Garland and Paul S. Heckbert
Carnegie Mellon University∗

May 2, 1997

Abstract

We present efficient algorithms for approximating a height
field using a piecewise-linear triangulated surface. The al-
gorithms attempt to minimize both the error and the num-
ber of triangles in the approximation. The methods we
examine are variants of the greedy insertion algorithm.
This method begins with a simple triangulation of the
domain as an initial approximation. It then iteratively
finds the input point with highest error in the current ap-
proximation and inserts it as a vertex in the triangula-
tion. We describe optimized algorithms using both De-
launay and data-dependent triangulation criteria. The al-
gorithms have typical costs of O((m + n) logm), where
n is the number of points in the input height field and m
is the number of vertices in the final approximation. We
also present empirical comparisons of several variants of
the algorithms on large digital elevation models. We have
made a C++ implementation of our algorithms publicly
available.

Keywords: surface simplification, surface approxima-
tion, Delaunay triangulation, data-dependent triangula-
tion, triangulated irregular network, greedy insertion.

1 Introduction

A height field is a set of data values sampled at points in
a planar domain. Terrain data, a common type of height
field, is used in many applications, including flight simula-
tors, ground vehicle simulators, video games, and in com-
puter graphics for entertainment. Computer vision uses
height fields to represent range data acquired by stereo and
laser range finders. In all of these applications, an efficient
data structure for representing and displaying the height
field is desirable.

∗Computer Science Dept., Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh PA 15213-3891, USA.fgarland,phg@cs.cmu.edu http://
www.cs.cmu.edu/∼garland/scape

0Draft. This work has been submitted to IEEE TVCG for possible
publication. Copyright may be transferred without notice, after which
permission to reuse must be obtained from IEEE.

Our primary motivation is to render height field data
rapidly and with high fidelity. Since almost all graph-
ics hardware uses the polygon as the fundamental build-
ing block for object description, it seems natural to repre-
sent the terrain as a mesh of polygonal elements. The raw
sample data can be trivially converted into polygons by
placing edges between each pair of neighboring samples
(see Figure 6). However, for terrains of any significant
size, rendering this full model is prohibitively expensive.
For example, the 2,000,000 triangles in a 1,000× 1,000
grid take about seven seconds to render on current mid-
range graphics workstations, which can display roughly
10,000 triangles in real time (every 30th of a second).
Even as the fastest graphics workstations speed up in com-
ing years, typical workstations and personal computers
will remain far slower. More fundamentally, the detail of
the full model is highly redundant when it is viewed from
a distance, and its use in such cases is unnecessary and
wasteful. Many terrains have large, nearly planar regions
which are well approximated by large polygons. Ideally,
we would like to render models of arbitrary height fields
with just enough detail for visual accuracy. Additionally,
in systems which are highly constrained, we would like
to use a less detailed model in order to conserve memory,
disk space, or network bandwidth.

To render a height field quickly, we can use multireso-
lution modeling, preprocessing it to construct approxima-
tions of the surface at various levels of detail [2, 15]. When
rendering the height field, we can choose an approxima-
tion with an appropriate level of detail and use it in place
of the original.

In some applications, such as flight simulators, the
speed of simplification is unimportant, because database
preparation is done off-line, once, while rendering of the
simplified terrain is done thousands of times. However, in
more general computer graphics and computer animation
applications, the scene being simplified might be chang-
ing, so a slow simplification method might be useless.
Finding a simplification algorithm that is fast is therefore
quite important to us.

Our focus in this paper will be to generate simplified

1

2 Garland & Heckbert, Approximation of Terrains

models of a height field from the original model. The sim-
plified model should accurately approximate the original
model, it should be as compact as possible, and the process
of simplification should be as rapid as possible. We mea-
sure the compactness of a model in terms of the number of
triangles (or, proportionally, the number of vertices), since
that is the major factor influencing rendering speed, and
fast rendering with accurate approximations is our main
goal.

We do not attempt to survey other methods for surface
simplification here; for a taxonomy and comparison of
polygonal surface simplification methods, see our survey
paper [16].

The remainder of this paper contains the following sec-
tions: We begin by stating the problem we are solv-
ing. Next we describe the greedy insertion algorithm and
present three simple optimizations that speed it up dra-
matically. We explore the use of both Delaunay triangu-
lation and data-dependent triangulation. The paper con-
cludes with a discussion of empirical results, ideas for fu-
ture work, and a summary.

2 Background

A height field is a function of two variables, H(x, y),
which represents a surface. The input to our system is a
height field represented by a set of sample points in the
plane and a set of data values associated with those points.
For now, we will assume this to be a set of height sam-
ples, but later we will consider generalized values. We
will assume that the set of sample points is arranged on a
rectangular grid at integral coordinates, but the methods
we will describe are easily generalized to scattered data
points. This discrete representation can be transformed
into a continuous surface by triangulating its set of points
and defining a piecewise-linear function over this triangu-
lation. An approximation of H can be constructed by tri-
angulating a subset of the sample points of H such that the
triangulation covers the entire domain of H. Such an ap-
proximation is often referred to as a triangulated irregular
network, or TIN, in the cartography literature.

Our goal is to find an approximation S(x, y) of H(x, y)
which approximates H as accurately as possible using as
few points as possible, and to compute its triangulation as
quickly as possible. We will let n be the number of input
points in H and m be the number of vertices in the approx-
imation S.

Delaunay and Data-Dependent Triangulation. In this
paper, we explore the use of both Delaunay and data-
dependent triangulations for constructing the approxi-
mate surface. Delaunay triangulation is a purely two-

dimensional method; it uses only the xy projections of the
input points. It finds a triangulation that maximizes the
minimum angle of all triangles, among all triangulations
of a given point set [12, 20]. This helps to minimize the
occurrence of very thin sliver triangles. Data-dependent
triangulation, in contrast, uses the heights of points in ad-
dition to their x and y coordinates [7, 26]. It can achieve
lower error approximations than Delaunay triangulation,
but it generates more slivers.

The incremental Delaunay triangulation algorithm
starts with a simple, initial triangulation and inserts
the points as vertices in the triangulation one-by-one,
performing local topological updates after each inser-
tion [12, 20]. The procedure to insert a single vertex is
illustrated in Figure 1, and works as follows: To insert
a vertex A, locate its containing triangle, or, if it lies
on an edge, delete that edge and find its containing
quadrilateral. Add “spoke” edges from A to the vertices
of this containing polygon. All perimeter edges of the
containing polygon are suspect and their validity must be
checked. An edge is valid iff it passes the circle test: if A
lies outside the circumcircle of the triangle that is on the
opposite side of the edge from A. All invalid edges must
be swapped with the other diagonal of the quadrilateral
containing them, at which point the containing polygon
acquires two new suspect edges. The process continues
until no suspect edges remain. The resulting triangulation
is Delaunay.

Refinement Methods. Refinement is one of the gen-
eral approaches to surface simplification [16]. Refinement
methods are multi-pass algorithms that begin with an ini-
tial approximation and iteratively add new vertices to the
triangulation until some goal is achieved. This goal is typ-
ically stated in terms of a desired error threshold or a max-
imum number of vertices. In order to choose which points
to add to the approximation, refinement methods rank the
available input points using some importance measure.

In choosing an importance measure, we reject those that
make use of implicit knowledge about the nature of ter-
rains, such as the existence of ridge lines. We would like
our algorithms to apply to general height fields, where as-
sumptions that are valid for terrains might fail. Even if we
were to constrain ourselves to terrains alone, we are not
aware of conclusive evidence suggesting that high fidelity
results (as measured by an objective L2 or L∞ metric1) re-
quire high level knowledge of terrains. After experiment-

1In this paper, we use the following error metrics: We define the L2

error between two n-vectors u and v as ||u−v||2 =
[∑n

i=1(ui − vi)
2
]1/2

.
The L∞ error, also called the maximum error, is ||u − v||∞ =
maxn

i=1 |ui − vi|. We define the squared error to be the square of the L2
error, and the root mean square or RMS error to be the L2 error divided
by
√

n. Optimization with respect to the L2 and L∞ metrics are called
least squares and minimax optimization, and we call such solutions L2–
optimal and L∞–optimal, respectively.

Garland & Heckbert, Approximation of Terrains 3

★
A

Z

D

A

B

C

D

B

C

Z

a b

D

A

B

C

Z

c

Figure 1: Incremental Delaunay triangulation: a) Point A is about to be inserted. Spoke edges from A to the containing
polygon ZBD are added. b) The quadrilateral around suspect edge BD is checked using the circle test. The circumcircle
of BCD contains A, so edge BD is invalid. c) After swapping edge BD for AC, edges BC and CD become suspect. The
polygon ZBCD is the only area of the mesh that has changed.

ing with more complex alternatives [11], we chose one of
the simplest importance measures, the local approxima-
tion error: |H(x, y)− S(x, y)|, which is simply the ver-
tical distance at a point between the input data and the ap-
proximation.

3 Greedy Insertion

We call refinement algorithms that insert the point(s) of
highest error on each pass greedy insertion algorithms,
“greedy” because they make irrevocable decisions as they
go, and “insertion” because on each pass they insert one or
more vertices into the triangulation.

3.1 Previous Work

Many variations on the greedy insertion algorithm have
been explored over the years; apparently the algorithm has
been reinvented many times. However, in the previous
work, analysis and testing on large problems were not al-
ways done.

In early work, Fowler and Little used a hybrid of fea-
ture methods and refinement methods to approximate a ter-
rain [9]. A purer greedy insertion algorithm using Delau-
nay triangulation, with no optimizations described, was
given by De Floriani et al. in 1983 [4, 5]. Others pre-
sented similar algorithms, demonstrating them on larger
input data [24, 25]. In 1989 De Floriani described a more
optimized version of the algorithm [3] with a typical cost,
by our analysis, of O(n logm+m2). Others independently
developed essentially the same algorithm [10, 8]. Varia-
tions of this algorithm using least squares fitting, and using
data-dependent triangulation instead of Delaunay triangu-
lation, were given by Rippa [26]. Both variants typically
improve the fit. The basic algorithm was optimized further
by Heller, using a heap to reduce the typical cost, by our
analysis, to O((m+n) logm) [17, p. 168].

Our contributions build on this work. We describe the
greedy insertion approach in greater detail than it has been

covered previously, optimize it, provide theoretical analy-
sis of both worst case and typical complexity, and include
extensive empirical testing on large terrain data sets. We
have compared our greedy insertion method to several of
the methods summarized above and found ours to be faster
and/or more accurate.

3.2 Naive Algorithm

First, we consider simple and unoptimized greedy inser-
tion [4, 5, 26, 24, 25]. We build an initial approximation
of two triangles using the corner points of H. In repeated
passes, we scan the points to find the one with the largest
error and insert it into the current approximation using in-
cremental Delaunay triangulation.

Cost Analysis of Naive Algorithm. Within each pass,
we classify costs into three categories:

selection to pick the point of highest error,

insertion to insert a vertex into the mesh, and

recalculation to recalculate errors at grid points.

Recall that n is the number of points in the input grid and
m is the number of points in the final approximation. Let L
denote the time to locate one point in the Delaunay mesh
and I be the time to insert a vertex into the mesh. Note
that both I and L are mesh-dependent, and hence iteration-
dependent.

For point location, we use the simple “walking method”
described by Guibas-Stolfi [12, p. 121]. This algorithm
starts on an edge of the mesh, and walks through the mesh
toward the target point until it arrives at the target. Our
variant of the algorithm, which generalizes it to a broader
class of triangulations, is described in [11]. Logarithmic-
time point location algorithms are known [13], of course,
but it turns out that we will not need them.

In this simple implementation of greedy insertion, the
costs per pass are: O(n) to scan the points and select the

4 Garland & Heckbert, Approximation of Terrains

point of highest error, I for insertion, and O(nL) to recal-
culate the errors at all of the n points. Recalculation, in this
unoptimized algorithm, requires a point location of cost L
to find the enclosing triangle, and an interpolation within
the triangle of cost O(1) for each mesh point.

In the worst case, a single location or insertion takes
O(i) time on pass i, and thus L= I= O(i). This would
yield an overall complexity of

∑m
i=1 O(ni)= O(m2n) for

this algorithm. Fortunately, the worst case behavior is very
unlikely.

We will use the term “typical cost” to describe costs
observed in practice (we do not use the term “expected
cost”, since we don’t have a probabilistic model of the in-
put). The typical cost of point location is only L=O(1),
since successive location sites are mostly in scanline or-
der [12, 11]. Insertion requires point location, and our
location method typically costs O(

√
i) in a triangulation

with O(i) vertices [12, 11]. Thus the typical insertion cost
is I=O(

√
i). Therefore, the typical total cost is dominated

by recalculation:
∑m

i=1 O(n) = O(mn).

3.3 Optimized Algorithm

The algorithm above yields high quality results. However,
even our typical time complexity estimate of O(mn) is ex-
pensive, and the worst case complexity of O(m2n) is ex-
orbitant. Fortunately, we can improve upon our naive al-
gorithm with three optimizations: (1) faster recalculation,
(2) faster selection, and (3) the elimination of point loca-
tion.

Faster Recalculation. After a Delaunay insertion, the
point inserted will have edges emanating from it to the cor-
ners of a surrounding polygon [12]. This polygon defines
the area in which the triangulation has been altered, and
hence, it defines the area in which the approximation has
changed (see Figure 1c). We call this polygon the update
region. Such coherence permits our first significant opti-
mization: we will cache the error values and only recom-
pute errors within this update region. This can be done
with polygon scan conversion (rasterization).

We can also use scan conversion to improve the effi-
ciency of recalculation. With the naive algorithm, recal-
culation involved an interpolation within the enclosing tri-
angle of each point. During scan conversion of a triangle,
we can precompute a plane equation once and interpolate
to that plane incrementally. This cuts the cost of recalcu-
lation by a significant constant factor.

Faster Selection. The next critical observation is that
selection can be done more quickly with a heap or other

fast priority queue. We define the candidate point of a
triangle to be a grid point within the triangle that has the
highest error in the current approximation. Each triangle
can have at most one candidate point. Most triangles have
one candidate, but if the maximum error inside the trian-
gle is negligible, or there are no input points inside the tri-
angle, then the triangle has none. We compute the candi-
date for each triangle as we scan convert it. These candi-
dates are maintained in a heap keyed on their errors. Dur-
ing each pass, we simply extract the best candidate from
the top of the heap.

Elimination of Point Location. In the naive algorithm,
recalculation required a point location to find the enclosing
triangle of each point. Insertion also required a point loca-
tion. We can eliminate point location altogether by record-
ing with each candidate a pointer to its containing triangle.

Data Structures. Our algorithm, listed below, has the
following primary data structures: planes, height fields,
triangulations, and heaps. A plane structure simply stores
the coefficients a, b, and c for a plane equation z= ax+
by+ c. The height field consists of a rectangular array of
points, each of which contains a height value H(x, y), and
a bit to record if the input point has been used by the trian-
gulation. For the triangulation, we use a slight modifica-
tion to Guibas and Stolfi’s quad-edge data structure [12],
which tracks triangles as well as 2-D points and directed
edges. Triangles track their candidate’s position (cand-
pos), their location in the heap (heapptr), and their an error
measurement (err). The heap contains triangles keyed on
the error of their candidate point.

We state the conditions for termination abstractly as a
function GOAL MET(); they would typically be based on
the number of points selected, the maximum error of the
approximation, or the squared error of the approximation.

Garland & Heckbert, Approximation of Terrains 5

Delaunay Greedy Insertion:

HeapNode HEAP CHANGE(HeapNode h, float key, Triangle T):
% Set the key for heap node h to key,
% set its triangle pointer to T, and adjust heap.
% Return (possibly new) heap node.
if h 6= nil then

if key > 0 then
% update existing heap node
HEAP UPDATE(h, key)
return h

else
% delete obsolete heap node
HEAP DELETE(h)
return nil

else
if key > 0 then

% insert new heap node
return HEAP INSERT(key, T)

else
return nil

MESH INSERT(Point p, Triangle T):
Insert a new vertex in triangle T
Update the Delaunay mesh,

calling HEAP DELETE on candidates of deleted triangles
and setting heapptr←nil on new triangles

SCAN TRIANGLE(Triangle T):
plane←FIND TRIANGLE PLANE(T)
best←nil
maxerr←0
forall points p inside triangle T do

err←|H(p) − INTERPOLATE TO PLANE(p, plane)|
if err > maxerr then

maxerr←err
best←p

T.heapptr←HEAP CHANGE(T.heapptr, maxerr, T)
T.candpos←best

INSERT(Point p, Triangle T):
mark p as used
MESH INSERT(p, T)
forall triangles U adjacent to p do

SCAN TRIANGLE(U)

GREEDY INSERT():
initialize mesh to two triangles formed by grid corners
forall initial triangles T do

SCAN TRIANGLE(T)
while not GOAL MET() do

T←HEAP DELETE MAX()

INSERT(T.candpos, T)

3.3.1 Cost Analysis of Optimized Algorithm

The three optimizations we have made speed up the algo-
rithm significantly, both in theory and in practice.

In the optimized algorithm, time for selection is spent
in three places: heap insertion, heap extraction, and heap
updates. The growth of the heap per pass is bounded
by the net growth in the number of triangles, which is
2. However, the heap does not always grow this fast. In
particular, as triangles become so small or so well fit to
the height field as to have no candidate points, they will
be removed from the heap, and eventually the heap will
shrink. Typically, the approximations that we wish to pro-
duce are much smaller than the original height fields. Con-
sequently, the algorithm will rarely realize any significant
benefit from shrinking heap sizes. To be conservative, we
will assume that the size of the heap on pass i is O(i), and
thus, that individual heap operations require O(log i) time.

The number of changes made to the heap per pass is 3
plus the number of edge flips performed during mesh in-
sertion. We assume that this is a small constant number.
This is empirically confirmed on our sample data; in prac-
tice, the number of calls to HEAP CHANGE per pass is
roughly 3–5. Given this assumption, the total heap cost,
and hence selection cost, is O(log i) per pass.

The other two tasks, insertion and recalculation, are also
cheaper now, since neither performs locations, and recal-
culation also exploits locality and uses cached plane equa-
tions. The cost of recalculation has dropped from O(nL)
to O(A), where A is the area of the update region.

Worst Case Time Cost. In the worst case, the inser-
tion time is I=O(i) and the update area is A=O(n), so
the costs per pass are: O(log i) for selection, O(i) for in-
sertion, and O(n) for recalculation. The asymptotically
dominant term is recalculation, as before, but it is much
smaller now; the total worst case cost is only

∑m
i=1 O(n)=

O(mn).

Typical Case Time Cost. The typical number of edge
flips is constant, so the cost of insertion is I= O(1) and
the size of the update region is A= O(n/ i). The costs
per pass are thus: O(log i) for selection, O(1) for inser-
tion, and O(n/ i) for recalculation. The selection cost
grows as the passes progress, while the recalculation cost
shrinks. These two are the dominant terms. The total cost
in the typical case is thus:

∑m
i=1 O(log i+ n/ i)= O((m+

n) logm).

6 Garland & Heckbert, Approximation of Terrains

★
A

Z

D

A
P

B

C

D

B

C

D

A

B

C

D

A

B

C

★

★

★

★

Z

a dcb

★

Z

Figure 2: Data-dependent triangulation. a) Point A, the candidate of triangle ZBD, is about to be inserted. Stars denote
candidate points. Spoke edges from A to the containing polygon ZBD are added. b) The quadrilateral ABCD around
suspect edge BD is checked. ABCD can be triangulated in two ways, using diagonals BD or AC, which intersect at
point P. c) If BD yields the lowest error, then we have the new triangle ABD and the old triangle CDB. d) If AC has
lowest error, then we have the new triangles DAC and BCA, the containing polygon expands to ZBCD, and edges BC
and CD become suspect.

3.4 Data-Dependent Triangulation

So far we have used Delaunay triangulation, which em-
ploys only two-dimensional (xy) information, and strives
to create well-shaped triangles in 2-D. More accurate ap-
proximation is possible using data-dependent triangula-
tion, where the topology of the triangulation is chosen
based on the three-dimensional fit of the approximating
surface to the input points.

Data-dependent variants of the greedy insertion algo-
rithms described can be created by replacing Delaunay tri-
angulation with data-dependent triangulation, as discussed
by Rippa and Hamann-Chen [26, 14]. The vertex to insert
in the triangulation on each pass is chosen as before, but
the triangulation is done differently.

The incremental Delaunay triangulation algorithm used
above tested suspect edges with a purely two-dimensional
geometric test involving circumcircles. A generaliza-
tion of this approach, Lawson’s local optimization proce-
dure [20], uses other tests. For data-dependent triangula-
tion, instead of checking the validity of an edge with the
circle test, the rule we adopt is that an edge is swapped
if the change decreases the error of the approximation.
We defer the definition of “error” until later. When used
with the circle test, the local optimization procedure finds
a global optimum, the Delaunay triangulation, but when
used with more general tests, it is only guaranteed to find
a local optimum.

Figure 2 illustrates our local optimization procedure for
the data-dependent triangulation algorithm. Figure 2a:
suppose that point A has the highest error of all candidates.
It will be the next vertex inserted in the triangulation. Fig-
ure 2b: spokes are added connecting it to the containing
polygon (a triangle, if A falls inside a triangle; a quadri-
lateral, if A falls on an edge). Each edge of the contain-

ing polygon is suspect, and must be tested. In some cases,
the quadrilateral containing the edge will be concave, and
can only be triangulated one way, but in most cases, the
quadrilateral will be convex, and the other diagonal must
be tested to see if it yields lower error.

The most straightforward way to test validity of an edge
BD would be the following recursive procedure: Test both
ways of triangulating the quadrilateral ABCD containing
the edge. If edge BD yields lower global error (Figure 2c),
then no new suspect edges are added, and we stop recurs-
ing. If swapping edge BD for edge AC would reduce the
global error of the approximation (Figure 2d), then swap
the edge to AC, and recurse on the four new suspect edges,
BC, CD, AB, and AD.

Edges AB and AD are not suspect with the Delau-
nay criterion, but they are suspect when using a data-
dependent criterion in Lawson’s local optimization proce-
dure, since swapping them might decrease the error. In our
implementation, we do not test spokes such as AB and AD
for swapping. This rule guarantees that the update region
is exactly the containing polygon. This simplifies the im-
plementation, but may sacrifice some quality.

When all suspect edges have been tested, it is then nec-
essary to update the candidates for all the triangles in the
containing polygon. This straightforward approach re-
quires scan converting most of the triangles in the local
neighborhood twice: once to test for swapping and once
to find candidates.

A faster alternative is to scan convert once, computing
both the global error and the candidate in one pass. This
is about twice as fast. To do this, we split the quadrilateral
ABCD with its two diagonals into four subtriangles: PDA,
PAB, PBC, and PCD, where P is the intersection point of
the two diagonals (Figure 2b). This splitting is conceptual;
it is not a change to the data structures. As each of the four

Garland & Heckbert, Approximation of Terrains 7

subtriangles is scan converted, two piecewise-planar ap-
proximations are tested. For subtriangle ABP, for exam-
ple, the planes defined by ABD and BCA are both con-
sidered. The other subtriangles have different plane pairs.
During scan conversion of each subtriangle, for each of its
two planes, the contribution to the triangulation’s total er-
ror is calculated, and the best candidate point and its er-
ror is calculated. After scan conversion, the subtriangles’
errors and candidates are combined pairwise to determine
the error and candidates for each of the two pairs of trian-
gles: ABD and CDB, versus BCA and DAC. Note that,
with one exception, the triangle CDB is an old triangle,
so its error and candidate have previously been computed,
and need not be recomputed. The sole exception to this
rule is during initialization when the first two triangles are
being created.

Data Structures. The algorithm uses all of the previous
data structures plus a new one, the FitPlane. A FitPlane
is a temporary data structure that stores an approximation
plane and other information. During scan conversion of
the four subtriangles, it accumulates information about the
error and candidate for a triangle approximated by a plane.
Specifically, it contains the coefficients for the planar ap-
proximation function plane, the candidate’s position can-
dpos and error canderr, the error over the triangle err, and
a done bit recording whether the triangle was previously
scanned.

The Triangle and Heap data structures cache infor-
mation about candidates and errors that is re-used dur-
ing data-dependent insertion. A FitPlane can be ini-
tialized from this information with the subroutine FIT-
PLANE EXTRACT(Triangle T), which also marks the Fit-
Plane as done. When a new triangle is being tested, the
call FITPLANE INIT(a, b, c) will initialize a FitPlane to
a plane through the three points a, b, and c, with errors
set to 0, and done = nil. One or more subsequent calls to
SCAN TRIANGLE DATADEP are made to accumulate er-
ror and candidate information in the FitPlane. If this ap-
proximation plane turns out to be the best one, the heap is
updated and the error and candidate information is saved
for later use with a call to SET CANDIDATE (listed below).

The routines LEFT TRIANGLE and RIGHT TRIANGLE

return the triangles to the left and the right of a directed
edge, respectively. The keyword “var” marks call-by-
reference parameters.

Data-Dependent Greedy Insertion:

SET CANDIDATE(var Triangle T, FitPlane fit):
T.heapptr←HEAP CHANGE(T.heapptr, fit.canderr, T)
T.candpos←fit.candpos
T.err←fit.err

SCAN POINT(Point x, var FitPlane fit):
err←|H(x) − INTERPOLATE TO PLANE(x, fit.plane)|
fit.err←ERROR ACCUM(fit.err, err)
if err > fit.err then

fit.canderr←err
fit.candpos←x

SCAN TRIANGLE DATADEP(Point p, Point q, Point r,
var FitPlane u, var FitPlane v):

% Scan convert triangle pqr,
% updating error and candidate for planes u and v.
% Plane u might be nonexistent or already done.
forall points x inside triangle pqr do

if u 6= nil and not u.done then
SCAN POINT(x, u)

SCAN POINT(x, v)

FIRST BETTER(float q1, float q2, float e1, float e2):
% Return true iff edge 1 yields better triangulation of a
% quadrilateral than edge 2, according to shape and fit.
% q1 and q2 are “shape quality”, and e1 and e2 are
% fit error of the corresponding triangulations.
qratio←MIN(q1, q2) / MAX(q1, q2)
% Use shape criterion if shape of one triangulation
% is much better than the other, otherwise use fit.
if qratio ≤ qthresh then

return (q1 ≥ q2) % shape criterion
else

return (e1 ≤ e2) % fit error criterion

8 Garland & Heckbert, Approximation of Terrains

CHECK SWAP(DirectedEdge e, FitPlane abd):
% Checks edge e, swapping it if that reduces error,
% updating triangulation and heap.
% Error and candidate for the triangle to the left of e
% is passed in in abd, if available.
% Points a, b, c, d, and p are as shown in figure 2b,
% and e is edge from b to d.
if abd = nil then

abd←FITPLANE INIT(a, b, d)
if edge e is on boundary of input grid

or quadrilateral abcd is concave then
% Edge bd is good and edge ac is bad.
if not abd.done then

SCAN TRIANGLE DATADEP(a, b, d, nil, abd)
SET CANDIDATE(LEFT TRIANGLE(e), abd)

else
% Check whether diagonal bd or ac has lower error.
FitPlane cdb←FITPLANE EXTRACT(RIGHT TRIANGLE(e))
FitPlane dac←FITPLANE INIT(d, a, c)
FitPlane bca←FITPLANE INIT(b, c, a)
% scan convert the four subtriangles
SCAN TRIANGLE DATADEP(p, d, a, abd, dac)
SCAN TRIANGLE DATADEP(p, a, b, abd, bca)
SCAN TRIANGLE DATADEP(p, b, c, cdb, bca)
SCAN TRIANGLE DATADEP(p, c, d, cdb, dac)
if FIRST BETTER(SHAPE QUALITY(a, b, c, d),

SHAPE QUALITY(b, c, d, a),
ERROR COMBINE(abd.err, cdb.err),
ERROR COMBINE(dac.err, bca.err)) then

% keep edge bd
SET CANDIDATE(LEFT TRIANGLE(e), abd)
if not cdb.done then

SET CANDIDATE(RIGHT TRIANGLE(e), cdb)
else

Swap edge e from bd to ac.
dac.done←bca.done← true
CHECK SWAP(DirectedEdge cd, dac) % recurse
CHECK SWAP(DirectedEdge bc, bca)

INSERT DATADEP(Point a, Triangle T):
Mark input point at a as used.
In triangulation, add spoke edges connecting a to vertices

of containing polygon (T and possibly a neighbor of T).
forall counterclockwise perimeter edges e

of containing polygon do
CHECK SWAP(e, nil)

GREEDY INSERT DATADEP():
Initialize mesh to two triangles spanning height field.
e← (either directed edge along diagonal)
CHECK SWAP(e, nil)
while not GOAL MET() do

T←HEAP DELETE MAX()

INSERT DATADEP(T.candpos, T)

3.4.1 Data-Dependent Criterion

The routines ERROR ACCUM and ERROR COMBINE are
used to accumulate the error over a subtriangle, and to to-
tal the error of a pair of triangles, respectively. These can
be defined in various ways. For an L2 error measure, they
should be defined:

float ERROR ACCUM(float accum, float x):
return accum+x∗x

float ERROR COMBINE(float err1, float err2):
return err1+err2

and for an L∞ error measure, they should be defined:

float ERROR ACCUM(float accum, float x):
return MAX(accum, x)

float ERROR COMBINE(float err1, float err2):
return MAX(err1, err2)

The data-dependent-based method described above is
slower than the Delaunay-based algorithm because it re-
quires about twice as many error recalculations during
scan conversion. However, the asymptotic complexities
are identical to the Delaunay-based algorithm. Thus, the
worst case cost is O(mn) and its typical cost is O((m+
n) logm).

3.4.2 Combating Slivers

Pure data-dependent triangulation, which makes swapping
decisions based exclusively on fit error, will sometimes
generate very thin sliver triangles. If the triangles fit the
data well, and the surface is being displayed in shaded (not
vector) form, then slivers by themselves are not a prob-
lem. But sometimes these slivers do not fit the data well,
and lead to globally inaccurate approximations. After ex-
periments with several sliver-avoidance schemes (see [11,
26]), we adopted a hybrid of data-dependent and Delaunay
triangulation.

The pseudocode above implements this hybrid. The
procedure SHAPE QUALITY(a, b, c, d) returns a numer-
ical rating of the shape of the triangles when quadrilateral
abcd is split by edge bd. This rating should be constructed
so that higher values indicate “better” shape. The param-
eter qthresh used in FIRST BETTER is a quality thresh-
old. When set to 0, pure data-dependent triangulation re-
sults, when set to 1, pure shape-dependent triangulation
results, and when set in between, a hybrid results. If
SHAPE QUALITY returns the minimum angle of the tri-
angles abd and cdb, then this shape-dependent triangula-
tion will in fact be Delaunay triangulation. The hybrid
method typically yielded lower error approximations than
pure shape- or pure data-dependent triangulation.

Garland & Heckbert, Approximation of Terrains 9

Name Dimensions Location

West US 1024×1024 Idaho/Wyoming border
NTC 1024×1024 Tiefort Mtns., California
Ozark 369×462 Ozark, Missouri
Crater 336×459 Crater Lake, Oregon
Ashby 346×452 Ashby Gap, Virginia

Table 1: DEM datasets used for testing the simplification
algorithms.

3.5 Extended Height Fields

So far, we have developed algorithms for simplifying
basic height fields, and we have described techniques
for making them faster without sacrificing quality. The
greedy insertion algorithm can also be used to simplify
data other than scalar height fields.

Consider the case in which our data specifies more than
just height. For instance, the grid might contain measure-
ments for some material property of the surface such as
color, expressed as an RGB triple. Our algorithm can be
easily adapted to support such extended height fields. Up
to now, we have considered the simple case of surfaces
of the form H(x, y)= z. An extended height field is one
where the data values are tuples rather than single num-
bers. For example, we might model a color-textured ter-
rain as a surface H(x, y)= (z, r, g, b). We can think of
this as sampling a set of distinct surfaces, one in xyz-space,
one in xyr-space, and so on. We see here another reason to
reject triangulation schemes that attempt to fit specific sur-
face characteristics; we now have 4 distinct surfaces which
need have no features in common. Given data for a generic
set of surfaces, we can apply the importance measure to
each surface separately and then compute some kind of av-
erage of these values. But when we know the precise inter-
pretation of the data (i.e. the values represent height and
color), we can construct a more informed measure. Our
old measure was simply |1z|; a reasonable extension to
deal with color is |1z| + M

3 (|1r| + |1g| + |1b|). Here,
M is the z-range of H; the M

3 term scales the total color dif-
ference to fit the range of the total height difference (here
we assume that color values are between 0 and 1). In order
to achieve greater flexibility, we can also add a color em-
phasis parameter,w, controlling the relative importance of
height difference and color difference. The final error for-
mula would be: (1−w)|1z|+w M

3 (|1r|+ |1g|+ |1b|).
To implement these changes, we simply added fields to

the height field to record r, g, and b, modified the FitPlane
to retain planar approximations to these three additional
surfaces, and changed the error procedure to use the ex-
tended formula above.

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
)

Number of Points Selected (m)

West US
NTC

Ozark
Crater
Ashby

Figure 3: Running time of Delaunay greedy insertion on
several DEM datasets.

These extensions allow our algorithm to be used to
simplify terrains with color texture or planar color im-
ages [27]. The output of such a simplification is a triangu-
lated surface with linear interpolation of color across each
triangle. Such models are ideally suited for hardware-
assisted Gouraud shading on most graphics workstations,
and are a possible substitute for texture mapping when that
is not supported by hardware.

4 Results

Our combined implementation of the Delaunay and data-
dependent algorithms consists of about 5,200 lines of
C++. The incremental Delaunay triangulation module is
adapted from Lischinski’s code [22].

Figures 4–11 are a demonstration of greedy insertion
based approximation of a digital elevation model (DEM)
for the western half of Crater Lake. Figure 4 shows the full
DEM dataset (a rectangular grid with each quadrilateral
split into two triangles). Our first approximation, shown
in Figure 5, shows an approximation using 1% of the to-
tal points. This approximation has captured the major fea-
tures of the terrain. However, it is still clearly different
from the original. Figure 8 is an approximation using 5%
of the original points. This model contains most of the fea-
tures of the original. Thus, using only a fraction of the
original data points, we can build high fidelity approxima-
tions. In a multiresolution database, we would produce a
series of approximations, for use at varying distances.

Color Figures 16–18 illustrate the application of height
field simplification methods to the approximation of pla-
nar color images by Gouraud shaded triangles. Figure 17
shows approximation by uniform subsampling, and Fig-
ure 18 shows approximation by data-dependent greedy in-

10 Garland & Heckbert, Approximation of Terrains

sertion, both using the same number of vertices. In both
cases, the best results (shown) were achieved by low pass
filtering the input before approximating. Clearly, greedy
insertion yields a much better approximation.

4.1 Speed of the Algorithms

We have tested the performance of our simplification al-
gorithms on a Silicon Graphics Indigo2 with a 150 MHz
MIPS R4400 processor and 64 megabytes of main mem-
ory. For our timing tests we have used several digital ele-
vation models. They are summarized in Table 1.

Figure 3 shows the running time of the Delaunay-based
algorithm on the various DEM datasets as a function of
points selected. In all cases, it was able to select 50,000
points in under one minute. In Figures 3, 12, 13, and 15,
n is fixed (although it varies between datasets of different
sizes) and the horizontal axis is m. All of the data points
in Figure 3 are fit by the function

time(m, n)= .000001303 n logm− .0000259 m logm

+.00000326 n+ .000845 m− 0.178 log m+ .1 sec.

with a maximum error of 1.7 seconds, supporting our
O((m+n) logm) typical cost formula.

To quantify the improvement in efficiency due to our
optimizations, we also implemented a naive greedy inser-
tion algorithm. The optimizations proved to be very sig-
nificant. In the time it takes our optimized algorithm to
select 50,000 points from a 1,024×1,024 terrain (46 sec-
onds), the naive algorithm can only manage to select a
few hundred points from a 65×65 terrain [11]. These
speedups were achieved without sacrificing quality; our
optimizations increase processing speed with no meaning-
ful change in the points selected or the approximation2.

4.2 Memory Use

The optimized algorithm uses memory for three main pur-
poses: the height field, the mesh, and the heap. The height
field uses space proportional to the number of grid points
n, and the mesh and heap use space proportional to the
number of vertices in the mesh, m. Asymptotically, the
memory cost is thus O(m+ n).

We now detail the memory requirements of our cur-
rent implementation. For every point in the height field,
we store one 2-byte integer for the z value, and a 1-
byte Boolean indicating whether this point has been used.
Thus, these arrays consume 3n bytes. In the mesh, 16
bytes are used to store each vertex’s position, 68 bytes are

2In the case of ties between candidates of equal importance, imple-
mentation details might cause a difference in selection order.

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000

R
M

S
 E

rr
or

 (
m

et
er

s)

Number of Points Selected (m)

constant (1.0)
constant (10.0)

uniform grid subsampling
fractional (0.5)
fractional (0.8)

sequential

Figure 12: RMS error of approximation as vertices are
added to the mesh, for Crater Lake DEM, for uniform grid
subsampling and several variants of Delaunay greedy in-
sertion: sequential insertion, fractional threshold paral-
lel insertion with two different fractions α, and constant
threshold parallel insertion with two different thresholds ε.

used per edge, and 24 bytes per triangle, so assuming there
are about 3m edges and 2m triangles, the memory required
for a mesh with m vertices is 268m bytes. The heap uses
12 bytes per node, so heap memory requirements are about
12 · 2m=24m bytes.

Total memory requirements of the data structures in our
implementation are therefore 3n+ 292m bytes. Thus, for
example, we estimate that selecting m=10,000 (1% of to-
tal) points from an n=1,0242 DEM would require about
6 megabytes of memory.

Our current implementation stores floating point num-
bers using double precision (8 bytes), and uses the quad-
edge data structure to store the mesh. The quad-edge
structure is less compact than some triangulation data
structures, and double precision floating point may not al-
ways be necessary. So the program’s memory require-
ments could probably be cut significantly.

4.3 Quality of the Approximations

We believe that the greedy insertion algorithm yields good
results on most reasonably smooth height fields. This can
be verified both visually and with objective error metrics.
Figure 12 shows the RMS error as an approximation for
the Crater Lake DEM is built one point at a time. This
figure also shows the error behavior for some variant in-
sertion policies, but we will ignore all but the “sequential”
curve for the moment.

At a coarse level, the RMS error initially decreases quite
rapidly and then slowly approaches 0. In the early phases

Garland & Heckbert, Approximation of Terrains 11

Figure 4: Original DEM data for west end of
Crater Lake (154,224 vertices). Note the is-
land in the lake.

Figure 5: Delaunay approximation using 1%
of the input points (1,542 vertices).

Figure 6: Mesh identical to the one used for
the DEM picture above, except this mesh uses
only every eighth point in x and y, for clarity.

Figure 7: Delaunay mesh for the approxima-
tion above. Candidates are shown with dots.
It is interesting to note that most candidates
fall near edges.

12 Garland & Heckbert, Approximation of Terrains

Figure 8: Delaunay approximation using 5%
of the input points (7,711 vertices).

Figure 9: Data-dependent approximation us-
ing 5% of the input points (7,711 vertices).

Figure 10: Delaunay mesh for the approxima-
tion above.

Figure 11: Data-dependent mesh for the ap-
proximation above.

Garland & Heckbert, Approximation of Terrains 13

of the algorithm, the error fluctuates rather chaotically, but
it settles into a more stable decline. Theoretically, in the
limit as m→∞, the error of the L2-optimal triangulation
converges as m−1 [23], but this empirical data is better fit
by the function m−.7. While we only show the error curve
for a single terrain, we have tested the error behavior on
several terrains, and the curves all share the same basic
characteristics.

Data-dependent greedy insertion yielded the lowest er-
ror overall. For our SHAPE QUALITY measure, we em-
ployed a simple formula which is the product of the ar-
eas of the two triangles divided by the product of their ap-
proximate diameters. While this does not yield Delaunay
triangulation when qthresh=1, we believe the difference
is negligible. A shape quality threshold of qthresh = .5
gave the best results in most cases. By varying the ER-
ROR ACCUM and ERROR COMBINE procedures as de-
scribed in x3.4.1, several different error measures can be
tested. The error differences were slight, but empirical
tests showed that the lowest error approximations typi-
cally resulted when ERROR ACCUM used the MAX func-
tion while ERROR COMBINE used addition – thus, a com-
bination of L∞ and L2 measures. We call this the sum-max
criterion.

We also tested the angle between normals (ABN) cri-
terion proposed by Dyn et al. [7]. This criterion swaps
edges to minimize the angle between normals of adjacent
triangles. The ABN criterion is thus data-dependent in the
sense that it depends on the heights at the vertices, but un-
like the L∞ and L2-based error measures our algorithms
employ, the error measure is independent of the unselected
input points. In our experiments, with qthresh = .5, the
ABN criterion gave errors that were higher than the sum-
max criterion in all cases, and often higher than the Delau-
nay criterion as well. (We did not test the more complex
ABN hybrid described by Rippa [26, p. 1136]).

Delaunay greedy insertion is compared to data-
dependent greedy insertion in Figures 13 and 14. The
first shows that, for a given number of points, data-
dependent triangulation with our sum-max criterion finds
a slightly more accurate approximation than Delaunay
triangulation. The ratio of data-dependent RMS error
to Delaunay RMS error is about .8 to .9 for this height
field. The second figure shows the time/quality tradeoff
very clearly. With either algorithm, as the number of
points selected increases, the error decreases while the
time cost increases. To achieve a given error threshold,
data-dependent greedy insertion takes about 3–4 times
as long as Delaunay greedy insertion, but it generates a
smaller mesh, which will display faster.

Data-dependent triangulation does dramatically better
than Delaunay triangulation on certain surfaces [7]. The

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
M

S
 E

rr
or

 (
m

et
er

s)

Number of Points Selected (m)

Delaunay
Data-dependent

Figure 13: RMS error of approximation as vertices are
added to the mesh, for Crater Lake DEM, comparing De-
launay triangulation (top curve) to data-dependent trian-
gulation (bottom).

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

R
M

S
 E

rr
or

 (
m

et
er

s)

Time (sec)

64

128

256

512

1024
2048

4096

64

128

256

512

1024
2048 4096

Delaunay
Data-dependent

Figure 14: Time versus error plot for Delaunay and
data-dependent triangulation on Crater Lake DEM. Data-
dependent triangulation is slower, but higher quality. Data
points are marked with m, the number of points selected.

optimal case for data-dependent triangulation is a ruled
surface with zero curvature in one direction and nonzero
curvature in another. Examples are cylinders, cones,
and height fields of the form H(x, y)= f (x) + ay. On
such a surface, if a Delaunay-triangulated approximation
uses m roughly uniformly distributed vertices, then data-
dependent triangulation could achieve the same error with
about 2

√
m points using sliver triangles that span the rect-

angular domain.

From our empirical tests, it seems that the surfaces for
which data-dependent triangulation excels are statistically
uncommon among natural terrains. We conjecture that
on natural terrains, data-dependent triangulation yields ap-
proximations that are only slightly higher quality than De-
launay triangulation, in general.

14 Garland & Heckbert, Approximation of Terrains

4.4 Sequential versus Parallel Greedy Insertion

Others have employed variants of the greedy insertion
algorithm that insert more than one point on each pass.
Methods that insert a single point on each pass we call se-
quential greedy insertion and methods that insert multiple
points in parallel on each pass we call parallel greedy in-
sertion. The words “sequential” and “parallel” here refer
to the selection and re-evaluation process, not to the archi-
tecture of the machine.

Puppo et al. showed statistics that suggest that paral-
lel methods are better than sequential methods, saying:
“.. .we show the results obtained by the sequential and the
parallel algorithm ...Because of the more even refinement
of the TIN, which is due to the introduction of many points
before the Delaunay optimization, our [parallel] approach
needs considerably fewer points to achieve the same level
of precision” [25, p. 123].

We tested this claim by comparing our sequential
greedy insertion algorithm against two variants of paral-
lel insertion. Both variants select and insert all candidate
points p such that ERROR(p)≥ ε, where ε is a threshold
value.

The first insertion variant, which we call fractional
threshold parallel insertion, selects all candidate points
such that ERROR(p) ≥ αemax, where emax is the maxi-
mum error of all candidates. This is an obvious general-
ization of sequential insertion, which selects a single point
such that ERROR(p)=emax. Fractional thresholding with
α=1 is almost identical to sequential insertion; it differs
only in that it may select multiple points with the same er-
ror value (this is closely related to the approach of Polis
and McKeown [24]). If α=0, fractional thresholding be-
comes highly aggressive and selects every triangle candi-
date. Looking at the error graphs in Figure 12, we can see
that as α increases towards 1, the approximations become
more accurate and converge to sequential insertion.

The second insertion variant is the rule used by Fowler-
Little and Puppo et al. [9, 25]. We call it constant thresh-
old parallel insertion. In this case, ε is the constant error
threshold provided by the user. Thus, on each pass we se-
lect and insert all candidate points that do not meet the er-
ror tolerance. An algorithm very similar to this [19], called
Latticetin, is used by the Arc/Info geographic information
system which is sold by the Environmental Systems Re-
search Institute (ESRI).

The error curves for the constant threshold method in
Figure 12 show it performing much worse than sequen-
tial insertion or fractional thresholding. Similarly, Polis
and McKeown found their algorithm (a form of fractional
thresholding) superior to Latticetin (a form of constant
thresholding) [24].

0

2

4

6

8

10

0 10000 20000 30000 40000 50000 60000

R
M

S
 E

rr
or

 (
m

et
er

s)

Number of Points Selected (m)

33%10%1%

uniform grid subsampling
Delaunay greedy insertion

Data-dependent greedy insertion

Figure 15: RMS error of approximation as vertices are
added to the mesh, for two forms of greedy insertion and
uniform grid subsampling, run on Ashby DEM.

When an insertion causes a small triangle to be created,
it leads to a local change in the density of candidates. With
the sequential method, smaller triangles are statistically
less likely to have their candidates selected, because they
will typically have smaller errors. In the parallel method,
if the small triangles’ candidate is over threshold, it will be
selected, causing even more excessive subdivision in that
area. Even on a simple surface like a paraboloid, which
is optimally approximated by a uniform grid, the sequen-
tial method is better. On all tests we have run, sequential
greedy insertion yields better approximations than parallel
greedy insertion.

De Floriani seems to have reached a similar conclu-
sion. While comparing her sequential insertion algorithm
to a form of constant thresholding in which the selected
points are not limited to one per triangle, she said: “par-
allel application of such an algorithm by a contemporane-
ous insertion of all points which have an associated search
error greater than the tolerance and belong to the same
search region, could lead to the insertion of points which
are not meaningful for an improvement in the accuracy of
the model” [4, p. 342].

4.5 Greedy Insertion versus Uniform Grids

We also compared greedy insertion with the simplest sur-
face approximation method, uniform grids. In a large
study, Kumler found that uniform grids (DEMs) were bet-
ter than general triangulations (TINs), at least for the TIN
generation methods he tested [19, p. 41]. We agree with
this qualified conclusion, and go farther to point out cer-
tain aspects of his experiments that exaggerated the bene-
fits of DEMs.

One should not conclude from Kumler’s results that

Garland & Heckbert, Approximation of Terrains 15

DEMs are better than TINs in general, since the TIN algo-
rithms he tested do not appear to be very good. The best
DEM-to-TIN algorithm he tested was Latticetin, and we
have found similar algorithms to be inferior to sequential
greedy insertion (compare top three curves of Figure 12).

In addition, Kumler handicapped the TIN algorithms
somewhat by comparing DEMs with n vertices to TINs
with n/3 or n/10 vertices. These ratios are based on his
assumption that storage size is the principal concern, and
that TINs require 3–10 times the memory of DEMs. While
these storage size comparisons are valid for most imple-
mentations, general triangulations can be compressed by
a factor of 6–10 with very little error [6]. Also, to better
understand the behavior of a simplification algorithm, we
believe it is necessary to test it for a wide range of values
of m/n. More importantly, we believe that, in many ap-
plications rendering speed is of much greater importance
than storage space, so methods should be compared based
primarily on error and speed, not on memory use.

Figures 12 and 15 show our own comparison of the er-
rors of approximations created by sequential greedy inser-
tion and subsampling on a uniform grid. The first figure
shows coarse approximations (small values of m/n); the
second shows finer approximations (larger values of m/n).
Numerous comparisons of greedy insertion with subsam-
pling were computed for the Ashby, Crater Lake, NTC,
and WestUS datasets. Figure 15 shows the most represen-
tative of these four. Either form of greedy insertion is seen
to generate significantly better approximations than a uni-
form grid. If storage size is the primary concern, and we
assume that general triangulations require three times the
memory of a uniform grid with the same number of ver-
tices, then for m/n< 1% or so, uniform grids are probably
best, but for larger values of m/n, a good adaptive triangu-
lation scheme, such as sequential greedy insertion, appears
better. If compression is used, then general triangulations
are probably preferable in all cases.

5 Ideas for Future Research

Our experimentation has suggested several avenues for
further research. These are discussed at greater length in
our technical report [11].

Using Extra Grid Information. The algorithms we
have described could easily be generalized to make use of
additional information about the height field. Ridge lines,
roads, block boundaries, and discontinuities could be pre-
inserted, for example. The user could also be given control
over point selection by allowing a weight to be assigned to
each vertex [24].

Combating Slivers. Pure data-dependent triangulation
generates too many slivers. It would be nice to find a more
elegant solution to the sliver problem to replace the hy-
brid algorithm. Our current hypothesis to explain the in-
feriority of pure data-dependent triangulation in our al-
gorithms is that it is caused by the short-sightedness of
the greedy insertion algorithm. Sometimes more than one
edge swap is required to correct a sliver problem, but
our data-dependentgreedy insertion algorithm never looks
more than one move ahead, so it often gets stuck in local
minima. Simulated annealing is one (expensive) remedy.

Discontinuities. The sequential greedy insertion algo-
rithm does poorly when the height field contains a step
discontinuity or “cliff”. With the greedy insertion algo-
rithm, a linear cliff of length k between two planar sur-
faces can use up about k vertices when, in fact, 4 would
suffice. Cliffs similar to this arise when computer vision
range data is approximated with this algorithm. This prob-
lem is caused by the short-sightedness of greedy insertion.
One, somewhat ad hoc, solution is to find all cliffs and
constrain the triangulation to follow them [1].

Dealing With Noise and High Frequencies. The
greedy insertion algorithms we have described will work
on noisy or high frequency data, but they will not do a
very good job, as observed by us and others [8]. There
are two causes of this problem. One is the simple-minded
selection technique, which picks the point of highest error.
Such an approach is very vulnerable to outliers. Finding a
better strategy for point selection in the presence of noise
appears quite difficult. A second cause is that triangles
are not chosen to be the best fit to their enclosed data, but
are constrained to interpolate their three vertices. Least
squares fitting would solve this latter problem [26].

Better handling of noise and discontinuities would
make these algorithms well suited to the simplification of
computer vision range data.

A Hybrid Refinement/Decimation Approach. A tech-
nique that might permit better approximations of cliffs and
better selection in the presence of noise is to alternate re-
finement and decimation passes, inserting several vertices
with the greedy insertion approach, and then deleting a
few vertices that appear the least important, using Lee’s
drop heuristic approach [21]. Although such a hybrid of
refinement and decimation ideas resembles the algorithm
of Hoppe et al. [18], it should be quite a bit faster since we
already know how to do many of the steps quickly.

16 Garland & Heckbert, Approximation of Terrains

Generalization to Other Geometries. The algorithms
presented here could easily be generalized from height
field grids to scattered data approximation. That is, the xy
projection of the input points need not form a rectangular
grid, but could be any finite point set. This change would
require each triangle to store a set of points [3, 17, 10, 8].
During re-triangulation, these sets would be merged and
split. Instead of scan converting a triangle, one would visit
all the points in that triangle’s point set.

Generalization of these techniques from piecewise-
planar approximations of functions of two variables to
curved surface approximations and higher dimensional
spaces [14] is fairly straightforward.

6 Summary

We have presented variants of the greedy insertion algo-
rithm in significant detail, optimized them, analyzed their
worst case and typical complexity, and presented empiri-
cal tests and comparisons.

Speed. Beginning with a very simple implementation of
the greedy insertion algorithm, we optimized it in three
ways: by only recalculating where necessary, by using a
heap to find points of highest error, and by eliminating
point location.

When approximating an n point grid using an m ver-
tex triangulated mesh, these optimizations sped up the al-
gorithm from a typical time cost of O(mn) to O((m +
n) logm). This speedup is significant in practice as well as
theory. For example, we can approximate a 1024× 1024
grid to high quality using 1% of its points in about 21 sec-
onds on a 150 MHz processor. The memory requirements
of the algorithm are O(m+ n).

Quality. Delaunay and data-dependent triangulation
methods were compared. The latter is capable of higher
quality approximations because it chooses the triangu-
lation based on quality of data fit, not on the shape of a
triangle’s xy projection.

Data-dependent triangulation can be relatively fast.
Had we used the straightforward algorithm, data-
dependent triangulation would have been many times
slower than Delaunay triangulation, since it would scan
convert about twice as many input points, doing more
work at each point, and it would visit each of these points
twice, once for swap testing and once for candidate
selection. We described a new, faster data-dependent
triangulation algorithm that merges swap testing and
candidate selection into one pass, saving a factor of two

in cost.

With our implementation, we found that data-dependent
triangulation takes about 3–4 times as long as Delaunay
triangulation, and yields slightly higher quality on typi-
cal terrains. In applications where simplification speed is
critical, Delaunay triangulation would be preferred, but
if the quality of the approximation is primary, and the
height field will be rendered many times after simplifica-
tion, then the simplification cost is less important, and the
data-dependent method is recommended.

Generality. The greedy insertion algorithm is quite flex-
ible. It makes no assumptions that limit its usage to ter-
rains. For example, it can be generalized to approximate
color raster images by a set of Gouraud shaded polygons,
or approximate computer vision range data with triangu-
lated surfaces.

Comparison to Other Methods. Our Delaunay greedy
insertion algorithm should produce nearly identical ap-
proximations to several previously published methods [4,
5, 26, 10, 8], but from the information available, it appears
that our algorithm is the fastest both in theory and in prac-
tice.

Part of the adaptive triangular mesh filtering technique
briefly described by Heller [17, p. 168] appears nearly
identical in quality and asymptotic complexity to our
Delaunay-based algorithm. Because the initial pass of his
algorithm uses feature selection, we suspect, however, that
his could be faster but that our method will produce some-
what higher quality approximations.

We have tested our sequential greedy insertion algo-
rithm against parallel greedy insertion algorithms similar
to those used by Fowler-Little and Puppo et al. [9, 25],
and found that sequential greedy insertion yields supe-
rior approximations in all cases tested. We compared our
error-based data-dependent triangulation criterion to a ver-
sion of the normal-based criterion recommended by Rippa
and Dyn et al. [26, 7], and found ours to be superior.
We also compared the approximations of our algorithm
against uniform grids (DEMs), and found that sequential
greedy insertion generates more accurate approximations
with a given number of vertices than uniform grids, con-
tradicting some previously published conclusions [19].

Code. Portable C++ code for our Delaunay and
data-dependent greedy insertion algorithms, and test
data, is available by World Wide Web from http://
www.cs.cmu.edu/∼garland/scape or by anonymous FTP
from ftp.cs.cmu.edu in /afs/cs/user/garland/public/scape.

Garland & Heckbert, Approximation of Terrains 17

7 Acknowledgements

We thank Michael Polis, Stephen Gifford, and Dave McK-
eown for exchanging algorithmic ideas with us and for
sharing DEM data, and Anoop Bhattacharjya and Jon
Webb for their thoughts on the application of these tech-
niques to computer vision range data. The CMU Engi-
neering & Science library has been very helpful in locat-
ing obscure papers. This work was supported by ARPA
contract F19628-93-C-0171 and NSF Young Investigator
award CCR-9357763.

References

[1] Xin Chen and Francis Schmitt. Adaptive range
data approximation by constrained surface triangula-
tion. In B. Falcidieno and T. Kunii, editors, Modeling
in Computer Graphics: Methods and Applications,
pages 95–113. Springer-Verlag, Berlin, 1993.

[2] James H. Clark. Hierarchical geometric models for
visible surface algorithms. CACM, 19(10):547–554,
Oct. 1976.

[3] Leila De Floriani. A pyramidal data structure for
triangle-based surface description. IEEE Computer
Graphics and Appl., 9(2):67–78, March 1989.

[4] Leila De Floriani, Bianca Falcidieno, and Caterina
Pienovi. A Delaunay-based method for surface ap-
proximation. In Eurographics ’83, pages 333–350.
Elsevier Science, 1983.

[5] Leila De Floriani, Bianca Falcidieno, and Caterina
Pienovi. Delaunay-based representation of surfaces
defined over arbitrarily shaped domains. Computer
Vision, Graphics, and Image Processing, 32:127–
140, 1985.

[6] Michael Deering. Geometry compression. In SIG-
GRAPH ’95 Proc., pages 13–20. ACM, Aug. 1995.

[7] Nira Dyn, David Levin, and Shmuel Rippa. Data de-
pendent triangulations for piecewise linear interpola-
tion. IMA J. Numer. Anal., 10(1):137–154, Jan. 1990.

[8] Per-Olof Fjällström. Evaluation of a Delaunay-based
method for surface approximation. Computer-Aided
Design, 25(11):711–719, 1993.

[9] Robert J. Fowler and James J. Little. Automatic
extraction of irregular network digital terrain mod-
els. Computer Graphics (SIGGRAPH ’79 Proc.),
13(2):199–207, Aug. 1979.

[10] W. Randolph Franklin. tin.c, 1993. C code, ftp://
ftp.cs.rpi.edu/pub/franklin/tin.tar.gz.

[11] Michael Garland and Paul S. Heckbert. Fast polygo-
nal approximation of terrains and height fields. Tech-
nical report, CS Dept., Carnegie Mellon U., Sept.
1995. CMU-CS-95-181, http://www.cs.cmu.edu/
∼garland/scape.

[12] Leonidas Guibas and Jorge Stolfi. Primitives for the
manipulation of general subdivisions and the compu-
tation of Voronoi diagrams. ACM Transactions on
Graphics, 4(2):75–123, 1985.

[13] Leonidas J. Guibas, Donald E. Knuth, and Micha
Sharir. Randomized incremental construction of De-
launay and Voronoi diagrams. Algorithmica, 7:381–
413, 1992. Also in Proc. 17th Intl. Colloq. —
Automata, Languages, and Programming, Springer-
Verlag, 1990, pp. 414–431.

[14] Bernd Hamann and Jiann-Liang Chen. Data
point selection for piecewise trilinear approxima-
tion. Computer-Aided Geometric Design, 11:477–
489, 1994.

[15] Paul S. Heckbert and Michael Garland. Mul-
tiresolution modeling for fast rendering. In Proc.
Graphics Interface ’94, pages 43–50, Banff,
Canada, May 1994. Canadian Inf. Proc. Soc.
http://www.cs.cmu.edu/∼ph.

[16] Paul S. Heckbert and Michael Garland. Survey of
polygonal surface simplification algorithms. Techni-
cal report, CS Dept., Carnegie Mellon U., to appear.
http://www.cs.cmu.edu/∼ph.

[17] Martin Heller. Triangulation algorithms for adaptive
terrain modeling. In Proc. 4th Intl. Symp. on Spatial
Data Handling, volume 1, pages 163–174, Zürich,
1990.

[18] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimiza-
tion. In SIGGRAPH ’93 Proc., pages 19–26, Aug.
1993. http://www.research.microsoft.com/research/
graphics/hoppe/.

[19] Mark P. Kumler. An intensive comparison of trian-
gulated irregular networks (TINs) and digital eleva-
tion models (DEMs). Cartographica, 31(2), Sum-
mer 1994. Monograph 45.

[20] Charles L. Lawson. Software for C1 surface inter-
polation. In John R. Rice, editor, Mathematical Soft-
ware III, pages 161–194. Academic Press, NY, 1977.
(Proc. of symp., Madison, WI, Mar. 1977).

18 Garland & Heckbert, Approximation of Terrains

[21] Jay Lee. A drop heuristic conversion method for ex-
tracting irregular network for digital elevation mod-
els. In GIS/LIS ’89 Proc., volume 1, pages 30–
39. American Congress on Surveying and Mapping,
Nov. 1989.

[22] Dani Lischinski. Incremental Delaunay triangula-
tion. In Paul Heckbert, editor, Graphics Gems IV,
pages 47–59. Academic Press, Boston, 1994.

[23] Edmond Nadler. Piecewise linear best L2 approxi-
mation on triangulations. In C. K. Chui et al., editors,
Approximation Theory V, pages 499–502, Boston,
1986. Academic Press.

[24] Michael F. Polis and David M. McKeown, Jr. Issues
in iterative TIN generation to support large scale sim-
ulations. In Proc. of Auto-Carto 11 (Eleventh Intl.
Symp. on Computer-Assisted Cartography), pages
267–277, November 1993. http://www.cs.cmu.edu/
∼MAPSLab.

[25] Enrico Puppo, Larry Davis, Daniel DeMenthon, and
Y. Ansel Teng. Parallel terrain triangulation. Intl.
J. of Geographical Information Systems, 8(2):105–
128, 1994.

[26] Shmuel Rippa. Adaptive approximation by piece-
wise linear polynomials on triangulations of sub-
sets of scattered data. SIAM J. Sci. Stat. Comput.,
13(5):1123–1141, Sept. 1992.

[27] David A. Southard. Piecewise planar surface mod-
els from sampled data. In N. M. Patrikalakis, edi-
tor, Scientific Visualization of Physical Phenomena,
pages 667–680, Tokyo, 1991. Springer-Verlag.

Garland & Heckbert, Approximation of Terrains 19

Figure 16: Mandrill original, a 200×200 raster image. Figure 17: Mandrill approximated with Gouraud
shaded triangles created by subsampling on a uniform
20×20 grid (400 vertices).

Figure 18: Mandrill approximated with Gouraud
shaded triangles created by data-dependent greedy in-
sertion (400 vertices).

Figure 19: Mesh for the image to the left.

Surface Simplification Survey slides 1

Algorithms
for

Surface Simplification

Paul Heckbert & Michael Garland
Computer Science Dept.

Carnegie Mellon University

Typical Problems

Typical Curve Simplification Problem:
Given curve with n vertices, find an accurate approximation using m vertices.

Given curve with n vertices, find a compact approximation with error < ε.

Typical Surface Simplification Problem:
Given surface with n vertices, find accurate approximation using m vertices.

Given surface with n vertices, find a compact approximation with error < ε.

Surface Simplification Survey slides 2

Who Does Curve & Surface Simplification?

Cartography, Geographic Information Systems - “generalization”
for aesthetics, compact storage. Curves, mostly.

Simulators - military applications, virtual reality, terrain, break into
blocks, multiresolution models (level of detail), smooth transitions.

Computer Graphics - real time rendering, animation, compact for
storage & transmission.

Scientific Visualization - clean up “marching cubes” isosurfaces.

Computer Vision - acquired range data (noisy), model fitting.

Computational Geometry - worst case complexity of optimal
approximation.

Computer-Aided Geometric Design - curved surface modeling.

Approximation Theory - error analysis of asymptotic
approximation.

Simplification Problem Characteristics

What problem do you want to solve?

• topology of output: curve or surface.

• topology & geometry of input: points, function f(x), curve, height
field f(x,y), manifold, surface.

• other attributes: color, texture.

• domain of output: subset of input vertices?

• topology of triangulation: uniform, hierarchical, general

• approximating elements: linear, quadratic, cubic, ..., other.

• error metric: L2 = sum of squared, L∞ = maximum.

• constraints:
– most accurate using a given number of elements or amount of memory

– smallest satisfying a given error tolerance.

Surface Simplification Survey slides 3

Simplification Algorithm Characteristics

How do you want to solve the problem?

• speed/quality tradeoff: optimal (& slow) or sub-optimal (& fast)?

• refinement/decimation: top down or bottom up?

• number of passes: one pass or multiple passes?

• triangulation: hierarchical triangulation, Delaunay triangulation,
data-dependent triangulation, or other?

Curve Simplification

Douglas-Peucker algorithm:
douglas_peucker(curve[1..n], ε)

i := index of vertex of curve farthest from chord 1..n

if dist(i) < ε then return chord 1..n

else

douglas_peucker(curve[1..i], ε)

douglas_peucker(curve[i..n], ε)

Cost: If m output vertices, O(mn) worst case, O(n log m) expected.

O(n log n) worst case using convex hulls.

Best known optimal solutions cost O(n) to O(n3), depending on problem.

Surface Simplification Survey slides 4

Taxonomy of Surface Simplification Methods
(we list some of the better methods)

Height Field / Parametric Simplification
subsampling, pyramid, quadtree methods many

greedy insertion Garland-Heckbert, ...

Manifold Simplification
vertex decimation Schroeder

vertex decimation with point lists Soucy

wavelet Eck, Lounsbery, ...

edge collapse Ronfard-Rossignac, ...

Non-Manifold Simplification
vertex clustering Rossignac-Borrel

Pyramids and Quadtrees

Input: height field or parametric surface with uniform mesh.

Preprocessing:
Build power-of-two pyramid/quadtree.

Display Algorithm:
At each node of tree, decide how much resolution is needed, descend tree.

Do careful triangulation to avoid cracks.

Advantages: Compact storage (z only; x & y are implicit). Simple.
Fast.

Disadvantages: Pyramids unnecessarily bulky on smooth surfaces.
Poor quality approximations. Crack prevention can be tricky.

Widely used in flight simulators.

Surface Simplification Survey slides 5

Greedy Insertion [Garland-Heckbert95]

Input: height field or parametric surface.

Preprocessing:
Start with two big triangles.

Until error small enough or approximation too big

Find point of highest error (approximation-original).

Insert it in triangulation (Delaunay or data-dependent).

Display Algorithm:
draw it.

Advantages: Fast: O((n+m) log m).

Disadvantages: Moderate quality approximations. Susceptible to
noise, discontinuities. Limited to height fields/parametrics.

Mesh Decimation [Schroeder et al. 92]

Input: polygonized manifold with boundary.

Preprocessing:
ε = ε0

Until error too high or approximation small enough

For all vertices

if dist(vertex, neighbors’ approximating plane) < ε then

delete vertex

ε = ε+∆ε

Display Algorithm:
draw it.

Advantages: Fast. Accepts fairly general inputs.

Disadvantages: Moderate quality approximations. Choice of ∆ε. Big
memory.

Surface Simplification Survey slides 6

Wavelet Approximations [Eck95,Lounsbery94]

Input: manifold surface.

Preprocessing:
Simplify mesh topology to find base mesh.

Resample: subdivide base mesh to approximate input surface.

Do multiresolution analysis (wavelet transform) on resampled surface.

Display Algorithm:
At each node of tree, decide how much resolution is needed.

Reconstruct surface using multiresolution synthesis.

Do careful triangulation to avoid cracks.

Advantages: Fast display.

Disadvantages: Requires resampling. Approximates creases poorly.

Mesh Optimization [Hoppe et al. 93]

Input: triangulated manifold with boundary.

Preprocessing:
Loop, decreasing spring constant.

Loop, semi-randomly perturbing topology (delete vertex, swap edge, etc.)

Loop, optimizing geometry to fit input points.

Display Algorithm:
draw it.

Advantages: High quality. Accepts fairly general inputs.

Disadvantages: Slow. Requires some tuning.

Surface Simplification Survey slides 7

Edge Collapse
[Ronfard-Rossignac96, Hoppe96, Gueziec95, Garland97]

Input: triangulated manifold with boundary.

Preprocessing:
Until error too high or approximation small enough

find edge whose collapse would introduce the least error

collapse edge into vertex

position new vertex carefully

save sequence of edge collapses

Display Algorithm:
replay sequence of edge collapses/vertex splits (progressive mesh)

or geomorph (faster)

Advantages: High quality. Continuous levels of detail. Accepts
fairly general inputs. Error bounds (approximate).

Disadvantages: Not the fastest. Error bounds not the best.

 3-D Grid Method [Rossignac-Borrel93]

Input: set of triangles (non-manifold).

Preprocessing:
Divide space into a uniform grid of boxes.

Merge all vertices within each box into their centroid.

Eliminate degenerate/redundant triangles.

Display Algorithm:
draw it.

Advantages: Very general - runs on any polygonal model. Fast.

Disadvantages: Output is grid-dependent. Non-adaptive. Low
quality approximations.

IBM sells this software in their “Interaction Accelerator”

Surface Simplification Survey slides 8

Conclusions & Recommendations

With current algorithms:

Poor quality, fast, non-manifold:
Rossignac-Borrel’s 3-D grid method.

Top quality, moderate speed, manifolds:
Ronfard-Rossignac/Hoppe/Garland edge collapse with geomorph.

Moderate quality, fast, height fields:
Garland-Heckbert greedy insertion.

But this field is developing fast, so stay tuned.

J. Rossignac Siggraph’97 1

Geometric simplification and compression

Jarek Rossignac

GVU Center and College of Computing
Georgia Institute of Technology

One third of the workstation business is driven by industrial or scientific applications that heavily depend on the
ability to interactively render 3D models whose complexity is increasing far more rapidly than the performance of
the graphics subsystems. Simple scenes in 3D video-games may only need a few hundred textured polygons, but
models used for mechanical CAD, scientific, geo-science, and medical applications involve scenes with millions
of faces, sometimes grouped to form the boundaries of polyhedral solids of widely varying complexity. The
successful exploitation of such large volumes of scientific and engineering three-dimensional data hinges on
users’ ability to access the data through phone lines or network connections and to manipulate significant portions
of these 3D models interactively on the screen for scientific discovery, teaching, collaborative design, or
engineering analysis. Currently available high-end graphics hardware is often insufficient to render the models at
sufficient frame rates to support direct manipulation and interactive camera control.

The abundance and importance of complex 3D data bases in major industry segments, the affordability of
interactive 3D rendering for office and consumer use, and the exploitation of the internet to distribute and share
3D data have exacerbated the need for an effective 3D geometric compression technique that would significantly
reduce the time required to transmit 3D models over digital communication channels and the amount of memory
or disk space required to store the models. Because the prevalent representation for 3D shapes for graphics
purposes is polyhedral and because polyhedra are in general triangulated for rendering, it is important to focus on
the compression and decompression of complex triangulated models.

Although we anticipate further development of hardware acceleration graphics engines and new commercial
explorations of hardware compression/decompression chips, we discuss software advances on both fronts, hoping
that with maturity they will fuel hardware advances and impact data exchange standards.

Software techniques, which eliminate unnecessary or unessential rendering steps, may lead to dramatic
performance improvements and hence reduce hardware costs for graphics. Many of these techniques require
complex algorithmic pre-processing and a compromise on the quality and accuracy of the images. The relative
impact of software techniques for accelerating the rendering of 3D scenes depends on the complexity and
characteristics of the model, on the lighting model, on the image resolution, and on the hardware configuration.
Acceleration techniques include hie rarchical culling, memory management, visibility computation, reduced
resolution or accuracy, model simplification, use of images, textures, or perturbation maps, and the optimization
of the rendering library.

We first discuss a simple model of the rendering cost and review the impact of various acceleration techniques
on the different cost factors and stress the need to combine the various techniques. We then focus on 3D model
simplification, a preprocessing step that generates a series of 3D models (sometimes called "impostors'' or
"impersonators''), which trade resemblance to the original model for fidelity. Such decreasing levels-of-detail
(LOD) involve less faces and vertices, and hence require less memory and less geometry processing at rendering
time. Using a lower level of detail when displaying small, distant, or background objects improves graphic
performance without a significant loss of perceptual information, and thus enables real-time inspection of highly
complex scenes. Original models are used for rendering objects close to the viewpoint and during navigation
pauses for full precision static images.

Simplification is an automatic process that takes a polyhedral surface model S and produces a model S’ that
resembles S, but has significantly less vertices and faces. We discuss both geometric and visual measures of the
discrepancy between S and S’ and review the general principles for computing and evaluating such
simplifications. We briefly review several simplification techniques based on curved-surface tessellation, space
or surface sampling, and bounding hierarchies. We investigate in more details the variants of vertex clustering
and face merging techniques, which include edge collapsing and triangle or vertex decimation. We illustrate
these techniques through several approaches: Kalvin and Taylor aggregate nearly co-linear facets into connected
regions, simplify their boundaries, and triangulate the regions; Ronfard and Rossignac expand on the edge-
collapsing work of Hoppe et al. by maintaining an efficient point-plane distance criteria for estimating the errors
associated with each candidate edge; Gueziec preserves the volume of the model and uses spheres as error
bounds; Rossignac and Borrel use vertex quantization (integer rounding on vertex coordinates) to efficiently

J. Rossignac Siggraph’97 2

compute the clusters. The latter simplification process is more efficient, more robust, and simpler to implement
than alternative approaches, because it does not require building and maintaining a topological face-vertex
incidence graph and thus does not impose any topological integrity restrictions on the original model. Although it
is not adaptive and does not produce optimal simplifications for a given complexity reduction, it appears
particularly well suited for mechanical and architectural CAD models, because it automatically groups and
simplifies features that are geometrically close, but need not be topologically close nor even be part of a single
connected component.

These techniques produce discrete simplifications, i.e. models that are uniformly simplified to different
resolutions. They work well for scenes with many small objects uniformly distributed through space. Large objects
may require an adaptive simplification model, where the resolution of the approximation is automatically adapted
to the location of the view point (and decreases with the distance to the viewer). We illustrate this approach with
Hoppe’s Progressive Meshes and with the adaptive terrain models developed at the Georgia Tech’s GVU center.

Simplification reduces the triangle counts, but does not address the problem of data compression. In fact, one
needs to store the original model plus its simplified versions. 3D compression techniques may be applied to the
original and the simplified models independently. They do not reduce the triangle count, but reduce the number of
bits required to code the vertex coordinates (geometry), the triangles’ references to their supporting vertices
(incidence), and the normals and color attributes (photometry). We discuss Deering‘s extensions of the triangle
strips encoding to more general triangular meshes, and Taubin and Rossignac’s “topological surgery” approach,
which captures the incidence data in less than 2 bits per triangle (instead of the naive 126) and uses vertex
quantization, geometric prediction, and entropy coding to compress geometry and photometry with controllable
loss. Finally, we expand on Hoppe’s Progressive Meshes to lay the ground for further research towards the
unification of simplification and compression and towards the use of such scaleable models for internet-based 3D
data access and 3D collaborative applications.

CR Categories and Subject Descriptors : I.3.3 Computer Graphics : Picture/Image Generation -- display algorithms;
I.3.5 Computer Graphics : Computational Geometry and Object Modeling -- curve, surface, solid, and object representations;
I.3.7 Computer Graphics : Three Dimensional Graphics and Realism.
General Terms: 3D Polyhedron Simplification, Levels-of-detail, 3D compression, Algorithms, Graphics, Performance
acceleration.

Introduction
Computer graphics is an effective means for communicating three-dimensional concepts, for inspecting CAD
models, and for interacting with education and entertainment software. Although photo-realistic images and video
sequences, typically computed off-line, have their own merits, interactive graphics is required when direct
manipulation is important. Direct manipulation increases ease-of-use and enhances productivity by exploiting our
natural abi lity to use visual cues when controlling our gestures. The closed loop involving the hand, the modeling
or animation software, the graphics, and the human vision is only effective if graphic feedback is instantaneous.
Delays between the gestures and the resulting image, lead to overshooting, reduce the feeling of control, and thus
make the user less productive.

Interactive manipulation of 3D models and interactive inspection of 3D scenes cannot be effective when the
graphics feedback requires more than a fraction of a second. Although graphics performance, has significantly
increased in the recent years (benefiting from faster CPUs, leaner APIs, and dedicated graphics subsystems), it is
lagging behind the galloping complexity of CAD models found in industrial and consumer applications and of
scientific datasets [Rossignac94], 3D models of typical mechanical assemblies (appliances, engines, cars,
aircrafts...) contain thousands of curved surfaces. Accurate polyhedral approximations of these exact models,
typically constructed to interface with popular graphics APIs, involve millions of polygonal faces. Such
complexity exceeds by one or two orders of magnitude the rendering performance of commercially available
graphics adapters. The solution is not likely to come from hardware development alone. Algorithmic solutions
must be employed to reduce the amount of redundant or unessential computation.

We define redundant computation as the processing steps that could be omitted without affecting the resulting
images. Unessential computation is defined as the steps which, when omitted, affect the resulting image only to a
moderate degree, so that the visual discrepancies between the correct image and the one produced do not hinder
the user's perception and understanding of the scene. The elimination of all redundant and unessential
computations remains an open research issue, because the computational cost associated with the identification
of what is redundant and what is not may often offset the benefits of eliminating redundancy. Several techniques
are reviewed below.

To better identify redundant and unessential steps for rendering polyhedral scenes, we use an over-simplified
model of the rendering cost. The scene is described by its geometry (the location of the polygons and the location
and characteristics of the view) and by the associated photometric properties (light sources, surface colors,

J. Rossignac Siggraph’97 3

surface properties, textures). Rendering techniques compute, for each pixel, the amount of light reflected towards
the eye by the objects in the scene. This computation may be arranged in various ways to cater to the desired
degrees of photo-realism and to take advantage of the available graphics hardware or libraries. We focus here on
rasterization techniques, which visit each polygon in the scene and combine the results in a frame buffer using a
z-buffer for hidden surface elimination. This choice is dictated by the prevalence and performance of affordable
3D graphics hardware accelerators and rasterizers, and by the success of associated APIs.

Assume that the geometry of our scene is composed of T triangles. We use triangle counts in these arguments,
instead of polygons, for simplicity and because polygons are typically converted into triangles, either during
preprocessing [Rofard94] or during rendering, and are an accepted unit of graphics performance. Procedures for
triangulating models bounded by curved parametric surfaces also exist.

The cost of rendering a scene comprising T triangles depends on a number of factors, such as the window size,
the lighting model, the amount of memory paging involved, or how the triangles project onto the screen.

Rendering T triangles involves several costs:
• F: the cost of fetching the necessary triangles into cache memory
• X: the cost of transforming their vertices and lighting them using associated normals
• C: the cost of clipping the triangles and computing slopes
• R: the cost of rasterizing them

The overall rendering cost (i.e. performance) depends on the particular architecture of the 3D graphics subsystem.
Three families of uniprocessor architectures are popular for graphics:
• all software rendering
• hardware rasterization with software geometric processing
• all hardware rendering

For purely software rendering architecture, the total cost is the sum of all the costs: F+X+C+R. For an
architecture based on a hardware rasterizer, the total cost is the maximum of max(F+X+C,hR), where h provides
the boost factor of the graphics rasterizer hardware. Because the hardware or the software may be bottlenecks, we
use max instead of a sum when combining the individual costs. Similarly, because an all hardware rendering
subsystem is pipelined, its cost is the maximum of the costs at each stage, i.e.: max(F,kX+kC,hR), where k
provides the boost factor of the hardware-supported transformation, lighting, and clipping. Note that this simplified
formula does not take into account the statistics effects of data buffers and load balancing in parallel
architectures.

Review of graphics acceleration techniques
The performance enhancing techniques reviewed in this section help reduce the different aspects of the overall
rendering cost. None of these techniques is usually sufficient to address the graphics performance problem and
most systems exploit combinations of several techniques simultaneously.

Meshing or storing transformed vertices
In a polyhedral scene, the number T of triangles is roughly twice the number V of vertices. For example, for a
triangulated manifold polyhedron with no holes or handles, the Euler-Poincarre formula becomes: T-E+V=2,
where E is the number of edges. Notice that 2E=3T, because there are three edges for each triangle, but each
edge of a manifold is shared by two adjacent triangles. Combining these two equalities yields: T-3T/2+V=2 , and
finally: T=2V-4.

Therefore, independently processing the vertices of each triangle may unnecessarily increase X, and maybe even
F, by a factor of 6, since on average a vertex is processed six times (3 times per triangle and there are twice
more triangles than vertices).

To reduce this computational redundancy, 3D graphics adapters and associated APIs support triangle meshes,
where each vertex is used in conjunction with two of the recently processed vertices to define the next triangle. If
very long meshes were used, the majority of vertices, and associated normals would only be processed twice,
reducing by three the geometric cost of transforming and lighting the vertices. Note however that half of this cost
is still redundant. Furthermore, constructing long meshes is algorithmically expensive.

In graphics architectures where the geometric transformation and lighting is performed in software, all the
vertices could be transformed only once and the resulting coordinates stored for clipping and rasterization, as
needed for the triangles. Similarly, normals may be transformed and the associated colors computed and stored
(depending on the lighting model, colors may be defined by normals only or by combinations of normals and

J. Rossignac Siggraph’97 4

vertices). For compatibility reasons with hardware graphics adapters, this possibility is not systematically
exploited by popular APIs.

Recent progress attempting to generalize the notion of a triangle strip to cover triangular meshes of arbitrary
topology with minimal vertex duplication may be found in the context of geometric compression [Taubin96,
Deering95, Hoppe96].

Frustum culling
Graphics performance may in general be significantly improved by avoiding to process the geometry of objects
that do not project on the screen. Such objects may lie behind the viewpoint or outside of the viewing frustum.
Simple bounds, such as min-max boxes or tight spheres around the objects may be easily pre-computed, updated
during model editing or animation, and used for efficient culling. For scenes involving a large number of objects
or for scenes where individual objects are relatively large and involve large numbers of triangles, pre-computed
hierarchical spatial directories (see [Airey90, Clark76, Teller91, Naylor95]) are used to quickly prune portions of
the scene outside the viewing frustum. These early culling techniques may have no effect when the entire models
is examined and fits in the viewing frustum. In average however, they may significantly affect F, because one
needs not fetch models whose bounds is outside the frustum, and of course also X and C. They do not affect R,
because these triangles would have been rejected through clipping anyway. For example, culling may reduce X
and C by a factor of if the viewpoint is in the center of the scene and if the viewing frustum spans a 90 degrees
angle.

Smart caching and pre-fetching
Arranging the data so that contiguous memory locations are accessed by the graphics subsystem and using
secondary processors for pre-fetching data may eliminate the delays caused by page faults and reduce F. This is
particularly effective if the size of the model that is not culled out exceeds the available memory [Funkhouser93].

Pre-computed visibility
Culling objects or individual triangles that intersect the frustum but are invisible in the current view, because
hidden by other objects, would directly impact the overall cost for all three types of architectures. Visibility
information may be pre-computed for a given granularity of the space and of the models. For example, [Teller92]
uses the model's geometry to subdivide space into cells, associating with each cell c the list of other cells visible
from at least one point in c. Cells may correspond to a natural, semantic, partition of the scene (floors, rooms,
corridors) or to more general partitions induced by planes that contain the faces of the model. The preprocessing
is slow and requires storing vast amounts of visibility information, unless the number of cells and the number of
objects in the scene is small. To improve performance, portals (i.e, holes, such as doors and windows, in the
boundary of cells) may be approximated by an enclosing axis aligned 2D box in image space, which provides
only a necessary condition for visibility, but reduces visibility tests to clipping against the intersection of such
rectangles [Luebke95], A different approach was used in [Greene93], where a hierarchical quadtree representation
of the z-buffer generated after displaying the front most objects is used to quickly cull hidden objects. Front most
objects candidates are computed from the previous frame. Culling compares a hierarchical bound system of the
3D scene against the z-buffer quadtree. Both techniques are effective under the appropriate conditions, but are of
little help in scenes, such as factories or exterior views, where very few objects are completely hidden.

Use of images
A distant or small group of objects may be replaced with a "3D sprite'' or with a few textured polygons
[Beigbeder91] showing the approximate image of the object(s) from the current viewpoint. A hierarchical
clustering approach where groups of objects were displayed using such images was proposed in [Maciel95].
Previously rendered images with the associated z-buffer information provide an approximation of the model as
seen from a specific location. They may be warped and reused to produce views from nearby locations on an
inexpensive graphics system. Because the new view may reveal details hidden in the previous view, a more
powerful graphic server may identify the discrepancies and send the missing information to the low-end client
[Mann97].

Levels of detail
Using simplified models with a lower triangle count instead of the original models may in certain cases reduce
paging F, and will in general reduce X and C significantly [Funkhouser93]. Lower levels of detail are usually
appropriate for rendering distant features that appear small on the screen during camera motions or scene
animations [Crow82]. During navigation pauses, the system will start computing the best quality image and, if not
interrupted by the user, will automatically display it [Bergman86]. A review of the early techniques may be found
in [Erikson96]. Two main approaches to the construction and use of such levels of detail (LOD), multi-resolution
models have been investigated by a large number of researchers:

J. Rossignac Siggraph’97 5

• Pre-compute a series of static view-independent simplifications for each subset of the scene (solid, group)
which approximate the original model to decreasing levels of accuracy and select during navigation the
appropriate level of details for each subset, depending on the viewing conditions and on the desired
performance/accuracy trade-off.

• Pre-compute a unique adaptive model for the entire scene and during navigation adapt it to the current
viewing conditions to produce a graphics model which approximates features close to the viewer with higher
accuracy than distant features, which appear small on the screen.

A comparative discussion of some of the early techniques [Blake87] for computing static simplifications may be
found in [Erikson96, Heckbert94]. We summarize here several trends to provide the context for the rest of the
paper, which focuses on vertex clustering and edge collapsing techniques.

Polyhedral models are often constructed to approximate curved shapes through surface tessellation. Polyhedral
approximations with fewer vertices and faces can thus in principle be produced by using coarser tessellation
parameters. Emerging high-end graphic architectures support adaptive tessellation for trimmed NURBS surfaces
[Rockwood89], However, the simplification process should be made independent of the design history and should
be automatic [Crow82]. These surface tessellation techniques are of little help when trying to simplify complex
shapes that involve thousands of surface matches, because they can at best simplify each surface patch to a few
triangles, but cannot merge the triangulations of adjacent patches into much simpler models.

Surface fitting techniques to regularly spaced scanner data points [Schmitt86, Algorri96] may also be used for
producing levels of detail polyhedral approximations [DeHaemer91]. These techniques have been recently
extended to unorganized data points [Hoppe92, DeRose92] and to new sparse points automatically distributed
over an existing triangulated surface (either evenly or according to curvature) [Turk92], These techniques suffer
from expensive preprocessing. but yield highly optimized results.

Techniques for constructing approximating inner and outer bounds (or offset surfaces) for polyhedra have been
extended to create simplified models that separate the inner and the outer offsets [Varshney94, Cohen96,
Mitchell95]. The creation of valid, intersection-free offset surfaces still poses some challenges, although
techniques based on extended octree representations of the interior and of the boundary of the polyhedron provide
inner and outer bounds [Andujar96].

The rest of this paper focuses on polygon count reduction techniques that exploit an original triangular mesh
and derive simplified models by eliminating vertices or triangles, by collapsing edges, or by merging adjacent
faces.

Vertex clustering, the simplest to implement and most efficient approach, groups vertices into clusters by
coordinate quantization (round-off), computes a representative vertex for each cluster, and removes degenerate
triangles which have at least two of their vertices in the same cluster [Rossignac93]. All vertices whose
coordinates round-off to the same value are merged. The accuracy of the simplification is thus controlled by the
quantization parameters (see Figure 3).

Figure 1: The vertices of the original triangular mesh (far left) are quantized, which amounts
to associating each vertex with a single cell of a regular subdivision of a box then encloses the
object. Cells which contain one or more vertices are marked with a circle (center left). All the
vertices that lie in a given cell form a cluster. A representative vertex is chosen for each
cluster. It is indicated with a filled dot. The other vertices of each cluster are collapsed into
one and placed at the representative vertex for the cluster (far right). Triangles having more
than one vertex in a cluster collapse during this simplification process (shaded triangles
center right). They will be removed to accelerate the rendering of approximated versions of the
object while other neighboring triangles may expand. The resulting model (far right) has fewer
vertices and triangles, but has a different topology. Notice that a thin area collapsed into a
single line, while a gap was bridged by a different line segment.

J. Rossignac Siggraph’97 6

A different technique, edge collapsing, merges the two end points of the edges of the polyhedron one edge at a
time [Hoppe93, Ronfard96].. Each edge collapse operation removes two triangles (see Figure 2). The accuracy of
the resulting model is estimated as the error cumulated by the sequence of edge-collapses. This incremental
process permits to achieve the desired accuracy or the desired triangle count and is well suited for optimization
(selection of the sequence of edge collapsing operations which results in the lowest error). Early version of edge
collapsing techniques are more complex to implement than vertex clustering approaches (they require
maintaining a complete incidence graph), are significantly slower, and impose strong topological constraints on
the input polyhedra. Edge collapsing is in fact a restricted form of vertex clustering, since an edge collapse
operation merges two clusters that are linked by an edge of the polyhedron. Both techniques may be combined
[Hoppe97].

Figure 2: From left to right: the original triangle mesh, a selected edge showing the direction
of collapse, the two triangles that will be eliminated during the collapse, and the resulting
simpler mesh.

The decimation of a nearly-flat vertex [Schroeder92] is equivalent to an edge collapsing operation, possibly
combined with edge-flips [Lawson72] (Fig. 3), and thus results in a hierarchical clustering of vertices. Its
generalization [Kalvin91, Kalvin96] re-triangulates nearly flat regions constructed by incrementally merging
triangles. Re-triangulating a region amounts to clustering all the internal vertices into a single “star” vertex, the
apex of the new triangulation for the region.

Figure 3: Decimating the highlighted vertex (far left) will affect the faces marked (center
left). The affected region will be retriangulated (far right). The transformation corresponds to
the edge collapse indicated by the arrow (center right).

Static simplifications are effective for large and complex objects only when these objects are viewed from far.
Inspecting the details of a local feature on such a large complex object requires using the highest resolution for
the entire object, which imposes that full resolution be used for the distant parts of the objects that could
otherwise be displayed at much lower resolution. It is not uncommon that the complexity of a single object
significantly exceeds what the graphics subsystem can render at interactive rates. An adaptive multi-resolution
model is better suited for such situations [Xia96]. In fact, an adaptive model may be computed for the entire
scene. An hierarchical version of the ver tex clustering approach of [Rossignac93] is the basis of a new adaptive
scheme [Luebke96], where octree nodes [Samet90] correspond to the hierarchy of vertex clusters. The main
research challenges in the perfection of adaptive multiresolution models lie in: (1) the rapid generation of
triangle strips for each view dependent simplification., (2) a fast decision process updating the levels of
resolution at each new frame, and (3) the estimation of a tight error bound. Although it may be expensive to
convert arbitrary triangular meshes into subdivision surfaces, wavelet-based hierarchical models offer an
attractive and elegant solution to this problem [Eck95, Lounsbery94].

Adaptive level-of-detail for terrain models have been studied extensively [Garland95], because a terrain model
is typically a single complex surface that must be rendered with non-uniform resolution and partly because error
estimations for terrain models is simpler than for arbitrary 3D polyhedra. For example, hierarchical triangulated

J. Rossignac Siggraph’97 7

irregular network (HTIN), were proposed [DeFloriani92] as an adaptive resolution model for topographic surfaces.
Researchers at Georgia Tech’s GVU center have developed an adaptive multi-resolution model for the realtime
visualization of complex terrain data over a regular grid [Lindstrom96]. Their approach uses a recursive decision
tree to indicate which edges may be collapsed and also to set preconditions: an edge may not be collapsed unless
its children have been collapsed.

Figure 4: The hierarchical edge collapsing approach for a regular terrain model (left)
produces a similar lower-resolution models by a sequence of vertical and then diagonal edge
collapses (center). The process may be repeated iteratively (right). Not all edges at a given
level need to collapse.

Review of 3D compression techniques
In comparison to image and video compression, little attention has been devoted to the compression of 3D
shapes, both from the research community and from 3D data exchange standards committees. This situation is
likely to change rapidly for three reasons: (1) the exploding complexity of industrial CAD models raises
significantly the cost of the memory and auxiliary storage required by these models, (2) the distribution of 3D
models over networks for collaborative design, gaming, rapid prototyping, or virtual interactions is seriously
limited by the available bandwidth, and (3) the graphics performance of high level hardware adapters is limited
by insufficient on-board memory to store the entire model or by a data transfer bottleneck.

We focus our study of 3D compression on triangular meshes which are shells of pairwise adjacent triangles. We
chose triangle-based representations, because more general polygonal faces may be efficiently triangulated
[Ronfard94], and because triangles provide a common denominator for most representation schemes. Furthermore,
the number of triangles is a convenient measure of a model’s complexity, which is important for comparing
various compression techniques. We will mostly focus here on simply connected manifold meshes, where
triangles are mutually disjoint (except at their edges and vertices), where each edge is adjacent to exactly two
incident triangles, and where each vertex is adjacent to exactly one cone of incident triangles. Furthermore, we
will assume for simplicity that the mesh is a connected surface with zero handles. These restrictions are made
purely for the sake of simplicity, and most of the compression schemes reviewed here work or may be expanded
to cope with more general meshes.

A triangular mesh is defined by the position of its vertices (geometry), by the association between each triangle
and its sustaining vertices (incidence), and by color, normal, and texture information (photometry), which does
not affect the 3D geometry, but influences the way the triangle is shaded.. What is the minimum number of bits
required to encode a triangle mesh of T triangles and V vertices? Because for our simple meshes there are
roughly twice more triangles than vertices, we will assume that T=2V and use V as a measure of the complexity
of the mesh. For uniformity, we will assume that a unique normal (photometry) is associated with each vertex
and that these normals are different for all vertices. To illustrate the storage requirement, we will pick V to be 216

(i.e. 64K), which is a reasonable compromise between an average of about 500 vertices per solid in mechanical
assemblies and significantly larger vertex counts for large architectural objects, terrain models, or medical
datasets.

We compare below the storage requirements for several representation schemes. Of course other general purpose
loss-less compression schemes [Pennebakerl93] may be applied to the bit stream resulting from these
approaches, they will not be considered in our comparison.

J. Rossignac Siggraph’97 8

An array of triangles is the simplest representation of a triangle mesh, It represents each triangle independently
by the list of its vertex and normal coordinates, each represented by a 4 byte floating point number. Hence the
number of bits per vertex for this simple representation of a triangle mesh of V vertices is 1152, the product of the
following terms:
• 2 triangles per vertex
• 3 vertex uses per triangle
• 2 vectors (vertex location and normal) per vertex use
• 3 coordinates per vector
• 4 bytes per coordinate
• 8 bits per byte
Note that a vertex is on average adjacent to 6 triangles and therefore, there are 6 vertex uses (i.e., descriptions of
the same vertex (geometry and photometry) stored in the simple representation above, which does not need to
encode explicitly the triangle-vertex incidence relation, since it is dictated by the place of the vertices in the
data stream.

This redundancy can be eliminated by dissociating the representation of the vertices (location and normal) from
the representation of the incidence relation, which requires 3 vertex references per triangle. Because a vertex
reference often requires less bits than a vertex description, such schemes based on a vertex and normal table
are more compact than the simple representations. In our example, if we store vertices in a table and reference
them by an integer index, we need 16 bits for each vertex reference, since V=216. Consequently, the vertex and
normal table representation requires 288 bits per vertex. 192 bits for the geometry and photometry:
• 2 vectors (vertex location and normal) per vertex
• 3 coordinates per vector
• 4 bytes per coordinate
• 8 bits per byte
and 96 bits for the incidence information:
• 2 triangles per vertex
• 3 vertex references per triangle
• 16 bits per vertex reference
However, such a compression scheme requires random access to the vertices, which is acceptable in graphics
systems with software geometry processing, but not suitable for fully hardware graphics systems, where there is
limited register memory for a few vertices and associated normals.

A representation based on triangle strips, supported by popular graphics APIs, such as OpenGL [Neider93], is
used to provide a good compromise for graphics. It reduces the repeated use of vertices from an average of 6 to an
average of 2.4 (assuming an average length 10 triangles per strip, which is not easily achieved) and is compatible
with the graphics hardware constraints. Basically, in a triangle strip, a triangle is formed by combining a new
vertex description with the descriptions of the two previously sent vertices, which are temporarily stored in two
buffers. The first two vertices are the overhead for each strip, so it is desirable to build long strips, but the
automation of this task remains a challenging problem [Evans96].With our assumptions, triangle strips require 461
bits, the product of the following terms:
• 2 triangles per vertex
• 1.2 vertex uses per triangle
• 2 vectors (vertex location and normal) per vertex use
• 3 coordinates per vector
• 4 bytes per coordinate
• 8 bits per byte
The absence of the swap operation in the OpenGL further increases this vertex-use redundancy, since the same
vertex may be sent several times in a triangle strip to overcome the left-right-left-right patterns of vertices
imposed by OpenGL. This latter constraint does not affect the suitability of triangle strips for data compression.

Because on average a vertex is used twice, either as part of the same triangle strip or of two different ones, the
use of triangle strips requires sending most vertices multiple times. Deering's generalized strips [Deering95]
extend the two registers used for OpenGL triangle strips to a 16 registers stack-buffer where previous vertices may
be stored for later use. Deering generalizes the triangle strip syntax by providing more general control over how
the next vertex is used and by allowing the temporary inclusion of the current vertex in the stack-buffer and the
reuse of any one of the 16 vertices of the stack-buffer. One bit per vertex is used to indicate whether the vertex
should be pushed onto the stack-buffer. Two bits per triangle are used to indicate how to continue the current strip.
One bit per triangle indicates whether the next vertex should be read from the input stream or retrieved from the
stack. 4 bits of address are used for randomly selecting a vertex from the stack-buffer, each time an old vertex is
reused. Assuming that each vertex is reused only once, the total cost for encoding the connectivity information is:
1+4 bits per vertex plus 2+1 bits per triangle. Assuming 2 triangles per vertex, this amounts to 11 bits per vertex.
Algorithms for systematically creating good traversals of general meshes using Deering's generalized triangle
mesh syntax are not available and naive traversal of arbitrary meshes may result in many isolated triangles or

J. Rossignac Siggraph’97 9

small runs, implying that a significant portion (for example 20%) of the vertices will be sent more than once, and
hence increasing the number of incidence bits per vertex to 13. Deering also proposed to use coordinate and
normal quantization and entropy encoding on the vertex coordinates expressed in a local coordinate system and
on the normal coordinates to reduce the geometric and photometric storage costs. Basically, a minimax box
around the mesh is used to define an optimal resolution coordinate system for the desired number of bits.
This quantization (which results from the integer rounding of the vertex coordinates to the units of the local
coordinate system) is a lossy compression step. Deering then further compresses the coordinates by using an
optimal variable length coding for the most frequent values of the discrete vertex coordinates and normal
parameters. Because lossy compression schemes are difficult to compare, we will assume that a vertex-normal
pair can be encoded using 48 bits per vertex for the geometry and photometry. Deering reports about 36 bits for
the geometry alone. This yields a total of 61 bits per vertex.

Hoppe’s Progressive Meshes [Hoppe96] define each vertex the identification of 2 incident edges in the
previously constructed mesh, and a displacement vector for computing the location of the new vertex from the
location of the common vertex to these two edges The construction is illustrated in Figure 5. Given that there are
3 times more edges than vertices, an index for identifying the first edge takes 18 bits. Given that there are on
average 10 edges adjacent to an edge, we need 4 extra bits to identify the second edge The total connectivity
storage cost per vertex would then be 22 bits. An entropy coding could further reduce this cost. Hoppe actually
uses a vertex index to identify the shared vertex (which would require 16 bits in our example) and a combined 5
bit index identifying the two incident edges, resulting in 21 bits per vertex for the incidence.
Because Hoppe’s corrective vectors are in general shorter than Deering’s relative vectors, a Huffman coding
should further improve the geometric and photometric compression. For simplicity, we will use the same cost for
the geometry and photometry of 48 bits per vertex. The total reaches 69 bits per vertex, but the advantage of
Hoppe’s scheme lies not in its compression benefits, but in its suitability for scaleable model transmission, where
a rough model is sent first and then a sequence of vertex insertion operations is sent to progressively refine the
model. A progressive model is generated by storing in inverse order a sequence of simplifying edge collapses.

Figure 5: Two adjacent edges are identified (left). These edges are duplicated to produce a
cut. The replicated instance of their common vertex is displaced the specified displacement
vector (center). This creates a gap, which implicitly defines two new triangles.

Under the assumption that all vertex coordinates are available for random access during decompression, Taubin
and Rossignac’s Topological Surgery method [Taubin96] yields results comparable to Hoppe’s Progressive
Meshes for the geometric and photometric compression (48 bits per vertex) and improves on Deering’s approach
for coding the incidence information by a factor of 4 (about between 2 and 4 bits, depending on the incidence
graph). This yields a total of 52 bits. The approach is reviewed in more details in this report.

Estimating simplification errors
A simplification process takes a triangulated surface S and produces a simplified triangulated surface S’. The
error that may be perceived when using S’ instead of S in a scene depends on the shape of S and S’ and also on
the viewing conditions (size and orientation of the shape on the screen). It is vital to have a precise error
evaluation or at least a tight and guaranteed upper bound on the error, otherwise, simplification schemes may
produce simplified models that are not suitable substitutes for the original shape. The error bound will guide our
selection of the appropriate level of detail that meets the desired graphics fidelity.

Although the image is defined only by the color components displayed at each pixel, it is useful to distinguish
two types of errors: geometric errors (how far are the pixels from where they should be) and color errors (how
do the pixels covered by the same feature of the shape differ in color), when evaluating the accuracy of a
simplification technique. These two errors are discussed below.

Since, in general, we cannot predict the viewing conditions, a view-independent error estimation is usually
computed during simplification and used during rendering to guide the choice of level of detail. To make this
possible, one needs to compute an view-independent error representation that leads to a simple and efficient
estimation of the corresponding view-dependent error. For example, if the a point on the surface was displaced

J. Rossignac Siggraph’97 10

along the normal to that surface by a vector D, the perceived error will depend on the projected size of D on the
screen and on the resulting side effects (for instance the changes in the orientation of the surrounding faces).
Hence, the worst viewing conditions for the geometric error may occur when the vector D is orthogonal to the
viewing direction, while the worst viewing condition for the color error depends on the relative orientation of the
light sources, but will typically be proportional to the area occupied on the screen by the faces whose shape was
altered by the displacement of the point. On average, this area is the largest when D is parallel to the viewing
direction. From this example, it should be clear that it is rather difficult to provide a tight bound on the color error
and that it is useful to consider separately the tasks of estimating the two errors.

Hausdorff estimate of the geometric error
Several simplification techniques reported in the literature fail to provide a proper error bound and use instead
heuristic estimates to guide the simplification process or the selection of the level of detail during rendering.
Such strategies often results in simpler algorithms and sometimes to faster processing, and lead to impressive
demonstrations. They may be well suited for many entertainment applications, but may not be appropriate for
professional applications, where unexpectedly high errors may mislead the users.

 Several techniques have been proposed for computing a provable upper bound on the geometric error. They
cover a wide spectrum of compromises between the simplicity of the calculations, the performance of the
preprocessing steps, and the tightness of the bound.

The geometric error may be measured using the Hausdorff distance between S and S’, defined as
H(S,S’)=max(dev(S,S’),dev(S’S)), where dev(A,B)=max(dist(a,B)) for a∈ A, and dist(a,B)=min(||a=b||) for
b∈ B. It measures the worst case distance that a point on one surfaces would have to travel to reach the other
surface. Note that H is a symmetric version (i.e, H(A,B)=H(B,A)) of the deviation, dev(A,B), of A from B, and
is not to be confused with the minimum distance, dist(A,B), between the two surfaces, as illustrated in Figure 6.

Figure 6: In this example, dist(A,B)=0 because the two sets intersect. The Hausdorff distance
H(A,B) between the two sets is equal to the deviation, dev(B,A), but not to the deviation
dev(A,B).

The Hausdorff distance provides a bound on the maximal geometric deviation between the two shapes and hence
provides the maximum distance between a point on the profile (i.e. visible silhouette) of one object and the
profile of another. We use the term profile to refer to visible edges that are adjacent to at least one front facing
and one back facing face. Note that although the profile is a notion that depends on the view, the Hausdorff
distance is not. The Hausdorff distance captures the worst case situation, where the line joining a point on one
surface and its closest counterpart on the other surface is orthogonal to the viewing direction.

Although the Hausdorff distance of zero between two sets indicates that the sets are identical, in general, the
Hausdorff distance is not a good measure of shape similarity, nor of proximity of surface orientation between two
shapes (see Fig. 7 for a counterexample).

Figure 7: When translated for perfect alignment, these two shapes will have a relatively small
Hausdorff distance, yet they differ significantly in their shape and structure.

A

B
dev(A,B)

H(A,B
)

J. Rossignac Siggraph’97 11

The cost of computing the Hausdorff distance between two polyhedra is significant, because it does not suffice to
check the distances between all the vertices of one set and the other set. One must also be able to detect
configurations where the Hausdorff distance is realized at points that lie in the middle of faces. Figure 8
illustrates this concept in two dimensions. Consequently, simpler, although less precise bounds are often used.

Figure 8: The Hausdorff distance between the two polygons is realized at a point on and edge,
not at a vertex.

A geometric error bound based on vertex displacement
Because triangles are linear convex combinations of vertices, if no vertex of a triangle T has moved by more
than a distance D then no interior point in T has either. Consequently, if we keep track of how much we move the
original vertices, we will have an upper bound on the total error. Both vertex clustering and edge collapses may
be viewed as a two step process:
1. Move selected vertices without changing the incidence graph,
2. Change the incidence graph to remove degenerate triangles without changing the geometry.
Voxels or octrees that contain the boundary may also be used to define tolerance zones for safe simplification
steps within a prescribed tolerance [Airey90].

When the vertices of a cluster are collapsed into a single representative vertex, the maximum error is the
maximum distance between the original vertices of the cluster and their representative vertex. This computation
requires only one pass through the vertices of the cluster after the representative vertex was chosen. An even less
expensive although more pessimistic error bound may be obtained by using half the length of the diagonal of a
cell used for vertex quantization.

Although the same approach may be used for the first round of edge collapses, as clusters of vertices resulting
from an previous edge collapses are merged into larger clusters, it becomes more expensive to keep track of all
the vertices and to check their distance from the representative vertex. A pessimistic, yet simple estimate would
be to use the maximum of the sum of all the length of the path from the representative vertex to the leaves of an
edge collapse hierarchy.

A geometric error bound based on distances to supporting planes
Vertex displacement provides a rather pessimistic error bound. Imagine for example a simplification of a dense
triangulation of a flat portion of a terrain. Although vertices may move during edge collapse or vertex clustering
operations, the represented geometry remains flat, and therefore the error is zero. Ronfard and Rossignac have
introduced an error estimator which measures the displacement of vertices in the direction orthogonal to their
incident faces [Ronfard96]. Their estimator computes the maximum distance from the new location P of the
vertex to all the supporting planes of the vertices that have collapsed into P. This estimator works well for flat
and nearly flat regions, but may not provide an upper bound close to sharp vertices, as shown in Figure 9. In the
cases of sharp corners, the authors introduce an additional plane which suffices to guarantee a precise upper
bound on the error.

Figure 9: The three successive edge collapses bring 2 other vertices into the same location as
a third vertex (marked left). The error is estimated by computing the maximum deviation of
these three to the set of lines that support their incident edges. However, in sharp corners, the
lines are almost parallel and the vertex could move far before the distance to the supporting
lines for the incident edges in its initial position exceed the allowed threshold (right).
Therefore, an additional line is introduced to limit this excursion.

Minimizing color errors

J. Rossignac Siggraph’97 12

The color error is somewhat more subjective, because it requires computing distances in color space, and also
harder to control, because slight variation in face orientations may result in considerable variation in specular
reflections. Such color errors are best addressed by using photometric properties that are not affected by surface
orientation, such as texture maps.

Note that using for the simplified model the normals of the original model may produce excellent results for faces
that are roughly orthogonal to the viewing directions, but may produced undesirable black spots in situations
where the face is still facing the viewer, but the normal inherited from the original model is not, end hence leads
to a black color for the corresponding vertex.

Rossignac and Borrel’s vertex quantization
The geometric simplification introduced in [Rossignac93] is aimed at very complex and fairly irregular CAD
models of mechanical parts. It operates on boundary representations of an arbitrary polyhedron and generates a
series of simplified models with a decreasing number of faces and vertices. The resulting models do not
necessarily form valid boundaries of 3D regions--for example, an elongated solid may be approximated by a curve
segment. However, the error introduced by the simplification is bounded (in the Hausdorff distance sense) by a
user-controlled accuracy factor and the resulting shapes exhibit a remarkable visual fidelity considering the data-
reduction ratios, the simplicity of the approach, and the performance and robustness of the implementation.

The original model of each object is represented by a vertex table containing vertex coordinates and a face table
containing references to the vertex table, sorted and organized according to the edge-loops bounding the face.
The simpl ification involves the following processing steps:
1. grading of vertices (assigning weights) as to their visual importance
2. triangulation of faces
3. clustering of vertices
4. synthesis of the representative vertex for each cluster
5. elimination of degenerate triangles and of redundant edges and vertices
6. adjustment of normals
7. construction of new triangle strips for faster graphics performance

Grading
A weight is computed for each vertex. The weight defines the subjective perceptual importance of the vertex. We
favor vertices that have a higher probability of lying on the object's silhouettes from an arbitrary viewing direction
and vertices that bound large faces that should not be affected by the removal of small details. The first factor
may be efficiently estimated using the inverse of the maximum angle between all pairs of incident edges on the
candidate vertex. The second factor may be estimated using the face area.

Note that in both cases, these inexpensive estimations are dependent on the particular tessellation. For example,
subdividing the faces incident upon a vertex will alter its weight although the actual shape remains constant.
Similarly, replacing a sharp vertex with a very small rounded sphere will reduce the weight of the corresponding
vertices, although the global shape has not changed. A better approach would be to consider the local morphology
of the model (estimate of the curvature near the vertex and estimate of the area of flat faces incident upon the
vertex (see [Gross95] for recent progress in this direction).

Triangulation
Each face is decomposed into triangles supported by its original vertices. Because CAD models typically contain
faces bounded by a large number of edges, a very efficient, yet simple triangulation technique is used
[Ronfard94]. The resulting table of triangles contains 3 vertex-indices per triangle.

Note that attempting to simplify non-triangulated faces will most probably result in non-flat polygons. On the
other hand, it may be beneficial to remove very small internal edge loops from large faces prior to triangulation.
This approach will significantly reduce the triangle count in mechanical CAD models, where holes for fasteners
are responsible for a major part of the model’s complexity. Simplifying triangulated models without removing
holes will not create cracks in the surface of the solid and will not separate connected components, Removing
holes prior to simplification may result in separation of connected components or in the creation of visible cracks.

Clustering
The vertices are grouped into clusters, based on geometric proximity. With each vertex, we associate the
corresponding cluster's id. Although a variety of clustering techniques was envisioned, we have opted for a simple
clustering process based on the truncation (quantization) of vertex coordinates. A box, or other bound, containing
the object is uniformly subdivided into cells. After truncation of coordinates, the vertices falling within a cell will
have equal coordinates. A cell, and hence its cluster is uniquely identified by its three coordinates. The clustering

J. Rossignac Siggraph’97 13

procedure takes as parameters the box in which the clustering should occur and the maximum number of cells
along each dimension. The solid's bounding box or a common box for the entire scene may be used. The number
of cells in each dimension is computed so as to achieve the desired level of simplification. A particular choice
may take into account the geometric complexity of the object, its size relative size and importance in the scene,
and the desired reduction in triangle count. The result of this computation is a table (parallel to the vertex table)
which associates vertices with cluster indices (computed by concatenating cluster integer coordinates).

This approach does not permit to select the precise triangle reduction ratio. Instead, we use a non-linear estimator
and an adaptive approach to achieve the desired complexity reduction ratios. For instance, given the size and
complexity of a particular solid relative to the entire scene, we estimate the cell size that would yield the desired
number of triangles, we run the simplification, and if the result is far from our estimate, we use it for a different
level of detail and adjust the cell size appropriately for the next simplification level.

Synthesis
The vertex/cluster association is used to compute a vertex representative for each cluster. A good choice is the
vertex closest to the weighted the average of the vertices of the cluster, where the results of grading are used as
weights. Less ambitious choices, permits to compute the cluster's representative vertices without reading the
input data twice, which leads to important performance improvements when the input vertex table is too large to
fit in memory. Vertex/cluster correspondence yields a correspondence between the original vertices and the
representative vertices of the simplified object. Thus, each triangle of the original object references three original
vertices, which in turn reference three representative vertices. (Note that representative vertices are a subset of
the original vertices, although a simple variation of this approach will support an optimization step that would
compute new locations of the representative vertices.) The representative vertices define the geometry of the
triangle in the simplified object.

The explicit association between the original vertices and the simplified ones permits to smoothly interpolate
between the original model and the simplified one. The levels of detail may be computed in sequence, starting
from the original and generating the first simplification, then starting with this simplified model and generating
the next (more simplified) model and so on. This process will produce a hierarchy of vertex clusters, which may
be used to smoothly interpolate between the transitions from one level to the next, and hence to avoid a
distracting popping effect. We have experimented with such smooth transitions and concluded that, although
visually pleasant, they benefit did not justify the additional interpolation and book-keeping costs. Indeed, during
transition phases, the faces of a more detailed simplification must be used when the lower level of detail may
suffice to meet the desired accuracy. For example, consider that simplification 2 contains 1000 triangles and
corresponds to an error of 0.020, and that simplification 3 contains 100 triangles and corresponds to an error of
0.100. If the viewing conditions impose an error cap of 0.081, we could use simplification 2 alone and display
only 100 triangles. If however we chose to use a smooth interpolation between consecutive levels in the transition
zone for errors between 0.080 and 1.020, we would have not only to compute a new position for 500 vertices as a
linear combination of two vertices, but we will have to display 1000 triangles. Consequently, the smooth
interpolation will result in significant runtime processing costs and in an order of magnitude performance drop for
this solid. Assuming uniform distribution, this penalty will be averaged amongst the various instances (only 40%
of instances would be penalized at a given time). The total performance is degraded by a factor of 4.6 .

Also note that in order to prevent the accumulation of errors, when a level of detail is computed by simplifying
another level of details, the cells for the two simplification processes should be aligned and the finer cells should
be proper subdivisions of the coarser cells.

Elimination
Many triangles may have collapsed as the result of using representative vertices rather than the original ones.
When, for a given triangle, all three representative vertices are equal, the triangle degenerates (collapses) into a
point. When exactly two representative vertices are equal the triangle degenerates into an edge. Such edges and
points, when they bound a triangle in the simplified object are eliminated. Otherwise, they are added to the
geometry associated with the simplified model. Duplicated, triangles, edges, and vertices are eliminated during
that process. Efficient techniques may be invoked, which use the best compromise between space and
performance. When the number of vertices in the simplified model is small, a simple hashing scheme
[Rossignac93] will yield an almost linear performance. When the number of vertices in the simplified model is
large, duplicated geometries may be eliminated at the cost of sorting the various elements. The approach of
[Rossignac93] has been re-engineered at IBM Research by Josh Mittleman and included in IBM's 3D Interaction
Accelerator system [3DIX]. The implementation uses a few simple data-structures and sorting to achieve O(V)
space and O(V log V) time complexities for a solid containing V vertices.

Adjustment of normals
This step computes new normals for all the triangles coordinates. It uses a heuristic to establish which edges are
smooth. The process also computes triangle meshes. We use a face clustering heuristics which builds clusters of

J. Rossignac Siggraph’97 14

adjacent and nearly coplanar faces amongst all the incident faces of each vertex. An average normal is
associated with the vertex-use for all the faces of a cluster.

Generation of new triangle strips
Because each simplification reduces the model significantly, it is not practical to exploit triangle strips computed
on the original model. Instead, we re-compute new triangle strips for each simplified model.

Runtime level selection
Several levels of detail may be pre-computed for each object and used whenever appropriate to speed up
graphics. In selecting the particular simplification level for a given object, it is important to take into accounts
the architecture of the rendering subsystem so as not to oversimplify in situations where the rendering process is
pixel bound. For example, the cost of rendering in software and in a large window an object that has a relatively
low complexity but fills most of the screen is dominated by R. Consequently, simplification will have very little
performance impact, and may reduce the image fidelity without benefit. On the other hand, displaying a scene
with small, yet complex objects, via a software geometric processing on a fast hardware rasterizer will be
significantly improved by simplification before the effects of using simplified models become noticeable.

Isolated edges, that result from the collapsing of some triangles may be displayed as simple edges whose width is
adjusted taking into account their distance to the viewer.

Advantages and implementation
The process described above has several advantages over other simplification methods:

• The computation of the simplification does not require the construction of a topological adjacency graph
between faces, edges, and vertices. It works of a simple array of vertices and of an array of triangles, each
defined in terms of three vertex-indices.

• The algorithm for computing the simplification is very time efficient. In its simplest form, it needs to traverse
the input data (vertex and triangle tables) only once.

• The tolerance (i.e. bound on the Hausdorff distance between the original and simplified model) may be
arbitrarily increased reducing the triangle count by several orders of magnitude.

• To further reduce the triangle count, the simplification algorithm may produce non-regularized models.
Particularly, when using the appropriate tolerance, thin plates may be simplified to dangling faces, long
objects to isolated edges, and (groups of) small solids into isolated points.

• The approach is not restricted by topological adjacency constraints and may merge features that are
geometrically close, but are not topologically adjacent. Particularly, an arbitrary number of small
neighboring isolated objects may be merged and simplified into a single point.

• The simplification algorithm was combined with the data import modules of IBM's 3D Interaction
Accelerator and exercised on hundreds of thousands of models of various complexity. It exhibits a
remarkable performance characteristics, making it faster to re-compute simplifications than to read the
equivalent ASCII files from disk. The algorithm pre-computes several levels of detail, which are then used at
run time to accelerate graphics during interaction with models comprising millions of triangles. The
particular simplification level of a given object is computed so as to match a user specified performance or
quality target while allocating more geometric complexity (and thus more rendering cost) to objects which a
higher visual importance.

• Our experience shows that typical CAD models of mechanical assemblies comprise dozens of thousands of
objects. The relative size and complexity of the objects may vary greatly. A typical object may have a
thousand triangles in its original boundary. The simplification process described here may be used to
automatically reduce the triangle count by an average factor of 5 without impacting the overall shape and
without hindering the users ability to identify the important features. Further simplifications lead to further
reduction of the triangle count, all the way down to a single digit, while still preserving the overall shape of
the object and making it recognizable in the scene. This simplification process has been further improved to
yield a better fidelity/complexity ratio by incorporating topological and curvature considerations in the
clustering process. However, these improvements only lead to additional computational costs and more
complex code.

This approach was recently improved by Low and Tan [Low97], who suggest:
• a better grading of vertices (use cos(a/2) rather than 1/a , where a is maximum angle between all pairs of

incident edges),
• a floating-cell clustering where the highest weight vertex in a cell attracts vertices in its vicinity from

immediately adjacent cells,
• shading edges that approximate elongated objects.

J. Rossignac Siggraph’97 15

Ronfard and Rossignac’s edge collapsing
The principle of the edge-collapsing approaches is to iteratively collapse pairs of vertices that are connected by
an edge of the polyhedron into a single new vertex that may be positioned at one of the original two vertices or in
a new position, so as to minimize the error resulting from the transformation. The main differences between the
various approaches lie in the techniques for estimating an error bound associated with each candidate edge and
the optimization criteria for positioning the new vertex.

The technique developed by Ronfard and Rossignac at IBM Research [Ronfard96] associates with each vertex a
compact description of the planes that support each of the incident triangles and possibly additional planes
through sharp incident edges. These are used to define and evaluate approximation constraints. The user may wish
for example to ensure that no vertex moves further away from each one of these planes than a prescribed
distance. The maximum distance between a point and these planes is used as an error bound estimator. The
advantage of this criteria for error estimation lies in the fact that it enables vertices to travel far away from their
original location along nearly planar regions.

Initially, an error estimate is computed for each edge collapsing operation and the edges are sorted in a priority
queue. At each step, the best edge is chosen, so as to minimize the total error estimate. When two vertex clusters
are merged, their constraints (lists of planes) are merged and possibly pruned to keep the lists short.

Each collapsing operation only alters immediate neighbors and therefore, the a new error bound for each one of
the neighboring edges may be quickly estimated and the priority queue updated.

Advantages and drawbacks
The method guarantees a tight error bound and permits to move vertices further away from their original location
as long as they move along nearly parallel faces. Consequently, it produces much lower triangle counts than the
vertex clustering method for the same error bound.

However, this method requires maintaining a face-edge-vertex incidence graph and special treatment to allow
topological changes, such as the elimination of collapsed holes (see also [He96]).

Gueziec’s volume preserving simplification
Gueziec's algorithm, developed at IBM Research, preserves the volume of the original polyhedron during
simplification [Gueziec96], It favors the creation of near-equilateral triangles. Gueziec computes an upper bound
to the approximation error and reports this bound using a novel tool, the error volume, which is constructed by
taking the union of balls centered on the surface, whose radii, the error values vary linearly between surface
vertices. Gueziec guarantees that the error will be less than user specified tolerances, which can vary across the
surface, as opposed to a single tolerance. An originality of his method is that errors and tolerances are defined
with respect to the simplified surface, as opposed to the original surface.

Following the approach of [Ronfard96], the algorithm uses a greedy strategy based upon the edge collapsing
operation. Edges are weighted and sorted in a priority queue. Before collapsing the edge with the lowest weight
into a simplified vertex, tests determine whether the simplification is appropriate. The simplified vertex is
positioned such that the volume enclosed by a closed surface will stay the same. Gueziec shows that the
simplified vertex must lie on a specific plane. On that plane, the vertex position minimizes the sum of squared
distances to the planes of the edge star, which corresponds to minimizing a sum of distances to lines in the plane.
Once the optimum position of the simplified vertex is found, Gueziec verifies that the triangle orientations are not
perturbed by a rotation exceeding a user specification. Also, he verifies that the minimum value for the triangle
aspect ratios, as measured with the triangle compactness or ratio between area and perimeter, is not degraded in
excess of a pre-specified factor.

Gueziec also determines the effect of the edge collapse on the overall approximation error, and tests whether it is
tolerable. The error volume is initialized with error values equal to zero, or with positive error values reported by
a previous simplification process. As the simplification progresses, the error values at the remaining vertices are
gradually updated. In a manner similar to Russian Dolls, a hierarchy of nested error volumes is built such that
each new volume is guaranteed to enclose the previous error volume. A linear optimization is performed to
compute error estimates that minimize their overall error volume. The simplification stops in a particular region
when the width of the error volume reaches the tolerance. Assuming that a bound to the maximum valence at a
vertex is respected, Gueziec shows that the overall computational complexity of his method is sub-quadratic in
the number of edges of the surface.

J. Rossignac Siggraph’97 16

The algorithm has the following limitations: Since it deals with the problem of finding a sub optimal
approximation with a given error bound, it cannot guarantee that a given triangle reduction can be obtained, nor
can it guarantee that a it reaches the minimum number of triangles. The current implementation is
computationally intensive, mainly due to a linear programming step used for maintaining dynamically the error
volume. Finally, although a pre-processing step could assign vertex tolerances that would prevent surface self-
intersections, the current program allows them where tolerance volumes overlap. The algorithm assumes that the
topology of the input surface is that of a manifold; this property is then also verified for the output surface.

Kalvin and Taylor’s face-merging
Although it is domain independent, the Superfaces algorithm has been originally developed by Alan Kalvin and
Russ Taylor at IBM Research for simplifying polyhedral meshes [Kalvin96] that result from building iso-surfaces
of medical data-sets. The simplification is based on a bounded approximation criterion and produces a simplified
mesh that approximates the original one to within a pre-specified tolerance. The vertices in the simplified mesh
are a proper subset of the original vertices, so the algorithm is well-suited for creating hierarchical representations
of polyhedra.

The algorithm simplifies a mesh in three phases:
• Superface creation: A “greedy”, bottom-up face-merging procedure partitions the original faces into

superface patches.
• Border Straightening: The borders of the superfaces are simplified, by merging boundary edges into

superedges,
• Superface Triangulation: Triangulation points for the superfaces are defined. In this phase, a single superface

may be decomposed into many superfaces, each with its own boundary and triangulation point.

Advantages and drawbacks
The Superfaces algorithm has the following advantages:
• It uses a bounded approximation approach which guarantees that a simplified mesh approximates the original

mesh to within a pre-specified tolerance. That is, every vertex v in the original mesh is guaranteed to lie
within a user-specified distance of the simplified mesh. Also, the vertices in the simplified mesh are a subset
of the original vertices, so there is zero error distance between the simplified vertices and the original
surface.

• It is fast. The face-merging procedure is efficient and greedy-- that is, it does not backtrack or undo any
merging once completed. Thus the algorithm is practical for simplifying very large meshes.

• It is a general-purpose, domain-independent method.

Disadvantages of the Superfaces algorithm are:
• It can produce simplified surfaces that self-intersect.
• The current triangulation procedure (that uses no Steiner points) can produce skinny triangles, that are not

desirable for rendering.

Taubin and Rossignac’s 3D compression by topological surgery
The Topological surgery method for compressing the incidence relation is based on the following observations:
• Given the simply connected polygon that bounds a triangle strip and the selection of a starting seed edge,

the internal triangulation of the strip may be encoded using one bit per triangle. This bit simply states
whether one should advance the left or the right vertex of a progressing edge that sweeps the entire strip
starting at the seed edge and moving its vertices one at a time along the boundary of the strip. (Note that if
the strip was a regular alternations of left and right moves, we would need zero bits.)

• Given a set of non-overlapping triangle strips that cover the surface of a polyhedron and union of their
boundaries identifies a set of “cut” edges. Each cut edge is used exactly twice in the boundary of the same
or of different strips.

• A vertex spanning tree formed by selecting the minimum number of edges of the polyhedron that connect all
the vertices but do not create loops cuts the boundary a single she ll, genus zero, manifold polyhedron into a
simply connected topological polygon that may be decomposed into the union of triangle strips. These strips
and their adjacency may be encoded as a binary spanning tree of the triangles of the mesh.

• Cutting strategies that produce vertex and triangle spanning trees with few nodes that have more than one
child lead to very efficient schemes for compressing the trees. Although encoding general trees and graphs is
much more expensive [Jacobson89], the expected cost of our encoding is less than a bit per vertex. One
basically needs to encode the length of a run of consecutive nodes that have a single child and the overall
structure of the tree (which requires 2 bits for each node with more than one child.)

J. Rossignac Siggraph’97 17

• The handling of non-manifold polyhedra and of meshes with higher genus is possible through simple
extensions of this approach.

• The order imposed on the vertices by the vertex spanning tree may be exploited for computing good
estimates for the location of the next vertex from the location of its 3 or 4 ancestors in the tree. Entropy
coding the differences between the actual location and the estimate results in better compression for the
geometric information than coding the absolute coordinates, because the coordinates of the difference vector
are smaller on average.

The details of this approach may be found in [Taubin96].

Turan has shown that the incidence of a simple mesh can be encoded using 12 bits per vertex [Turan84].
However, Turan’s study focused on the problem of triangulating a labeled graph. Taubin and Rossignac use the
order of the vertices (i.e. a permutation on the vertex labels) to capture some of the incidence relation, and hence
are able to reduce further improve the compression by a factor of 3.

Scaleable models
In order to support remote viewing of highly complex models, the user must be able to download a low resolution
model and start using it while more detailed model description is still being transferred. Hoppe’s progressive
meshes [Hoppe96], discussed earlier, are suitable for such an adaptive scheme.

Furthermore, to accelerate graphics, it is important to transfer the different parts of the scene at different
resolutions (models close to the viewer should receive more details early on, while distant models may never
need to be displayed I full detail. Although the progressive mesh representation supports multi-resolution adaptive
simplification, the constraints imposed on the order in which vertices may be inserted make it ill suited for
adaptive LOD generation. Indeed, the system may often be forced to expand distant edges simply to create
vertices whose descendants are needed to expand nearby edges. A more localized approach may be more
effective.

Conclusion
Although the performance of state of the art hardware graphics and the internet bandwidth are growing rapidly,
price constraints and the growing needs of industrial customers call for algorithmic solutions that improve the
speed of visualizing and transmitting complex 3D scenes. We have presented several techniques, which
automatically computes one or several simplified graphics representations of each object. These representations
may be used selectively in lieu of the original model to accelerate the display process while preserving the
overall perceptual information content of the scene. The described methods clusters vertices of the model and
produces an approximate model where original faces are approximated with fewer faces defined in terms of
selected vertices. Several simplified representations with different simplification factors may be stored in addition
to the original model. Actual viewing conditions are used to establish automatically for each object which
representation should be used for graphics. We have also reviewed several techniques for compressing the
geometry, the incidence, and the photometry of a triangulated model. The best results yield a 20:1 compression
ratio over naive representation schemes.

Bibliography

[Airey90] J. Airey, J. Rohlf, and F. Brooks, Towards image realism with interactive update rates in complex virtual building
environments, ACM Proc. Symposium on Interactive 3D Graphics, 24(2):41-50, 1990.

[Algorri96] M.-E Algorri, F. Schmitt, Surface reconstruction from unstructured 3D data, Computer Graphics Forum, 15(1):4760,
March 1996.

[Andujar96] C. Andujar, D. Ayala, P. Brunet, R. Joan-Arinyo, J. Sole, Automatic generation of multi-resolution boundary
representations, Computer-Graphics Forum (Proceedings of Eurographics’96), 15(3):87-96, 1996.

[Beigbeder91] M. Beigbeder and G. Jahami, Managing levels of detail with textured polygons, Compugraphics'91, Sesimbra,
Portugal, pp. 479-489, 16-20 September, 1991.

[Bergman86] L. Bergman, H. Fuchs, E. Grant and S. Spach, Image Rendering by Adaptive Refinement, Computer Graphics
(Proc. Siggraph'86), 20(4):29-37, Aug. 1986.

[Blake87] E. Blake, A Metric for Computing Adaptive Detail in Animated Scenes using Object-Oriented Programming, Proc.
Eurographics`87, 295-307, Amsterdam, August1987.

J. Rossignac Siggraph’97 18

[Borrel95] P.Borre l, K.S. Cheng, P. Darmon, P. Kirchner, J. Lipscomb, J. Menon, J. Mittleman, J. Rossignac, B.O. Schneider,
and B. Wolfe, The IBM 3D Interaction Accelerator (3DIX), RC 20302, IBM Research, 1995.

[Haralick77] R. Haralick and L. Shapiro, Decomposition of polygonal shapes by clustering, IEEE Comput. Soc. Conf. Pattern
Recognition Image Process, pp. 183-190, 1977.

[Cignoni95] P. Cignoni, E. Puppo and R. Scopigno, Representation and Visualization of Terrain Surfaces at Variable
Resolution, Scientific Visualization 95, World Scientific, 50-68, 1995. http://miles.cnuce.cnr.it/cg/multiresTerrain.html#paper25.

[Clark76] J. Clark, Hierarchical geometric models for visible surface algorithms, Communications of the ACM, 19(10):547-
554, October 1976.

[Cohen96] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agrawal, F. Brooks, W. Wright, Simplification
Envelopes, Proc .ACM Siggraph’96, pp. 119-128, August 1996.

[Crow82] F. Crow, A more flexible image generation environment, Computer Graphics, 16(3):9-18, July 1982.

[Deering95] M. Deering,Geometry Compression, Computer Graphics, Proceedings Siggraph'95, 13-20, Augiust 1995.

[DeFloriani92] L. De Floriani, E. Puppo, A hierarchical triangle-based model for terrain description, in Theories and Methods
of Spatio-Temporal Reasoning in Geographic Space, Ed. A. Frank, Springer-Verlag, Berlin, pp. 36--251, 1992.

[DeHaemer91] M. DeHaemer and M. Zyda, Simplification of objects rendered by polygonal approximations, Computers and
Graphics, 15(2):175-184, 1991.

[DeRose92] T, DeRose, H, Hoppe, J. McDonald, and W, Stuetzle, Fitting of surfaces to scattered data, In J. Warren, editor,
SPIE Proc. Curves and Surfaces in Computer Vision and Graphics III, 1830:212-220, November 16-18, 1992.

[Eck95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle, Multiresolution Analysis of Arbitrary
Meshes, Proc. ACM SIGGRAPH'95, pp. 173-182, Aug. 1995.

[Erikson96] C. Erikson, Polygonal Simplification: An Overview, UNC Tech Report TR96-016,
http://www.cs.unc.edu/~eriksonc/papers.html

[Evans96] F. Evans, S. Skiena, and A. Varshney, Optimizing Triangle Strips for Fast Rendering, Proceedings, IEEE
Vizualization'96, pp. 319--326, 1996.

[Funkhouser93] T. Funkhouser, C. Sequin, Adaptive Display Algorithm for Interactive Frame Rates During Visualization of
Complex Virtual Environments, Computer Graphics (Proc. SIGGRAPH '93), 247-254, August1993.

[Funkhouser93] T, Funkhouser, Database and Display Algorithms for Interactive Visualization of Architectural Models, PhD
Thesis, CS Division, UC Berkeley, 1993.

[Garland95] M. Garland and P. Heckbert, Fast Polygonal Approximation of Terrains and Height Fields,
Research Report from CS Dept, Carnegie Mellon U, CMU-CS-95-181,
 \URL{http://www.cs.cmu.edu/~garland/scape, Sept.1995.

[Greene93] N, Greene, M, Kass, and G, Miller, Hierarchical z-buffer visibility, ACM SIGGRAPH'93 Proceedings, pp:231-238,
1993.

[Gross95] M. Gross, R. Gatti and O. Staadt, Fast Multi-resolution surface meshing, Proc. IEEE Visualization’95, pp. 135-142,
1995.

[Gueziec96] A, Gueziec, Surface Simplification inside a tolerance volume, IBM Research Report RC20440, Mars 1996.

[He96] T. He, A. Varshney, and S. Wang, Controlled topology simplification, IEEE Transactions on Visualization and Computer
Graphics, 1996.

[Heckbert94] P. Heckbert and M. Garland, Multiresolution modeling for fast rendering, Proc Graphics Interface'94, pp:43-50,
May 1994.

[Hoppe92] H, Hoppe, T, DeRose, T, Duchamp, J. McDonald, and W, Stuetzle, Surface reconstruction from unorganized points,
Computer Graphics (Proceedings SIGGRAPH'93), 26(2):71-78, July 1992.

[Hoppe93] H, Hoppe, T, DeRose, T, Duchamp, J, McDonald, and W, Stuetzle, Mesh optimization, Proceedings
SIGGRAPH'93, pp:19-26, August 1993.

[Hoppe96] H, Hoppe, Progressive Meshes, Proceedings ACM SIGGRAPH'96, pp. 99-108, August 1996.

[Hoppe97] H, Hoppe, Progressive Simplicial Complexes, Proceedings ACM SIGGRAPH'97, August 1997.

J. Rossignac Siggraph’97 19

[Jacobson89] G. Jacobson, Succinct Static Data Structures, PhD Thesis, Carnegie-Mellon, Tech Rep CMU-CS-89-112,
January 1989.

[Kalvin91] A, Kalvin, C, Cutting, B. Haddad, and M, Noz, Constructing topologically connected surfaces for the
comprehensive analysis of 3D medical structures, SPIE Image Processing, 1445:247-258, 1991.

[Kalvin96] AD, Kalvin, RH, Taylor, Superfaces: Polyhedral Approximation with Bounded Error, IEEE Computer Graphics \&
Applications, 16(3):64-77, May 1996.

[Lawson72] C. Lawson, Transforming Triangulations, Discrete Math. 3:365-372, 1972.

[Lindstrom96] P. Lindstrom, D. Koller and W. Ribarsky and L. Hodges and N. Faust G. Turner, Real-Time, Continuous Level
of Detail Rendering of Height Fields, SIGGRAPH '96, 109--118, Aug. 1996.

[Lounsbery94] M. Lounsbery, Multiresolution Analysis for Surfaces of Arbitrary Topological Type, PhD. Dissertation, Dept. of
Computer Science and Engineering, U. of Washington, 1994.

[Low97] K-L. Low and T-S. Tan, Model Simplification using Vertex-Clustering.

[Luebke95] D, Luebke, C, George, Portals and Mirrors: Simple, fast evaluation of potentially visible sets, 1995 Symposium on
Interactive 3D Graphics, ACM Press, pp. 105-106, April 1995.

[Luebke96] D. Luebke, Hierarchical structures for dynamic polygonal simplifications, TR 96-006, Dept. of Computer Science,
University of North Carolina at Chapel Hill, 1996.

[Maciel95] P, Maciel, P, Shirley, Visual Navigation of Large Environments Using Textured Clusters, 1995 Symposium on
Interactive 3D Graphics, ACM Press, pp. 95-102, April 1995.

[Mann97] Y. Mann and D. Cohen-Or, Selective Pixel Transmission for Navigation in Remote Environments, Proc.
Eurographics’97, Budapest, Hungary, September 1997.

[Mitchell95] J.S.B, Mitchell, S, Suri, Separation and approximation of polyhedral objects, Computational Geometry: Theory
and Applications, 5(2), pp. 95-114, September 1995.

[Neider93] J. Neider, T. Davis, and M. Woo, OpenGL Programming Guide, Addison-Wesley, 1993.

[Naylor95] B, Naylor, Interactive Playing with Large Synthetic Environments, 1995 Symposium on Interactive 3D Graphics,
ACM Press, pp. 107-108, April 1995.

[Pennebaker93] B. Pennebaker and J. Mitchell, JPEG, Still Image Compression Standard, Van Nostrand Reinhold, 1993.

[Rockwood89] A, Rockwood, K Heaton, and T, Davis, Real-time Rendering of Trimmed Surfaces, Computer Graphics,
23(3):107-116, 1989.

[Ronfard94] R Ronfard, and J, Rossignac, Triangulating multiply-connected polygons: A simple, yet efficient algorithm, Proc.
Eurographics'94, Oslo, Norway, Computer Graphics Forum, 13(3):C281-C292, 1994.

[Ronfard96] R. Ronfard and J, Rossignac, Full-range approximation of triangulated polyhedra, to appear in Proc.
Eurographics'96 and in Computer Graphics Forum. IBM Research Report RC20432, 4/2/96.

[Rossignac93] J. Rossignac, and P. Borrel, Multi-resolution 3D approximations for rendering complex scenes, pp. 455-465, in
Geometric Modeling in Computer Graphics, Springer Verlag, Eds. B. Falcidieno and T.L. Kunii, Genova, Italy, June 28-July 2,
1993.

[Rossignac94] J. Rossignac and M, Novak, Research Issues in Model-based Visualization of Complex Data Sets, IEEE
Computer Graphics and Applications, 14(2):83-85, March 1994.

[Samet90] H. Samet, Applications of Spatial Data Structures, Reading, MA, Addison-Wesley, 1990.

[Scarlatos92] L. Scarlatos, and T, Pavlidis, Hierarchical triangulation using cartographic coherence, CVGIP: Graphical Models
and Image Processing, 54(2):147-161, 1992.

[Schmitt86] F, Schmitt, B. Barsky, and W, Du, An adaptive subdivision method for surface-fitting from sampled data,
Computer Graphics, 20(4):179-188, 1986.

[Schroeder92] W, Schroeder, J. Zarge, and W, Lorensen, Decimation of triangle meshes, Computer Graphics, 26(2):65-70,
July 1992.

[Taubin96] G. Taubin and J, Rossignac, Geometric Compression through Topological Surgery, IBM Research Report RC-
20340. January 1996. (http://www.watson.ibm.com:8080/PS/7990.ps.gz).

J. Rossignac Siggraph’97 20

[Teller91] S.J. Teller and C.H, Sequin, Visibility Preprocessing for interactive walkthroughs, Computer Graphics, 25(4):61-69,
July 1991.

[Teller92] S, Teller, Visibility Computations in Densely Occluded Polyhedral Environments, PhD Thesis, UCB/CSD-92-708,
CS Division, UC Berkeley, October 1992.

[Turk92] G, Turk, Re-tiling polygonal surfaces, Computer Graphics, 26(2):55-64, July 1992.

[Turan84] G. Turan, Succinct representations of graphs, Discrete Applied Math, 8: 289-294, 1984.

[Varshney94] A, Varshney, Hierarchical Geometric Approximations, PhD Thesis, Dept. Computer Science, University of North
Carolina at Chapel Hill, 1994.

[Xia96] J. Xia and A. Varshney, Dynamic view-dependent simplification for polygonal models, Proc. Vis’96, pp. 327-334, 1996.

[3DIX] IBM 3D Interaction Accelerator, Product Description, http://www.research.ibm.com/3dix. 1996.

Mesh Optimization

Hugues Hoppe� Tony DeRose� Tom Duchampy

John McDonaldz Werner Stuetzlez

University of Washington
Seattle, WA 98195

Abstract
We present a method for solving the following problem: Given a set
of data points scattered in three dimensions and an initial triangular
mesh M0, produce a mesh M, of the same topological type as M0 , that
fits the data well and has a small number of vertices. Our approach is
to minimize an energy function that explicitly models the competing
desires of conciseness of representation and fidelity to the data. We
show that mesh optimization can be effectively used in at least two
applications: surface reconstruction from unorganized points, and
mesh simplification (the reduction of the number of vertices in an
initially dense mesh of triangles).

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis, Model
Simplification.

1 Introduction
The mesh optimization problem considered in this paper can be
roughly stated as follows: Given a collection of data points X inR3

and an initial triangular mesh M0 near the data, find a mesh M of the
same topological type as M0 that fits the data well and has a small
number of vertices.

As an example, Figure 7b shows a set of 4102 data points sampled
from the object shown in Figure 7a. The input to the mesh optimiza-
tion algorithm consists of the points together with the initial mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h.
Notice that the sharp edges and corners indicated by the data have
been faithfully recovered and that the number of vertices has been
significantly reduced (from 1572 to 163).

�Department of Computer Science and Engineering, FR-35
yDepartment of Mathematics, GN-50
zDepartment of Statistics, GN-22
This work was supported in part by Bellcore, the Xerox Corporation,

IBM, Hewlett-Packard, AT&T Bell Labs, the Digital Equipment Corpo-
ration, the Department of Energy under grant DE-FG06-85-ER25006, the
National Library of Medicine under grant NIH LM-04174, and the National
Science Foundation under grants CCR-8957323 and DMS-9103002.

To solve the mesh optimization problem we minimize an energy
function that captures the competing desires of tight geometric fit
and compact representation. The tradeoff between geometric fit and
compact representation is controlled via a user-selectable parameter
crep. A large value of crep indicates that a sparse representation is
to be strongly preferred over a dense one, usually at the expense of
degrading the fit.

We use the input mesh M0 as a starting point for a non-linear
optimization process. During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
give no guarantee of finding a global minimum, we have run the
method on a wide variety of data sets; the method has produced
good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface
reconstruction and mesh simplification.

The problem of surface reconstruction from sampled data occurs
in many scientific and engineering applications. In [2], we outlined
a two phase procedure for reconstructing a surface from a set of
unorganized data points. The goal of phase one is to determine
the topological type of the unknown surface and to obtain a crude
estimate of its geometry. An algorithm for phase one was described
in [5]. The goal of phase two is to improve the fit and reduce the
number of faces. Mesh optimization can be used for this purpose.

Although we were originally led to consider the mesh optimiza-
tion problem by our research on surface reconstruction, the algo-
rithm we have developed can also be applied to the problem of mesh
simplification. Mesh simplification, as considered by Turk [15] and
Schroeder et al. [10], refers to the problem of reducing the num-
ber of faces in a dense mesh while minimally perturbing the shape.
Mesh optimization can be used to solve this problem as follows:
sample data points X from the initial mesh and use the initial mesh
as the starting point M0 of the optimization procedure. For instance,
Figure 7q shows a triangular approximation of a minimal surface
with 2032 vertices. Application of our mesh optimization algorithm
to a sample of 6752 points (Figure 7r) from this mesh produces the
meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
The mesh of Figure 7s corresponds to a relatively small value of
crep, and therefore has more vertices than the mesh of Figure 7t
which corresponds to a somewhat larger value of crep.

The principal contributions of this paper are:

� It presents an algorithm for fitting a mesh of arbitrary topolog-
ical type to a set of data points (as opposed to volume data,
etc.). During the fitting process, the number and connectivity
of the vertices, as well as their positions, are allowed to vary.

� It casts mesh simplification as an optimization problem with
an energy function that directly measures deviation of the final
mesh from the original. As a consequence, the final mesh

Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes M0; the meshes in the bottom row are the
corresponding optimized meshes. The first 3 columns are reconstructions; the last 2 columns are simplifications.

Simplicial complexK
1{ } 2{ } 3{ }, ,
1 2,{ } 2 3,{ } 1 3,{ }, ,
1 2 3, ,{ }

vertices:
edges:
faces:

Topological realizationK

e1

e2
e3

Rm

v1

v3

v2
φ

R3

Geometric realizationV()

b

z

x

y

p

φ
V

K()

Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

� It demonstrates how the algorithm’s ability to recover sharp
edges and corners can be exploited to automatically segment
the final mesh into smooth connected components (see Fig-
ure 7i).

2 Mesh Representation
Intuitively, a mesh is a piecewise linear surface, consisting of tri-
angular faces pasted together along their edges. For our purposes
it is important to maintain the distinction between the connectivity
of the vertices and their geometric positions. Formally, a mesh M
is a pair (K;V), where: K is a simplicial complex representing the
connectivity of the vertices, edges, and faces, thus determining the
topological type of the mesh; V = fv1; : : : ;vmg, vi 2 R3 is a set of
vertex positions defining the shape of the mesh inR3 (its geometric
realization).

A simplicial complex K consists of a set of vertices f1; : : : ;mg,
together with a set of non-empty subsets of the vertices, called the

simplices of K, such that any set consisting of exactly one vertex
is a simplex in K, and every non-empty subset of a simplex in K is
again a simplex in K (cf. Spanier [14]). The 0-simplices fig 2 K
are called vertices, the 1-simplices fi; jg 2 K are called edges, and
the 2-simplices fi; j; kg 2 K are called faces.

A geometric realization of a mesh as a surface in R3 can be ob-
tained as follows. For a given simplicial complex K, form its topo-
logical realization jKj inRm by identifying the vertices f1; : : : ;mg
with the standard basis vectors fe1; : : : ; emg of Rm. For each sim-
plex s 2 K let jsj denote the convex hull of its vertices in Rm, and
let jKj = [s2K jsj. Let � : Rm ! R3 be the linear map that sends
the i-th standard basis vector ei 2 Rm to vi 2 R3 (see Figure 2).

The geometric realization of M is the image �V(jKj), where we
write the map as �V to emphasize that it is fully specified by the
set of vertex positions V = fv1; : : : ;vmg. The map �V is called
an embedding if it is 1-1, that is if �V(jKj) is not self-intersecting.
Only a restricted set of vertex positions V result in �V being an
embedding.

If �V is an embedding, any point p 2 �V(jKj) can be parameter-
ized by finding its unique pre-image on jKj. The vector b 2 jKj
with p = �V (b) is called the barycentric coordinate vector of p
(with respect to the simplicial complex K). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-
tors ei 2 Rm corresponding to the vertices of a face of K. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero entries if it lies on an edge of jKj, and only
one if it is a vertex.

3 Definition of the Energy Function
Recall that the goal of mesh optimization is to obtain a mesh that
provides a good fit to the point set X and has a small number
of vertices. We find a simplicial complex K and a set of vertex
positions V defining a mesh M = (K;V) that minimizes the energy
function

E(K;V) = Edist(K;V) + Erep(K) + Espring(K;V):

The first two terms correspond to the two stated goals; the third term
is motivated below.

The distance energy Edist is equal to the sum of squared distances

from the points X = fx1; : : : ;xng to the mesh,

Edist(K;V) =
nX

i=1

d2(xi; �V(jKj)):

The representation energy Erep penalizes meshes with a large
number of vertices. It is set to be proportional to the number of
vertices m of K:

Erep(K) = crepm:

The optimization allows vertices to be both added to and removed
from the mesh. When a vertex is added, the distance energy Edist

is likely to be reduced; the term Erep makes this operation incur a
penalty so that vertices are not added indefinitely. Similarly, one
wants to remove vertices from a dense mesh even if Edist increases
slightly; in this case Erep acts to encourage the vertex removal.
The user-specified parameter crep provides a controllable trade-off
between fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [8], that minimizing
Edist + Erep does not produce the desired results. As an illustration of
what can go wrong, Figure 7d shows the result of minimizing Edist

alone. The estimated surface has several spikes in regions where
there is no data. These spikes are a manifestation of the fundamental
problem that a minimum of Edist + Erep may not exist.

To guarantee the existence of a minimum [6], we add the third
term, the spring energy Espring. It places on each edge of the mesh a
spring of rest length zero and spring constant �:

Espring(K;V) =
X

fj;kg2K

�kvj � vkk2

It is worthwhile emphasizing that the spring energy is not a
smoothness penalty. Our intent is not to penalize sharp dihedral
angles in the mesh, since such features may be present in the un-
derlying surface and should be recovered. We view Espring as a
regularizing term that helps guide the optimization to a desirable
local minimum. As the optimization converges to the solution, the
magnitude of Espring can be gradually reduced. We return to this
issue in Section 4.4.

For some applications we want the procedure to be scale-
invariant, which is equivalent to defining a unitless energy function
E. To achieve invariance under Euclidean motion and uniform scal-
ing, the points X and the initial mesh M0 are pre-scaled uniformly
to fit in a unit cube. After optimization, a post-processing step can
undo this initial transformation.

4 Minimization of the Energy Function
Our goal is to minimize the energy function

E(K;V) = Edist(K;V) + Erep(K) + Espring(K;V)

over the set K of simplicial complexes K homeomorphic to the
initial simplicial complex K0, and the vertex positions V defining
the embedding. We now present an outline of our optimization
algorithm, a pseudo-code version of which appears in Figure 3. The
details are deferred to the next two subsections.

To minimize E(K;V) over both K and V , we partition the problem
into two nested subproblems: an inner minimization over V for fixed
simplicial complex K, and an outer minimization over K.

In Section 4.1 we describe an algorithm that solves the inner
minimization problem. It finds E(K) = minV E(K;V), the energy
of the best possible embedding of the fixed simplicial complex K,
and the corresponding vertex positions V , given an initial guess for

OptimizeMesh(K0,V0) f
K := K0

V := OptimizeVertexPositions(K0,V0)

– Solve the outer minimization problem.
repeat f

(K0,V 0) := GenerateLegalMove(K,V)
V 0 = OptimizeVertexPositions(K0,V 0)
if E(K0

;V 0) < E(K;V) then
(K,V) := (K0,V 0)

endif
g until convergence
return (K,V)

g
– Solve the inner optimization problem
– E(K) = minV E(K;V)
– for fixed simplicial complex K.
OptimizeVertexPositions(K,V) f

repeat f
– Compute barycentric coordinates by projection.
B := ProjectPoints(K,V)
– Minimize E(K;V;B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)

g until convergence
return V

g
GenerateLegalMove(K,V) f

Select a legal move K) K0.
Locally modify V to obtain V 0 appropriate for K0.
return (K0,V 0)

g

Figure 3: An idealized pseudo-code version of the minimization
algorithm.

V . This corresponds to the procedure OptimizeVertexPositions in
Figure 3.

Whereas the inner minimization is a continuous optimization
problem, the outer minimization of E(K) over the simplicial com-
plexes K 2 K (procedure OptimizeMesh) is a discrete optimization
problem. An algorithm for its solution is presented in Section 4.2.

The energy function E(K;V) depends on two parameters crep and
�. The parameter crep controls the tradeoff between conciseness and
fidelity to the data and should be set by the user. The parameter �,
on the other hand, is a regularizing parameter that, ideally, would
be chosen automatically. Our method of setting � is described in
Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex
positions V that minimizes the energy function E(K;V) for a given
simplicial complex K. As Erep(K) does not depend on V , this
amounts to minimizing Edist(K;V) + Espring(K;V).

To evaluate the distance energy Edist(K;V), it is necessary to
compute the distance of each data point xi to M = �V(jKj). Each of
these distances is itself the solution to the minimization problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k2
;

in which the unknown is the barycentric coordinate vector bi 2
jKj � Rm of the projection of xi onto M. Thus, minimizing

E(K;V) for fixed K is equivalent to minimizing the new objective
function

E(K;V;B) =
nX

i=1

kxi � �V(bi)k2 + Espring(K;V)

=
nX

i=1

kxi � �V(bi)k2 +
X

fj;kg2K

�kvj � vkk2

over the vertex positions V = fv1; : : : ;vmg;vi 2 R3 and the
barycentric coordinates B = fb1; : : : ;bng;bi 2 jKj � Rm.

To solve this optimization problem (procedure OptimizeVertex-
Positions), our method alternates between two subproblems:

1. For fixed vertex positions V , find optimal barycentric coordi-
nate vectors B by projection (procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex
positions V by solving a linear least squares problem (proce-
dure ImproveVertexPositions).

Because we find optimal solutions to both of these subproblems,
E(K;V;B) can never increase, and since it is bounded from below,
it must converge. In principle, one could iterate until some formal
convergence criterion is met. Instead, as is common, we perform
a fixed number of iterations. As an example, Figure 7e shows the
result of optimizing the mesh of Figure 7c over the vertex positions
while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a
set V of vertices for which the mesh is self-intersecting, i.e. �V is not
an embedding. While it is possible to check a posteriori whether �V

is an embedding, constraining the optimization to always produce an
embedding appears to be difficult. This has not presented a problem
in the examples we have run.

4.1.1 Projection Subproblem
(Procedure ProjectPoints)

The problem of optimizing E(K;V;B) over the barycentric coordi-
nate vectors B = fb1; : : : ;bng, while holding the vertex positions
V = fv1; : : : ;vmg and the simplicial complex K constant, decom-
poses into n separate optimization problems:

bi = argmin
b2jKj

kxi � �V(b)k

In other words, bi is the barycentric coordinate vector corresponding
to the point p 2 �V(jKj) closest to xi.

A naive approach to computing bi is to project xi onto all of the
faces of M, and then find the projection with minimal distance. To
speed up the projection, we first enter the faces of the mesh into a
spatial partitioning data structure (similar to the one used in [16]).
Then for each point xi only a nearby subset of the faces needs to
be considered, and the projection step takes expected time O(n).
For additional speedup we exploit coherence between iterations.
Instead of projecting each point globally onto the mesh, we assume
that a point’s projection lies in a neighborhood of its projection in
the previous iteration. Specifically, we project the point onto all
faces that share a vertex with the previous face. Although this is a
heuristic that can fail, it has performed well in practice.

4.1.2 Linear Least Squares Subproblem
(Procedure ImproveVertexPositions)

Minimizing E(K;V;B) over the vertex positions V while holding B
and K fixed is a linear least squares problem. It decomposes into

three independent subproblems, one for each of the three coordinates
of the vertex positions. We will write down the problem for the first
coordinate.

Let e be the number of edges (1-simplices) in K; note that e
is O(m). Let v1 be the m-vector whose i-th element is the first
coordinate of vi. Let d1 be the (n + e)-vector whose first n elements
are the first coordinates of the data points xi, and whose last e
elements are zero. With these definitions we can express the least
squares problem for the first coordinate as minimizing kAv1�d1k2

over v1. The design matrix A is an (n + e) � m matrix of scalars.
The first n rows of A are the barycentric coordinate vectors bi. Each
of the trailing e rows contains 2 non-zero entries with values

p
�

and�p� in the columns corresponding to the indices of the edge’s
endpoints. The first n rows of the least squares problem correspond
to Edist(K;V), while the last e rows correspond to Espring(K;V). An
important feature of the matrix A is that it contains at most 3 non-zero
entries in each row, for a total of O(n + m) non-zero entries.

To solve the least squares problem, we use the conjugate gradient
method (cf. [3]). This is an iterative method guaranteed to find the
exact solution in as many iterations as there are distinct singular
values of A, i.e. in at most m iterations. Usually far fewer iterations
are required to get a result with acceptable precision. For example,
we find that for m as large as 104, as few as 200 iterations are
sufficient.

The two time-consuming operations in each iteration of the con-
jugate gradient algorithm are the multiplication of A by an (n + e)-
vector and the multiplication of AT by an m-vector. Because A is
sparse, these two operations can be executed in O(n + m) time. We
store A in a sparse form that requires only O(n + m) space. Thus,
an acceptable solution to the least squares problem is obtained in
O(n + m) time. In contrast, a typical noniterative method for solving
dense least squares problems, such as QR decomposition, would
require O((n + m)m2) time to find an exact solution.

4.2 Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K,
we define a set of three elementary transformations, edge collapse,
edge split, and edge swap, taking a simplicial complex K to another
simplicial complex K0 (see Figure 4).

We define a legal move to be the application of one of these ele-
mentary transformations to an edge of K that leaves the topological
type of K unchanged. The set of elementary transformations is com-
plete in the sense that any simplicial complex in K can be obtained
from K0 through a sequence of legal moves1.

Our goal then is to find such a sequence taking us from K0 to a
minimum of E(K). We do this using a variant of random descent:
we randomly select a legal move, K) K0. If E(K0) < E(K), we
accept the move, otherwise we try again. If a large number of trials
fails to produce an acceptable move, we terminate the search.

More elaborate selection strategies, such as steepest descent or
simulated annealing, are possible. As we have obtained good re-
sults with the simple strategy of random descent, we have not yet
implemented the other strategies.

Identifying Legal Moves An edge split transformation is always
a legal move, as it can never change the topological type of K. The
other two transformations, on the other hand, can cause a change
of topological type, so tests must be performed to determine if they
are legal moves.

1In fact, we prove in [6] that edge collapse and edge split are sufficient; we
include edge swap to allow the optimization procedure to “tunnel” through
small hills in the energy function.

edge collapse edge split edge swap

i

j

k
l

h

hk k kl l l

i i

j j

Figure 4: Local simplicial complex transformations

We define an edge fi; jg 2 K to be a boundary edge if it is a subset
of only one face fi; j; kg 2 K, and a vertex fig to be a boundary
vertex if there exists a boundary edge fi; jg 2 K.

An edge collapse transformation K) K0 that collapses the edge
fi; jg 2 K is a legal move if and only if the following conditions are
satisfied (proof in [6]):

� For all vertices fkg adjacent to both fig and fjg (fi; kg 2 K
and fj; kg 2 K), fi; j; kg is a face of K.

� If fig and fjg are both boundary vertices, fi; jg is a boundary
edge.

� K has more than 4 vertices if neither fig nor fjg are boundary
vertices, or K has more than 3 vertices if either fig or fjg are
boundary vertices.

An edge swap transformation K) K0 that replaces the edge
fi; jg 2 K with fk; lg 2 K0 is a legal move if and only if fk; lg 62 K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of
practical use. In this section, we describe some heuristics which
dramatically reduce the running time. These heuristics capitalize
on the fact that a local change in the structure of the mesh leaves the
optimal positions of distant vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of
E(K0) = minV E(K0

;V) for a simplicial complex K0 obtained from
K through a legal move. Ideally, we would use procedure Opti-
mizeVertexPositions of Section 4.1 for this purpose, as indicated in
Figure 3. In practice, however, this is too slow. Instead, we use fast
local heuristics to estimate the effect of a legal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the
neighborhood of the transformation, along with the subset of the data
points projecting onto the submesh. The change in overall energy is
estimated by only considering the contribution of the submesh and
the corresponding point set. This estimate is always pessimistic, as
full optimization would only further reduce the energy. Therefore,
the heuristics never suggest changes that will increase the true energy
of the mesh.

s star{s,K} t star{t,K}

Figure 5: Neighborhood subsets of K.

k

j

i

l

k

l

i

j

j

i

Figure 6: Two local optimizations to evaluate edge swap

Definition of neighborhoods in a simplicial complex To refer to
neighborhoods in a simplicial complex, we need to introduce some
further notation. We write s0 � s to denote that simplex s0 is a
non-empty subset of simplex s. For simplex s 2 K, star(s; K) =
fs0 2 K : s � s0g (Figure 5).

Evaluation of Edge Collapse To evaluate a transformation K)
K0 collapsing an edge fi; jg into a single vertex fhg (Figure 4), we
take the submesh to be star(fig; K)[star(fjg; K), and optimize over
the single vertex position vh while holding all other vertex positions
constant.

Because we perform only a small number of iterations (for reasons
of efficiency), the initial choice of vh greatly influences the accuracy
of the result. Therefore, we attempt three optimizations, with vh

starting at vi, vj, and 1
2 (vi + vj), and accept the best one.

The edge collapse should be allowed only if the new mesh does not
intersect itself. Checking for this would be costly; instead we settle
for a less expensive heuristic check. If, after the local optimization,
the maximum dihedral angle of the edges in star(fhg; K0) is greater
than some threshold, the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge
collapse, except that the submesh is defined to be star(fi; jg; K), and
the initial value of the new vertex vh is chosen to be 1

2 (vi + vj).

Evaluation of Edge Swap To evaluate an edge swap transforma-
tion K) K0 that replaces an edge fi; jg 2 K with fk; lg 2 K0, we
consider two local optimizations, one with submesh star(fkg; K0),
varying vertex vk, and one with submesh star(flg; K0), varying ver-
tex vl (Figure 6). The change in energy is taken to best of these.
As is the case in evaluating an edge collapse, we reject the transfor-
mation if the maximum dihedral angle after the local optimization
exceeds a threshold.

4.3.2 Legal Move Selection Strategy
(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Sec-
tion 4.2 can be improved by exploiting locality. Instead of selecting
edges completely at random, edges are selected from a candidate set.
This candidate set consists of all edges that may lead to beneficial
moves, and initially contains all edges.

To generate a legal move, we randomly remove an edge from
the candidate set. We first consider collapsing the edge, accepting
the move if it is legal and reduces the total energy. If the edge
collapse is not accepted, we then consider edge swap and edge split
in that order. If one of the transformations is accepted, we update
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the
fraction of beneficial moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energy Espring as a regularizing term that helps
guide the optimization process to a good minimum. The spring
constant � determines the contribution of this term to the total
energy. We have obtained good results by making successive calls to
procedure OptimizeMesh, each with a different value of �, according
to a schedule that gradually decreases �.

As an example, to obtain the final mesh in Figure 7h starting from
the mesh in Figure 7c, we successively set � to 10�2

; 10�3
; 10�4,

and 10�8 (see Figures 7f–7h). This same schedule was used in all
the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 7a). Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

Figures 7i–7k,7m–7o show two examples of surface reconstruc-
tion from actual laser range data (courtesy of Technical Arts, Red-
mond, WA). Figures 7j and 7n show sets of points obtained by
sampling two physical objects (a distributor cap and a golf club
head) with a laser range finder. The outputs of phase one are shown
in Figures 7k and 7o. The holes present in the surface of Figure 7k
are artifacts of the data, as self-shadowing prevented some regions
of the surface from being scanned. Adaptive selection of scanning
paths preventing such shadowing is an interesting area of future
research. In this case, we manually filled the holes, leaving a sin-
gle boundary at the bottom. Figures 7l and 7p show the optimized
meshes obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly
from the original mesh using uniform random sampling over area.
Next, we add the vertices of the mesh to this point set. Finally,
to more faithfully preserve the boundaries of the mesh, we sample
additional points from boundary edges.

As an example of mesh simplification, we start with the mesh
containing 2032 vertices shown in Figure 7q. From it, we obtain
a sample of 6752 points shown in Figure 7r (4000 random points,
2032 vertex points, and 720 boundary points). Mesh optimization,
with crep = 10�5, reduces the mesh down to 487 vertices (Figure 7s).

Fig. #vert. #faces #data Parameters Resulting energies time
m n crep � Edist E (min.)

7c 1572 3152 4102 - - 8:57�10�2 - -
7e 1572 3152 4102 10�5 10�2 8:04�10�4 4:84�10�2 1:5
7f 508 1024 4102 10�5 10�2 6:84�10�4 3:62�10�2 (+3:0)
7g 270 548 4102 10�5 10�3 6:08�10�4 6:94�10�3 (+2:2)
7h 163 334 4102 10�5 varied 4:86�10�4 2:12�10�3 17:0
7k 9220 18272 12745 - - 6:41�10�2 - -
7l 690 1348 12745 10�5 varied 4:23�10�3 1:18�10�2 47:0
7o 4059 8073 16864 - - 2:20�10�2 - -
7p 262 515 16864 10�5 varied 2:19�10�3 4:95�10�3 44:5
7q 2032 3832 - - - - - -
7s 487 916 6752 10�5 varied 1:86�10�3 8:05�10�3 9:9
7t 239 432 6752 10�4 varied 9:19�10�3 4:39�10�2 10:2

Table 1: Performance statistics for meshes shown in Figure 7.

By setting crep = 10�4, we obtain a coarser mesh of 239 vertices
(Figure 7t).

As these examples illustrate, basing mesh simplification on a
measure of distance between the simplified mesh and the original
has a number of benefits:

� Vertices are dense in regions of high Gaussian curvature,
whereas a few large faces span the flat regions.

� Long edges are aligned in directions of low curvature, and the
aspect ratios of the triangles adjust to local curvature.

� Edges and vertices of the simplified mesh are placed near sharp
features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to detect sharp features in the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components. To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are adja-
cent and their dihedral angle is smaller than a given threshold. The
connected components of this graph identify the desired smooth
segments. As an example, Figure 7i shows the segmentation of the
optimized mesh into 11 components. After segmentation, vertex
normals can be estimated from neighboring faces within each com-
ponent, and a smoothly shaded surface can be created (Figure 7m).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values of crep and � used to
generate the meshes in the examples, along with other performance
statistics. In all these examples, the table entry “varied” refers to
a spring constant schedule of f10�2

; 10�3
; 10�4

; 10�8g. In fact,
all meshes in Figure 1 are also created using the same parameters
(except that crep was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

6 Related Work
Surface Fitting There is a large body of literature on fitting em-
beddings of a rectangular domain; see Bolle and Vemuri [1] for a
review. Schudy and Ballard [11, 12] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and
tori. Sclaroff and Pentland [13] consider embeddings of a deformed
superquadric. Miller et al. [9] approximate an isosurface of volume
data by fitting a mesh homeomorphic to a sphere. While it appears
that their method could be extended to finding isosurfaces of arbi-
trary topological type, it it less obvious how it could be modified to

handle point instead of volume data. Mallet [7] discusses interpola-
tion of functions over simplicial complexes of arbitrary topological
type.

Our method allows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensional points. In [2], we
sketched an algorithm for fitting a mesh of fixed vertex connectivity
to the data. The algorithm presented here is an extension of this idea
in which we also allow the number of vertices and their connectivity
to vary. To the best of our knowledge, this has not been done before.

Mesh Simplification Two notable papers discussing the mesh
simplification problem are Schroeder et al. [10] and Turk [15].

The motivation of Schroeder et al. is to simplify meshes gener-
ated by “marching cubes” that may consist of more than a million
triangles. In their iterative approach, the basic operation is removal
of a vertex and re-triangulation of the hole thus created. The crite-
rion for vertex removal in the simplest case (interior vertex not on
edge or corner) is the distance from the vertex to the plane approx-
imating its surrounding vertices. It is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previous iteration; deviation from the original mesh
does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while
remaining faithful to the original topology and geometry. His basic
idea is to distribute points on the existing mesh that are to become
the new vertices. He then creates a triangulation containing both old
and new vertices, and finally removes the old vertices. The density
of the new vertices is chosen to be higher in areas of high curvature.

The principal advantage of our mesh simplification method com-
pared to the techniques mentioned above is that we cast mesh sim-
plification as an optimization problem: we find a new mesh of lower
complexity that is as close as possible to the original mesh. This
is recognized as a desirable property by Turk (Section 8, p. 63):
“Another topic is finding measures of how closely matched a given
re-tiling is to the original model. Can such a quality measure be used
to guide the re-tiling process?”. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that
are elongated along directions of low curvature, another property
recognized as desirable by Turk.

7 Summary and Future Work
We have described an energy minimization approach to solving the
mesh optimization problem. The energy function we use consists of
three terms: a distance energy that measures the closeness of fit, a
representation energy that penalizes meshes with a large number of
vertices, and a regularizing term that conceptually places springs of
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the starting
mesh.

Mesh optimization has proven effective as the second phase of
our method for surface reconstruction from unorganized points, as
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the number of vertices of the mesh produced
in phase one.)

Our method has also performed well for mesh simplification, that
is, the reduction of the number of vertices in a dense triangular mesh.
It produces meshes whose edges align themselves along directions
of low curvature, and whose vertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges and
corners.

A number of areas of future research still remain, including:

� Investigate the use of more sophisticated optimization meth-
ods, such as simulated annealing for discrete optimization and
quadratic methods for non-linear least squares optimization, in
order to avoid undesirable local minima in the energy and to
accelerate convergence.

� Gain more insight into the use of the spring energy as a regu-
larizing term, especially in the presence of appreciable noise.

� Improve the speed of the algorithm and investigate implemen-
tations on parallel architectures.

� Develop methods for fitting higher order splines to more accu-
rately and concisely model curved surfaces.

� Experiment with sparse, non-uniform, and noisy data.

� Extend the current algorithm to other distance measures such as
maximum error (L1 norm) or average error (L1 norm), instead
of the current L2 norm.

References
[1] Ruud M. Bolle and Baba C. Vemuri. On three-dimensional surface

reconstruction methods. IEEE PAMI, 13(1):1–13, January 1991.

[2] T. DeRose, H. Hoppe, T. Duchamp, J. McDonald, and W. Stuetzle.
Fitting of surfaces to scattered data. SPIE, 1830:212–220, 1992.

[3] Gene Golub and Charles Van Loan. Matrix Computations. John
Hopkins University Press, 2nd edition, 1989.

[4] Ardeshir Goshtasby. Surface reconstruction from scattered measure-
ments. SPIE, 1830:247–256, 1992.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics
(SIGGRAPH ’92 Proceedings), 26(2):71–78, July 1992.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh optimization. TR 93-01-01, Dept. of Computer Science and
Engineering, University of Washington, January 1993.

[7] J.L. Mallet. Discrete smooth interpolation in geometric modeling.
CAD, 24(4):178–191, April 1992.

[8] Samuel Marin and Philip Smith. Parametric approximation of data us-
ing ODR splines. GMR 7057, General Motors Research Laboratories,
May 1990.

[9] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O’Bara, and M.J. Wozny.
Geometrically deformed models: A method for extracting closed ge-
ometric models from volume data. Computer Graphics (SIGGRAPH
’91 Proceedings), 25(4):217–226, July 1991.

[10] William Schroeder, Jonathan Zarge, and William Lorensen. Decima-
tion of triangle meshes. Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), 26(2):65–70, July 1992.

[11] R. B. Schudy and D. H. Ballard. Model detection of cardiac cham-
bers in ultrasound images. Technical Report 12, Computer Science
Department, University of Rochester, 1978.

[12] R. B. Schudy and D. H. Ballard. Towards an anatomical model of
heart motion as seen in 4-d cardiac ultrasound data. In Proceedings
of the 6th Conference on Computer Applications in Radiology and
Computer-Aided Analysis of Radiological Images, 1979.

[13] Stan Sclaroff and Alex Pentland. Generalized implicit functions for
computer graphics. Computer Graphics (SIGGRAPH ’91 Proceed-
ings), 25(4):247–250, July 1991.

[14] E. H. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966.

[15] Greg Turk. Re-tiling polygonal surfaces. Computer Graphics (SIG-
GRAPH ’92 Proceedings), 26(2):55–64, July 1992.

[16] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for soft
objects. The Visual Computer, 2(4):227–234, August 1986.

(a) Object to be sampled (b) Sampled points X (n = 4102) (c) Output of phase one (M0) (d) Optimization without Espring

(e) Optimum for fixed K0 (f) Optimum with � = 10�2 (g) Optimum with � = 10�3 (h) Final optimum with � = 10�8

(i) Segmented surface (11 comp.) (j) Laser range data (n = 12; 745) (k) Output of phase one (l) Output of phase two

(m) Smooth shading from segments (n) Laser range data (n = 16; 864) (o) Output of phase one (p) Output of phase two

(q) Original mesh M0 (r) Sampled points X (n = 6752) (s) Simplified mesh (crep = 10�5) (t) Simplified mesh (crep = 10�4)

Figure 7: Examples of surface reconstruction and mesh simplification.

Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Highly detailed geometric models are rapidly becoming common-
place in computer graphics. These models, often represented as
complex triangle meshes, challenge rendering performance, trans-
mission bandwidth, and storage capacities. This paper introduces
the progressive mesh (PM) representation, a new scheme for storing
and transmitting arbitrary triangle meshes. This efficient, loss-
less, continuous-resolution representation addresses several practi-
cal problems in graphics: smooth geomorphing of level-of-detail
approximations, progressive transmission, mesh compression, and
selective refinement.

In addition, we present a new mesh simplification procedure for
constructing a PM representation from an arbitrary mesh. The goal
of this optimization procedure is to preserve not just the geometry
of the original mesh, but more importantly its overall appearance
as defined by its discrete and scalar appearance attributes such as
material identifiers, color values, normals, and texture coordinates.
We demonstrate construction of the PM representation and its ap-
plications using several practical models.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations.

Additional Keywords: mesh simplification, level of detail, shape interpo-
lation, progressive transmission, geometry compression.

1 INTRODUCTION

Highly detailed geometric models are necessary to satisfy a grow-
ing expectation for realism in computer graphics. Within traditional
modeling systems, detailed models are created by applying ver-
satile modeling operations (such as extrusion, constructive solid
geometry, and freeform deformations) to a vast array of geometric
primitives. For efficient display, these models must usually be tes-
sellated into polygonal approximations—meshes. Detailed meshes
are also obtained by scanning physical objects using range scanning
systems [5]. In either case, the resulting complex meshes are ex-
pensive to store, transmit, and render, thus motivating a number of
practical problems:

Email: hhoppe@microsoft.com
Web: http://www.research.microsoft.com/research/graphics/hoppe/

� Mesh simplification: The meshes created by modeling and scan-
ning systems are seldom optimized for rendering efficiency, and
can frequently be replaced by nearly indistinguishable approx-
imations with far fewer faces. At present, this process often
requires significant user intervention. Mesh simplification tools
can hope to automate this painstaking task, and permit the port-
ing of a single model to platforms of varying performance.

� Level-of-detail (LOD) approximation: To further improve ren-
dering performance, it is common to define several versions of a
model at various levels of detail [3, 8]. A detailed mesh is used
when the object is close to the viewer, and coarser approxima-
tions are substituted as the object recedes. Since instantaneous
switching between LOD meshes may lead to perceptible “pop-
ping”, one would like to construct smooth visual transitions,
geomorphs, between meshes at different resolutions.

� Progressive transmission: When a mesh is transmitted over a
communication line, one would like to show progressively better
approximations to the model as data is incrementally received.
One approach is to transmit successive LOD approximations,
but this requires additional transmission time.

� Mesh compression: The problem of minimizing the storage
space for a model can be addressed in two orthogonal ways.
One is to use mesh simplification to reduce the number of faces.
The other is mesh compression: minimizing the space taken to
store a particular mesh.

� Selective refinement: Each mesh in a LOD representation cap-
tures the model at a uniform (view-independent) level of detail.
Sometimes it is desirable to adapt the level of refinement in se-
lected regions. For instance, as a user flies over a terrain, the
terrain mesh need be fully detailed only near the viewer, and
only within the field of view.

In addressing these problems, this paper makes two major con-
tributions. First, it introduces the progressive mesh (PM) repre-
sentation. In PM form, an arbitrary mesh M̂ is stored as a much
coarser mesh M0 together with a sequence of n detail records that
indicate how to incrementally refine M0 exactly back into the orig-
inal mesh M̂ = Mn. Each of these records stores the information
associated with a vertex split, an elementary mesh transformation
that adds an additional vertex to the mesh. The PM representation
of M̂ thus defines a continuous sequence of meshes M0

;M1
; : : : ;Mn

of increasing accuracy, from which LOD approximations of any de-
sired complexity can be efficiently retrieved. Moreover, geomorphs
can be efficiently constructed between any two such meshes. In
addition, we show that the PM representation naturally supports
progressive transmission, offers a concise encoding of M̂ itself, and
permits selective refinement. In short, progressive meshes offer an
efficient, lossless, continuous-resolution representation.

The other contribution of this paper is a new simplification pro-
cedure for constructing a PM representation from a given mesh
M̂. Unlike previous simplification methods, our procedure seeks
to preserve not just the geometry of the mesh surface, but more
importantly its overall appearance, as defined by the discrete and
scalar attributes associated with its surface.

2 MESHES IN COMPUTER GRAPHICS

Models in computer graphics are often represented using triangle
meshes.1 Geometrically, a triangle mesh is a piecewise linear sur-
face consisting of triangular faces pasted together along their edges.
As described in [9], the mesh geometry can be denoted by a tuple
(K;V), where K is a simplicial complex specifying the connectivity
of the mesh simplices (the adjacency of the vertices, edges, and
faces), and V = fv1; : : : ;vmg is the set of vertex positions defining
the shape of the mesh in R3. More precisely (cf. [9]), we construct
a parametric domain jKj � R

m by identifying each vertex of K with
a canonical basis vector of Rm, and define the mesh as the image
�V(jKj) where �V : Rm ! R

3 is a linear map.

Often, surface appearance attributes other than geometry are also
associated with the mesh. These attributes can be categorized into
two types: discrete attributes and scalar attributes.

Discrete attributes are usually associated with faces of the mesh.
A common discrete attribute, the material identifier, determines
the shader function used in rendering a face of the mesh [18]. For
instance, a trivial shader function may involve simple look-up within
a specified texture map.

Many scalar attributes are often associated with a mesh, including
diffuse color (r; g; b), normal (nx; ny; nz), and texture coordinates
(u; v). More generally, these attributes specify the local parameters
of shader functions defined on the mesh faces. In simple cases, these
scalar attributes are associated with vertices of the mesh. However,
to represent discontinuities in the scalar fields, and because adjacent
faces may have different shading functions, it is common to associate
scalar attributes not with vertices, but with corners of the mesh [1].
A corner is defined as a (vertex,face) tuple. Scalar attributes at a
corner (v; f) specify the shading parameters for face f at vertex v.
For example, along a crease (a curve on the surface across which
the normal field is not continuous), each vertex has two distinct
normals, one associated with the corners on each side of the crease.

We express a mesh as a tuple M = (K;V;D; S) where V specifies
its geometry, D is the set of discrete attributes df associated with
the faces f = fj; k; lg 2 K, and S is the set of scalar attributes s(v;f)

associated with the corners (v; f) of K.

The attributes D and S give rise to discontinuities in the visual
appearance of the mesh. An edge fvj; vkg of the mesh is said to be
sharp if either (1) it is a boundary edge, or (2) its two adjacent faces
fl and fr have different discrete attributes (i.e. dfl 6= dfr), or (3) its
adjacent corners have different scalar attributes (i.e. s(vj;fl) 6= s(vj;fr)

or s(vk;fl) 6= s(vk;fr)). Together, the set of sharp edges define a set
of discontinuity curves over the mesh (e.g. the yellow curves in
Figure 12).

3 PROGRESSIVE MESH REPRESENTATION

3.1 Overview
Hoppe et al. [9] describe a method, mesh optimization, that can
be used to approximate an initial mesh M̂ by a much simpler one.
Their optimization algorithm, reviewed in Section 4.1, traverses the
space of possible meshes by successively applying a set of 3 mesh
transformations: edge collapse, edge split, and edge swap.

We have discovered that in fact a single one of those transforma-
tions, edge collapse, is sufficient for effectively simplifying meshes.
As shown in Figure 1, an edge collapse transformation ecol(fvs; vtg)

1We assume in this paper that more general meshes, such as those con-
taining n-sided faces and faces with holes, are first converted into triangle
meshes by triangulation. The PM representation could be generalized to
handle the more general meshes directly, at the expense of more complex
data structures.

v
t

vs

vl vr
vl vr

vs

ecol

vsplit

Figure 1: Illustration of the edge collapse transformation.

v
1

v
2

v
3

v
4

v5

v6

v
7

v
1

v
2

v
3

v
4

v5

v6

v
1

v
2

v
3

Mi+1 Mi

ecoli

M0

ecol0

m0=3

s
0
=2

s
i
=4

(i=3)

v
1

v
2

v
3

v
4

v5

v6

v
7

Mf

v
1

v
2

v
3

Mc

Ac

(a) (b)

Figure 2: (a) Sequence of edge collapses; (b) Resulting vertex
correspondence.

unifies 2 adjacent vertices vs and vt into a single vertex vs. The ver-
tex vt and the two adjacent faces fvs; vt; vlg and fvt; vs; vrg vanish
in the process. A position vs is specified for the new unified vertex.

Thus, an initial mesh M̂ = Mn can be simplified into a coarser
mesh M0 by applying a sequence of n successive edge collapse
transformations:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0
:

The particular sequence of edge collapse transformations must be
chosen carefully, since it determines the quality of the approximating
meshes Mi

; i < n. A scheme for choosing these edge collapses is
presented in Section 4.

Let m0 be the number of vertices in M0 , and let us label the vertices
of mesh Mi as Vi = fv1; : : : ; vm0+ig, so that edge fvsi ; vm0+i+1g is
collapsed by ecoli as shown in Figure 2a. As vertices may have
different positions in the different meshes, we denote the position
of vj in Mi as vi

j.

A key observation is that an edge collapse transformation is in-
vertible. Let us call that inverse transformation a vertex split, shown
as vsplit in Figure 1. A vertex split transformation vsplit(s; l; r; t;A)
adds near vertex vs a new vertex vt and two new faces fvs; vt; vlg and
fvt; vs; vrg. (If the edge fvs; vtg is a boundary edge, we let vr = 0
and only one face is added.) The transformation also updates the
attributes of the mesh in the neighborhood of the transformation.
This attribute information, denoted by A, includes the positions vs

and vt of the two affected vertices, the discrete attributes dfvs;vt;vlg

and dfvt;vs;vrg of the two new faces, and the scalar attributes of the
affected corners (s(vs;�), s(vt;�), s(vl;fvs;vt;vlg), and s(vr;fvt;vs;vrg)).

Because edge collapse transformations are invertible, we can
therefore represent an arbitrary triangle mesh M̂ as a simple mesh
M0 together with a sequence of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

where each record is parametrized as vspliti(si; li; ri;Ai). We call
(M0

; fvsplit0; : : : ; vsplitn�1g) a progressive mesh (PM) representa-
tion of M̂.

As an example, the mesh M̂ of Figure 5d (13,546 faces) was
simplified down to the coarse mesh M0 of Figure 5a (150 faces) using

6,698 edge collapse transformations. Thus its PM representation
consists of M0 together with a sequence of n = 6698 vsplit records.
From this PM representation, one can extract approximating meshes
with any desired number of faces (actually, within �1) by applying
to M0 a prefix of the vsplit sequence. For example, Figure 5 shows
approximating meshes with 150, 500, and 1000 faces.

3.2 Geomorphs
A nice property of the vertex split transformation (and its inverse,
edge collapse) is that a smooth visual transition (a geomorph) can be
created between the two meshes Mi and Mi+1 in Mi vspliti

�! Mi+1. For
the moment let us assume that the meshes contain no attributes other
than vertex positions. With this assumption the vertex split record
is encoded as vspliti(si; li; ri;Ai = (vi+1

si ;v
i+1
m0+i+1)). We construct a

geomorph MG(�) with blend parameter 0���1 such that MG(0)
looks like Mi and MG(1) looks like Mi+1—in fact MG(1)=Mi+1—by
defining a mesh

MG(�) = (Ki+1
;VG(�))

whose connectivity is that of Mi+1 and whose vertex positions lin-
early interpolate from vsi 2Mi to the split vertices vsi ;vm0+i+12Mi+1:

v
G
j (�) =

�
(�)vi+1

j + (1��)vi
si ; j 2 fsi;m0 +i+1g

v
i+1
j = vi

j ; j =2 fsi;m0 +i+1g

Using such geomorphs, an application can smoothly transition from
a mesh Mi to meshes Mi+1 or Mi�1 without any visible “snapping”
of the meshes.

Moreover, since individual ecol transformations can be transi-
tioned smoothly, so can the composition of any sequence of them.
Geomorphs can therefore be constructed between any two meshes
of a PM representation. Indeed, given a finer mesh Mf and a coarser
mesh Mc, 0 � c < f � n, there exists a natural correspondence
between their vertices: each vertex of Mf is related to a unique an-
cestor vertex of Mc by a surjective map Ac obtained by composing a
sequence of ecol transformations (Figure 2b). More precisely, each
vertex vj of Mf corresponds with the vertex vAc(j) in Mc where

Ac(j) =

�
j ; j � m0 + c

Ac(sj�m0�1) ; j > m0 + c :

(In practice, this ancestor information Ac is gathered in a forward
fashion as the mesh is refined.) This correspondence allows us to
define a geomorph MG(�) such that MG(0) looks like Mc and MG(1)
equals Mf . We simply define MG(�) = (Kf

; VG(�)) to have the
connectivity of Mf and the vertex positions

v
G
j (�) = (�)vf

j + (1��)vc
Ac(j) :

So far we have outlined the construction of geomorphs between
PM meshes containing only position attributes. We can in fact
construct geomorphs for meshes containing both discrete and scalar
attributes.

Discrete attributes by their nature cannot be smoothly interpo-
lated. Fortunately, these discrete attributes are associated with
faces of the mesh, and the “geometric” geomorphs described above
smoothly introduce faces. In particular, observe that the faces of
Mc are a proper subset of the faces of Mf , and that those faces of
Mf missing from Mc are invisible in MG(0) because they have been
collapsed to degenerate (zero area) triangles. Other geomorphing
schemes [10, 11, 17] define well-behaved (invertible) parametriza-
tions between meshes at different levels of detail, but these do not
permit the construction of geomorphs between meshes with differ-
ent discrete attributes.

Scalar attributes defined on corners can be smoothly interpolated
much like the vertex positions. There is a slight complication in
that a corner (v; f) in a mesh M is not naturally associated with

any “ancestor corner” in a coarser mesh Mc if f is not a face of
Mc. We can still attempt to infer what attribute value (v; f) would
have in Mc as follows. We examine the mesh Mi+1 in which f is
first introduced, locate a neighboring corner (v; f 0) in Mi+1 whose
attribute value is the same, and recursively backtrack from it to a
corner in Mc. If there is no neighboring corner in Mi+1 with an
identical attribute value, then the corner (v; f) has no equivalent in
Mc and we therefore keep its attribute value constant through the
geomorph.

The interpolating function on the scalar attributes need not be
linear; for instance, normals are best interpolated over the unit
sphere, and colors may be interpolated in a color space other than
RGB.

Figure 6 demonstrates a geomorph between two meshes M175 (500
faces) and M425 (1000 faces) retrieved from the PM representation
of the mesh in Figure 5d.

3.3 Progressive transmission
Progressive meshes are a natural representation for progressive
transmission. The compact mesh M0 is transmitted first (using
a conventional uni-resolution format), followed by the stream of
vspliti records. The receiving process incrementally rebuilds M̂ as
the records arrive, and animates the changing mesh. The changes
to the mesh can be geomorphed to avoid visual discontinuities. The
original mesh M̂ is recovered exactly after all n records are received,
since PM is a lossless representation.

The computation of the receiving process should be balanced
between the reconstruction of M̂ and interactive display. With a
slow communication line, a simple strategy is to display the current
mesh whenever the input buffer is found to be empty. With a
fast communication line, we find that a good strategy is to display
meshes whose complexities increase exponentially. (Similar issues
arise in the display of images transmitted using progressive JPEG.)

3.4 Mesh compression
Even though the PM representation encodes both M̂ and a continu-
ous family of approximations, it is surprisingly space-efficient, for
two reasons. First, the locations of the vertex split transformations
can be encoded concisely. Instead of storing all three vertex indices
(si; li; ri) of vspliti, one need only store si and approximately 5 bits
to select the remaining two vertices among those adjacent to vsi .

2

Second, because a vertex split has local effect, one can expect signif-
icant coherence in mesh attributes through each transformation. For
instance, when vertex vi

si is split into vi+1
si and vi+1

m0+i+1, we can predict
the positions vi+1

si and vi+1
m0+i+1 from v

i
si , and use delta-encoding to

reduce storage. Scalar attributes of corners in Mi+1 can similarly be
predicted from those in Mi. Finally, the material identifiers dfvs;vt;vlg

and dfvt;vs;vrg of the new faces in mesh Mi+1 can often be predicted
from those of adjacent faces in Mi using only a few control bits.

As a result, the size of a carefully designed PM representation
should be competitive with that obtained from methods for com-
pressing uni-resolution meshes. Our current prototype implementa-
tion was not designed with this goal in mind. However, we analyze
the compression of the connectivity K, and report results on the com-
pression of the geometry V . In the following analysis, we assume
for simplicity that m0 = 0 since typically m0 � n.

A common representation for the mesh connectivity K is to list
the three vertex indices for each face. Since the number of vertices
is n and the number of faces approximately 2n, such a list requires
6dlog2(n)en bits of storage. Using a buffer of 2 vertices, gener-
alized triangle strip representations reduce this number to about

2On average, vsi has 6 neighbors, and the number of permutations P6
2 =30

can be encoded in dlog2(P6
2)e=5 bits.

(dlog2(n)e+2k)n bits, where vertices are back-referenced once on
average and k ' 2 bits capture the vertex replacement codes [6].
By increasing the vertex buffer size to 16, Deering’s generalized
triangle mesh representation [6] further reduces storage to about
(1

8dlog2(n)e+8)n bits. Turan [16] shows that planar graphs (and
hence the connectivity of closed genus 0 meshes) can be encoded
in 12n bits. Recent work by Taubin and Rossignac [15] addresses
more general meshes. With the PM representation, each vspliti re-
quires specification of si and its two neighbors, for a total storage of
about (dlog2(n)e+5)n bits. Although not as concise as [6, 15], this
is comparable to generalized triangle strips.

A traditional representation of the mesh geometry V requires
storage of 3n coordinates, or 96n bits with IEEE single-precision
floating point. Like Deering [6], we assume that these coordinates
can be quantized to 16-bit fixed precision values without significant
loss of visual quality, thus reducing storage to 48n bits. Deering is
able to further compress this storage by delta-encoding the quantized
coordinates and Huffman compressing the variable-length deltas.
For 16-bit quantization, he reports storage of 35:8n bits, which
includes both the deltas and the Huffman codes. Using a similar
approach with the PM representation, we encode V in 31n to 50n bits
as shown in Table 1. To obtain these results, we exploit a property
of our optimization algorithm (Section 4.3): when considering the
collapse of an edge fvs; vtg, it considers three starting points for
the resulting vertex position vn: fvs;vt;

vs+vt
2 g. Depending on the

starting point chosen, we delta-encode either fvs�vn;vt�vng or
fvs+vt

2 �vn;
vt�vs

2 g, and use separate Huffman tables for all four
quantities.

To further improve compression, we could alter the construction
algorithm to forego optimization and let vn 2 fvs;vt;

vs+vt
2 g. This

would degrade the accuracy of the approximating meshes some-
what, but allows encoding of V in 30n to 37n bits in our examples.
Arithmetic coding [19] of delta lengths does not improve results
significantly, reflecting the fact that the Huffman trees are well bal-
anced. Further compression improvements may be achievable by
adapting both the quantization level and the delta length models
as functions of the vsplit record index i, since the magnitude of
successive changes tends to decrease.

3.5 Selective refinement
The PM representation also supports selective refinement, whereby
detail is added to the model only in desired areas. Let the application
supply a callback function REFINE(v) that returns a Boolean value
indicating whether the neighborhood of the mesh about v should
be further refined. An initial mesh Mc is selectively refined by
iterating through the list fvsplitc; : : : ; vsplitn�1g as before, but only
performing vspliti(si; li; ri;Ai) if

(1) all three vertices fvsi ; vli ; vrig are present in the mesh, and

(2) REFINE(vsi) evaluates to TRUE.

(A vertex vj is absent from the mesh if the prior vertex split that
would have introduced it, vsplitj�m0�1, was not performed due to
the above conditions.)

As an example, to obtain selective refinement of the model within
a view frustum, REFINE(v) is defined to be TRUE if either v or any
of its neighbors lies within the frustum. As seen in Figure 7a,
condition (1) described above is suboptimal. The problem is that a
vertex vsi within the frustum may fail to be split because its expected
neighbor vli lies just outside the frustum and was not previously
created. The problem is remedied by using a less stringent version
of condition (1). Let us define the closest living ancestor of a vertex
vj to be the vertex with index

A0(j) =

�
j ; if vj exists in the mesh

A0(sj�m0�1) ; otherwise

The new condition becomes:

(1’) vsi is present in the mesh (i.e. A0(si) = si) and the vertices vA0 (li)

and vA0 (ri) are both adjacent to vsi .

As when constructing the geomorphs, the ancestor information A0

is carried efficiently as the vsplit records are parsed. If conditions
(1’) and (2) are satisfied, vsplit(si;A0(li);A0(ri);Ai) is applied to the
mesh. A mesh selectively refined with this new strategy is shown in
Figure 7b. This same strategy was also used for Figure 10. Note that
it is still possible to create geomorphs between Mc and selectively
refined meshes thus created.

An interesting application of selective refinement is the transmis-
sion of view-dependent models over low-bandwidth communication
lines. As the receiver’s view changes over time, the sending process
need only transmit those vsplit records for which REFINE evaluates
to TRUE, and of those only the ones not previously transmitted.

4 PROGRESSIVE MESH CONSTRUCTION

The PM representation of an arbitrary mesh M̂ requires a sequence
of edge collapses transforming M̂ = Mn into a base mesh M0.
The quality of the intermediate approximations Mi

; i < n depends
largely on the algorithm for selecting which edges to collapse and
what attributes to assign to the affected neighborhoods, for instance
the positions vi

si .

There are many possible PM construction algorithms with vary-
ing trade-offs of speed and accuracy. At one extreme, a crude and
fast scheme for selecting edge collapses is to choose them com-
pletely at random. (Some local conditions must be satisfied for an
edge collapse to be legal, i.e. manifold preserving [9].) More so-
phisticated schemes can use heuristics to improve the edge selection
strategy, for example the “distance to plane” metric of Schroeder
et al. [14]. At the other extreme, one can attempt to find approx-
imating meshes that are optimal with respect to some appearance
metric, for instance the Edist geometric metric of Hoppe et al. [9].

Since PM construction is a preprocess that can be performed off-
line, we chose to design a simplification procedure that invests some
time in the selection of edge collapses. Our procedure is similar to
the mesh optimization method introduced by Hoppe et al. [9], which
is outlined briefly in Section 4.1. Section 4.2 presents an overview
of our procedure, and Sections 4.3–4.6 present the details of our
optimization scheme for preserving both the shape of the mesh and
the scalar and discrete attributes which define its appearance.

4.1 Background: mesh optimization
The goal of mesh optimization [9] is to find a mesh M = (K;V)
that both accurately fits a set X of points xi 2 R

3 and has a small
number of vertices. This problem is cast as minimization of an
energy function

E(M) = Edist(M) + Erep(M) + Espring(M) :

The first two terms correspond to the two goals of accuracy and
conciseness: the distance energy term

Edist(M) =
X

i

d2(xi; �V (jKj))

measures the total squared distance of the points from the mesh,
and the representation energy term Erep(M) = crepm penalizes the
number m of vertices in M. The third term, the spring energy
Espring(M) is introduced to regularize the optimization problem. It
corresponds to placing on each edge of the mesh a spring of rest
length zero and tension �:

Espring(M) =
X

fj;kg2K

�kvj � vkk
2
:

size (# vertices)

accuracy
Edist

Mc

Mb

Ma

M

poor

perfect
0 n

ideal

space of meshes

Figure 3: Illustration of the paths taken by mesh optimization using
three different settings of crep.

The energy function E(M) is minimized using a nested optimiza-
tion method:

� Outer loop: The algorithm optimizes over K, the connectivity
of the mesh, by randomly attempting a set of three possible
mesh transformations: edge collapse, edge split, and edge swap.
This set of transformations is complete, in the sense that any
simplicial complex K of the same topological type as K̂ can
be reached through a sequence of these transformations. For
each candidate mesh transformation, K ! K0, the continuous
optimization described below computes EK0 , the minimum of
E subject to the new connectivity K0. If �E = EK0 � EK is
found to be negative, the mesh transformation is applied (akin to
a zero-temperature simulated annealing method).

� Inner loop: For each candidate mesh transformation, the algo-
rithm computes EK0 = minV Edist(V) + Espring(V) by optimizing
over the vertex positions V . For the sake of efficiency, the algo-
rithm in fact optimizes only one vertex positionvs, and considers
only the subset of points X that project onto the neighborhood
affected by K ! K0. To avoid surface self-intersections, the
edge collapse is disallowed if the maximum dihedral angle of
edges in the resulting neighborhood exceeds some threshold.

Hoppe et al. [9] find that the regularizing spring energy term
Espring(M) is most important in the early stages of the optimization,
and achieve best results by repeatedly invoking the nested optimiza-
tion method described above with a schedule of decreasing spring
constants �.

Mesh optimization is demonstrated to be an effective tool for mesh
simplification. Given an initial mesh M̂ to approximate, a dense set
of points X is sampled both at the vertices of M̂ and randomly over
its faces. The optimization algorithm is then invoked with M̂ as the
starting mesh. Varying the setting of the representation constant crep

results in optimized meshes with different trade-offs of accuracy and
size. The paths taken by these optimizations are shown illustratively
in Figure 3.

4.2 Overview of the simplification algorithm
As in mesh optimization [9], we also define an explicit energy metric
E(M) to measure the accuracy of simplified meshes M = (K;V;D; S)
with respect to the original M̂, and we also modify the mesh M
starting from M̂ while minimizing E(M).

Our energy metric has the following form:

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) :

The first two terms, Edist(M) and Espring(M) are identical to those
in [9]. The next two terms of E(M) are added to preserve attributes
associated with M: Escalar(M) measures the accuracy of its scalar
attributes (Section 4.4), and Edisc(M) measures the geometric ac-
curacy of its discontinuity curves (Section 4.5). (To achieve scale
invariance of the terms, the mesh is uniformly scaled to fit in a unit
cube.)

size (# vertices)

accuracy
Edist

M0

M

poor

perfect

0 n

ideal

PM
representation

space of meshes

Figure 4: Illustration of the path taken by the new mesh simplifica-
tion procedure in a graph plotting accuracy vs. mesh size.

Our scheme for optimizing over the connectivity K of the mesh
is rather different from [9]. We have discovered that a mesh can
be effectively simplified using edge collapse transformations alone.
The edge swap and edge split transformations, useful in the context
of surface reconstruction (which motivated [9]), are not essential
for simplification. Although in principle our simplification algo-
rithm can no longer traverse the entire space of meshes considered
by mesh optimization, we find that the meshes generated by our
algorithm are just as good. In fact, because of the priority queue
approach described below, our meshes are usually better. Moreover,
considering only edge collapses simplifies the implementation, im-
proves performance, and most importantly, gives rise to the PM
representation (Section 3).

Rather than randomly attempting mesh transformations as in [9],
we place all (legal) candidate edge collapse transformations into
a priority queue, where the priority of each transformation is its
estimated energy cost �E. In each iteration, we perform the trans-
formation at the front of the priority queue (with lowest �E), and
recompute the priorities of edges in the neighborhood of this trans-
formation. As a consequence, we eliminate the need for the awk-
ward parameter crep as well as the energy term Erep(M). Instead, we
can explicitly specify the number of faces desired in an optimized
mesh. Also, a single run of the optimization can generate several
such meshes. Indeed, it generates a continuous-resolution family of
meshes, namely the PM representation of M̂ (Figure 4).

For each edge collapse K ! K0, we compute its cost �E =
EK0 � EK by solving a continuous optimization

EK0 = min
V;S

Edist(V) + Espring(V) + Escalar(V; S) + Edisc(V)

over both the vertex positions V and the scalar attributes S of the
mesh with connectivity K0. This minimization is discussed in the
next three sections.

4.3 Preserving surface geometry (Edist +Espring)
As in [9], we “record” the geometry of the original mesh M̂ by
sampling from it a set of points X. At a minimum, we sample a
point at each vertex of M̂. If requested by the user, additional points
are sampled randomly over the surface of M̂. The energy terms
Edist(M) and Espring(M) are defined as in Section 4.1.

For a mesh of fixed connectivity, our method for optimizing the
vertex positions to minimize Edist(V)+Espring(V) closely follows that
of [9]. Evaluating Edist(V) involves computing the distance of each
point xi to the mesh. Each of these distances is itself a minimization
problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k
2 (1)

where the unknown bi is the parametrization of the projection of
xi on the mesh. The nonlinear minimization of Edist(V) + Espring(V)
is performed using an iterative procedure alternating between two
steps:

1. For fixed vertex positions V , compute the optimal parametriza-
tions B = fb1; : : : ;bjXjg by projecting the points X onto the
mesh.

2. For fixed parametrizations B, compute the optimal vertex posi-
tions V by solving a sparse linear least-squares problem.

As in [9], when considering ecol(fvs; vtg), we optimize only one
vertex position, vi

s. We perform three different optimizations with
different starting points, vi

s = (1��)vi+1
s +(�)vi+1

t for � = f0; 1
2 ; 1g,

and accept the best one.

Instead of defining a global spring constant � for Espring as in [9],
we adapt � each time an edge collapse transformation is considered.
Intuitively, the spring energy is most important when few points
project onto a neighborhood of faces, since in this case finding the
vertex positions minimizing Edist(V) may be an under-constrained
problem. Thus, for each edge collapse transformation considered,
we set � as a function of the ratio of the number of points to the
number of faces in the neighborhood.3 With this adaptive scheme,
the influence of Espring(M) decreases gradually and adaptively as the
mesh is simplified, and we no longer require the expensive schedule
of decreasing spring constants.

4.4 Preserving scalar attributes (Escalar)
As described in Section 2, we represent piecewise continuous scalar
fields by defining scalar attributes S at the mesh corners. We now
present our scheme for preserving these scalar fields through the
simplification process. For exposition, we find it easier to first
present the case of continuous scalar fields, in which the corner
attributes at a vertex are identical. The generalization to piecewise
continuous fields is discussed shortly.

Optimizing scalar attributes at vertices Let the original
mesh M̂ have at each vertex vj not only a position vj 2 R

3 but
also a scalar attribute vj 2 R

d. To capture scalar attributes, we
sample at each point xi 2 X the attribute value xi 2 R

d . We would
then like to generalize the distance metric Edist to also measure the
deviation of the sampled attribute values X from those of M.

One natural way to achieve this is to redefine the distance metric
to measure distance in R3+d:

d2((xi xi);M(K;V;V)) = min
bi2jKj

k(xi xi) � (�V(bi) �V(bi))k
2
:

This new distance functional could be minimized using the iterative
approach of Section 4.3. However, it would be expensive since
finding the optimal parametrization bi of each point xi would re-
quire projection in R3+d, and would be non-intuitive since these
parametrizations would not be geometrically based.

Instead we opted to determine the parametrizations bi using only
geometry with equation (1), and to introduce a separate energy term
Escalar to measure attribute deviation based on these parametriza-
tions:

Escalar(V) = (cscalar)
2
X

i

kxi � �V(bi)k
2

where the constant cscalar assigns a relative weight between the scalar
attribute errors (Escalar) and the geometric errors (Edist).

Thus, to minimize E(V;V) = Edist(V) + Espring(V) + Escalar(V), our
algorithm first finds the vertex position vs minimizing Edist(V) +
Espring(V) by alternately projecting the points onto the mesh (ob-
taining the parametrizations bi) and solving a linear least-squares
problem (Section 4.1). Then, using those same parametrizations

3The neighborhood of an edge collapse transformation is the set of faces
shown in Figure 1. Using C notation, we set � = r < 4 ? 10�2 : r <

8 ? 10�4 : 10�8 where r is the ratio of the number of points to faces in the
neighborhood.

bi, it finds the vertex attribute vs minimizing Escalar by solving a
single linear least-squares problem. Hence introducing Escalar into
the optimization causes negligible performance overhead.

Since �Escalar contributes to the estimated cost �E of an edge
collapse, we obtain simplified meshes whose faces naturally adapt
to the attribute fields, as shown in Figures 8 and 11.

Optimizing scalar attributes at corners Our scheme for op-
timizing the scalar corner attributes S is a straightforward gener-
alization of the scheme just described. Instead of solving for a
single unknown attribute value vs, the algorithm partitions the cor-
ners around vs into continuous sets (based on equivalence of corner
attributes) and for each continuous set solves independently for its
optimal attribute value.

Range constraints Some scalar attributes have constrained
ranges. For instance, the components (r; g; b) of color are typically
constrained to lie between 0 and 1. Least-squares optimization may
yield color values outside this range. In these cases we clip the op-
timized values to the given range. For least-squares minimization
of a Euclidean norm at a single vertex, this is in fact optimal.

Normals Surface normals (nx; ny; nz) are typically constrained to
have unit length, and thus their domain is non-Cartesian. Optimizing
over normals would therefore require minimization of a nonlinear
functional with nonlinear constraints. We decided to instead simply
carry the normals through the simplification process. Specifically,
we compute the new normals at vertex vi

si by interpolating between
the normals at vertices vi+1

si and vi+1
m0+i+1 using the � value that re-

sulted in the best vertex position vi
si in Section 4.3. Fortunately,

the absolute directions of normals are less visually important than
their discontinuities, and we have a scheme for preserving such
discontinuities, as described in the next section.

4.5 Preserving discontinuity curves (Edisc)
Appearance attributes give rise to a set of discontinuity curves on the
mesh, both from differences between discrete face attributes (e.g.
material boundaries), and from differences between scalar corner
attributes (e.g. creases and shadow boundaries). As these discon-
tinuity curves form noticeable features, we have found it useful to
preserve them both topologically and geometrically.

We can detect when a candidate edge collapse would modify the
topology of the discontinuity curves using some simple tests on
the presence of sharp edges in its neighborhood. Let sharp(vj; vk)
denote that an edgefvj ; vkg is sharp, and let #sharp(vj) be the number
of sharp edges adjacent to a vertex vj. Then, referring to Figure 1,
ecol(fvs; vtg) modifies the topology of discontinuity curves if either:

� sharp(vs; vl) and sharp(vt; vl), or
� sharp(vs; vr) and sharp(vt; vr), or
� #sharp(vs) � 1 and #sharp(vt) � 1 and not sharp(vs; vt), or
� #sharp(vs) � 3 and #sharp(vt) � 3 and sharp(vs; vt), or
� sharp(vs; vt) and #sharp(vs) = 1 and #sharp(vt) 6= 2, or
� sharp(vs; vt) and #sharp(vt) = 1 and #sharp(vs) 6= 2.

If an edge collapse would modify the topology of discontinuity
curves, we either disallow it, or penalize it as discussed in Sec-
tion 4.6.

To preserve the geometry of the discontinuity curves, we sample
an additional set of points Xdisc from the sharp edges of M̂, and define
an additional energy term Edisc equal to the total squared distances
of each of these points to the discontinuity curve from which it was
sampled. Thus Edisc is defined just like Edist, except that the points
Xdisc are constrained to project onto a set of sharp edges in the mesh.
In effect, we are solving a curve fitting problem embedded within
the surface fitting problem. Since all boundaries of the surface are
defined to be discontinuity curves, our procedure preserves bound-

ary geometry more accurately than [9]. Figure 9 demonstrates the
importance of using the Edisc energy term in preserving the material
boundaries of a mesh with discrete face attributes.

4.6 Permitting changes to topology of dis-
continuity curves

Some meshes contain numerous discontinuity curves, and these
curves may delimit features that are too small to be visible when
viewed from a distance. In such cases we have found that strictly
preserving the topology of the discontinuity curves unnecessarily
curtails simplification. We have therefore adopted a hybrid strat-
egy, which is to permit changes to the topology of the discontinu-
ity curves, but to penalize such changes. When a candidate edge
collapse ecol(fvs; vtg) changes the topology of the discontinuity
curves, we add to its cost �E the value jXdisc;fvs;vtgj � kvs � vtk

2

where jXdisc;fvs;vtgj is the number of points of Xdisc projecting onto
fvs; vtg. That simple strategy, although ad hoc, has proven very
effective. For example, it allows the dark gray window frames of
the “cessna” (visible in Figure 9) to vanish in the simplified meshes
(Figures 5a–c).

Table 1: Parameter settings and quantitative results.

Object Original ^M Base M0 User param. jXdiscj V Time
m0 + n #faces m0 #faces jXj�(m0+n) ccolor

bits
n mins

cessna 6,795 13,546 97 150 100,000 - 46,811 46 23
terrain 33,847 66,960 3 1 0 - 3,796 46 16
mandrill 40,000 79,202 3 1 0 0.1 4,776 31 19
radiosity 78,923 150,983 1,192 1,191 200,000 0.01 74,316 37 106
fandisk 6,475 12,946 27 50 10,000 - 5,924 50 19

5 RESULTS

Table 1 shows, for the meshes in Figures 5–12, the number of
vertices and faces in both M̂ and M0. In general, we let the simpli-
fication proceed until no more legal edge collapse transformations
are possible. For the “cessna”, we stopped at 150 faces to obtain a
visually aesthetic base mesh. As indicated, the only user-specified
parameters are the number of additional points (besides the m0 + n
vertices of M̂) sampled to increase fidelity, and the cscalar constants
relating the scalar attribute accuracies to the geometric accuracy.
The only scalar attribute we optimized is color, and its cscalar con-
stant is denoted as ccolor. The number jXdiscj of points sampled from
sharp edges is set automatically so that the densities of X and Xdisc

are proportional.4 Execution times were obtained on a 150MHz
Indigo2 with 128MB of memory.

Construction of the PM representation proceeds in three
steps. First, as the simplification algorithm applies a sequence
ecoln�1 : : : ecol0 of transformations to the original mesh, it writes
to a file the sequence vsplitn�1 : : : vsplit0 of corresponding in-
verse transformations. When finished, the algorithm also writes
the resulting base mesh M0. Next, we reverse the order of the
vsplit records. Finally, we renumber the vertices and faces of
(M0

; vsplit0 : : : vsplitn�1) to match the indexing scheme of Sec-
tion 3.1 in order to obtain a concise format.

Figure 6 shows a single geomorph between two meshes M175 and
M425 of a PM representation. For interactive LOD, it is useful to
select a sequence of meshes from the PM representation, and to
construct successive geomorphs between them. We have obtained

4We set jXdiscj such that jXdiscj=perim = c(jXj=area)
1
2 where perim is

the total length of all sharp edges in ^M, area is total area of all faces, and
the constant c = 4:0 is chosen empirically.

good results by selecting meshes whose complexities grow expo-
nentially, as in Figure 5. During execution, an application can adjust
the granularity of these geomorphs by sampling additional meshes
from the PM representation, or freeing some up.

In Figure 10, we selectively refined a terrain (grid of 181�187
vertices) using a new REFINE(v) function that keeps more detail
near silhouette edges and near the viewer. More precisely, for the
faces Fv adjacent to v, we compute the signed projected screen areas
faf : f 2 Fvg. We let REFINE(v) return TRUE if

(1) any face f 2 Fv lies within the view frustum, and either

(2a) the signs of af are not all equal (i.e. v lies near a silhouette
edge) or

(2b)
P

f2Fv
af > thresh for a screen area threshold thresh = 0:162

(where total screen area is 1).

6 RELATED WORK

Mesh simplification methods A number of schemes con-
struct a discrete sequence of approximating meshes by repeated
application of a simplification procedure. Turk [17] sprinkles a
set of points on a mesh, with density weighted by estimates of lo-
cal curvature, and then retriangulates based on those points. Both
Schroeder et al. [14] and Cohen et al. [4] iteratively remove vertices
from the mesh and retriangulate the resulting holes. Cohen et al. are
able to bound the maximum error of the approximation by restricting
it to lie between two offset surfaces. Hoppe et al. [9] find accurate
approximations through a general mesh optimization process (Sec-
tion 4.1). Rossignac and Borrel [12] merge vertices of a model
using spatial binning. A unique aspect of their approach is that the
topological type of the model may change in the process. Their
method is extremely fast, but since it ignores geometric qualities
like curvature, the resulting approximations can be far from opti-
mal. Some of the above methods [12, 17] permit the construction
of geomorphs between successive simplified meshes.

Multiresolution analysis (MRA) Lounsbery et al. [10, 11]
generalize the concept of multiresolution analysis to surfaces of
arbitrary topological type. Eck et al. [7] describe how MRA can
be applied to the approximation of an arbitrary mesh. Certain
et al. [2] extend MRA to capture color, and present a multireso-
lution Web viewer supporting progressive transmission. MRA has
many similarities with the PM scheme, since both store a simple base
mesh together with a stream of detail records, and both produce a
continuous-resolution representation. It is therefore worthwhile to
highlight their differences:

Advantages of PM over MRA:

� MRA requires that the detail terms (wavelets) lie on a domain
with subdivision connectivity, and as a result an arbitrary initial
mesh M̂ can only be recovered to within an � tolerance. In
contrast, the PM representation is lossless since Mn = M̂.

� Because the approximating meshes Mi
; i<n in a PM may have

arbitrary connectivity, they can be much better approximations
than their MRA counterparts (Figure 12).

� The MRA representation cannot deal effectively with surface
creases, unless those creases lie parametrically along edges of
the base mesh (Figure 12). PM’s can introduce surface creases
anywhere and at any level of detail.

� PM’s capture continuous, piecewise-continuous, and discrete ap-
pearance attributes. MRA schemes can represent discontinuous
functions using a piecewise-constant basis (such as the Haar ba-
sis as used in [2, 13]), but the resulting approximations have
too many discontinuities since none of the basis functions meet
continuously. Also, it is not clear how MRA could be extended
to capture discrete attributes.

Advantages of MRA over PM:

� The MRA framework provides a parametrization between
meshes at various levels of detail, thus making possible multires-
olution surface editing. PM’s also offer such a parametrization,
but it is not smooth, and therefore multiresolution editing may
be non-intuitive.

� Eck et al. [7] construct MRA approximations with guaranteed
maximum error bounds to M̂. Our PM construction algorithm
does not provide such bounds, although one could envision using
simplification envelopes [4] to achieve this.

� MRA allows geometry and color to be compressed indepen-
dently [2].

Other related work There has been relatively little work in
simplifying arbitrary surfaces with functions defined over them.
One special instance is image compression, since an image can be
thought of as a set of scalar color functions defined on a quadrilat-
eral surface. Another instance is the framework of Schröder and
Sweldens [13] for simplifying functions defined over the sphere.
The PM representation, like the MRA representation, is a general-
ization in that it supports surfaces of arbitrary topological type.

7 SUMMARY AND FUTURE WORK

We have introduced the progressive mesh representation and shown
that it naturally supports geomorphs, progressive transmission, com-
pression, and selective refinement. In addition, as a PM construction
method, we have presented a new mesh simplification procedure de-
signed to preserve not just the geometry of the original mesh, but
also its overall appearance.

There are a number of avenues for future work, including:

� Development of an explicit metric and optimization scheme for
preserving surface normals.

� Experimentation with PM editing.

� Representation of articulated or animated models.

� Application of the work to progressive subdivision surfaces.

� Progressive representation of more general simplicial complexes
(not just 2-d manifolds).

� Addition of spatial data structures to permit efficient selective
refinement.

We envision many practical applications for the PM representa-
tion, including streaming of 3D geometry over the Web, efficient
storage formats, and continuous LOD in computer graphics appli-
cations. The representation may also have applications in finite
element methods, as it can be used to generate coarse meshes for
multigrid analysis.

ACKNOWLEDGMENTS

I wish to thank Viewpoint Datalabs for providing the “cessna” mesh,
Pratt & Whitney for the gas turbine engine component (“fandisk”),
Softimage for the “terrain” mesh, and especially Steve Drucker for
creating several radiosity models using Lightscape. Thanks also to
Michael Cohen, Steven “Shlomo” Gortler, and Jim Kajiya for their
enthusiastic support, and to Rick Szeliski for helpful comments on
the paper. Mark Kenworthy first coined the term “geomorph” in ’92
to distinguish them from image morphs.

REFERENCES
[1] Apple Computer, Inc. 3D graphics programming with

QuickDraw 3D. Addison Wesley, 1995.

[2] Certain, A., Popovic, J., Duchamp, T., Salesin,

D., Stuetzle, W., and DeRose, T. Interactive multi-
resolution surface viewing. Computer Graphics (SIGGRAPH
’96 Proceedings) (1996), 91–98.

[3] Clark, J. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (October
1976), 547–554.

[4] Cohen, J., Varshney, A., Manocha, D., Turk,

G., Weber, H., Agarwal, P., Brooks, F., and

Wright, W. Simplification envelopes. Computer Graphics
(SIGGRAPH ’96 Proceedings) (1996), 119–128.

[5] Curless, B., and Levoy, M. A volumetric method
for building complex models from range images. Computer
Graphics (SIGGRAPH ’96 Proceedings) (1996), 303–312.

[6] Deering, M. Geometry compression. Computer Graphics
(SIGGRAPH ’95 Proceedings) (1995), 13–20.

[7] Eck, M., DeRose, T., Duchamp, T., Hoppe, H.,

Lounsbery, M., and Stuetzle, W. Multiresolution
analysis of arbitrary meshes. Computer Graphics (SIGGRAPH
’95 Proceedings) (1995), 173–182.

[8] Funkhouser, T., and S�equin, C. Adaptive display al-
gorithm for interactive frame rates during visualization of com-
plex virtual environments. Computer Graphics (SIGGRAPH
’93 Proceedings) (1993), 247–254.

[9] Hoppe, H., DeRose, T., Duchamp, T., McDonald,

J., and Stuetzle, W. Mesh optimization. Computer
Graphics (SIGGRAPH ’93 Proceedings) (1993), 19–26.

[10] Lounsbery, J. M. Multiresolution analysis for surfaces of
arbitrary topological type. PhD thesis, Department of Com-
puter Science and Engineering, University of Washington,
1994.

[11] Lounsbery, M., DeRose, T., and Warren, J. Mul-
tiresolution analysis for surfaces of arbitrary topological type.
Submitted for publication. (TR 93-10-05b, Dept. of Computer
Science and Engineering, U. of Washington, January 1994.).

[12] Rossignac, J., and Borrel, P. Multi-resolution 3D
approximations for rendering complex scenes. In Modeling
in Computer Graphics, B. Falcidieno and T. L. Kunii, Eds.
Springer-Verlag, 1993, pp. 455–465.

[13] Schr�oder, P., and Sweldens, W. Spherical wavelets:
efficiently representing functions on the sphere. Computer
Graphics (SIGGRAPH ’95 Proceedings) (1995), 161–172.

[14] Schroeder, W., Zarge, J., and Lorensen, W. Dec-
imation of triangle meshes. Computer Graphics (SIGGRAPH
’92 Proceedings) 26, 2 (1992), 65–70.

[15] Taubin, G., and Rossignac, J. Geometry compres-
sion through topological surgery. Research Report RC-20340,
IBM, January 1996.

[16] Turan, G. Succinct representations of graphs. Discrete
Applied Mathematics 8 (1984), 289–294.

[17] Turk, G. Re-tiling polygonal surfaces. Computer Graphics
(SIGGRAPH ’92 Proceedings) 26, 2 (1992), 55–64.

[18] Upstill, S. The RenderMan Companion. Addison-Wesley,
1990.

[19] Witten, I., Neal, R., and Cleary, J. Arithmetic
coding for data compression. Communications of the ACM
30, 6 (June 1987), 520–540.

(a) Base mesh M0 (150 faces) (b) Mesh M175 (500 faces) (c) Mesh M425 (1,000 faces) (d) Original M̂ =Mn (13,546 faces)
Figure 5: The PM representation of an arbitrary mesh M̂ captures a continuous-resolution family of approximating meshes M0

: : :Mn =M̂.

(a) � = 0:00 (b) � = 0:25 (c) � = 0:50 (d) � = 0:75 (e) � = 1:00
Figure 6: Example of a geomorph MG(�) defined between MG(0)

:
=M175 (with 500 faces) and MG(1)=M425 (with 1,000 faces).

(a) Using conditions (1) and (2); 9,462 faces (b) Using conditions (1’) and (2); 12,169 faces
Figure 7: Example of selective refinement within the view frustum (indicated in orange).

(a) M̂ (200�200 vertices) (b) Simplified mesh (400 vertices)
Figure 8: Demonstration of minimizing Escalar: simplification of a mesh with trivial geometry (a square) but complex scalar attribute field.
(M̂ is a mesh with regular connectivity whose vertex colors correspond to the pixels of an image.)

Figure 9: (a) Simplification without Edisc Figure 10: Selective refinement of a terrain mesh taking into account view frustum, silhou-
ette regions, and projected screen size of faces (7,438 faces).

Figure 11: Simplification of a radiosity solution; left: original mesh (150,983 faces); right: simplified mesh (10,000 faces).

(a) M̂ (12,946 faces) (b) M75 (200 faces) (c) M475 (1,000 faces)

(d) � = 9:0 (192 faces) (e) � = 2:75 (1,070 faces) (f) � = 0:1 (15,842 faces)
Figure 12: Approximations of a mesh M̂ using (b–c) the PM representation, and (d–f) the MRA scheme of Eck et al. [7]. As demonstrated,
MRA cannot recover M̂ exactly, cannot deal effectively with surface creases, and produces approximating meshes of inferior quality.

View-Dependent Refinement of Progressive Meshes

Hugues Hoppe
Microsoft Research

ABSTRACT

Level-of-detail (LOD) representations are an important tool for real-
time rendering of complex geometric environments. The previously
introduced progressive mesh representation defines for an arbitrary
triangle mesh a sequence of approximating meshes optimized for
view-independent LOD. In this paper, we introduce a framework
for selectively refining an arbitrary progressive mesh according to
changing view parameters. We define efficient refinement criteria
based on the view frustum, surface orientation, and screen-space
geometric error, and develop a real-time algorithm for incrementally
refining and coarsening the mesh according to these criteria. The
algorithm exploits view coherence, supports frame rate regulation,
and is found to require less than 15% of total frame time on a
graphics workstation. Moreover, for continuous motions this work
can be amortized over consecutive frames. In addition, smooth
visual transitions (geomorphs) can be constructed between any two
selectively refined meshes.

A number of previous schemes create view-dependent LOD
meshes for height fields (e.g. terrains) and parametric surfaces (e.g.
NURBS). Our framework also performs well for these special cases.
Notably, the absence of a rigid subdivision structure allows more
accurate approximations than with existing schemes. We include
results for these cases as well as for general meshes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation -
Display algorithms; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - surfaces and object representations.

Additional Keywords: mesh simplification, level-of-detail, multiresolution
representations, dynamic tessellation, shape interpolation.

1 INTRODUCTION

Rendering complex geometric models at interactive rates is a chal-
lenging problem in computer graphics. While rendering perfor-
mance is continually improving, significant gains are obtained by
adapting the complexity of a model to its contribution to the ren-
dered image. The ideal solution would be to efficiently determine
the coarsest model that satisfies some perceptual image qualities.
One common heuristic technique is to author several versions of a
model at various levels of detail (LOD); a detailed triangle mesh
is used when the object is close to the viewer, and coarser approx-
imations are substituted as the object recedes [4, 8]. Such LOD
meshes can be computed automatically using mesh simplification

Email: hhoppe@microsoft.com
Web: http://research.microsoft.com/�hoppe/

techniques (e.g. [5, 10, 19, 21]). The recently introduced progres-
sive mesh (PM) representation [10] captures a continuous sequence
of meshes optimized for view-independent LOD control, and allows
fast traversal of the sequence at runtime.

Sets or sequences of view-independent LOD meshes are appro-
priate for many applications, but difficulties arise when rendering
large-scale models, such as environments, that may surround the
viewer:

� Many faces of the model may lie outside the view frustum and
thus do not contribute to the image (Figure 12a). While these
faces are typically culled early in the rendering pipeline, this
processing incurs a cost.

� Similarly, it is often unnecessary to render faces oriented away
from the viewer, and such faces are usually culled using a “back-
facing” test, but again at a cost.

� Within the view frustum, some regions of the model may lie
much closer to the viewer than others. View-independent LOD
meshes fail to provide the appropriate level of detail over the
entire model (e.g. as does the mesh in Figure 12b).

Some of these problems can be addressed by representing a graph-
ics scene as a hierarchy of meshes. Parts of the scene outside the
view frustum can then be removed efficiently using hierarchical
culling, and LOD can be adjusted independently for each mesh in
the hierarchy [4, 8]. However, establishing such hierarchies on con-
tinuous surfaces is a challenging problem. For instance, if a terrain
mesh (Figure 11d) is partitioned into blocks, and these blocks are
rendered at different levels of detail, one has to address the problem
of cracks between the blocks [14]. In addition, the block boundaries
are unlikely to correspond to natural features in the surface, result-
ing in suboptimal approximations. Similar problems also arise in
the adaptive tessellation of smooth parametric surfaces [1, 13, 18].

Specialized schemes have been presented to adaptively refine
meshes for the cases of height fields and parametric surfaces, as
summarized in Section 2.1. In this paper, we offer a general runtime
LOD framework for selectively refining arbitrary meshes according
to changing view parameters. A similar approach was developed in-
dependently by Xia and Varshney [24]; their scheme is summarized
and compared in Section 2.3.

The principal contributions of this paper are:

� It presents a framework for real-time selective refinement of
arbitrary progressive meshes (Section 3).

� It defines fast view-dependent refinement criteria involving the
view frustum, surface orientation, and screen-space projected
error (Section 4).

� It presents an efficient algorithm for incrementally adapting the
mesh refinement based on these criteria (Section 5). The algo-
rithm exploits view coherence, supports frame rate regulation,
and may be amortized over consecutive frames. To reduce pop-
ping, geomorphs can be constructed between any two selectively
refined meshes.

� It shows that triangle strips can be generated for efficient render-
ing even though the mesh connectivity is irregular and dynamic
(Section 6).

� Finally, it demonstrates the framework’s effectiveness on the
important special cases of height fields and tessellated parametric
surfaces, as well as on general meshes (Section 8).

Notation We denote a triangle mesh M as a tuple (V;F), where
V is a set of vertices vj with positions vj 2 R3, and F is a set
of ordered vertex triples fvj; vk; vlg specifying vertices of triangle
faces in counter-clockwise order. The neighborhood of a vertex v,
denoted Nv, refers to the set of faces adjacent to v.

2 RELATED WORK

2.1 View-dependent LOD for domains in R2

Previous view-dependent refinement methods for domains in R2

fall into two categories: height fields and parametric surfaces.

Although there exist numerous methods for simplifying height
fields, only a subset support efficient view-dependent LOD. These
are based on hierarchical representations such as grid quadtrees [14,
23], quaternary triangular subdivisions [15], and more general tri-
angulation hierarchies [3, 6, 20]. (The subdivision approach of [15]
generalizes to 2-dimensional domains of arbitrary topological type.)
Because quadtrees and quaternary subdivisions are based on a reg-
ular subdivision structure, the view-dependent meshes created by
these schemes have constrained connectivities, and therefore require
more polygons for a given accuracy than so-called triangulated ir-
regular networks (TIN’s). It was previously thought that dynam-
ically adapting a TIN at interactive rates would be prohibitively
expensive [14]. In this paper we demonstrate real-time modifica-
tion of highly adaptable TIN’s. Moreover, our framework extends
to arbitrary meshes.

View-dependent tessellation of parametric surfaces such as
NURBS requires fairly involved algorithms to deal with pa-
rameter step sizes, trimming curves, and stitching of adjacent
patches [1, 13, 18]. Most real-time schemes sample a regular grid in
the parametric domain of each patch to exploit fast forward differ-
encing and to simplify the patch stitching process. Our framework
allows real-time adaptive tessellations that adapt to surface curvature
and view parameters.

2.2 Review of progressive meshes
In the PM representation [10], an arbitrary mesh M̂ is simplified
through a sequence of n edge collapse transformations (ecol in
Figure 1) to yield a much simpler base mesh M0 (see Figure 11):

(M̂ =Mn)
ecoln�1
�! : : :

ecol1
�! M1 ecol0

�! M0 :

Because each ecol has an inverse, called a vertex split transforma-
tion, the process can be reversed:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂) :

The tuple (M0; fvsplit0; : : : ; vsplitn�1g) forms a PM representation
of M̂. Each vertex split, parametrized as vsplit(vs; vl; vr; vt; fl; fr),
modifies the mesh by introducing one new vertex vt and two new
faces fl = fvs; vt; vlg and fr = fvs; vr; vtg as shown in Figure 1. The
resulting sequence of meshes M0; : : : ;Mn =M̂ is effective for view-
independent LOD control (Figure 11). In addition, smooth visual
transitions (geomorphs) can be constructed between any two meshes
in this sequence.

To create view-dependent approximations, our earlier work [10]
describes a scheme for selectively refining the mesh based on a user-
specified query function qrefine(vs). The basic idea is to traverse the

vr
vl

ecol

vsplit

vs

vs

vt

vl vr
fl fr

Figure 1: Original definitions of the refinement (vsplit) and coars-
ening (ecol) transformations.

vspliti records in order, but to only perform vspliti(vsi ; vli ; vri ; : : :) if

(1) vspliti is a legal transformation, that is, if the vertices
fvsi ; vli ; vrig satisfy some conditions in the mesh refined so far, and

(2) qrefine(vsi) evaluates to true.

The scheme is demonstrated with a view-dependent qrefine function
whose criteria include the view frustum, proximity to silhouettes,
and screen-projected face areas.

However, some major issues are left unaddressed. The qrefine
function is not designed for real-time performance, and fails to
measure screen-space geometric error. More importantly, no facility
is provided for efficiently adapting the selectively refined mesh as
the view parameters change.

2.3 Vertex hierarchies

Xia and Varshney [24] use ecol/vsplit transformations to create a
simplification hierarchy that allows real-time selective refinement.
Their approach is to precompute for a given mesh M̂ a merge tree
bottom-up as follows. First, all vertices V̂ are entered as leaves
at level 0 of the tree. Then, for each level l � 0, a set of ecol
transformations is selected to merge pairs of vertices, and the re-
sulting proper subset of vertices is promoted to level l + 1. The ecol
transformations in each level are chosen based on edge lengths, but
with the constraint that their neighborhoods do not overlap. The
topmost level of the tree (or more precisely, forest) corresponds to
the vertices of a coarse mesh M0. (In some respects, this structure
is similar to the subdivision hierarchy of [11].)

At runtime, selective refinement is achieved by moving a vertex
front up and down through the hierarchy. For consistency of the re-
finement, an ecol or vsplit transformation at level l is only permitted
if its neighborhood in the selectively refined mesh is identical to that
in the precomputed mesh at level l; these additional dependencies
are stored in the merge tree. As a consequence, the representation
shares characteristics of quadtree-type hierarchies, in that only grad-
ual change is permitted from regions of high refinement to regions
of low refinement [24].

Whereas Xia and Varshney construct the hierarchy based on edge
lengths and constrain the hierarchy to a set of levels with non-
overlapping transformations, our approach is to let the hierarchy
be formed by an unconstrained, geometrically optimized sequence
of vsplit transformations (from an arbitrary PM), and to introduce
as few dependencies as possible between these transformations, in
order to minimize the complexity of approximating meshes.

Several types of view-dependent criteria are outlined in [24], in-
cluding local illumination and screen-space projected edge length.
In this paper we detail three view-dependent criteria. One of these
measures screen-space surface approximation error, and therefore
yields mesh refinement that naturally adapts to both surface curva-
ture and viewing direction.

Another related scheme is that of Luebke [16], which constructs
a vertex hierarchy using a clustering octree, and locally adapts the
complexity of the scene by selectively coalescing the cluster nodes.

fn1

ecol

vsplit

fl fr

fn1fn3
fn3

fn0
fn0

fn2 fn2

vu

vt

vs

Figure 2: New definitions of vsplit and ecol.

3 SELECTIVE REFINEMENT FRAMEWORK

In this section, we show that a real-time selective refinement frame-
work can be built upon an arbitrary PM.

Let a selectively refined mesh MS be defined as the mesh obtained
by applying to the base mesh M0 a subsequence S � f0; : : : ; n�1g
of the PM vsplit sequence. As noted in Section 2.2, an arbitrary
subsequence S may not correspond to a well-defined mesh, since a
vsplit transformation is legal only if the current mesh satisfies some
preconditions. These preconditions are analogous to the vertex or
face dependencies found in most hierarchical representations [6, 14,
24]. Several definitions of vsplit legality have been presented (two
in [10] and one in [24]); ours is yet another, which we will introduce
shortly. LetM be the set of all meshes MS produced from M0 by a
subsequence S of legal vsplit transformations.

To support incremental refinement, it is necessary to consider not
just vsplit’s, but also ecol’s, and to perform these transformations
in an order possibly different from that in the PM sequence. A
major concern is that a selectively refined mesh should be unique,
regardless of the sequence of (legal) transformations that leads to it,
and in particular, it should still be a mesh inM.

We first sought to extend the selective refinement scheme of [10]
with a set of legality preconditions for ecol transformations, but
were unable to form a consistent framework without overly restrict-
ing it. Instead, we began anew with modified definitions of vsplit
and ecol, and found a set of legality preconditions sufficient for con-
sistency, yet flexible enough to permit highly adaptable refinement.
The remainder of this section presents these new definitions and
preconditions.

New transformation definitions The new definitions of vsplit
and ecol are illustrated in Figure 2. Note that their effects on
the mesh are still the same; they are simply parametrized differ-
ently. The transformation vsplit(vs; vt; vu; fl; fr; fn0; fn1; fn2; fn3), re-
places the parent vertex vs by two children vt and vu. Two new
faces fl and fr are created between the two pairs of neighboring
faces (fn0; fn1) and (fn2; fn3) adjacent to vs. The edge collapse trans-
formation ecol(vs; vt; vu; : : :) has the same parameters as vsplit and
performs the inverse operation. To support meshes with bound-
aries, face neighbors fn0; fn1; fn2; fn3 may have a special nil value,
and vertex splits with fn2 = fn3 =nil create only the single face fl.

Let V denote the set of vertices in all meshes of the PM sequence.
Note that jVj is approximately twice the number jV̂j of original
vertices because of the vertex renaming in each vsplit. In contrast,
the faces of a selectively refined mesh MS are always a subset of the
original faces F̂. We number the vertices and faces in the order that
they are created, so that vspliti introduces the vertices ti = jV0

j+2i+1
and ui = jV0

j+2i+2. We say that a vertex or face is active if it exists
in the selectively refined mesh MS.

Vertex hierarchy As in [24], the parent-child relation on the
vertices establishes a vertex hierarchy (Figure 3), and a selectively
refined mesh corresponds to a “vertex front” through this hierarchy
(e.g. M0 and M̂ in Figure 3). Our vertex hierarchy differs in two
respects. First, vertices are renamed as they are split, and this

M0

v8 v9v4 v5

v6 v7

v12 v13

v1 v2 v3

v10 v11

v14 v15M^

Figure 3: The vertex hierarchy on V forms a “forest”, in which the
root nodes are the vertices of the coarsest mesh (base mesh M0) and
the leaf nodes are the vertices of the most refined mesh (original
mesh M̂).

vsplit

vu

vs

vt fl fr

fn0 fn1 fn2 fn3

ecol

destroys/
creates

requires

vt vu fl fr

vs

fn0 fn1 fn2 fn3

Figure 4: Preconditions and effects of vsplit and ecol transforma-
tions.

renaming contributes to the refinement dependencies. Second, the
hierarchy is constructed top-down after loading a PM using a simple
traversal of the vsplit records. Although our hierarchies may be
unbalanced, they typically have fewer levels than in [24] (e.g. 24
instead of 65 for the bunny) because they are unconstrained.

Preconditions We define a set of preconditions for vsplit and
ecol to be legal (refer to Figure 4).

A vsplit(vs; vt; vu; : : :) transformation is legal if

(1) vs is an active vertex, and

(2) the faces ffn0; fn1; fn2; fn3g are all active faces.

An ecol(vs; vt; vu; : : :) transformation is legal if

(1) vt and vu are both active vertices, and

(2) the faces adjacent to fl and fr are ffn0; fn1; fn2; fn3g, in the config-
uration of Figure 2.

Properties LetM? be the set of meshes obtained by transitive
closure of legal vsplit and ecol transformations from M0 (or equiv-
alently from M̂ since the PM sequence M0

 !M̂ is legal). For any
mesh M =(V;F) 2M?, we observe the following properties:1

� If vsplit(vs; vt; vu; : : :) is legal, then ffn0; fn1g and ffn2; fn3g must
be pairwise adjacent and adjacent to vs as in Figure 2.

� If the active vertex front lies below ecol(vs; vt; vu; : : :) (i.e. fl; fr 2

F), then ffn0; fn1; fn2; fn3g must all be active.

� M 2 M, i.e. M = MS for some subsequence S, i.e. M? =M.

� M = MS is identical to the mesh obtained by applying to M̂ the
complement subsequence fn�1; : : : ; 0g n S of ecol transforma-
tions, which are legal.

Implementation To make these ideas more concrete, Figure 5
lists the C++ data structures used in our implementation. A selec-
tively refinable mesh consists of an array of vertices and an array
of faces. Of these vertices and faces, only a subset are active, as
specified by two doubly-linked lists that thread through a subset of

1Although these properties have held for the numerous experiments we
have performed, we unfortunately do not have formal proofs for them as yet.

struct ListNode f // Node possibly on a linked list
ListNode* next; // 0 if this node is not on the list
ListNode* prev;

g;
struct Vertex f

ListNode active; // list stringing active vertices V
Point point;
Vector normal;
Vertex* parent; // 0 if this vertex is in M0

Vertex* vt; // 0 if this vertex is in M̂; (vu=vt+1)
// Remaining fields encode vsplit information, defined if vt 6= 0.

Face* fl; // (fr=fl+1)
Face* fn[4]; // required neighbors fn0; fn1; fn2; fn3

RefineInfo refine info; // defined in Section 4
g;
struct Face f

ListNode active; // list stringing active faces F
int matid; // material identifier

// Remaining fields are used if the face is active.
Vertex* vertices[3]; // ordered counter-clockwise
Face* neighbors[3]; // neighbors[i] across from vertices[i]

g;
struct SRMesh f // Selectively refinable mesh

Array<Vertex> vertices; // set V of all vertices
Array<Face> faces; // set F̂ of all faces
ListNode active vertices; // head of list V � V
ListNode active faces; // head of list F � F̂

g;

Figure 5: Principal C++ data structures.

the records. In the Vertex records, the fields parent and vt encode
the vertex hierarchy of Figure 3. If a vertex can be split, its fl and
fn[0::3] fields encode the remaining parameters of the vsplit (and
hence the dependencies of Figure 4). Each Face record contains
links to its current vertices, links to its current face neighbors, and
a material identifier used for rendering.

4 REFINEMENT CRITERIA

In this section, we describe a query function qrefine(vs) that deter-
mines whether a vertex vs should be split based on the current view
parameters. As outlined below, the function uses three criteria: the
view frustum, surface orientation, and screen-space geometric error.
Because qrefine is often evaluated thousands of times per frame, it
has been designed to be fast, at the expense of a few simplifying
approximations where noted.
function qrefine(vs)

// Refine only if it affects the surface within the view frustum.
if outside view frustum(vs) return false
// Refine only if part of the affected surface faces the viewer.

if oriented away(vs) return false
// Refine only if screen-projected error exceeds tolerance � .

if screen space error(vs) � � return false
return true

View frustum This first criterion seeks to coarsen the mesh out-
side the view frustum in order to reduce graphics load. Our approach
is to compute for each vertex v 2 V the radius rv of a sphere cen-
tered at v that bounds the region of M̂ supported by v and all its
descendants. We let qrefine(v) return false if this bounding sphere
lies completely outside the view frustum.

The radii rv are computed after a PM representation is loaded into
memory using a bounding sphere hierarchy as follows. First, we
compute for each v 2 V̂ (the leaf nodes of the vertex hierarchy) a
sphere Sv that bounds its adjacent vertices in M̂. Next, we perform
a postorder traversal of the vertex hierarchy (by scanning the vsplit

backfacing
region

α v

Sv
'

Gauss map

v

n v
^

n v
^

(a) Nv (b) region of M̂ (c) S2

Figure 6: Illustration of (a) the neighborhood of v, (b) the region in
M̂ affected by v, and (c) the space of normals over that region and
the cone of normals that bounds it.

sequence backwards) to assign each parent vertex vs the smallest
sphere Svs that bounds the spheres Svt ; Svu of its two children. Finally,
since the resulting spheres Sv are not centered on the vertices, we
compute at each vertex v the radius rv of a larger sphere centered at
v that bounds Sv.

Since the view frustum is a 4-sided semi-infinite pyramid, a sphere
of radius rv centered at v=(vx; vy; vz) lies outside the frustum if

aivx + bivy + civz + di < �rv for any i = 1 : : : 4

where each linear functional aix + biy + ciz + di measures the signed
Euclidean distance to a side of the frustum. Selective refinement
based solely on the view frustum is demonstrated in Figure 12a.

Surface orientation The purpose of the second criterion is to
coarsen regions of the mesh oriented away from the viewer, again to
reduce graphics load. Our approach is analogous to the view frustum
criterion, except that we now consider the space of normals over the
surface (the Gauss map) instead of the surface itself. The space of
normals is a subset of the unit sphere S2 = fp 2 R3 : kpk = 1g;
for a triangle mesh M̂, it consists of a discrete set of points, each
corresponding to the normal of a triangle face of M̂.

For each vertex v, we bound the space of normals associated
with the region of M̂ supported by v and its descendants, using a
cone of normals [22] defined by a semiangle �v about the vector
n̂v = v:normal (Figure 6). The semiangles �v are computed after
a PM representation is loaded into memory using a normal space
hierarchy [12]. As before, we first hierarchically compute at each
vertex v a sphere S0v that bounds the associated space of normals.
Next, we compute at each vertex v the semiangle �v of a cone about
n̂v that bounds the intersection of S0v and S2. We let �v = �

2 if no
bounding cone (with �v <

�

2) exists.

Given a viewpoint e, it is unnecessary to split v if e lies in the
backfacing region of v, that is, if

av � e

kav � ek
� n̂v > sin�v ;

where av is a cone anchor point that takes into account the geometric
bounding volume Sv (see [22] for details). However, to improve both
space and time efficiency, we approximate av by v (it amounts to a
parallel projection approximation [13]), and instead use the test

(v� e) � n̂v > 0 and ((v� e) � n̂v)
2 > kv � ek2 sin2�v :

The effect of this test is seen in Figures 13c, 14, and 16c, where the
backfacing regions of the meshes are kept coarse.

Screen-space geometric error The goal of the third criterion
is to adapt the mesh refinement such that the distance between the
approximate surface M and the original M̂, when projected on the
screen, is everywhere less than a screen-space tolerance � .

n

µ

δ

^

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

-0.5
-0.25

0

0.25

0.5

-1
-0.5

0
0.5

1
(a) (b) (c)

Figure 7: Illustration of (a) the deviation space Dn̂(�; �), (b) its
cross-section, and (c) the extent of its screen-space projection as a
function of viewing angle (with � = 0:5 and � = 1).

To determine whether a vertex v 2 V should be split, we seek a
measure of the deviation between its current neighborhood Nv (the
set of faces adjacent to v) and the corresponding region N̂ v in M̂. One
quantitative measure is the Hausdorff distance H(Nv; N̂v), defined
as the smallest scalar r such that any point on Nv is within distance
r of a point on N̂v, and vice versa. Mathematically,H(Nv; N̂v) is the
smallest r for which Nv � N̂v�B(r) and N̂v � Nv�B(r) where B(r)
is the closed ball of radius r and� denotes the Minkowski sum2. If
H(Nv; N̂v) = r, the screen-space approximation error is bounded by
the screen-space projection of the ball B(r).

If Nv and N̂v are similar and approximately planar, a tighter dis-
tance bound can be obtained by replacing the ball B(r) in the above
definition by a more general deviation space D. For instance, Lind-
strom et al. [14] record deviation of height fields (graphs of functions
over the xy plane) by associating to each vertex a scalar value � rep-
resenting a vertical deviation space Dẑ(�) = fh ẑ : �� � h � �g.
The main advantage of using Dẑ(�) is that its screen-space projec-
tion vanishes as its principal axis ẑ becomes parallel to the viewing
direction, unlike the corresponding B(�).

To generalize these ideas to arbitrary surfaces, we define a de-
viation space Dn̂(�; �) shown in Figure 7a–b. The motivation is
that most of the deviation is orthogonal to the surface and is cap-
tured by a directional component �n̂, but a uniform component
� may be required when N̂v is curved. The uniform component
also allows accurate approximation of discontinuity curves (such as
surface boundaries and material boundaries) whose deviations are
often tangent to the surface. The particular definition of Dn̂(�; �)
corresponds to the shape whose projected radius along a direction ~v
has the simple formula max(�; �kn̂� ~vk). As shown in Figure 7c,
the graph of this radius as a function of view direction has the shape
of a sphere of radius � unioned with a “bialy” [14] of radius �.

During the construction of a PM representation, we precompute
�v; �v for deviation space Dn̂v (�v; �v) at each vertex v 2 V as follows.
After each ecol(vs; vt; vu; : : :) transformation is applied, we estimate
the deviation between Nvs and N̂vs by examining the residual error
vectors E = feig from a dense set of points X sampled on M̂ that
locally project onto Nvs , as explained in more detail in [10]. We use
maxei2E(ei � n̂v) =maxei2E kei � n̂vk to fix the ratio �v=�v, and find
the smallest Dn̂v (�v; �v) with that ratio that bounds E. Alternatively,
other simplification schemes such as [2, 5, 9] could be adapted to
obtain deviation spaces with guaranteed bounds.

Note that the computation of �v; �v does not measure parametric
distortion. This is appropriate for texture-mapped surfaces if the
texture is geometrically projected or “wrapped”. If instead, vertices
were to contain explicit texture coordinates, the residual computa-
tion could be altered to measure deviation parametrically.

Given viewpoint e, screen-space tolerance � (as a fraction of
viewport size), and field-of-view angle ', qrefine(v) returns true if

2The Minkowski sum is simply A � B = fa + b : a 2 A;b 2 Bg.

the screen-space projection of Dn̂v (�v; �v) exceeds � , that is, if

max

�
�v ; �v

n̂v �
v� e

kv� ek

�
= kv� ek �

�
2 cot

'

2

�
� :

For efficiency, we use the equivalent test

�2
v � �2

kv� ek
2 or

�2
v

�
kv� ek

2
� ((v� e) � n̂v)

2
�
� �2

kv� ek
4 ;

where �2 = (2 cot '2)2� 2 is computed once per frame. Note that the
test reduces to that of [14] when�v = 0 and n̂v = ẑ, and requires only
a few more floating point operations in the general case. As seen in
Figures 13b and 16b, our test naturally results in more refinement
near the model silhouette where surface deviation is orthogonal to
the view direction.

Our test provides only an approximate bound on the screen-space
projected error, for a number of reasons. First, the test slightly
underestimates error away from the viewport center, as pointed out
in [14]. Second, a parallel projection assumption is made when
projecting Dn̂ on the screen, as in [14]. Third, the neighborhood
about v when evaluating qrefine(v) may be different from that in
the PM sequence since M is selectively refined; thus the deviation
spaces Dn̂ provide strict bounds only at the vertices themselves.
Nonetheless, the criterion works well in practice, as demonstrated
in Figures 12–16.

Implementation We store in each Vertex.RefineInfo record the
four scalar values f�rv; sin2�v; �

2
v ; �

2
vg. Because the three refine-

ment tests share several common subexpressions, evaluation of the
complete qrefine function requires remarkably few CPU cycles on
average (230 cycles per call as shown in Table 2).

5 INCREMENTAL SELECTIVE REFINEMENT
ALGORITHM

We now present an algorithm for incrementally adapting a mesh
within the selective refinement framework of Section 3, using the
qrefine function of Section 4. The basic idea is to traverse the list of
active vertices V before rendering each frame, and for each vertex
v 2 V , either leave it as is, split it, or collapse it. The core of the
traversal algorithm is summarized below.
procedure adapt refinement()

for each v 2 V
if v:vt and qrefine(v)

force vsplit(v)
else if v:parent and ecol legal(v:parent) and

not qrefine(v:parent)
ecol(v:parent) // (and reconsider some vertices)

procedure force vsplit(v0) f
stack v0

while v stack.top()
if v:vt and v:fl 2 F

stack.pop() // v was split earlier in the loop
else if v 62 V

stack.push(v:parent)
else if vsplit legal(v)

stack.pop()
vsplit(v) // (placing v:vt and v:vu next in list V)

else for i 2 f0 : : : 3g
if v:fn[i] 62 F

// force vsplit that creates face v:fn[i]
stack.push(v:fn[i]:vertices[0]:parent) 3

3Implementation detail: the vertex that should be split to create an in-
active face f is found in f :vertices[0]:parent because we always set both
fl:vertices[0] = vt and fr:vertices[0] = vt when creating faces, thereby obvi-
ating the need for a Face.parent field.

We iterate through the doubly linked list of active vertices V .
For any active vertex v 62 M̂, if qrefine(v) evaluates to true, the
vertex should be split. If vsplit(v) is not legal (i.e. if any of the faces
v:fn[0::3] are not active), a chain of other vertex splits are performed
in order for vsplit(v) to become legal (procedure force vsplit), namely
those that introduce the faces v:fn[0::3], and recursively, any others
required to make those vertex splits legal.

For any active vertex v 62 M0, if qrefine(v:parent) returns false,
the vertex v should be collapsed. However, this edge collapse is
only performed if it is legal (i.e. if the sibling of v is also active and
the neighboring faces of v:parent:fl and v:parent:fr match those of
v:parent:fn[0::3]).

In short, the strategy is to force refinement when desired, but to
coarsen only when possible. After a vsplit or ecol is performed,
some vertices in the resulting neighborhood should be considered
for further transformations. Since these vertices may have been pre-
viously visited in the traversal of V , we relocate them in the list to lie
immediately after the list iterator. Specifically, following vsplit(v),
we add v:vt; v:vu after the iterator; and, following ecol(v:parent),
we add v:parent and relocate vl; vr after the iterator (where vl and vr

are the current neighbors of v as in Figure 1).

Time complexity The time complexity for adapt refinement,
transforming MA into MB, is O(jVA

j + jVB
j) in the worst case since

MA
!M0

!MB could possibly require O(jVA
j) ecol’s and O(jVB

j)
vsplit’s, each taking constant time. For continuous view changes,
VB is usually similar to VA, and the simple traversal of the active
vertex list is the bottleneck of the incremental refinement algo-
rithm, as shown in Table 2. Note that the number jVj of active
vertices is typically much smaller than the number jV̂j of original
vertices. The rendering process, which has the same time com-
plexity (jFj ' 2jVj), in fact has a larger time constant. Indeed,
adapt refinement requires only about 14% of total frame time, as
discussed in Section 8.

Regulation For a given PM and a constant screen-space toler-
ance � , the number jFj of active faces can vary dramatically depend-
ing on the view. Since both refinement times and rendering times
are closely correlated to jFj, this leads to high variability in frame
rates (Figure 9). We have implemented a simple scheme for regu-
lating � so as to maintain jFj at a nearly constant level. Let m be the
desired number of faces. Prior to calling adapt refinement at time
frame t, we set �t = �t�1(jFt�1j=m) where jFt�1j is the number of
active faces in the previously drawn frame. As shown in Figure 10,
this simple feedback control system exhibits good stability for our
terrain flythrough. More sophisticated control strategies may be
necessary for heterogeneous, irregular models. Direct regulation of
frame rate could be attempted, but since frame rate is more sensitive
to operating system “hiccups”, it may be best achieved indirectly
using a secondary, slower controller adjusting m.

Amortization Since the main loop of adapt refinement is a sim-
ple traversal of the list V , we can distribute its work over consecutive
frames by traversing only a fraction of V each frame. For slowly
changing view parameters, this reduces the already low overhead of
selective refinement while introducing few visual artifacts.

With amortization, however, regulation of jFj through adjustment
of � becomes more difficult, since the response in jFj may lag
several frames. Our current strategy is to wait several frames until
the entire list V has been traversed before making changes to � . To
reduce overshooting, we disallow vsplit refinement if the number of
active faces reaches an upper limit (e.g. jFj � 1:2m). but do count
the number of faces that would be introduced towards the next
adjustment to � . In the flythrough example of Figure 10, where the
average frame rate is 7.2 frames/sec, amortization increases frame
rate to 8 frames/sec.

MA

v8 v9v4 v5

v6 v7

v12 v13

v1 v2 v3

v10 v11

v14 v15

MB

MG

Figure 8: Illustration of two selectively refined meshes MA and MB,
and of the mesh MG used to geomorph between them.

Geomorphs The selective refinement framework also supports
geomorphs between any two selectively refined meshes MA and MB.
That is, one can construct a mesh MG(�) whose vertices vary as a
function of a parameter 0 � � � 1, such that MG(0) looks identical
to MA and MG(1) looks identical to MB. The key is to first find
a mesh MG whose active vertex front is everywhere lower than or
equal to that of MA and MB, as illustrated in Figure 8. Mesh M̂
trivially satisfies this property, but a simpler mesh MG is generally
obtained by starting from either MA or MB and successively calling
force vsplit to advance the vertex front towards that of the other
mesh. The mesh MG has the property that its faces FG are a superset
of both FA and FB, and that any vertex vj 2 VG has a unique ancestor
v
�G!A(j) 2 VA and a unique ancestor v

�G!B(j) 2 VB. The geomorph
MG(�) is the mesh (FG;VG(�)) with

v
G
j (�) = (1��)v

�G!A(j) + (�)v
�G!B(j) :

In the case that MB is the result of calling adapt refinement on MA,
the mesh MG can be obtained more directly. Instead of a single pass
through V in adapt refinement, we make two passes: a refinement
pass MA

! MG where only vsplit are considered, and a coarsening
pass MG

! MB where only ecol are considered. In each pass,
we record the sequence of transformations performed, allowing us
to backtrack through the inverse of the ecol sequence to recover
the intermediate mesh MG, and to construct the desired ancestry
functions �G!A and �G!B. Such a geomorph is demonstrated on
the accompanying video. Because of view coherence, the number
of vertices that require interpolation is generally smaller than the
number of active vertices. More research is needed to determine the
feasibility and usefulness of generating geomorphs at runtime.

6 RENDERING

Many graphics systems require triangle strip representations for
optimal rendering performance [7]. Because the mesh connectivity
in our incremental refinement scheme is dynamic, it is not possible
to precompute triangle strips. We use a greedy algorithm to generate
triangle strips at every frame, as shown in Figure 12e. Surprisingly,
the algorithm produces strips of adequate length (on average, 10–15
faces per “generalized” triangle strip under IRIS GL, and about 4.2
faces per “sequential” triangle strip under OpenGL), and does so
efficiently (Table 2).

The algorithm traverses the list of active faces F, and at any face
not yet rendered, begins a new triangle strip. Then, iteratively, it
renders the face, checks if any of its neighbor(s) has not yet been
rendered, and if so continues the strip there. Only neighbors with the
same material are considered, so as to reduce graphics state changes.
To reduce fragmentation, we always favor continuing generalized
triangle strips in a clockwise spiral (Figure 12e). When the strip
reaches a dead end, traversal of the list F resumes. One bit of the
Face.matid field is used as a boolean flag to record rendered faces;
these bits are cleared using a quick second pass through F.

Recently, graphics libraries have begun to support interfaces
for immediate-mode rendering of (V;F) mesh representations (e.g.
Direct3D DrawIndexedPrimitive and OpenGL glArrayElementAr-
rayEXT). Although not used in our current prototype, such inter-
faces may be ideal for rendering selectively refined meshes.

7 OPTIMIZING PM CONSTRUCTION FOR
SELECTIVE REFINEMENT

The PM construction algorithm of [10] finds a sequence of vsplit
refinement transformations optimized for accuracy, without regard
to the shape of the resulting vertex hierarchy. We have experi-
mented with introducing a small penalty function to the cost metric
of [10] to favor balanced hierarchies in order to minimize unneces-
sary dependencies. The penalty for ecol(vt; vu) is c (nvt +nvu) where
nv is the number of descendants of v (including itself) and c is a
user-specified parameter. We find that a small value of c improves
results slightly for some examples (i.e. reduces the number of faces
for a given error tolerance �), but that as c increases, the hierarchies
become quadtree-like and the results worsen markedly (Figure 17).
Our conclusion is that it is beneficial to introduce a small bias to
favor balanced hierarchies in the absence of geometric preferences.

8 RESULTS

Timing results We constructed a PM representation of a Grand
Canyon terrain mesh of 6002 vertices (717,602 faces), and trun-
cated this PM representation to 400,000 faces. This preprocessing
requires several hours but is done off-line (Table 1). Loading this
PM from disk and constructing the SRMesh requires less than a
minute (most of it spent computing rv and �v). Figures 9 and 10
show measurements from a 3-minute real-time flythrough of the
terrain without and with regulation, on an SGI Indigo2 Extreme
(150MHz R4400 with 128MB of memory). The measurements
show that the time spent in adapt refinement is approximately 14%
of total frame time. In the accompanying video, amortization is
used to reduce this overhead to 8% of total frame time. For the fly-
through of Figure 10, code profiling and system monitoring reveal
the timing breakdown shown in Table 2. Note that triangle strip
generation is efficient enough to keep CPU utilization below 100%;
the graphics system is in fact the bottleneck. On another computer
with the same CPU but with an Impact graphics system, the average
frame rate increases from 7.2 to 14.0 frames/sec.

Space requirements Table 1 shows the disk space required to
store the PM representations and associated deviation parameters;
both are compressed using GNU gzip. Positions, normals, and de-
viation parameters are currently stored as floating point, and should
be quantized to improve compression.

Since jVj ' 2jV̂j and jF̂j ' 2jV̂ j, memory requirement for
SRMesh is O(jV̂j). The current implementation is not optimized
for space, and requires about 224 jV̂j bytes. The memory foot-
print could be reduced as follows. Since only about half of all
vertices V can be split, it would be best to store the split informa-
tion (fl; fn[0::3]; refine info) in a separate array of “Vsplit” records
indexed by vt. If space is always allocated for 2 faces per vsplit, the
Vertex.fl field can be deleted and instead computed from vt. Scalar
values in the RefineInfo record can be quantized to 8 bits with an
exponential map as in [14]. Coordinates of points and normals can
be quantized to 16 bits. Material identifiers are unnecessary if the
mesh has only one material. Overall, these changes would reduce
memory requirements down to about 140 jV̂j bytes.

For the case of height fields, the memory requirement per vertex
far exceeds that of regular grid schemes [14]. However, the fully
detailed mesh M̂ may have arbitrary connectivity, and may therefore
be obtained by pre-simplifying a given grid representation, possibly

Table 1: Statistics for the various data sets.
Model Fully detailed ^M Disk (MB) Mem. V hier. Constr.

j^Vj j^Fj PM f�; �g (MB) height (mins)

canyon200 40,000 79,202 1.3 0.3 8.9 29 47
canyon400 160,000 318,402 5.0 1.1 35.8 32 244
canyon600 360,000 717,602 11.0 2.6 80.6 36 627
” trunc. 200,600 400,000 6.6 1.5 44.9 35 627

sphere 9,902 19,800 0.3 0.1 2.2 19 11
teapot trunc. 5,090 10,000 0.2 0.0 1.1 20 12
gameguy 21,412 42,712 0.8 0.2 4.8 26 30
bunny 34,835 69,473 1.2 0.2 7.8 24 51

Table 2: CPU utilization (on a 150MHz MIPS R4400).

procedure % of frame time cycles/call

User adapt refinement 14 % -
(vsplit) (0 %) 2200
(ecol) (1 %) 4000
(qrefine) (4 %) 230

render (tstrip/face) 26 % 600
GL library 19 % -

System OS + graphics 21 % -
CPU idle 20 % -

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600
Frames

|F|,thousands

pixel tolerance

frame time

AR time

Figure 9: Measurements in flythrough for constant � = 0:25% (1.5
pixels in 6002 window). From top: number of faces in thousands,
� in pixels, frame times and adapt refinement times in seconds.

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600
Frames

|F|,thousands

pixel tolerance

frame time

AR time

Figure 10: Same but with regulation to maintain jFj' 9000. (� is
never allowed below 0.5 pixels.)

by an order of magnitude or more, without significant loss of accu-
racy. This pre-simplification may be achieved by simply truncating
the PM representation, either at creation time or at load time.

Applications that use height fields often require efficient geomet-
ric queries, such as point search. Because the vertex hierarchies in
our framework have O(log n) height in the average case (this can be
enforced using the approach in Section 7), such queries can be per-
formed in O(log n) time by iteratively calling force vsplit on vertices
in the neighborhood of the query point.

Parametric surfaces Our framework offers a novel approach
to real-time adaptive tessellation of parametric surfaces. As a pre-
computation, we first obtain a dense tessellation of the surface, then
construct from this dense mesh a PM representation, and finally
truncate the PM sequence to a desired level of maximum accuracy.
At runtime, we selectively refine this truncated PM representation
according to the viewpoint (Figure 14). The main drawback of this
approach is that the resolution of the most detailed tessellation is
fixed a priori. However, the benefits include simplicity of runtime
implementation (no trimming or stitching), efficiency (incremen-
tal, amortized work), and most importantly, high adaptability of
the tessellations (accurate TIN’s whose connectivities adapt both to
surface curvature and to the viewpoint).

General meshes Figures 15 and 16 demonstrate selective re-
finement applied to general meshes. We expect this to be of practi-
cal use for rendering complex models and environments that do not
conveniently admit scene hierarchies.

9 SUMMARY AND FUTURE WORK

We have introduced an efficient framework for selectively refin-
ing arbitrary progressive meshes, developed fast view-dependent
refinement criteria, and presented an algorithm for incrementally
adapting the approximating meshes according to these criteria. We
have demonstrated real-time selective refinement on a number of
meshes, including terrains, parametric surface tessellations, and
general meshes. As the adaptive refinement algorithm exploits
frame-to-frame coherence and is easily amortized, it consumes only
a small fraction of total frame time. Because the selectively re-
fined meshes stem from a geometrically optimized set of vertex
split transformations with few dependencies, they quickly adapt to
the underlying model, requiring fewer polygons for a given level of
approximation than previous schemes.

There are a number of areas for future work, including:

� Memory management for large models, particularly terrains.

� Experimentation with runtime generation of geomorphs.

� Extension of refinement criteria to account for surface shad-
ing [24], or for surface velocity and proximity to gaze center [17].

� Adaptive refinement for animated models.

� Applications of selective refinement to collision detection.

ACKNOWLEDGMENTS
The Grand Canyon data is from the United States Geological Survey, with
in-house processing by Chad McCabe of the Microsoft Geography Product
Unit; the “gameguy” mesh is courtesy of Viewpoint DataLabs; the “bunny”
is from the Stanford University Computer Graphics Laboratory. I also wish
to thank Jed Lengyel, John Snyder, and Rick Szeliski for helpful comments,
and Bobby Bodenheimer for useful discussions on control theory.

REFERENCES
[1] Abi-Ezzi, S. S., and Subramaniam, S. Fast dynamic tessella-

tion of trimmed NURBS surfaces. Computer Graphics Forum (Pro-
ceedings of Eurographics ’94) 13, 3 (1994), 107–126.

[2] Bajaj, C., and Schikore, D. Error-bounded reduction of triangle
meshes with multivariate data. SPIE 2656 (1996), 34–45.

[3] Cignoni, P., Puppo, E., and Scopigno, R. Representation
and visualization of terrain surfaces at variable resolution. In Scientific
Visualization ’95 (1995), R. Scateni, Ed., World Scientific, pp. 50–68.

[4] Clark, J. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM 19, 10 (October 1976), 547–554.

[5] Cohen, J., Varshney, A., Manocha, D., Turk, G., We-

ber, H., Agarwal, P., Brooks, F., and Wright, W. Sim-
plification envelopes. Computer Graphics (SIGGRAPH ’96 Proceed-
ings) (1996), 119–128.

[6] De Floriani, L., Marzano, P., and Puppo, E. Multiresolu-
tion models for topographic surface description. The Visual Computer
12, 7 (1996), 317–345.

[7] Evans, F., Skiena, S., and Varshney, A. Optimizing triangle
strips for fast rendering. In Visualization ’96 Proceedings (1996),
IEEE, pp. 319–326.

[8] Funkhouser, T., and S�equin, C. Adaptive display algorithm
for interactive frame rates during visualization of complex virtual envi-
ronments. Computer Graphics (SIGGRAPH ’93 Proceedings) (1993),
247–254.

[9] Gu�eziec, A. Surface simplification with variable tolerance. In Pro-
ceedings of the Second International Symposium on Medical Robotics
and Computer Assisted Surgery (November 1995), pp. 132–139.

[10] Hoppe, H. Progressive meshes. Computer Graphics (SIGGRAPH
’96 Proceedings) (1996), 99–108.

[11] Kirkpatrick, D. Optimal search in planar subdivisions. SIAM
Journal on Computing 12, 1 (February 1983), 28–35.

[12] Kumar, S., and Manocha, D. Hierarchical visibility culling
for spline models. In Proceedings of Graphics Interface ’96 (1996),
pp. 142–150.

[13] Kumar, S., Manocha, D., and Lastra, A. Interactive display
of large-scale NURBS models. In 1995 Symposium on Interactive 3D
Graphics (1995), ACM SIGGRAPH, pp. 51–58.

[14] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.,

Faust, N., and Turner, G. Real-time, continuous level of de-
tail rendering of height fields. Computer Graphics (SIGGRAPH ’96
Proceedings) (1996), 109–118.

[15] Lounsbery, M., DeRose, T., and Warren, J. Multireso-
lution surfaces of arbitrary topological type. ACM Transactions on
Graphics 16, 1 (January 1997), 34–73.

[16] Luebke, D. Hierarchical structures for dynamic polygonal simpli-
fication. TR 96-006, Department of Computer Science, University of
North Carolina at Chapel Hill, 1996.

[17] Ohshima, T., Yamamoto, H., and Tamura, H. Gaze-directed
adaptive rendering for interacting with virtual space. In Proc. of IEEE
1996 Virtual Reality Annual Intnl. Symp. (1996), pp. 103–110.

[18] Rockwood, A., Heaton, K., and Davis, T. Real-time ren-
dering of trimmed surfaces. In Computer Graphics (SIGGRAPH ’89
Proceedings) (1989), vol. 23, pp. 107–116.

[19] Rossignac, J., and Borrel, P. Multi-resolution 3D approx-
imations for rendering complex scenes. In Modeling in Computer
Graphics, B. Falcidieno and T. L. Kunii, Eds. Springer-Verlag, 1993,
pp. 455–465.

[20] Scarlatos, L. L. A refined triangulation hierarchy for multiple
levels of terrain detail. In Proceedings, IMAGE V Conference (June
1990), pp. 115–122.

[21] Schroeder, W., Zarge, J., and Lorensen, W. Decimation
of triangle meshes. Computer Graphics (SIGGRAPH ’92 Proceedings)
26, 2 (1992), 65–70.

[22] Shirman, L., and Abi-Ezzi, S. The cone of normals technique
for fast processing of curved patches. Computer Graphics Forum
(Proceedings of Eurographics ’93) 12, 3 (1993), 261–272.

[23] Taylor, D. C., and Barrett, W. A. An algorithm for continu-
ous resolution polygonalizations of a discrete surface. In Proceedings
of Graphics Interface ’94 (1994), pp. 33–42.

[24] Xia, J., and Varshney, A. Dynamic view-dependent simplifica-
tion for polygonal models. In Visualization ’96 Proceedings (1996),
IEEE, pp. 327–334.

(a) Base mesh M0 (1 face) (b) M514 (1,000 faces) (c) M5066 (10,000 faces) (d) M̂ =Mn (79,202 faces)
Figure 11: The PM representation of a mesh M̂ captures a continuous sequence of view-independent LOD meshes M0 : : :Mn =M̂.

(a) Top view (� =0:0%; 33,119 faces) (b) Top and regular views (� =0:33%; 10,013 faces)

(c) Texture mapped M̂ (79,202 faces) (d) Texture mapped (10,013 faces) (e) 764 generalized triangle strips
Figure 12: View-dependent refinement of the same PM, using the view frustum (highlighted in orange) and a screen-space geometric error
tolerance of (a) 0% and (b,d,e) 0.33% of window size (i.e. 2 pixels for a 600�600 image).

(a) Original M̂ (19,800 faces) (b) Front view and (c) Top view (� =0:075%; 1,422 faces)
Figure 13: View-dependent refinement of a tessellated sphere, demonstrating (b) the directionality of the deviation space Dn̂ (more refinement
near silhouettes) and (c) the surface orientation criterion (coarsening of backfacing regions).

Figure 14: View-dependent refinement (� = 0:15%; 1,782 faces) of a truncated PM representation (10,000 faces in M̂) created from a
tessellated parametric surface (25,440 faces). Interactive frame rate near this viewpoint is 14.7 frames/sec, versus 6.8 frames/sec using M̂.

(a) Original M̂ (42,712 faces) (b) View 1 (3,157 faces) (c) View 2 (2,559 faces)
Figure 15: Two view-dependent refinements of a general mesh M̂ using view frustums highlighted in orange and with � set to 0.6%.

(a) Original M̂ (69,473 faces) (b) Front view and (c) Top view (� =0:1%; 10,528 faces)
Figure 16: View-dependent refinement. Interactive frame rate near this viewpoint is 6.7 frames/sec, versus 1.9 frames/sec using M̂.

0

10

20

30

40

1e-07 1e-05 0.001 0.1 10

V
er

te
x

hi
er

ar
ch

y
he

ig
ht

Bias parameter c

10000

11000

12000

13000

1e-07 1e-05 0.001 0.1 10

N
um

be
r

of
 m

es
h

fa
ce

s

Bias parameter c

Figure 17: Height of vertex hierarchy,
and number of faces in mesh of Figure 16b,
as functions of the bias parameter c used
in PM construction of bunny.

Progressive Simplicial Complexes

Jovan Popović� Hugues Hoppe
Carnegie Mellon University Microsoft Research

ABSTRACT

In this paper, we introduce the progressive simplicial complex (PSC)
representation, a new format for storing and transmitting triangu-
lated geometric models. Like the earlier progressive mesh (PM)
representation, it captures a given model as a coarse base model
together with a sequence of refinement transformations that pro-
gressively recover detail. The PSC representation makes use of a
more general refinement transformation, allowing the given model
to be an arbitrary triangulation (e.g. any dimension, non-orientable,
non-manifold, non-regular), and the base model to always consist
of a single vertex. Indeed, the sequence of refinement transforma-
tions encodes both the geometry and the topology of the model in a
unified multiresolution framework. The PSC representation retains
the advantages of PM’s. It defines a continuous sequence of approx-
imating models for runtime level-of-detail control, allows smooth
transitions between any pair of models in the sequence, supports
progressive transmission, and offers a space-efficient representa-
tion. Moreover, by allowing changes to topology, the PSC sequence
of approximations achieves better fidelity than the corresponding
PM sequence.

We develop an optimization algorithm for constructing PSC
representations for graphics surface models, and demonstrate the
framework on models that are both geometrically and topologically
complex.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - surfaces and object representations.

Additional Keywords: model simplification, level-of-detail representa-
tions, multiresolution, progressive transmission, geometry compression.

1 INTRODUCTION

Modeling and 3D scanning systems commonly give rise to triangle
meshes of high complexity. Such meshes are notoriously difficult
to render, store, and transmit. One approach to speed up rendering
is to replace a complex mesh by a set of level-of-detail (LOD)
approximations; a detailed mesh is used when the object is close to
the viewer, and coarser approximations are substituted as the object
recedes [6, 8]. These LOD approximations can be precomputed

�Work performed while at Microsoft Research.
Email: jovan@cs.cmu.edu, hhoppe@microsoft.com
Web: http://www.cs.cmu.edu/�jovan/
Web: http://research.microsoft.com/�hoppe/

automatically using mesh simplification methods (e.g. [2, 10, 14,
20, 21, 22, 24, 27]). For efficient storage and transmission, mesh
compression schemes [7, 26] have also been developed.

The recently introduced progressive mesh (PM) representa-
tion [13] provides a unified solution to these problems. In PM form,
an arbitrary mesh M̂ is stored as a coarse base mesh M0 together with
a sequence of n detail records that indicate how to incrementally re-
fine M0 into Mn = M̂ (see Figure 7). Each detail record encodes the
information associated with a vertex split, an elementary transfor-
mation that adds one vertex to the mesh. In addition to defining
a continuous sequence of approximations M0

: : :Mn, the PM rep-
resentation supports smooth visual transitions (geomorphs), allows
progressive transmission, and makes an effective mesh compression
scheme.

The PM representation has two restrictions, however. First, it can
only represent meshes: triangulations that correspond to orientable1

2-dimensional manifolds. Triangulated2 models that cannot be rep-
resented include 1-d manifolds (open and closed curves), higher
dimensional polyhedra (e.g. triangulated volumes), non-orientable
surfaces (e.g. Möbius strips), non-manifolds (e.g. two cubes joined
along an edge), and non-regular models (i.e. models of mixed di-
mensionality). Second, the expressiveness of the PM vertex split
transformations constrains all meshes M0

: : :Mn to have the same
topological type. Therefore, when M̂ is topologically complex, the
simplified base mesh M0 may still have numerous triangles (Fig-
ure 7).

In contrast, a number of existing simplification methods allow
topological changes as the model is simplified (Section 6). Our
work is inspired by vertex unification schemes [21, 22], which
merge vertices of the model based on geometric proximity, thereby
allowing genus modification and component merging.

In this paper, we introduce the progressive simplicial complex
(PSC) representation, a generalization of the PM representation that
permits topological changes. The key element of our approach is
the introduction of a more general refinement transformation, the
generalized vertex split, that encodes changes to both the geometry
and topology of the model. The PSC representation expresses an
arbitrary triangulated model M (e.g. any dimension, non-orientable,
non-manifold, non-regular) as the result of successive refinements
applied to a base model M1 that always consists of a single vertex
(Figure 8). Thus both geometric and topological complexity are
recovered progressively. Moreover, the PSC representation retains
the advantages of PM’s, including continuous LOD, geomorphs,
progressive transmission, and model compression.

In addition, we develop an optimization algorithm for construct-
ing a PSC representation from a given model, as described in Sec-
tion 4.

1The particular parametrization of vertex splits in [13] assumes that mesh
triangles are consistently oriented.

2Throughout this paper, we use the words “triangulated” and “triangula-
tion” in the general dimension-independent sense.

{k}

{j}

star({j})

K

star({j,k})

{l}

{j,k,l} {j,k,l}

a simplex its faces

Figure 1: Illustration of a simplicial complex K and some of its
subsets.

2 BACKGROUND

2.1 Concepts from algebraic topology
To precisely define both triangulated models and their PSC repre-
sentations, we find it useful to introduce some elegant abstractions
from algebraic topology (e.g. [15, 25]).

The geometry of a triangulated model is denoted as a tuple (K;V)
where the abstract simplicial complex K is a combinatorial structure
specifying the adjacency of vertices, edges, triangles, etc., and V is
a set of vertex positions specifying the shape of the model in R3.

More precisely, an abstract simplicial complex K consists of a set
of vertices f1; : : : ;mg together with a set of non-empty subsets of
the vertices, called the simplices of K, such that any set consisting
of exactly one vertex is a simplex in K, and every non-empty subset
of a simplex in K is also a simplex in K.

A simplex containing exactly d+1 vertices has dimension d and is
called a d-simplex. As illustrated pictorially in Figure 1, the faces
of a simplex s, denoted s, is the set of non-empty subsets of s. The
star of s, denoted star(s), is the set of simplices of which s is a face.
The children of a d-simplex s are the (d�1)-simplices of s, and its
parents are the (d+1)-simplices of star(s). A simplex with exactly
one parent is said to be a boundary simplex, and one with no parents
a principal simplex. The dimension of K is the maximum dimension
of its simplices; K is said to be regular if all its principal simplices
have the same dimension.

To form a triangulation from K, identify its vertices f1; : : : ;mg
with the standard basis vectors fe1; : : : ; emg of Rm. For each
simplex s, let the open simplex hsi � Rm denote the interior of the
convex hull of its vertices:

hsi = fb 2 Rm : bj � 0 ;

mX
j=1

bj = 1 ; bj > 0, fjg � sg:

The topological realization jKj is defined as jKj = hKi = [s2Khsi.
The geometric realization of K is the image �V (jKj) where �V :
Rm ! R3 is the linear map that sends the j-th standard basis vector
ej 2 Rm to vj 2 R3. Only a restricted set of vertex positions
V = fv1; : : : ;vmg lead to an embedding of �V(jKj) � R3, that
is, prevent self-intersections. The geometric realization �V (jKj) is
often called a simplicial complex or polyhedron; it is formed by an
arbitrary union of points, segments, triangles, tetrahedra, etc. Note
that there generally exist many triangulations (K;V) for a given
polyhedron. (Some of the vertices V may lie in the polyhedron’s
interior.)

Two sets are said to be homeomorphic (denoted �=) if there ex-
ists a continuous one-to-one mapping between them. Equivalently,
they are said to have the same topological type. The topological
realization jKj is a d-dimensional manifold without boundary if for
each vertex fjg, hstar(fjg)i �= Rd . It is a d-dimensional manifold
if each hstar(fvg)i is homeomorphic to either Rd or Rd

+, where
Rd

+ = fx 2 Rd : x1 � 0g. Two simplices s1 and s2 are d-adjacent
if they have a common d-dimensional face. Two d-adjacent (d + 1)-
simplices s1 and s2 are manifold-adjacent if hstar(s1 \ s2)i �= Rd+1.

{b}

{a}

ecol

vsplit

{a}

Figure 2: Illustration of the edge collapse transformation and its
inverse, the vertex split.

Transitive closure of 0-adjacency partitions K into connected com-
ponents. Similarly, transitive closure of manifold-adjacency parti-
tions K into manifold components.

2.2 Review of progressive meshes
In the PM representation [13], a mesh with appearance attributes is
represented as a tuple M = (K;V;D; S), where the abstract simpli-
cial complex K is restricted to define an orientable 2-dimensional
manifold, the vertex positions V = fv1; : : : ;vmg determine its ge-
ometric realization �V(jKj) in R3, D is the set of discrete material
attributes df associated with 2-simplices f 2K, and S is the set of
scalar attributes s(v;f) (e.g. normals, texture coordinates) associated
with corners (vertex-face tuples) of K.

An initial mesh M̂ =Mn is simplified into a coarser base mesh M0

by applying a sequence of n successive edge collapse transforma-
tions:

(M̂ =Mn)
ecoln�1
�! : : :

ecol1�! M1 ecol0
�! M0

:

As shown in Figure 2, each ecol unifies the two vertices of an edge
fa; bg, thereby removing one or two triangles. The position of the
resulting unified vertex can be arbitrary. Because the edge collapse
transformation has an inverse, called the vertex split transformation
(Figure 2), the process can be reversed, so that an arbitrary mesh M̂
may be represented as a simple mesh M0 together with a sequence
of n vsplit records:

M0 vsplit0
�! M1 vsplit1

�! : : :
vsplitn�1
�! (Mn =M̂)

The tuple (M0
; fvsplit0; : : : ; vsplitn�1g) forms a progressive mesh

(PM) representation of M̂.

The PM representation thus captures a continuous sequence of
approximations M0

: : :Mn that can be quickly traversed for interac-
tive level-of-detail control. Moreover, there exists a correspondence
between the vertices of any two meshes Mc and Mf (0� c< f �n)
within this sequence, allowing for the construction of smooth vi-
sual transitions (geomorphs) between them. A sequence of such
geomorphs can be precomputed for smooth runtime LOD. In addi-
tion, PM’s support progressive transmission, since the base mesh
M0 can be quickly transmitted first, followed the vsplit sequence.
Finally, the vsplit records can be encoded concisely, making the PM
representation an effective scheme for mesh compression.

Topological constraints Because the definitions of ecol and
vsplit are such that they preserve the topological type of the mesh
(i.e. all jKij are homeomorphic), there is a constraint on the min-
imum complexity that K0 may achieve. For instance, it is known
that the minimal number of vertices for a closed genus g mesh (ori-
entable 2-manifold) is d(7+(48g+1)

1
2)=2e if g 6= 2 (10 if g = 2) [16].

Also, the presence of boundary components may further constrain
the complexity of K0. Most importantly, K̂ may consist of a number
of components, and each is required to appear in the base mesh. For
example, the meshes in Figure 7 each have 117 components. As
evident from the figure, the geometry of PM meshes may deteriorate
severely as they approach topological lower bound.

M1; f1; 0; 0g; (1) M10; f5; 1; 1g; (7) M50; f4; 6; 56g; (12) M200; f15; 52; 277g; (28)

M500; f39; 68; 690g; (58) M2000; f14; 25; 3219g; (108) M5000; f0; 2; 9010g; (176) Mn=34794;f0;0;68776g; (207)
Figure 3: Example of a PSC representation. The image captions indicate the number of principal f0; 1; 2g-simplices respectively and the
number of connected components (in parenthesis).

3 PSC REPRESENTATION

3.1 Triangulated models
The first step towards generalizing PM’s is to let the PSC repre-
sentation encode more general triangulated models, instead of just
meshes.

We denote a triangulated model as a tuple M = (K;V;D;A). The
abstract simplicial complex K is not restricted to 2-manifolds, but
may in fact be arbitrary. To represent K in memory, we encode
the incidence graph of the simplices using the following linked
structures (in C++ notation):

struct Simplex f
int dim; // 0=vertex, 1=edge, 2=triangle, ...
int id;
Simplex* children[MAXDIM+1]; // [0..dim]
List<Simplex*> parents;

g;

To render the model, we draw only the principal simplices of
K, denoted P(K) (i.e. vertices not adjacent to edges, edges not
adjacent to triangles, etc.). The discrete attributes D associate a
material identifier ds with each simplex s 2 P(K). For the sake of
simplicity, we avoid explicitly storing surface normals at “corners”
(using a set S) as done in [13]. Instead we let the material identifier ds

contain a smoothing group field [28], and let a normal discontinuity
(crease) form between any pair of adjacent triangles with different
smoothing groups.

Previous vertex unification schemes [21, 22] render principal
simplices of dimension 0 and 1 (denoted P01(K)) as points and lines
respectively with fixed, device-dependent screen widths. To better
approximate the model, we instead define a set A that associates an
area as 2 A with each simplex s 2 P01(K). We think of a 0-simplex
s0 2 P0(K) as approximating a sphere with area as0 , and a 1-simplex
s1 =fj; kg 2 P1(K) as approximating a cylinder (with axis (vj;vk))

of area as1 . To render a simplex s 2 P01(K), we determine the radius
rmodel of the corresponding sphere or cylinder in modeling space, and
project the length rmodel to obtain the radius rscreen in screen pixels.
Depending on rscreen, we render the simplex as a polygonal sphere or
cylinder with radius rmodel, a 2D point or line with thickness 2rscreen,
or do not render it at all. This choice based on rscreen can be adjusted
to mitigate the overhead of introducing polygonal representations
of spheres and cylinders.

As an example, Figure 3 shows an initial model M̂ of 68,776
triangles. One of its approximations M500 is a triangulated model
with f39; 68; 690g principal f0; 1; 2g-simplices respectively.

3.2 Level-of-detail sequence
As in progressive meshes, from a given triangulated model M̂ =Mn,
we define a sequence of approximations Mi:

M1 op1
 ! M2 op2

 ! : : : Mn�1 opn�1
 ! Mn

:

Here each model Mi has exactly i vertices. The simplification op-

erator Mi vunifyi
 � Mi+1 is the vertex unification transformation, which

merges two vertices (Section 3.3), and its inverse Mi gvspli
�! Mi+1

is the generalized vertex split transformation (Section 3.4). The
tuple (M1

; fgvspl1; : : : ; gvspln�1g) forms a progressive simplicial
complex (PSC) representation of M̂.

To construct a PSC representation, we first determine a sequence
of vunify transformations simplifying M̂ down to a single vertex, as
described in Section 4. After reversing these transformations, we
renumber the simplices in the order that they are created, so that
each gvspli(faig; : : :) splits the vertex faig 2 Ki into two vertices
faig; fi+1g 2 Ki+1. As vertices may have different positions in the
different models, we denote the position of fjg in Mi as vi

j.

To better approximate a surface model M̂ at lower complexity
levels, we initially associate with each (principal) 2-simplex s an area
as equal to its triangle area in M̂ . Then, as the model is simplified, we

keep constant the sum of areas as associated with principal simplices
within each manifold component. When 2-simplices are eventually
reduced to principal 1-simplices and 0-simplices, their associated
areas will provide good estimates of the original component areas.

3.3 Vertex unification transformation
The transformation vunify(faig; fbig;midpi) : Mi Mi+1 takes an
arbitrary pair of vertices faig; fbig 2 Ki+1 (simplex fai; big need not
be present in Ki+1) and merges them into a single vertex faig 2 Ki.

Model Mi is created from Mi+1 by updating each member of the
tuple (K;V;D;A) as follows:

K: References to fbig in all simplices of K are replaced by refer-
ences to faig. More precisely, each simplex s in star(fbig) �
Ki+1 is replaced by simplex (s nfbig) [faig, which we call the
ancestor simplex of s. If this ancestor simplex already exists, s
is deleted.

V: Vertex vb is deleted. For simplicity, the position of the re-
maining (unified) vertex is set to either the midpoint or is left
unchanged. That is, vi

a = (vi+1
a +vi+1

b)=2 if the boolean parameter
midpi is true, or vi

a = vi+1
a otherwise.

D: Materials are carried through as expected. So, if after the vertex
unification an ancestor simplex (s nfbig) [faig 2 Ki is a new
principal simplex, it receives its material from s 2 Ki+1 if s is a
principal simplex, or else from the single parent s [faig 2 Ki+1

of s.
A: To maintain the initial areas of manifold components, the areas

as of deleted principal simplices are redistributed to manifold-
adjacent neighbors. More concretely, the area of each princi-
pal d-simplex s deleted during the K update is distributed to
a manifold-adjacent d-simplex not in star(fai; big). If no such
neighbor exists and the ancestor of s is a principal simplex, the
area as is distributed to that ancestor simplex. Otherwise, the
manifold component (star(fai; big)) of s is being squashed be-
tween two other manifold components, and as is discarded.

3.4 Generalized vertex split transformation
Constructing the PSC representation involves recording the infor-
mation necessary to perform the inverse of each vunifyi. This inverse
is the generalized vertex split gvspli, which splits a 0-simplex faig to
introduce an additional 0-simplex fbig. (As mentioned previously,
renumbering of simplices implies bi � i+1, so index bi need not be
stored explicitly.) Each gvspli record has the form

gvspli(faig;C�K
i ;midpi; (�v)i;C�D

i ;C�A
i) ;

and constructs model Mi+1 from Mi by updating the tuple
(K;V;D; A) as follows:

K: As illustrated in Figure 4, any simplex adjacent to faig in Ki

can be the vunify result of one of four configurations in Ki+1.
To construct Ki+1, we therefore replace each ancestor simplex
s 2 star(faig) in Ki by either (1) s, (2) (s nfaig) [fi+1g, (3) s
and (s nfaig)[fi+1g, or (4) s, (s nfaig)[fi+1g and s[fi+1g.
The choice is determined by a split code associated with s. These
split codes are stored as a code string C�K

i , in which the simplices
star(faig) are sorted first in order of increasing dimension, and
then in order of increasing simplex id, as shown in Figure 5.

V: The new vertex is assigned position vi+1
i+1 = vi

ai + (�v)i. The
other vertex is given positionvi+1

ai = vi
ai�(�v)i if the boolean pa-

rameter midpi is true; otherwise its position remains unchanged.
D: The string C�D

i is used to assign materials ds for each new
principal simplex. Simplices in C�D

i , as well as in C�A
i below,

are sorted by simplex dimension and simplex id as in C�K
i .

A: During reconstruction, we are only interested in the areas as for
s 2 P01(K). The string C�A

i tracks changes in these areas.

undefined undefined

code (1) code (2) code (3) code (4)

{i+1}
0-dim

1-dim

2-dim

{a i}

{a
i
}

corresponding simplices inoriginal
simplex in Ki

Ki+1

Figure 4: Effects of split codes on simplices of various dimensions.

2

code string:

7

3 4

8
5

1

6
11

3

2

1

2

3 4

5

2

2

1
1

4 14223 12
1 1 2 3 4 5 1 2

{ }

0-simplices
1-simplices
2-simplices

Figure 5: Example of split code encoding.

3.5 Properties
Levels of detail A graphics application can efficiently transition
between models M1

: : :Mn at runtime by performing a sequence of
vunify or gvspl transformations. Our current research prototype was
not designed for efficiency; it attains simplification rates of about
6000 vunify/sec and refinement rates of about 5000 gvspl/sec. We
expect that a careful redesign using more efficient data structures
would significantly improve these rates.

Geomorphs As in the PM representation, there exists a corre-
spondence between the vertices of the models M1

: : :Mn. Given a
coarser model Mc and a finer model Mf , 1� c< f �n, each vertex
fjg 2 Kf corresponds to a unique ancestor vertex f� f!c(j)g 2 Kc

found by recursively traversing the ancestor simplex relations:

�
f!c(j) =

�
j ; j � c

�
f!c(aj�1) ; j > c :

This correspondence allows the creation of a smooth visual transi-
tion (geomorph) MG(�) such that MG(1) equals Mf and MG(0) looks
identical to Mc. The geomorph is defined as the model

MG(�) = (Kf
;VG(�);Df

;AG(�))

in which each vertex position is interpolated between its original
position in Vf and the position of its ancestor in Vc:

v
G
j (�) = (�)vf

j + (1��)vc
� f!c(j) :

However, we must account for the special rendering of principal
simplices of dimension 0 and 1 (Section 3.1). For each simplex
s 2 P01(Kf), we interpolate its area using

aG
s (�) = (�)af

s + (1��)ac
s ;

where ac
s = 0 if s 62 P01(Kc). In addition, we render each simplex

s 2 P01(Kc) n P01(Kf) using area aG
s (�) = (1��)ac

s . The resulting

geomorph is visually smooth even as principal simplices are intro-
duced, removed, or change dimension. The accompanying video
demonstrates a sequence of such geomorphs.

Progressive transmission As with PM’s, the PSC representa-
tion can be progressively transmitted by first sending M1, followed
by the gvspl records. Unlike the base mesh of the PM, M1 always
consists of a single vertex, and can therefore be sent in a fixed-size
record. The rendering of lower-dimensional simplices as spheres
and cylinders helps to quickly convey the overall shape of the model
in the early stages of transmission.

Model compression Although PSC gvspl are more general
than PM vsplit transformations, they offer a surprisingly concise
representation of M̂. Table 1 lists the average number of bits re-
quired to encode each field of the gvspl records.

Using arithmetic coding [30], the vertex id field faig requires
log2i bits, and the boolean parameter midpi requires 0.6–0.9 bits
for our models. The (�v)i delta vector is quantized to 16 bits
per coordinate (48 bits per �v), and stored as a variable-length
field [7, 13], requiring about 31 bits on average.

At first glance, each split code in the code string C�K
i seems to

have 4 possible outcomes (except for the split code for 0-simplex
faig which has only 2 possible outcomes). However, there exist
constraints between these split codes. For example, in Figure 5,
the code 1 for 1-simplex id 1 implies that 2-simplex id 1 also has
code 1. This in turn implies that 1-simplex id 2 cannot have code 2.
Similarly, code 2 for 1-simplex id 3 implies a code 2 for 2-simplex
id 2, which in turn implies that 1-simplex id 4 cannot have code 1.
These constraints, illustrated in the “scoreboard” of Figure 6, can
be summarized using the following two rules:

(1) If a simplex has split code c 2 f1; 2g, all of its parents have
split code c.

(2) If a simplex has split code 3, none of its parents have split
code 4.

As we encode split codes in C�K
i left to right, we apply these two

rules (and their contrapositives) transitively to constrain the possible
outcomes for split codes yet to be encoded. Using arithmetic coding
with uniform outcome probabilities, these constraints reduce the
code string length in Figure 6 from 15 bits to 10:2 bits. In our
models, the constraints reduce the code string from 30 bits to 14 bits
on average.

The code string is further reduced using a non-uniform probability
model. We create an array T[0::dim][0::15] of encoding tables,
indexed by simplex dimension (0..dim) and by the set of possible
(constrained) split codes (a 4-bit mask). For each simplex s, we
encode its split code c using the probability distribution found in
T[s:dim][s:codes mask]. For 2-dimensional models, only 10 of
the 48 tables are non-trivial, and each table contains at most 4
probabilities, so the total size of the probability model is small.
These encoding tables reduce the code strings to approximately 8
bits as shown in Table 1. By comparison, the PM representation
requires approximately 5 bits for the same information, but of course
it disallows topological changes.

To provide more intuition for the efficiency of the PSC repre-
sentation, we note that capturing the connectivity of an average
2-manifold simplicial complex (n vertices, 3n edges, and 2n trian-
gles) requires

Pn
i=1(log2i+8) ' n(log2n+7) bits with PSC encoding,

versus n(12 log2n + 9:5) bits with a traditional one-way incidence
graph representation.

For improved compression, it would be best to use a hybrid
PM + PSC representation, in which the more concise PM vertex
split encoding is used when the local neighborhood is an orientable

3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1 1 2 3 4 5 1 2
0 1 2dim

id

split code

simplex

Figure 6: Constraints on the split codes for the simplices in the
example of Figure 5.

Table 1: Compression results and construction times.

Object #verts Space required (bits/n) Trad. Con.
n K V D A � repr. time

faig C�K
i midpi (�v)i C�D

i C�A
i bits/n hrs.

drumset 34,794 12.2 8.2 0.9 28.1 4.1 0.4 53.9 146.1 4.3
destroyer 83,799 13.3 8.3 0.7 23.1 2.1 0.3 47.8 154.1 14.1
chandelier 36,627 12.4 7.6 0.8 28.6 3.4 0.8 53.6 143.6 3.6
schooner 119,734 13.4 8.6 0.7 27.2 2.5 1.3 53.7 148.7 22.2
sandal 4,628 9.2 8.0 0.7 33.4 1.5 0.0 52.8 123.2 0.4
castle 15,082 11.0 1.2 0.6 30.7 0.0 - 43.5 - 0.5
cessna 6,795 9.6 7.6 0.6 32.2 2.5 0.1 52.6 132.1 0.5
harley 28,847 11.9 7.9 0.9 30.5 1.4 0.4 53.0 135.7 3.5

2-dimensional manifold (this occurs on average 93% of the time in
our examples).

To compress C�D
i , we predict the material for each new principal

simplex s 2 star(faig) [star(fbig) � Ki+1 by constructing an
ordered set Ds of materials found in star(faig) � Ki. To improve
the coding model, the first materials in Ds are those of principal
simplices in star(s0) � Ki where s0 is the ancestor of s; the remaining
materials in star(faig) � Ki are appended to Ds. The entry in
C�D

i associated with s is the index of its material in Ds, encoded
arithmetically. If the material of s is not present in Ds, it is specified
explicitly as a global index in D.

We encode C�A
i by specifying the area as for each new principal

simplex s 2 P01(star(faig)[star(fbig)) � Ki+1. To account for this
redistribution of area, we identify the principal simplex from which
s receives its area by specifying its index in P01(star(faig)) � Ki.

The column labeled � in Table 1 sums the bits of each field
of the gvspl records. Multiplying � by the number n of vertices
in M̂ gives the total number of bits for the PSC representation of
the model (e.g. 500 KB for the destroyer). By way of compari-
son, the next column shows the number of bits per vertex required
in a traditional “IndexedFaceSet” representation, with quantization
of 16 bits per coordinate and arithmetic coding of face materials
(' 3n�16 + 2n�3�log2n + materials).

4 PSC CONSTRUCTION

In this section, we describe a scheme for iteratively choosing pairs
of vertices to unify, in order to construct a PSC representation. Our
algorithm, a generalization of [13], is time-intensive, seeking high
quality approximations. It should be emphasized that many quality
metrics are possible. For instance, the quadric error metric recently
introduced by Garland and Heckbert [9] provides a different trade-
off of execution speed and visual quality.

As in [13, 20], we first compute a cost �E for each candidate
vunify transformation, and enter the candidates into a priority queue
ordered by ascending cost. Then, in each iteration i = n�1 : : : 1,
we perform the vunify at the front of the queue and update the costs
of affected candidates.

4.1 Forming set C of candidate vertex pairs
In principle, we could enter all possible pairs of vertices from M̂ into
the priority queue, but this would be prohibitively expensive since
simplification would then require at least O(n2 log n) time. Instead,
we would like to consider only a smaller set C of candidate vertex
pairs. Naturally, C should include the 1-simplices of K. Additional
pairs should also be included in C to allow distinct connected com-
ponents of M to merge and to facilitate topological changes. We
considered several schemes for forming these additional pairs, in-
cluding binning, octrees, and k-closest neighbor graphs, but opted
for the Delaunay triangulation because of its adaptability on models
containing components at different scales.

We compute the Delaunay triangulation of the vertices of M̂,
represented as a 3-dimensional simplicial complex K̂DT . We define
the initial set C to contain both the 1-simplices of K̂ and the subset
of 1-simplices of K̂DT that connect vertices in different connected
components of K̂. During the simplification process, we apply each
vertex unification performed on M to C as well in order to keep
consistent the set of candidate pairs.

For models inR3, C \ star(faig) has constant size in the average
case, and the overall simplification algorithm requires O(n log n)
time. (In the worst case, it could require O(n2 log n) time.)

4.2 Selecting vertex unifications from C

For each candidate vertex pair (a; b) 2 C, the associated
vunify(fag; fbg) : Mi Mi+1 is assigned the cost

�E = �Edist +�Edisc + E�area + Efold :

As in [13], the first term is�Edist = Edist(Mi)�Edist(Mi+1), where
Edist(M) measures the geometric accuracy of the approximate model
M. Conceptually, Edist(M) approximates the continuous integralZ

p2M̂
d2(p;M) ;

where d(p;M) is the Euclidean distance of the point p to the closest
point on M. We discretize this integral by defining Edist(M) as the
sum of squared distances to M from a dense set of points X sampled
from the original model M̂. We sample X from the set of principal
simplices in K — a strategy that generalizes to arbitrary triangulated
models.

In [13], Edisc(M) measures the geometric accuracy of disconti-
nuity curves formed by a set of sharp edges in the mesh. For the
PSC representation, we generalize the concept of sharp edges to
that of sharp simplices in K — a simplex is sharp either if it is a
boundary simplex or if two of its parents are principal simplices
with different material identifiers. The energy Edisc is defined as the
sum of squared distances from a set Xdisc of points sampled from
sharp simplices to the discontinuity components from which they
were sampled. Minimization of Edisc therefore preserves the geom-
etry of material boundaries, normal discontinuities (creases), and
triangulation boundaries (including boundary curves of a surface
and endpoints of a curve).

We have found it useful to introduce a term E�area that penalizes
surface stretching (a more sophisticated version of the regularizing
Espring term of [13]). Let Ai+1

N be the sum of triangle areas in the
neighborhood star(faig) [star(fbig) � Ki+1, and Ai

N the sum of
triangle areas in star(faig) � Ki. The mean squared displacement
over the neighborhood N due to the change in area can be approx-

imated as disp2 = 1
2 (
p

Ai+1
N �

p
Ai

N)2. We let E�area = jXN j disp2,
where jXN j is the number of points X projecting in the neighborhood.

To prevent model self-intersections, the last term Efold penalizes
surface folding. We compute the rotation of each oriented triangle
in the neighborhood due to the vertex unification (as in [10, 20]). If

any rotation exceeds a threshold angle value, we set Efold to a large
constant.

Unlike [13], we do not optimize over the vertex position vi
a,

but simply evaluate �E for vi
a 2 fv

i+1
a ;vi+1

b ; (vi+1
a + vi+1

b)=2g and
choose the best one. This speeds up the optimization, improves
model compression, and allows us to introduce non-quadratic energy
terms like E�area.

5 RESULTS

Table 1 gives quantitative results for the examples in the figures and
in the video. Simplification times for our prototype are measured on
an SGI Indigo2 Extreme (150MHz R4400). Although these times
may appear prohibitive, PSC construction is an off-line task that
only needs to be performed once per model.

Figure 9 highlights some of the benefits of the PSC representa-
tion. The pearls in the chandelier model are initially disconnected
tetrahedra; these tetrahedra merge and collapse into 1-d curves in
lower-complexity approximations. Similarly, the numerous polyg-
onal ropes in the schooner model are simplified into curves which
can be rendered as line segments. The straps of the sandal model
initially have some thickness; the top and bottom sides of these
straps merge in the simplification. Also note the disappearance of
the holes on the sandal straps. The castle example demonstrates that
the original model need not be a mesh; here M̂ is a 1-dimensional
non-manifold obtained by extracting edges from an image.

6 RELATED WORK

There are numerous schemes for representing and simplifying tri-
angulations in computer graphics. A common special case is that
of subdivided 2-manifolds (meshes). Garland and Heckbert [12]
provide a recent survey of mesh simplification techniques. Several
methods simplify a given model through a sequence of edge col-
lapse transformations [10, 13, 14, 20]. With the exception of [20],
these methods constrain edge collapses to preserve the topological
type of the model (e.g. disallow the collapse of a tetrahedron into a
triangle).

Our work is closely related to several schemes that generalize
the notion of edge collapse to that of vertex unification, whereby
separate connected components of the model are allowed to merge
and triangles may be collapsed into lower dimensional simplices.
Rossignac and Borrel [21] overlay a uniform cubical lattice on
the object, and merge together vertices that lie in the same cubes.
Schaufler and Stürzlinger [22] develop a similar scheme in which
vertices are merged using a hierarchical clustering algorithm. Lue-
bke [18] introduces a scheme for locally adapting the complexity
of a scene at runtime using a clustering octree. In these schemes,
the approximating models correspond to simplicial complexes that
would result from a set of vunify transformations (Section 3.3). Our
approach differs in that we order the vunify in a carefully optimized
sequence. More importantly, we define not only a simplification
process, but also a new representation for the model using an en-
coding of gvspl = vunify�1 transformations.

Recent, independent work by Schmalstieg and Schaufler [23] de-
velops a similar strategy of encoding a model using a sequence of
vertex split transformations. Their scheme differs in that it tracks
only triangles, and therefore requires regular, 2-dimensional trian-
gulations. Hence, it does not allow lower-dimensional simplices
in the model approximations, and does not generalize to higher
dimensions.

Some simplification schemes make use of an intermediate vol-
umetric representation to allow topological changes to the model.
He et al. [11] convert a mesh into a binary inside/outside function
discretized on a three-dimensional grid, low-pass filter this function,

and convert it back to a simpler surface using an adaptive “march-
ing cubes” algorithm. They demonstrate that aliasing is reduced by
rendering the filtered volume as a set of nested translucent surfaces.
Similarly, Andújar et al. [1] make use of an inside/outside octree
representation.

Triangulations of subdivided manifolds (and non-manifolds) of
higher dimension are used extensively in solid modeling. Paoluzzi
et al. [19] provide an overview of related work and analyze the ben-
efits of representing such triangulations using (regular) simplicial
complexes. Bertolotto et al. [3, 4] present hierarchical simplicial
representations for subdivided manifolds, but these do not support
changes of topological type.

Polyhedra can also be represented using more general representa-
tions. The simplicial set representation of Lang and Lienhardt [17]
generalizes simplicial complexes to allow incomplete and degener-
ate simplices. Cell complexes, formed by subdividing manifolds
into non-simplicial cells, can be represented using the radial edge
structure of Weiler [29] or the cell tuple structure of Brisson [5].

7 SUMMARY AND FUTURE WORK

We have introduced the progressive simplicial complex representa-
tion, a new format for arbitrary triangulated models that captures
both geometry and topology in a unified multiresolution framework.
It defines a continuous-resolution sequence of approximating mod-
els, from the original model down to a single vertex. In addition,
it allows geomorphs between any pair of models in this sequence,
supports progressive transmission, and offers a concise storage for-
mat. We presented an optimization algorithm for constructing PSC
representations for computer graphics surface models.

Although we restricted our examples in this paper to models of
dimension at most 2, the PSC representation is defined for arbitrary
dimensions, and we expect that it will find useful applications in
the representation of higher dimensional models such as volumes,
light fields, and bidirectional reflection distribution functions. In
particular, it offers an avenue for level-of-detail control in volume
rendering applications.

ACKNOWLEDGMENTS

We are extremely grateful to Viewpoint Datalabs for providing us
with numerous meshes with which to experiment. We also wish to
thank Tom Duchamp for helpful discussions on algebraic topology.

REFERENCES
[1] And�ujar, C., Ayala, D., Brunet, P., Joan-Arinyo, R.,

and Sol�e, J. Automatic generation of multiresolution boundary
representations. Computer Graphics Forum (Proceedings of Euro-
graphics ’96) 15, 3 (1996), 87–96.

[2] Bajaj, C., and Schikore, D. Error-bounded reduction of triangle
meshes with multivariate data. SPIE 2656 (1996), 34–45.

[3] Bertolotto, M., De Floriani, L., Bruzzone, E., and

Puppo, E. Multiresolution representation of volume data through
hierarchical simplicial complexes. In Aspects of visual form process-
ing (1994), C. Arcelli, L. Cordella, and G. Sanniti di Baja, Eds., World
Scientific, pp. 73–82.

[4] Bertolotto, M., De Floriani, L., and Marzano, P. Pyra-
midal simplicial complexes. In Solid Modeling ’95 (May 1995),
pp. 153–162.

[5] Brisson, E. Representation of d-dimensional geometric objects.
PhD thesis, Dept. of Computer Science and Engineering, U. of Wash-
ington, 1990.

[6] Clark, J. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM 19, 10 (October 1976), 547–554.

[7] Deering, M. Geometry compression. Computer Graphics (SIG-
GRAPH ’95 Proceedings) (1995), 13–20.

[8] Funkhouser, T., and S�equin, C. Adaptive display algorithm
for interactive frame rates during visualization of complex virtual envi-
ronments. Computer Graphics (SIGGRAPH ’93 Proceedings) (1993),
247–254.

[9] Garland, M., and Heckbert, P. Surface simplification using
quadric error metrics. Computer Graphics (SIGGRAPH ’97 Proceed-
ings) (1997).

[10] Gu�eziec, A. Surface simplification inside a tolerance volume. Re-
search Report RC-20440, IBM, March 1996.

[11] He, T., Hong, L., Varshney, A., and Wang, S. Controlled
topology simplification. IEEE Transactions on Visualization and Com-
puter Graphics 2, 2 (June 1996), 171–184.

[12] Heckbert, P., and Garland, M. Survey of polygonal sur-
face simplification algorithms. Tech. Rep. CMU-CS-95-194, Carnegie
Mellon University, 1995.

[13] Hoppe, H. Progressive meshes. Computer Graphics (SIGGRAPH
’96 Proceedings) (1996), 99–108.

[14] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and

Stuetzle, W.Mesh optimization. Computer Graphics (SIGGRAPH
’93 Proceedings) (1993), 19–26.

[15] Hudson, J. Piecewise Linear Topology. W.A. Benjamin, Inc, 1969.

[16] Jungerman, M., and Ringel, G. Minimal triangulations on
orientable surfaces. Acta Mathematica 145, 1-2 (1980), 121–154.

[17] Lang, V., and Lienhardt, P. Geometric modeling with simpli-
cial sets. In Pacific Graphics ’95 (August 1995), pp. 475–493.

[18] Luebke, D. Hierarchical structures for dynamic polygonal simpli-
fication. TR 96-006, Department of Computer Science, University of
North Carolina at Chapel Hill, 1996.

[19] Paoluzzi, A., Bernardini, F., Cattani, C., and Ferrucci,

V.Dimension-independent modeling with simplicial complexes. ACM
Transactions on Graphics 12, 1 (January 1993), 56–102.

[20] Ronfard, R., and Rossignac, J. Full-range approximation of
triangulated polyhedra. Computer Graphics Forum (Proceedings of
Eurographics ’96) 15, 3 (1996), 67–76.

[21] Rossignac, J., and Borrel, P. Multi-resolution 3D approx-
imations for rendering complex scenes. In Modeling in Computer
Graphics, B. Falcidieno and T. L. Kunii, Eds. Springer-Verlag, 1993,
pp. 455–465.

[22] Schaufler, G., and St�urzlinger, W. Generating multiple
levels of detail from polygonal geometry models. In Virtual Environ-
ments ’95 (Eurographics Workshop) (January 1995), M. Göbel, Ed.,
Springer Verlag, pp. 33–41.

[23] Schmalstieg, D., and Schaufler, G. Smooth levels of detail.
In Proc. of IEEE 1997 Virtual Reality Annual Intnl. Symp. (1997),
pp. 12–19.

[24] Schroeder, W., Zarge, J., and Lorensen, W. Decimation
of triangle meshes. Computer Graphics (SIGGRAPH ’92 Proceedings)
26, 2 (1992), 65–70.

[25] Spanier, E. H. Algebraic Topology. McGraw-Hill, New York,
1966.

[26] Taubin, G., and Rossignac, J. Geometry compression through
topological surgery. Research Report RC-20340, IBM, January 1996.

[27] Turk, G. Re-tiling polygonal surfaces. Computer Graphics (SIG-
GRAPH ’92 Proceedings) 26, 2 (1992), 55–64.

[28] Wavefront Technologies, Inc. Wavefront File Formats, Ver-
sion 4.0 RG-10-004, first ed. Santa Barbara, CA, 1993.

[29] Weiler, K. The radial edge structure: a topological representa-
tion for non-manifold geometric boundary modeling. In Geometric
modeling for CAD applications. Elsevier Science Publish., 1988.

[30] Witten, I., Neal, R., and Cleary, J. Arithmetic coding for
data compression. Communications of the ACM 30, 6 (June 1987),
520–540.

M0; 1,154 verts; 2,522 tris M1739; 2,893 verts; 6,000 tris M2739; 3,893 verts; 8,000 tris Mn=82645; 83,799 verts; 167,744 tris
Figure 7: From a given mesh M̂, the PM representation [13] captures a sequence of meshes M0

: : :Mn =M̂. Because all approximations Mi

must have the same topological type, the base mesh M0 may still be complex.

M1; f1; 0; 0g; (1) M50; f14; 3; 66g; (18) M1000; f5; 89; 1517g; (56) Mn=83799; f0; 0; 167744g; (117)
Figure 8: In contrast, the PSC representation captures a sequence of models M1

: : :Mn =M̂ in which the base model M1 always consists of a
single vertex. All geometric and topological information is encoded progressively by a sequence of generalized vertex split transformations.
The image captions indicate the number of principalf0; 1; 2g-simplices respectively and the number of connected components (in parenthesis).
Note that even M1000 looks markedly better than the 8000-triangle PM approximation.

M̂; 72,346 triangles (276) M̂; 232,974 triangles (2154) M̂; 8,936 triangles (9) M̂; 15,601 segments (39)

M500; f3; 52; 674g; (50) M3000;f239; 495; 3189g (587) M100; f0; 0; 170g; (2) M1000; f20; 1265; 0g; (33)
Figure 9: For each column, the top row shows the original model and the bottom row shows one approximation in the PSC sequence. The
image captions indicate the number of principal f0; 1; 2g-simplices respectively and the number of connected components (in parenthesis).

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 1

Progressive MeshesProgressive Meshes
and Recent Extensionsand Recent Extensions

Hugues HoppeHugues Hoppe
Microsoft ResearchMicrosoft Research

SIGGRAPH 97 CourseSIGGRAPH 97 Course

Multiresolution Surface ModelingMultiresolution Surface Modeling

Meshes in computer graphicsMeshes in computer graphics

VV FF

(appearance attributes:(appearance attributes:
 normals, colors, textures, ...normals, colors, textures, ...))

mesh mesh MM

Vertex 1 xVertex 1 x11 y y11 z z11

Vertex 2 xVertex 2 x22 y y22 z z22

……

Face Face 11 2 3 2 3
Face 3 2 4Face 3 2 4
Face 4 2 7Face 4 2 7
……

Complex meshesComplex meshes

43,000 faces43,000 faces43,000 faces lots of faces!lots of faces!lots of faces!

Challenges:Challenges:
- rendering- rendering
- storage- storage
- transmission- transmission

Talk outlineTalk outline

●● Progressive mesh (PM)Progressive mesh (PM) representationrepresentation
■■ continuous-resolutioncontinuous-resolution

■■ efficientefficient
■■ progressive transmissionprogressive transmission

●● View-dependent refinementView-dependent refinement of PM’s of PM’s

●● Progressive simplicial complexProgressive simplicial complex (PSC) repr. (PSC) repr.

’96’96

’97’97

’97’97

SIGGRAPHSIGGRAPH

 Mesh simplification techniques Mesh simplification techniques

13,00013,000
[Schroeder-etal92][Schroeder-etal92]
[Hoppe-etal93][Hoppe-etal93]
[Rossignac-Borrel93][Rossignac-Borrel93]
[Cohen-etal96][Cohen-etal96]
[Garland-Heckbert97][Garland-Heckbert97]
......

1,0001,000 200200

??

closeclose

10,00010,000

1,0001,000

farfar
250250

 Traditional level-of-detail (LOD) Traditional level-of-detail (LOD)

[Clark76][Clark76]
[Funkhouser93][Funkhouser93]

distance
from viewer?

distancedistance
from viewer?from viewer?

Concern: transitions may “pop”Concern: transitions may “pop”
 →→ would like smooth LODwould like smooth LOD

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 2

New PM representationNew PM representation

Basic idea:Basic idea:

●● Simplify arbitrary mesh through sequenceSimplify arbitrary mesh through sequence
of of edge collapseedge collapse transformations. transformations.

●● Record sequence of inverseRecord sequence of inverse
transformations, called transformations, called vertex splitsvertex splits..

Edge collapse Edge collapse →→ SimplificationSimplification

13,54613,546 500500 152152 150150

MM00MM11MM175175

ecolecol00ecolecoliiecolecoln-1n-1

M=MM=Mnn^̂

ecol(vecol(vs s ,v,vt t , , vvss))

vvll vvrr

vvtt

vvss

vvss
vvll vvrr

(optimization)(optimization)

’’

’’

Invertible! Vertex split transformationInvertible! Vertex split transformation

vvss
vvll vvrr

vspl(vvspl(vs s ,v,vl l ,v,vr r , , vvss ,,vvtt ,…),…)

vvll vvrr

vvtt

vvss

’’ ’’
’’

’’

attributesattributes 150150

MM00 MM11

vsplvspl00

152152

Reconstruction processReconstruction process

MM175175

500500

… vspl… vsplii … …

13,54613,546

vsplvspln-1n-1

MMnn=M=M̂̂

progressive mesh (PM)progressive mesh (PM) representation representation

vsplvspl00 … vspl… vsplii … … vsplvspln-1n-1

MM00 MMnn=M=M̂̂

VIDEO: PM construction and LODVIDEO: PM construction and LOD ConversionConversion

VV FF MM00

vsplvspl
losslesslossless

traditional meshtraditional mesh
representationrepresentation

progressive meshprogressive mesh
representationrepresentation

Optimization processOptimization process
■■ Various metrics (speed vs. accuracy)Various metrics (speed vs. accuracy)
■■ Typically performed off-lineTypically performed off-line

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 3

How to select edge collapses?How to select edge collapses?

●● Preserve Preserve appearanceappearance::
■■ geometric shapegeometric shape
■■ scalar fieldsscalar fields

 (e.g. color, normals) (e.g. color, normals)

■■ discontinuity curvesdiscontinuity curves

E e e dA e dLshape scalars disc= + +∫ ∫() ()
face areas disc. edges

ΣΣ ΣΣ
pointspoints pointspoints 1600 faces1600 faces

shapeshape discontinuitiesdiscontinuities

300 faces300 faces

Error metric: point samplingError metric: point sampling

Selecting edge collapsesSelecting edge collapses

●● Greedy algorithm: always collapse edgeGreedy algorithm: always collapse edge
resulting in smallest resulting in smallest ∆∆ EE..

●● Optimize position and attributes ofOptimize position and attributes of
resulting vertex.resulting vertex.

Simplification rates: ~ 30 faces/secSimplification rates: ~ 30 faces/sec
■■ off-line process off-line process
■■ could use faster, simpler metrics could use faster, simpler metrics

Application: Continuous-resolution LODApplication: Continuous-resolution LOD

From PM, extract From PM, extract MMii of any desired complexity. of any desired complexity.

MM00 vsplvspl00 vsplvspl11 vsplvspli-1i-1 vsplvspln-1n-1

MMii

3,478 faces?3,478 faces?
3,4783,478

MM00 MMnn=M=M̂̂MMii

100K100K faces/sec! faces/sec!200K200K faces/sec! faces/sec!
(166 MHz Pentium)(166 MHz Pentium)

Property: Vertex correspondenceProperty: Vertex correspondence

MMnn MM00
MMccMMff

vv11
vv22
vv33
vv44
vv55
vv66
vv77
vv88

vv11
vv22
vv33

MMf-1f-1

vv11
vv22
vv33
vv44
vv55
vv66
vv77

ecolecol

MMf-2f-2

vv11
vv22
vv33
vv44
vv55
vv66

ecolecol ecolecol

Application: Smooth transitionsApplication: Smooth transitions

Correspondence is a surjection:Correspondence is a surjection:

vv11
vv22
vv33
vv44
vv55
vv66
vv77
vv88

MMff

vv11
vv22
vv33

MMcc

→→ can form a smooth can form a smooth
 visual transition: visual transition: geomorphgeomorph

VV FF

MMff↔↔cc

VV

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 4

VIDEO: PM geomorphsVIDEO: PM geomorphs

vvss
vvll vvrr vvll vvrr

vvtt’’

vvss’’

Record:Record:

Analysis:Analysis:

vsplvspli i (v(vs s ,v,vl l ,v,vr r ,,vvs s ,,vvt t ,…),…)’’ ’’

●● vvtt - - vvss (delta)(delta)
●● vvs s - - vvss (delta)(delta)

’’
’’

Application: Mesh compressionApplication: Mesh compression

■■ connectivity:connectivity: (4+log(4+log22n)nn)n bits bits vs. vs. (6log(6log22n)n n)n bitsbits

●● vvss (log(log22i bits)i bits)
●● vvll && v vrr (~5 bits)(~5 bits)

●● predict materialspredict materials
●● ……

■■ geometry:geometry: ~~30n30n bits bits vs. vs. 96n96n bits bits
[Deering95][Deering95]

Application: Progressive transmissionApplication: Progressive transmission

Transmit records progressively:Transmit records progressively:

MM00

ReceiverReceiver
 displays: displays:

timetime

MM0 0

vsplvspl00 vsplvspl11 vsplvspli-1i-1

MMii

MM̂̂(~ progressive GIF & JPEG)(~ progressive GIF & JPEG)

vsplvspln-1n-1

PM SummaryPM Summary

PMPM

VV FF

MM̂̂

MM00

■■ continuous-resolutioncontinuous-resolution
■■ smooth LODsmooth LOD
■■ space-efficientspace-efficient
■■ progressiveprogressive

losslesslossless

■■ single resolutionsingle resolution

vsplvspl

[Microsoft DirectX 5.0][Microsoft DirectX 5.0]

VIDEO/DEMO: PM resultsVIDEO/DEMO: PM results

View-Dependent RefinementView-Dependent Refinement
of Progressive Meshesof Progressive Meshes

[SIGGRAPH 97][SIGGRAPH 97]

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 5

Adaptive refinement: motivationAdaptive refinement: motivation Related workRelated work

●● Height fields (e.g. terrains)Height fields (e.g. terrains)
■■ [Cignoni etal95][Cignoni etal95]
■■ [De Floriani etal96][De Floriani etal96]
■■ [Lindstrom etal96] …[Lindstrom etal96] …

●● Parametric surfaces (e.g. NURBS)Parametric surfaces (e.g. NURBS)
■■ [Rockwood etal89][Rockwood etal89]
■■ [Abi-Ezzi & Subramaniam93][Abi-Ezzi & Subramaniam93]
■■ [Kumar etal95] …[Kumar etal95] …

●● Arbitrary meshesArbitrary meshes
■■ [Xia-Varshney96][Xia-Varshney96]

Using progressive meshesUsing progressive meshes

MM00 vsplvspl00 vsplvspl11 vsplvspli-1i-1 vsplvspln-1n-1

(e.g. view frustum)(e.g. view frustum)

ContributionsContributions

●● PM PM →→ vertex hierarchy vertex hierarchy
 →→ selective refinement selective refinement

●● Dependencies Dependencies →→ consistent framework consistent framework

●● View-dependent refinement criteriaView-dependent refinement criteria

Parent-child vertex relationsParent-child vertex relations

vvss

vvtt
vvuu

vsplitvsplit

vv22

Vertex hierarchyVertex hierarchy

vsplvspl00MM00 vsplvspl11 vsplvspl22 vsplvspl33 vsplvspl44 vsplvspl55

vv11 vv33MM00

vv1010 vv1111

vsplvspl33

vv11 vv22

vv44 vv55

vsplvspl00

vv88 vv99

vsplvspl22

vv33

vv66 vv77

vsplvspl11

vv55

vv1212 vv1313

vsplvspl44

vv1010

vsplvspl55

vv1414 vv1515

vv66MM̂̂

PM:PM:

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 6

vv1111

vv11 vv22

vv44 vv88 vv99

vv33

vv77

vv55

vv1212 vv1313

vv1010

vv1414 vv1515

vv66

vv22

Selective refinementSelective refinement

vsplvspl00MM00 vsplvspl11 vsplvspl22 vsplvspl33 vsplvspl44 vsplvspl55

vv11 vv33MM00

vv1010 vv1111

vsplvspl33

vv11 vv22

vv44 vv55

vsplvspl00

vv66 vv77

vsplvspl11

vv55

vv1212 vv1313

vsplvspl44

vv1010

selectively refined meshselectively refined mesh

vv88 vv99

vsplvspl22

vv33

vv88 vv99

vsplvspl22

vv33

Restrictions?Restrictions?

Legality conditions?Legality conditions?

vvll vvrr

vvuu

vvtt

vvss
vvll vvrr

vsplitvsplit

ecolecol

■■ vsplitvsplit legal if: legal if:
–– vvss is active is active
–– vvll and and vvrr are active are active

■■ ecolecol legal if: legal if:
–– ? problem: consistent?? problem: consistent?

[Xia&Varshney96]: identical neighborhood[Xia&Varshney96]: identical neighborhood

[SIGGRAPH96][SIGGRAPH96]

New vspl/ecol parametrizationsNew vspl/ecol parametrizations

vsplitvsplit

ecolecol

■■ vsplitvsplit legal if: legal if:
–– vvss is active is active
–– ffn0n0,f,fn1n1,f,fn2n2,f,fn3n3 are active are active

■■ ecolecol legal if: legal if:
–– vvtt,v,vuu are active are active
–– ffn0n0,f,fn1n1,f,fn2n2,f,fn3n3 are adjacent are adjacent

ffn0n0

ffn1n1

vvss
ffn2n2

ffn3n3

ffn0n0

ffn1n1

vvuu

vvtt

ffn2n2

ffn3n3

DependenciesDependencies

vvss

vvtt vvuu ffll ffrr

ffn0n0 ffn1n1 ffn2n2 ffn3n3

vsplitvsplit

vvtt

ffn0n0 ffn1n1 ffn2n2 ffn3n3

ecolecol

vvuu ffll ffrr

vvss

initial meshinitial mesh

vv55vv1010 vv1111 vv44 vv88 vv99

vv77vv1212 vv1313

vv11 vv22 vv33

Runtime algorithmRuntime algorithm

MM00

vv66

vv1414 vv1515

vv1212 vv1313vv1212

vv1010 vv1111vv1010 vv1111 vv44vv44

vv66

vv1414 vv1515

vv66

vv1414 vv1515

vv88 vv99

vv33

vv1515

vv77vv77

vv88vv88 vv99vv99

new meshnew mesh

dependencydependency

●● Algorithm:Algorithm:
■■ incremental (frame coherence)incremental (frame coherence)
■■ efficient (~15% of frame time)efficient (~15% of frame time)
■■ amortizableamortizable

View-dependent refinement criteriaView-dependent refinement criteria

3 criteria:3 criteria:

●● view frustumview frustum

●● surface orientationsurface orientation

●● screen-space geometric errorscreen-space geometric error

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 7

View frustumView frustum

too hightoo high too far righttoo far rightview is unchangedview is unchanged

Surface orientationSurface orientation

view is unchangedview is unchanged oriented awayoriented away

Screen-space geometric errorScreen-space geometric error

refinement nearrefinement near
silhouettesilhouette

coarser incoarser in
distancedistance

tolerance=0.5 pixelstolerance=0.5 pixels

All three criteria togetherAll three criteria together

69,473 faces 69,473 faces ⇒⇒ 10,528 faces 10,528 faces
1.9 frame/sec 1.9 frame/sec ⇒⇒ 6.7 frame/sec 6.7 frame/sec

VIDEO: Selective RefinementVIDEO: Selective Refinement Selective Refinement SummarySelective Refinement Summary

PMPM

VV FF

MM̂̂

vsplvspl

vv11MM00 vv22

MM00

vv33 vv44 vv55 vv66

vv77 vv88

MM^̂
■■ view-dependentview-dependent

refinementrefinement
■■ real-time algorithmreal-time algorithm

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 8

Progressive SimplicialProgressive Simplicial
ComplexesComplexes

[SIGGRAPH 97][SIGGRAPH 97]

(Joint work with Jovan Popovic)(Joint work with Jovan Popovic)

PM restrictions:PM restrictions:

●● Supports only “meshes”Supports only “meshes”
 (orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

●● Preserves topological typePreserves topological type

167,744167,7448,0008,0002,5222,522
MM00 MMnn… M… Mii … …

Progressive Simplicial ComplexesProgressive Simplicial Complexes

●● Represent arbitrary triangulations:Represent arbitrary triangulations:
■■ any dimension,any dimension,

■■ non-orientable,non-orientable,
■■ non-manifold,non-manifold,
■■ non-regular, …non-regular, …

●● Progressively encode both geometryProgressively encode both geometry
 and topologyand topology..

GeneralizationGeneralization

edge collapseedge collapse
((ecolecol))

vertex unificationvertex unification
((vunifyvunify))

vertex splitvertex split
((vsplvspl))

generalized vertex splitgeneralized vertex split
((gvsplgvspl))

PMPM PSCPSC

PSCPSC representation representation

LOD sequenceLOD sequence

MM11 MM2222

gvsplgvspl11 … …
MM116116

… gvspl… gvsplii … … gvsplgvspln-1n-1

MMnn=M=M̂̂

Space analysisSpace analysis

0

10

20

30

40

50

60

cessna destroyer drumset chandelier schooner castle2D

Dataset

b
its

 p
er

 v
er

te
x

A
D
V
K(C)
K(a)

geometry!geometry!connectivityconnectivityconnectivityconnectivity materialsmaterials

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 9

PSC SummaryPSC Summary

PSCPSC

VV KK

MM̂̂

MM11

gvsplgvspl

■■ progressive geometry progressive geometry
 and topologyand topology

losslesslossless

■■ any triangulationany triangulation

singlesingle
vertexvertex

arbitraryarbitrary
simplicialsimplicial
complexcomplex

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 1

Hugues Hoppe - SIGGRAPH 97 course - Multiresolution Surface
Modeling

Progressive MeshesProgressive Meshes
and Recent Extensionsand Recent Extensions

Hugues HoppeHugues Hoppe
Microsoft ResearchMicrosoft Research

SIGGRAPH 97 CourseSIGGRAPH 97 Course

Multiresolution Surface ModelingMultiresolution Surface Modeling

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 2

Meshes in computer graphicsMeshes in computer graphics

VV FF

(appearance attributes:(appearance attributes:
 normals, colors, textures, ...normals, colors, textures, ...))

mesh mesh MM

Vertex 1 xVertex 1 x11 y y11 z z11

Vertex 2 xVertex 2 x22 y y22 z z22

……

Face Face 11 2 3 2 3
Face 3 2 4Face 3 2 4
Face 4 2 7Face 4 2 7
……

In computer graphics, geometric models are commonly represented as
triangle meshes.

As shown here, a mesh consists of a set of triangular faces pasted
together along their edges and meeting at a common set of vertices

In a traditional representation, a mesh is represented as a set of vertices
containing xyz coordinates, and a set of faces containing indices
referring back to the vertices.

Besides geometry, other appearance attributes are often present in a
mesh, such as vertex normals, vertex colors, material attributes, and
texture maps. These appearance attributes are also associated with the
vertices and faces of the mesh.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 3

Complex meshesComplex meshes

43,000 faces43,000 faces43,000 faces lots of faces!lots of faces!lots of faces!

Challenges:Challenges:
- rendering- rendering
- storage- storage
- transmission- transmission

There is a growing expectation for realism in computer graphics, and as
a result geometric models are becoming very complex.

And, computer graphics scenes are typically composed of many meshes,
so the overall complexity can be huge.

This presents several challenges, because of limitations in rendering
performance, storage capacities, and transmission bandwidths.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 4

Talk outlineTalk outline

●● Progressive mesh (PM)Progressive mesh (PM) representationrepresentation
■■ continuous-resolutioncontinuous-resolution

■■ efficientefficient

■■ progressive transmissionprogressive transmission

●● View-dependent refinementView-dependent refinement of PM’s of PM’s

●● Progressive simplicial complexProgressive simplicial complex (PSC) repr. (PSC) repr.

’96’96

’97’97

’97’97

SIGGRAPHSIGGRAPH

In this talk, I’ll first describe the progressive mesh representation
introduced last year. The progressive mesh representation is a new
format for storing and transmitting arbitrary triangle meshes. This new
multiresolution representation has a number of nice properties. As I’ll
demonstrate in this talk, it captures a continuous-resolution family of
approximations; it is a space-efficient representation; and, it can be
transmitted progressively.

Next, I’ll present an overview of two extensions to progressive meshes,
which appear in SIGGRAPH 97.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 5

 Mesh simplification techniques Mesh simplification techniques

13,00013,000
[Schroeder-etal92][Schroeder-etal92]
[Hoppe-etal93][Hoppe-etal93]
[Rossignac-Borrel93][Rossignac-Borrel93]
[Cohen-etal96][Cohen-etal96]
[Garland-Heckbert97][Garland-Heckbert97]
......

1,0001,000 200200

??

Several methods have been developed to simplify meshes. I’ve listed a
number of these on this slide.

The goal of these methods is to reduce the number of faces in the mesh
while attempting to preserve its original shape.

These methods typically contain some complexity parameters (knobs)
that can be varied to obtain several meshes with different trade-off’s of
size and accuracy.

However this only yields a discrete set of meshes. Ideally we would want
to capture a continuum that spans all these meshes.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 6

closeclose

10,00010,000

1,0001,000

farfar
250250

 Traditional level-of-detail (LOD) Traditional level-of-detail (LOD)

[Clark76][Clark76]
[Funkhouser93][Funkhouser93]

distance
from viewer?

distancedistance
from viewer?from viewer?

Concern: transitions may “pop”Concern: transitions may “pop”
 →→ would like smooth LODwould like smooth LOD

These simplified meshes are often used in the context of level-of-detail.

The idea is to use a fully-detailed mesh when the model is close to the
viewer, and to substitute coarser and coarser approximations as the
object recedes away from the viewer.

One concern with this approach is that instantaneous switching between
the various meshes may result in a “popping” perceptible to the user.
Therefore we would like to have a level-of-detail representation that
supports smooth transitions.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 7

New PM representationNew PM representation

Basic idea:Basic idea:

●● Simplify arbitrary mesh through sequenceSimplify arbitrary mesh through sequence
of of edge collapseedge collapse transformations. transformations.

●● Record sequence of inverseRecord sequence of inverse
transformations, called transformations, called vertex splitsvertex splits..

I’ll now introduce the progressive mesh representation.

The basic idea is to first simplify an arbitrary mesh through a sequence of
edge collapse transformations, and while doing so, to record the
sequence of inverse transformations, called vertex splits, that are
sufficient to reconstruct the original mesh from the simplified one.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 8

Edge collapse Edge collapse →→ SimplificationSimplification

13,54613,546 500500 152152 150150

MM00MM11MM175175

ecolecol00ecolecoliiecolecoln-1n-1

M=MM=Mnn^̂

ecol(vecol(vs s ,v,vt t , , vvss))

vvll vvrr

vvtt

vvss

vvss
vvll vvrr

(optimization)(optimization)

’’

’’

An edge collapse transformation takes two vertices adjacent to an edge
of the mesh, and unifies them into one. In the process, one or two faces
of the mesh are deleted.

Of course, there is an optimization procedure for selecting what edges to
collapse (and in what order), and what position and attributes to assign to
the resulting vertex. I’ll return to that topic in a few slides.

Thus, from the original mesh, denoted M^n, we apply a sequence of
edge collapse transformations to obtain a very coarse base mesh, M^0.

You can see the effect of the very last edge collapse transforming M^1
into M^0; it removes the last window from the airplane.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 9

Invertible! Vertex split transformationInvertible! Vertex split transformation

vvss
vvll vvrr

vspl(vvspl(vs s ,v,vl l ,v,vr r , , vvss ,,vvtt ,…),…)

vvll vvrr

vvtt

vvss

’’ ’’
’’

’’

attributesattributes

A key observation is that the edge collapse transformation is invertible.
Its inverse is called a “vertex split”.

This operation takes as parameters a vertex v_s along with two of its
neighbors v_l and v_r. It splits v_s into two vertices, creating two new
faces in the process.

The vertex split record also stores the positions of the two split vertices
as well as other appearance attributes associated with the new
neighborhood.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 10

150150

MM00 MM11

vsplvspl00

152152

Reconstruction processReconstruction process

MM175175

500500

… vspl… vsplii … …

13,54613,546

vsplvspln-1n-1

MMnn=M=M̂̂

progressive mesh (PM)progressive mesh (PM) representation representation

vsplvspl00 … vspl… vsplii … … vsplvspln-1n-1

MM00 MMnn=M=M̂̂

We can therefore flip the previous diagram, starting with the base mesh
M^0, and apply to it a sequence of vertex split transformations.

The first vertex split introduces one vertex and two faces; subsequent
vertex splits recover more and more detail; and, after all vertex splits
have been applied, the original mesh M^n is recovered exactly.

Therefore, the base mesh M^0 together with the sequence of vertex split
records forms an alternate representation for the mesh. This is what I
refer to as the progressive mesh representation.

It is equivalent to knowing the original mesh. It just expresses it in a
different format.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 11

VIDEO: PM construction and LODVIDEO: PM construction and LOD

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 12

ConversionConversion

VV FF MM00

vsplvspl
losslesslossless

traditional meshtraditional mesh
representationrepresentation

progressive meshprogressive mesh
representationrepresentation

Optimization processOptimization process
■■ Various metrics (speed vs. accuracy)Various metrics (speed vs. accuracy)

■■ Typically performed off-lineTypically performed off-line

The construction of the progressive mesh representation typically
involves an optimization algorithm so that the simplified meshes are good
approximations to the original.

This optimization process may involve various error metrics and various
searching techniques. Thus there is an obvious trade-off between the
time spent constructing a PM representation and the accuracy of its
approximations.

The optimization process can typically be performed off-line, as it only
has to be done once per model. Thus in our work we have sought to
invest some time in the optimization in order to produce approximations
of good quality.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 13

How to select edge collapses?How to select edge collapses?

●● Preserve Preserve appearanceappearance::
■■ geometric shapegeometric shape

■■ scalar fieldsscalar fields
 (e.g. color, normals) (e.g. color, normals)

■■ discontinuity curvesdiscontinuity curves

E e e dA e dLshape scalars disc= + +∫ ∫() ()
face areas disc. edges

ΣΣ ΣΣ
pointspoints pointspoints

How are edge collapses to be selected?

The goal of the simplification procedure is to preserve the appearance of
the model.

This involves preserving its geometric shape, fields such as color and
normals defined over its surface, and most importantly, discontinuity
curves such as material boundaries and normal discontinuities.

These 3 goals are captured in an energy metric with 3 corresponding
terms. The first two terms integrate deviation of geometric shape and
scalar attributes over the surface of the model. The last term integrates
the deviation of discontinuity curves over their length.

Ideally we would compute these integrals directly.

But, we approximate them by discrete sampling, using a set of points
sampled from the original mesh.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 14

1600 faces1600 faces

shapeshape discontinuitiesdiscontinuities

300 faces300 faces

Error metric: point samplingError metric: point sampling

The left pair of images show the original mesh and the dense set of
points sampled from it.

The white points correspond to the discrete samples used for the first
two energy terms (shape and scalars), and the yellow points correspond
to the samples used for the last energy term (discontinuity curves).

The right pair of images show a simplified (approximating) mesh, and the
projections of the sample points onto this approximation. The first and
last energy terms correspond directly to the sum of squared lengths of
the white and yellow segments respectively.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 15

Selecting edge collapsesSelecting edge collapses

●● Greedy algorithm: always collapse edgeGreedy algorithm: always collapse edge
resulting in smallest resulting in smallest ∆∆ EE..

●● Optimize position and attributes ofOptimize position and attributes of
resulting vertex.resulting vertex.

Simplification rates: ~ 30 faces/secSimplification rates: ~ 30 faces/sec

■■ off-line process off-line process
■■ could use faster, simpler metrics could use faster, simpler metrics

We use a simple greedy algorithm to select edges to collapse.
Specifically, we always collapse the edge that results in the smallest
increase in overall energy.

To determine this change in energy, we optimize the position and
attributes of the vertex resulting from edge collapse in order to minimize
energy.

We obtain simplification rates of about 30 faces per second. This is quite
slow, but the process can be performed off-line.

We could instead use simpler heuristics for simplification as done in
other techniques. It’s a trade-off of accuracy vs. time.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 16

Application: Continuous-resolution LODApplication: Continuous-resolution LOD

From PM, extract From PM, extract MMii of any desired complexity. of any desired complexity.

MM00 vsplvspl00 vsplvspl11 vsplvspli-1i-1 vsplvspln-1n-1

MMii

3,478 faces?3,478 faces?
3,4783,478

MM00 MMnn=M=M̂̂MMii

100K100K faces/sec! faces/sec!200K200K faces/sec! faces/sec!
(166 MHz Pentium)(166 MHz Pentium)

I’ll now discuss several advantages of this progressive mesh
representation.

First, it is a continuous-resolution representation. What I mean by this is
that from it one can recover approximating meshes of any desired
complexity. This is achieved by applying to the base mesh a prefix of the
vertex split sequence.

So if one wants to recover a mesh with 3,478 faces, it can be retrieved
very efficiently.

In effect, this defines a continuous family of approximating meshes (from
the base mesh M^0 to the original mesh M^n), and we can iterate
through these meshes by applying edge collapses and vertex splits.

In fact, this can be done very efficiently. On a Pentium processor, we
obtain a reconstruction rate of about 100,000 faces/sec, and a
simplification rate of about 200,000 faces/sec.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 17

Property: Vertex correspondenceProperty: Vertex correspondence

MMnn MM00
MMccMMff

vv11
vv22
vv33
vv44
vv55
vv66
vv77
vv88

vv11
vv22
vv33

MMf-1f-1

vv11
vv22
vv33
vv44
vv55
vv66
vv77

ecolecol

MMf-2f-2

vv11
vv22
vv33
vv44
vv55
vv66

ecolecol ecolecol

Another nice property is that there exists a natural correspondence
between vertices of any two meshes in the family of approximations.

So, here are two meshes, a finer mesh M^f and a coarser mesh M^c.

From the finer mesh, each edge collapse unifies two vertices of the mesh
into one, and this occurs repeatedly until the coarser mesh is obtained.

Now we see a correspondence between vertices of the various meshes.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 18

Application: Smooth transitionsApplication: Smooth transitions

Correspondence is a surjection:Correspondence is a surjection:

vv11
vv22
vv33
vv44
vv55
vv66
vv77
vv88

MMff

vv11
vv22
vv33

MMcc

→→ can form a smooth can form a smooth
 visual transition: visual transition: geomorphgeomorph

VV FF

MMff↔↔cc

VV

When we fold together all of these correspondences, we find that they
form a surjection, or “onto map” from the vertices of the finer mesh onto
the vertices of the coarser mesh.

This allows us to define a smooth visual transition, or geomorph,
between these two meshes.

We simply take the finer mesh M^f, and for each of its vertices,
interpolate between its current position and the position of its
corresponding vertex in the coarser mesh.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 19

VIDEO: PM geomorphsVIDEO: PM geomorphs

I’ll show a few examples to demonstrate this.

First, here is single geomorph between 2 meshes: the first has 400 faces
and the second has 600 faces. As you can see, there is a smooth visual
transition between the two.

This next example shows that we can define a sequence of geomorphs
to represent an object. There are 12 geomorphs; the complexities of the
meshes were chosen to be an exponential sequence.

Finally, this example shows how this can be applied to level-of-detail
control. There are 8 geomorphs, from 1600 faces down to 200 faces.
Even though the mesh connectivities are changing discretely, the visual
transitions are all smooth.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 20

vvss
vvll vvrr

vvll vvrr

vvtt’’

vvss’’

Record:Record:

Analysis:Analysis:

vsplvspli i (v(vs s ,v,vl l ,v,vr r ,,vvs s ,,vvt t ,…),…)’’ ’’

●● vvtt - - vvss (delta)(delta)
●● vvs s - - vvss (delta)(delta)

’’
’’

Application: Mesh compressionApplication: Mesh compression

■■ connectivity:connectivity: (4+log(4+log22n)nn)n bits bits vs. vs. (6log(6log22n)n n)n bitsbits

●● vvss (log(log22i bits)i bits)
●● vvll && v vrr (~5 bits)(~5 bits)

●● predict materialspredict materials
●● ……

■■ geometry:geometry: ~~30n30n bits bits vs. vs. 96n96n bits bits
[Deering95][Deering95]

In addition, PM is an effective scheme for compressing meshes. The key
is that each vertex split applies a local perturbation to the mesh that can
be encoded concisely. Let us consider the various parameters of a vertex
split record.

First, the vertex v_s must be specified among the vertices of the mesh
reconstructed so far. Since there are I vertices in iteration I, this requires
log_2 I bits. The vertices v_l and v_r can be specified among the
neighbors of v_s and on average this requires only about 5 bits.

The positions of the two new split vertices can be specified as deltas
from the position of the old vertex, and since the deltas are small in
magnitude, this can be encoded more concisely than absolute positions.

Finally, other attributes such as material properties for the two new faces
can be predicted from the neighboring faces.

The bottom line is that the mesh connectivity requires about (4+log_2 n)n
bits, which is much smaller than a traditional IndexedFaceSet
representation. It’s about as concise as triangle strips, but not as optimal
as work by [Deering95] or [Taubin&Rossignac96].

The geometry offers excellent delta-encoding (when quantized),
particularly if we restrict the placement of simplified vertices v_s.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 21

Application: Progressive transmissionApplication: Progressive transmission

Transmit records progressively:Transmit records progressively:

MM00

ReceiverReceiver
 displays: displays:

timetime

MM0 0

vsplvspl00 vsplvspl11 vsplvspli-1i-1

MMii

MM̂̂(~ progressive GIF & JPEG)(~ progressive GIF & JPEG)

vsplvspln-1n-1

As you may already have guessed, progressive meshes are a natural
representation for progressive transmission.

The base mesh is transmitted first, in a traditional format, followed by the
stream of vertex split records.

The receiving process can quickly display this coarse base mesh.

Then, as more and more vertex split records arrive, it can at any point in
time display the mesh constructed so far. Reconstruction can proceed at
over 100,000 faces per second.

At the end of transmission, the original mesh has been recovered
exactly.

Note that this is analogous to the way that images are transmitted over
the Web using progressive GIF and JPEG.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 22

PM SummaryPM Summary

PMPM

VV FF

MM̂̂

MM00

■■ continuous-resolutioncontinuous-resolution
■■ smooth LODsmooth LOD
■■ space-efficientspace-efficient
■■ progressiveprogressive

losslesslossless

■■ single resolutionsingle resolution

vsplvspl

[Microsoft DirectX 5.0][Microsoft DirectX 5.0]

To summarize, a mesh is traditionally represented as a set of vertices
and a set of faces.

Such a mesh can be converted losslessly into a progressive mesh
representation, composed of a base mesh and a sequence of vertex split
records.

This new representation has a number of nice properties.

It captures a continuous-resolution family of approximations; it supports
smooth level-of-detail; it is space-efficient; and, it can be transmitted
progressively.

An initial implementation of progressive meshes will hopefully be
available in Microsoft’s DirectX 5.0 graphics interface.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 23

VIDEO/DEMO: PM resultsVIDEO/DEMO: PM results

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 24

View-Dependent RefinementView-Dependent Refinement
of Progressive Meshesof Progressive Meshes

[SIGGRAPH 97][SIGGRAPH 97]

The progressive mesh can also be selectively refined based on changing
view parameters.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 25

Adaptive refinement: motivationAdaptive refinement: motivation

With a large-scale model, it is often desirable to adapt the resolution of
the mesh over the surface of the model.

For instance, if the user is flying over a dense terrain model, the mesh
need be refined only within the view frustum (the portion of the terrain
visible in the viewport). In addition, it’s desirable to refine the mesh more
densely near the viewer.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 26

Related workRelated work

●● Height fields (e.g. terrains)Height fields (e.g. terrains)
■■ [Cignoni etal95][Cignoni etal95]
■■ [De Floriani etal96][De Floriani etal96]
■■ [Lindstrom etal96] …[Lindstrom etal96] …

●● Parametric surfaces (e.g. NURBS)Parametric surfaces (e.g. NURBS)
■■ [Rockwood etal89][Rockwood etal89]
■■ [Abi-Ezzi & Subramaniam93][Abi-Ezzi & Subramaniam93]
■■ [Kumar etal95] …[Kumar etal95] …

●● Arbitrary meshesArbitrary meshes
■■ [Xia-Varshney96][Xia-Varshney96]

Several schemes adapt the refinement of meshes for the cases of height
fields and parametric surfaces.

Like Xia & Varshney, we develop a framework for selectively refining an
arbitrary mesh.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 27

Using progressive meshesUsing progressive meshes

MM00 vsplvspl00 vsplvspl11 vsplvspli-1i-1 vsplvspln-1n-1

(e.g. view frustum)(e.g. view frustum)

As showed earlier, the progressive mesh naturally defines a linear
sequence of view-independent LOD approximations.

However, it’s also possible to selectively refine the mesh, in order to
adapt the resolution of the mesh in a non-uniform way.

The basic idea is apply to the base mesh only a selected subset of the
vertex split sequence.

In this simple example, vertex splits were only applied if they modified
the mesh within a given view frustum, show in orange.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 28

ContributionsContributions

●● PM PM →→ vertex hierarchy vertex hierarchy
 →→ selective refinement selective refinement

●● Dependencies Dependencies →→ consistent framework consistent framework

●● View-dependent refinement criteriaView-dependent refinement criteria

I’ll first show that the progressive mesh representation naturally defines a
vertex hierarchy, and that this hierarchy can be used to establish a
selective refinement framework.

Next, I’ll introduce a set of dependencies that make this framework
consistent.

Finally, I’ll present some criteria for determining where to refine and
coarsen the mesh based on changing view parameters.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 29

Parent-child vertex relationsParent-child vertex relations

vvss

vvtt
vvuu

vsplitvsplit

In this rotated diagram, we see that a vertex split refinement
transformation defines a relation between the “parent” vertex v_s and the
two “child” vertices that result from the split.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 30

vv22

Vertex hierarchyVertex hierarchy

vsplvspl00MM00 vsplvspl11 vsplvspl22 vsplvspl33 vsplvspl44 vsplvspl55

vv11 vv33MM00

vv1010 vv1111

vsplvspl33

vv11 vv22

vv44 vv55

vsplvspl00

vv88 vv99

vsplvspl22

vv33

vv66 vv77

vsplvspl11

vv55

vv1212 vv1313

vsplvspl44

vv1010

vsplvspl55

vv1414 vv1515

vv66MM̂̂

PM:PM:

If we begin with the vertices of the base mesh M^0 and apply the vertex
splits in order, we see that the parent-child vertex relations form a
“forest” in which the vertices of M^0 are the root nodes and the vertices
of the original, fully-refined mesh M^n are the leaf nodes.

The intermediate meshes M^i, 0<i<n, from the progressive mesh
sequence correspond to “vertex fronts” through this vertex hierarchy.

A similar vertex hierarchy also appears in the work of [Xia & Varshney
96] and [Luebke 96].

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 31

vv1111

vv11 vv22

vv44 vv88 vv99

vv33

vv77

vv55

vv1212 vv1313

vv1010

vv1414 vv1515

vv66

vv22

Selective refinementSelective refinement

vsplvspl00MM00 vsplvspl11 vsplvspl22 vsplvspl33 vsplvspl44 vsplvspl55

vv11 vv33MM00

vv1010 vv1111

vsplvspl33

vv11 vv22

vv44 vv55

vsplvspl00

vv66 vv77

vsplvspl11

vv55

vv1212 vv1313

vsplvspl44

vv1010

selectively refined meshselectively refined mesh

vv88 vv99

vsplvspl22

vv33

vv88 vv99

vsplvspl22

vv33

Restrictions?Restrictions?

Given this vertex hierarchy, we can begin to think about applying both
vertex splits and their inverses (edge collapses) selectively and out-of-
sequence. This corresponds to incrementally moving the vertex front up
and down in the hierarchy.

Are there any restrictions as to what vspl/ecol transformations can be
applied? Yes, because these transformations expect that the mesh
neighborhood which they modify has a particular configuration.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 32

Legality conditions?Legality conditions?

vvll vvrr

vvuu

vvtt

vvss
vvll vvrr

vsplitvsplit

ecolecol

■■ vsplitvsplit legal if: legal if:
–– vvss is active is active
–– vvll and and vvrr are active are active

■■ ecolecol legal if: legal if:
–– ? problem: consistent?? problem: consistent?

[Xia&Varshney96]: identical neighborhood[Xia&Varshney96]: identical neighborhood

[SIGGRAPH96][SIGGRAPH96]

My SIGGRAPH 96 paper described a particular set of legality conditions
for vertex split transformations.

However, no legality conditions were given for edge collapse
transformations. Therefore, after a change in view parameters, it was
necessary to start again from the base mesh to produce a new
selectively refined mesh.

I attempted to find legality conditions for edge collapses, but was unable
to form a consistent framework without introducing many dependencies
between the transformations.

In the scheme of Xia and Varshney, a transformation is legal if the entire
ring of vertices around v_s (or v_t and v_u) is present in the current
mesh.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 33

New vspl/ecol parametrizationsNew vspl/ecol parametrizations

vsplitvsplit

ecolecol

■■ vsplitvsplit legal if: legal if:
–– vvss is active is active
–– ffn0n0,f,fn1n1,f,fn2n2,f,fn3n3 are active are active

■■ ecolecol legal if: legal if:
–– vvtt,v,vuu are active are active
–– ffn0n0,f,fn1n1,f,fn2n2,f,fn3n3 are adjacent are adjacent

ffn0n0

ffn1n1

vvss
ffn2n2

ffn3n3

ffn0n0

ffn1n1

vvuu

vvtt

ffn2n2

ffn3n3

I instead found a new parametrization for the vertex split and edge
collapse transformations, as shown at the top, that permits a consistent
framework with few dependencies.

A vertex split is legal if the center vertex v_s is active (that is, the vertex
front passes through that vertex), and if the four faces f_n0, f_n1, f_n2,
f_n3 expected by the vertex split are also all active.

An edge collapse is legal if the two child vertices v_t and v_u are active
(that is, the vertex front passes through two siblings), and if the four
faces adjacent to the two faces f_l,f_r to remove are f_n0, f_n1, f_n2,
f_n3.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 34

DependenciesDependencies

vvss

vvtt vvuu ffll ffrr

ffn0n0 ffn1n1 ffn2n2 ffn3n3

vsplitvsplit

vvtt

ffn0n0 ffn1n1 ffn2n2 ffn3n3

ecolecol

vvuu ffll ffrr

vvss

These dependencies are illustrated in the above diagram.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 35

initial meshinitial mesh

vv55vv1010 vv1111 vv44 vv88 vv99

vv77vv1212 vv1313

vv11 vv22 vv33

Runtime algorithmRuntime algorithm

MM00

vv66

vv1414 vv1515

vv1212 vv1313vv1212

vv1010 vv1111vv1010 vv1111 vv44vv44

vv66

vv1414 vv1515

vv66

vv1414 vv1515

vv88 vv99

vv33

vv1515

vv77vv77

vv88vv88 vv99vv99

new meshnew mesh

dependencydependency

●● Algorithm:Algorithm:
■■ incremental (frame coherence)incremental (frame coherence)
■■ efficient (~15% of frame time)efficient (~15% of frame time)
■■ amortizableamortizable

At runtime, we traverse the active vertex front, and for each vertex,
decided whether it should be refined or coarsened.

If we find that a vertex should be refined but that the vertex split is not
legal, other vertex splits are performed (using a recursive procedure) in
order to make the first vertex split legal.

A vertex is collapsed only if it is legal, in order to conservatively satisfy
the refinement criteria.

The algorithm exploits frame coherence since only incremental work is
performed to adapt the mesh used in the previous frame to the new view
parameters.

We find that this adaptive refinement algorithm requires only a small
fraction of total frame time on a graphics workstation, because rendering
has the same time complexity (linear on the size of the active mesh) and
has a larger time constant.

Finally, the algorithm can be amortized over consecutive frames by
considering only a fraction of the active vertex list each frame.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 36

View-dependent refinement criteriaView-dependent refinement criteria

3 criteria:3 criteria:

●● view frustumview frustum

●● surface orientationsurface orientation

●● screen-space geometric errorscreen-space geometric error

We use three criteria to adapt the refinement of the mesh based on the
view parameters.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 37

View frustumView frustum

too hightoo high too far righttoo far rightview is unchangedview is unchanged

We demonstrate the 3 criteria using the view shown on the left. In order
to see the global effect of selective refinement, the right window shows a
top view with the real view frustum highlighted in orange.

The view frustum criterion acts to coarsen regions of the mesh outside
the view frustum.

The criterion is conservative, so the view within the frustum is left
unchanged.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 38

Surface orientationSurface orientation

view is unchangedview is unchanged oriented awayoriented away

The surface orientation criterion acts to coarsen regions of the mesh
which are oriented away from the viewer.

For closed surfaces, it is unnecessary to render backfacing regions since
they are obscured by nearer front-facing regions of the mesh.

Again, this criterion is conservative so that the visible portion of the
model is unchanged.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 39

Screen-space geometric errorScreen-space geometric error

refinement nearrefinement near
silhouettesilhouette

coarser incoarser in
distancedistance

tolerance=0.5 pixelstolerance=0.5 pixels

The third refinement criterion adapts the mesh refinement so that the
deviation of the approximating mesh (from the fully refined mesh), when
projected on the screen, is everywhere less than a screen-space error
tolerance.

In this example, the tolerance was set to 0.5 pixels (the images are
500x500 pixels).

One natural byproduct of this criterion is that the refinement is denser
near the object’s silhouettes where the deviation of the surface is
perpendicular to the viewing direction.

Also, the mesh is made coarser the farther it is from the viewpoint.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 40

All three criteria togetherAll three criteria together

69,473 faces 69,473 faces ⇒⇒ 10,528 faces 10,528 faces
1.9 frame/sec 1.9 frame/sec ⇒⇒ 6.7 frame/sec 6.7 frame/sec

These images show the effect of using all 3 criteria together.

The fully refined mesh of 70,000 faces is simplified to about 10,000
faces. Interactive frame rate is thereby increased from about 2 to 7
frames/sec (including the time taken for adaptive refinement, which is
only a small fraction of rendering time).

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 41

VIDEO: Selective RefinementVIDEO: Selective Refinement

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 42

Selective Refinement SummarySelective Refinement Summary

PMPM

VV FF

MM̂̂

vsplvspl

vv11MM00 vv22

MM00

vv33 vv44 vv55 vv66

vv77 vv88

MM^̂
■■ view-dependentview-dependent

refinementrefinement

■■ real-time algorithmreal-time algorithm

To summarize, the progressive mesh representation also allows real-
time, view-dependent refinement of arbitrary triangle meshes.

Surprisingly, the incremental work of updating the mesh from frame to
frame requires only a small fraction of total frame time.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 43

Progressive SimplicialProgressive Simplicial
ComplexesComplexes

[SIGGRAPH 97][SIGGRAPH 97]

(Joint work with Jovan Popovic)(Joint work with Jovan Popovic)

The final part of my talk describes another extension to the progressive
mesh work: the progressive simplicial complex representation. It is a
generalization that allows the representation of a larger class of models,
and allows the progressive representation of both geometry and
topology.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 44

PM restrictions:PM restrictions:

●● Supports only “meshes”Supports only “meshes”
 (orientable, 2-dimensional manifolds)(orientable, 2-dimensional manifolds)

●● Preserves topological typePreserves topological type

167,744167,7448,0008,0002,5222,522
MM00 MMnn… M… Mii … …

The progressive mesh representation has two restrictions.

First, it supports only meshes. That is, 2-d triangulations that form
orientable manifolds.

Second, and more importantly, all meshes in the progressive mesh
sequence are required to have the same topological type. As a
consequence, if the original mesh has a number of connected
components, each component is required to appear (in simplified form) in
the base mesh M^0. This introduces a lower bound on the complexity of
M^0 as shown on the left.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 45

Progressive Simplicial ComplexesProgressive Simplicial Complexes

●● Represent arbitrary triangulations:Represent arbitrary triangulations:
■■ any dimension,any dimension,

■■ non-orientable,non-orientable,

■■ non-manifold,non-manifold,

■■ non-regular, …non-regular, …

●● Progressively encode both geometryProgressively encode both geometry
 and topologyand topology..

The progressive simplicial complex representation is able to represent
arbitrary triangulations. These may have any dimension, may be non-
orientable, non-manifold, and non-regular.

Second, it is able to capture such triangulations by progressively
encoding both their geometry and topology.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 46

GeneralizationGeneralization

edge collapseedge collapse
((ecolecol))

vertex unificationvertex unification
((vunifyvunify))

vertex splitvertex split
((vsplvspl))

generalized vertex splitgeneralized vertex split
((gvsplgvspl))

PMPM PSCPSC

The key is to replace the edge collapse / vertex split transformations
by the more general vertex unification / generalized vertex split
transformations.

The vertex unification transformation takes an arbitrary pair of vertices
(not necessarily connected by an edge) and unifies them into one vertex.
The generalized vertex split is its inverse.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 47

PSCPSC representation representation

LOD sequenceLOD sequence

MM11 MM2222

gvsplgvspl11 … …
MM116116

… gvspl… gvsplii … … gvsplgvspln-1n-1

MMnn=M=M̂̂

Using these two transformations, we again form a sequence of models
by simplifying a given model, but now the simplest model always consists
of a single vertex.

Solitary vertices are drawn as either spheres or circles in order to convey
the overall shape of the model at coarse levels. Similarly, solitary edges
are drawn as either cylinders or lines.

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 48

Space analysisSpace analysis

0

10

20

30

40

50

60

cessna destroyer drumset chandelier schooner castle2D

Dataset

b
it

s
p

er
 v

er
te

x

A
D
V
K(C)
K(a)

geometry!geometry!connectivityconnectivityconnectivityconnectivity materialsmaterials

This diagram shows the average number of bits required to store each
field of a generalized vertex split record in a PSC representation.

The two blue fields encode the connectivity of the model; these require
about (7+log_2 n) bits per vertex. That is about 3 bits more per vertex
than the PM representation. However, the PSC representation is able to
capture topological changes.

Vertex coordinates (encoding the geometry) are quantized to 16 bits and
delta-encoded as in the PM representation. As seen in the diagram,
geometry still forms the bulk of the space required to store the model.

The green field shows the encoding of material attributes of the faces.
These material attributes also include smoothing groups used to infer
surface normals (i.e. surface creases).

Hugues Hoppe - Progressive Meshes and Recent Extensions August 1997

SIGGRAPH 97 course - Multiresolution Surface Modeling 49

PSC SummaryPSC Summary

PSCPSC

VV KK

MM̂̂

MM11

gvsplgvspl

■■ progressive geometry progressive geometry
 and topologyand topology

losslesslossless

■■ any triangulationany triangulation

singlesingle
vertexvertex

arbitraryarbitrary
simplicialsimplicial
complexcomplex

Here is a summary of the progressive simplicial complex representation.

It is able to encode an arbitrary simplicial complex as a single vertex
together with a sequence of refinement transformations that
progressively encode both geometry and topology.

The PSC representations retains the advantages of progressive meshes.
It defines a continuous sequence of approximating models for runtime
level-of-detail control, allows smooth transitions between any pair of
models in the sequence, supports progressive transmission , and still
offers a space-efficient representation.

Moreover, by allowing changes to topology, the PSC sequence of
approximations achieves better fidelity than the corresponding PM
sequence.

Decimation of Triangle Meshes

William J. Schroeder
Jonathan A. Zarge

William E. Lorensen

General Electric Company
Schenectady, NY

1.0 INTRODUCTION

The polygon remains a popular graphics primitive for
computer graphics application. Besides having a simple
representation, computer rendering of polygons is widely
supported by commercial graphics hardware and software.
However, because the polygon is linear, often thousands
or millions of primitives are required to capture the details
of complex geometry. Models of this size are generally
not practical since rendering speeds and memory require-
ments are proportional to the number of polygons. Conse-
quently applications that generate large polygonal meshes
often use domain-specific knowledge to reduce model
size. There remain algorithms, however, where domain-
specific reduction techniques are not generally available
or appropriate.

One algorithm that generates many polygons ismarch-
ing cubes. Marching cubesis a brute force surface con-
struction algorithm that extracts isodensity surfaces from
volume data, producing from one to five triangles within
voxels that contain the surface. Although originally devel-
oped for medical applications,marching cubeshas found
more frequent use in scientific visualization where the size
of the volume data sets are much smaller than those found
in medical applications. A large computational fluid
dynamics volume could have a finite difference grid size
of order 100 by 100 by 100, while a typical medical com-
puted tomography or magnetic resonance scanner pro-
duces over 100 slices at a resolution of 256 by 256 or 512
by 512 pixels each. Industrial computed tomography, used
for inspection and analysis, has even greater resolution,
varying from 512 by 512 to 1024 by 1024 pixels. For these
sampled data sets, isosurface extraction usingmarching
cubescan produce from 500k to 2,000k triangles. Even
today’s graphics workstations have trouble storing and
rendering models of this size.

Other sampling devices can produce large polygonal
models: range cameras, digital elevation data, and satellite
data. The sampling resolution of these devices is also
improving, resulting in model sizes that rival those
obtained from medical scanners.

This paper describes an application independent algo-
rithm that uses local operations on geometry and topology
to reduce the number of triangles in a triangle mesh.
Although our implementation is for the triangle mesh, it
can be directly applied to the more general polygon mesh.
After describing other work related to model creation
from sampled data, we describe the triangle decimation

process and its implementation. Results from two differ-
ent geometric modeling applications illustrate the
strengths of the algorithm.

2.0 THE DECIMATION ALGORITHM

The goal of the decimation algorithm is to reduce the
total number of triangles in a triangle mesh, preserving
the original topology and a good approximation to the
original geometry.

2.1 OVERVIEW

The decimation algorithm is simple. Multiple passes are
made over all vertices in the mesh. During a pass, each
vertex is a candidate for removal and, if it meets the spec-
ified decimation criteria, the vertex and all triangles that
use the vertex are deleted. The resulting hole in the mesh
is patched by forming a local triangulation. The vertex
removal process repeats, with possible adjustment of the
decimation criteria, until some termination condition is
met. Usually the termination criterion is specified as a
percent reduction of the original mesh (or equivalent), or
as some maximum decimation value. The three steps of
the algorithm are:

1. characterize the local vertex geometry and topology,

2. evaluate the decimation criteria, and

3. triangulate the resulting hole.

2.2 CHARACTERIZING LOCAL
GEOMETRY / TOPOLOGY

The first step of the decimation algorithm characterizes
the local geometry and topology for a given vertex. The
outcome of this process determines whether the vertex is
a potential candidate for deletion, and if it is, which crite-
ria to use.

Each vertex may be assigned one of five possible clas-
sifications: simple, complex, boundary, interior edge, or
corner vertex. Examples of each type are shown in the
figure below.

A simple vertex is surrounded by a complete cycle of

Simple Complex Boundary Interior
Edge

Corner

triangles, and each edge that uses the vertex is used by
exactly two triangles. If the edge is not used by two trian-
gles, or if the vertex is used by a triangle not in the cycle of
triangles, then the vertex is complex. These are non-mani-
fold cases.

A vertex that is on the boundary of a mesh, i.e., within a
semi-cycle of triangles, is a boundary vertex.

A simple vertex can be further classified as an interior
edge or corner vertex. These classifications are based on the
local mesh geometry. If the dihedral angle between two
adjacent triangles is greater than a specifiedfeature angle,
then afeature edge exists. When a vertex is used by two fea-
ture edges, the vertex is an interior edge vertex. If one or
three or more feature edges use the vertex, the vertex is clas-
sified a corner vertex.

Complex vertices are not deleted from the mesh. All other
vertices become candidates for deletion.

2.3 EVALUATING THE DECIMATION
CRITERIA

The characterization step produces an ordered loop of verti-
ces and triangles that use the candidate vertex. The evalua-
tion step determines whether the triangles forming the loop
can be deleted and replaced by another triangulation exclu-
sive of the original vertex. Although the fundamental deci-
mation criterion we use is based on vertex distance to plane
or vertex distance to edge, others can be applied.

Simple vertices use the distance to plane criterion (see
figure below). If the vertex is within the specified distance to
the average plane it may be deleted. Otherwise it is retained.

Boundary and interior edge vertices use the distance to
edge criterion (figure below). In this case, the algorithm
determines the distance to the line defined by the two verti-
ces creating the boundary or feature edge. If the distance to
the line is less thand, the vertex can be deleted.

It is not always desirable to retain feature edges. For
example, meshes may contain areas of relatively small trian-
gles with large feature angles, contributing relatively little to
the geometric approximation. Or, the small triangles may be
the result of “noise” in the original mesh. In these situations,
corner vertices, which are usually not deleted, and interior
edge vertices, which are evaluated using the distance to
edge criterion, may be evaluated using the distance to plane
criterion. We call this edge preservation, a user specifiable
parameter.

If a vertex can be eliminated, the loop created by remov-
ing the triangles using the vertex must be triangulated. For
interior edge vertices, the original loop must be split into

two halves, with the split line connecting the vertices form-
ing the feature edge. If the loop can be split in this way, i.e.,
so that resulting two loops do not overlap, then the loop is
split and each piece is triangulated separately.

2.4 TRIANGULATION

Deleting a vertex and its associated triangles creates one
(simple or boundary vertex) or two loops (interior edge ver-
tex). Within each loop a triangulation must be created
whose triangles are non-intersecting and non-degenerate. In
addition, it is desirable to create triangles with good aspect
ratio and that approximate the original loop as closely as
possible.

In general it is not possible to use a two-dimensional
algorithm to construct the triangulation, since the loop is
usually non-planar. In addition, there are two important
characteristics of the loop that can be used to advantage.
First, if a loop cannot be triangulated, the vertex generating
the loop need not be removed. Second, since every loop is
star-shaped, triangulation schemes based on recursive loop
splitting are effective. The next section describes one such
scheme.

Once the triangulation is complete, the original vertex and
its cycle of triangles are deleted. From the Euler relation it
follows that removal of a simple, corner, or interior edge
vertex reduces the mesh by precisely two triangles. If a
boundary vertex is deleted then the mesh is reduced by pre-
cisely one triangle.

3.0 IMPLEMENTATION

3.1 DATA STRUCTURES

The data structure must contain at least two pieces of infor-
mation: the geometry, or coordinates, of each vertex, and
the definition of each triangle in terms of its three vertices.
In addition, because ordered lists of triangles surrounding a
vertex are frequently required, it is desirable to maintain a
list of the triangles that use each vertex.

Although data structures such as Weiler’s radial edge or
Baumgart’s winged-edge data structure can represent this
information, our implementation uses a space-efficient ver-
tex-triangle hierarchical ring structure. This data structure
contains hierarchical pointers from the triangles down to the
vertices, and pointers from the vertices back up to the trian-
gles using the vertex. Taken together these pointers form a
ring relationship. Our implementation uses three lists: a list
of vertex coordinates, a list of triangle definitions, and
another list of lists of triangles using each vertex. Edge defi-
nitions are not explicit, instead edges are implicitly defined
as ordered vertex pairs in the triangle definition.

3.2 TRIANGULATION

Although other triangulation schemes can be used, we chose
a recursive loop splitting procedure. Each loop to be trian-
gulated is divided into two halves. The division is along a
line (i.e., the split line) defined from two non-neighboring
vertices in the loop. Each new loop is divided again, until
only three vertices remain in each loop. A loop of three ver-

d

average plane

d

boundary

tices forms a triangle, that may be added to the mesh, and
terminates the recursion process.

Because the loop is non-planar and star-shaped, the loop
split is evaluated using a split plane. The split plane, as
shown in the figure below, is the plane orthogonal to the
average plane that contains the split line. In order to deter-
mine whether the split forms two non-overlapping loops,
the split plane is used for a half-space comparison. That is,
if every point in a candidate loop is on one side of the split
plane, then the two loops do not overlap and the split plane
is acceptable. Of course, it is easy to create examples where
this algorithm will fail to produce a successful split. In such
cases we simply indicate a failure of the triangulation pro-
cess, and do not remove the vertex or surrounding triangle
from the mesh.

Typically, however, each loop may be split in more than
one way. In this case, the best splitting plane must be
selected. Although many possible measures are available,
we have been successful using a criterion based on aspect
ratio. The aspect ratio is defined as the minimum distance of
the loop vertices to the split plane, divided by the length of
the split line. The best splitting plane is the one that yields
the maximum aspect ratio. Constraining this ratio to be
greater than a specified value,.e.g., 0.1, produces acceptable
meshes.

Certain special cases may occur during the triangulation
process. Repeated decimation may produce a simple closed
surface such as a tetrahedron. Eliminating a vertex in this
case would modify the topology of the mesh. Another spe-
cial case occurs when “tunnels” or topological holes are
present in the mesh. The tunnel may eventually be reduced
to a triangle in cross section. Eliminating a vertex from the
tunnel boundary then eliminates the tunnel and creates a
non-manifold situation.

These cases are treated during the triangulation process.
As new triangles are created, checks are made to insure that
duplicate triangles and triangle edges are not created. This
preserves the topology of the original mesh, since new con-
nections to other parts of the mesh cannot occur.

4.0 RESULTS

Two different applications illustrate the triangle decimation
algorithm. Although each application uses a different
scheme to create an initial mesh, all results were produced
with the same decimation algorithm.

4.1 VOLUME MODELING

The first application applies the decimation algorithm to
isosurfaces created from medical and industrial computed
tomography scanners.Marching cubeswas run on a 256 by
256 pixel by 93 slice study. Over 560,000 triangles were
required to model the bone surface. Earlier work reported a
triangle reduction strategy that used averaging to reduce the
number of triangles on this same data set. Unfortunately,
averaging applies uniformly to the entire data set, blurring

split plane

average plane

split line

Full Resolution
(569K Gouraud shaded triangles)

75% decimated
(142K Gouraud shaded triangles)

75% decimated
(142K flat shaded triangles)

90% decimated
(57K flat shaded triangles)

high frequency features. The first set of figures shows the
resulting bone isosurfaces for 0%, 75%, and 90% decima-
tion, using a decimation threshold of 1/5 the voxel dimen-
sion. The next pair of figures shows decimation results for
an industrial CT data set comprising 300 slices, 512 by 512,
the largest we have processed to date. The isosurface cre-
ated from the original blade data contains 1.7 million trian-
gles. In fact, we could not render the original model because
we exceeded the swap space on our graphics hardware.
Even after decimating 90% of the triangles, the serial num-
ber on the blade dovetail is still evident.

4.2 TERRAIN MODELING

We applied the decimation algorithm to two digital eleva-
tion data sets: Honolulu, Hawaii and the Mariner Valley on
Mars. In both examples we generated an initial mesh by cre-
ating two triangles for each uniform quadrilateral element in
the sampled data. The Honolulu example illustrates the
polygon savings for models that have large flat areas. First
we applied a decimation threshold of zero, eliminating over
30% of the co-planar triangles. Increasing the threshold
removed 90% of the triangles. The next set of four figures
shows the resulting 30% and 90% triangulations. Notice the
transitions from large flat areas to fine detail around the
shore line.

The Mars example is an appropriate test because we had
access to sub-sampled resolution data that could be com-
pared with the decimated models. The data represents the
western end of the Mariner Valley and is about 1000km by
500km on a side. The last set of figures compares the shaded
and wireframe models obtained via sub-sampling and deci-
mation. The original model was 480 by 288 samples. The
sub-sampled data was 240 by 144. After a 77% reduction,
the decimated model contains fewer triangles, yet shows
more fine detail around the ridges.

5.0 REFERENCES

[1] Baumgart, B. G., “Geometric Modeling for Computer Vision,”
Ph.D. Dissertation, Stanford University, August 1974.

[2] Bloomenthal, J., “Polygonalization of Implicit Surfaces,”Com-
puter Aided Geometric Design, Vol. 5, pp. 341-355, 1988.

[3] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and
Teeter, B. C., “Two Algorithms for the Three Dimensional Con-
struction of Tomograms,”Medical Physics, Vol. 15, No. 3, pp.
320-327, June 1988.

[4] DeHaemer, M. J., Jr. and Zyda, M. J., “Simplification of Objects
Rendered by Polygonal Approximations,”Computers &
Graphics, Vol. 15, No. 2, pp 175-184, 1992.

[5] Dunham, J. G., “Optimum Uniform Piecewise Linear Approx-
imation of Planar Curves,”IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. PAMI-8, No. 1, pp. 67-75, Jan-
uary 1986.

[6] Finnigan, P., Hathaway, A., and Lorensen, W., “Merging CAT
and FEM,”Mechanical Engineering, Vol. 112, No. 7, pp. 32-
38, July 1990.

[7] Fowler, R. J. and Little, J. J., “Automatic Extraction of Irregular
Network Digital Terrain Models,”Computer Graphics, Vol. 13,
No. 2, pp. 199-207, August 1979.

[8] Ihm, I. and Naylor, B., “Piecewise Linear Approximations of
Digitized Space Curves with Applications,” inScientific Visu-
alization of Physical Phenomena, pp. 545-569, Springer-Ver-
lag, June 1991.

[9] Kalvin, A. D., Cutting, C. B., Haddad, B., and Noz, M. E.,
“Constructing Topologically Connected Surfaces for the Com-

prehensive Analysis of 3D Medical Structures,”SPIE Image
Processing, Vol. 1445, pp. 247-258, 1991.

[10] Lorensen, W. E. and Cline, H. E., “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,”Computer
Graphics, Vol. 21, No. 3, pp. 163-169, July 1987.

[11] Miller, J. V., Breen, D. E., Lorensen, W. E., O’Bara, R. M., and
Wozny, M. J., “Geometrically Deformed Models: A Method
for Extracting Closed Geometric Models from Volume Data,”
Computer Graphics, Vol. 25, No. 3, July 1991.

[12] Preparata, F. P. and Shamos, M. I.,Computational Geometry,
Springer-Verlag, 1985.

[13] Schmitt, F. J., Barsky, B. A., and Du, W., “An Adaptive Subdi-
vision Method for Surface-Fitting from Sampled Data,”Com-
puter Graphics, Vol. 20, No. 4, pp. 179-188, August 1986.

[14] Schroeder, W. J., “Geometric Triangulations: With Application
to Fully Automatic 3D Mesh Generation,” PhD Dissertation,
Rensselaer Polytechnic Institute, May 1991.

[15] Terzopoulos, D. and Fleischer, K., “Deformable Models,”The
Visual Computer, Vol. 4, pp. 306-311, 1988.

[16] Turk, G., “Re-Tiling of Polygonal Surfaces,”Computer Graph-
ics, Vol. 26, No. 3, July 1992.

[17] Weiler, K., “Edge-Based Data Structures for Solid Modeling
in Curved-Surface Environments,”IEEE Computer Graphics
and Applications, Vol. 5, No. 1, pp. 21-40, January 1985.

75% decimated
(425K flat shaded triangles)

90% decimated
(170K flat shaded triangles)

32% decimated
(276K flat shaded triangles)

32% decimated
(shore line detail, wireframe)

90% decimated
(40K Gouraud shaded triangles)

90% decimated
(40K wireframe)

Sub-sampled
(68K Gouraud shaded triangles)

Sub-sampled
(68K wireframe)

77% decimated
(62K Gouraud shaded triangles)

77% decimated
(62K wireframe)

 A Compact Cell Structure
for Scientific Visualization

W.J. Schroeder
Boris Yamrom

GE Corporate Research & Development
Schenectady, NY 12301

Abstract

Well designed data structures and access methods are vital
to developing efficient visualization algorithms. The cell struc-
ture is a compact, general data structure for representing n-
dimensional topological constructs such as unstructured grids,
polygonal, or triangle strip representations. The cell structure
also provides constant time access methods for a wide variety of
visualization algorithms. This paper describes the representa-
tion, access methods, and implementation of the cell structure.
Sample algorithms such as decimation, triangle strip generation,
and streamline propagation are used to illustrate its application.

1.0 Introduction

The bulk of the visualization literature is oriented
towards algorithms and graphical representational
schemes[1],[2],[3]. Data structures, if described at all, are
often presented superficially. However it is only with well
designed combinations of both algorithm and data struc-
ture that useful visualization techniques can be created[4].

Visualization data tends to have some particular char-
acteristics: the data size is large and the data type is varied.
Large data are simply the result of the basic goal of visual-
ization - to transform large data into more comprehensible
forms. The data is varied because visualization techniques
are general. An iso-surface generation algorithm[5],[5] is
just as useful applied to medical data as it is to financial
visualization. Hence visual data structures must be both
compact (i.e., small memory requirement) and general
(i.e., represent a wide variety of data).

The cell structure is a compact and general data struc-
ture for representing cell topology. Cell topology consists
of points plus and a particular ordering of points (i.e., a
cell). One or more cells may share a given point as well as
other topological features such as edges and faces. The
most important feature of the cell structure is that it repre-
sents adjacency, or topological neighborhood information,
with minimal memory requirement. The cell structure has
also been designed with access methods that support a
wide variety of visualization algorithms.

A number of similar data structures have been previ-
ously developed[7],[8]. The simplest structures are varia-
tions of display lists: lists of points, and polygon/element/
cell connectivity. While these data structures are com-
pact, performing operations requiring adjacency informa-
tion results in algorithms of time complexity since
searching is required. A variation of this data structure
uses a supplemental list to represent adjacency informa-
tion[9],[10]. For each cell of particular type and dimen-
sion (e.g., hexahedron with six faces), a list of neighbors
is maintained (e.g., the six face neighbors of the hexahe-
dron). This structure is particularly useful when the cell
type and topology is the same for all cells. However,
when mixed cell type and topology is required, the struc-
ture becomes unwieldy. Also, in order to build this struc-
ture, an search is initially required. More
elaborate data structures include the hierarchical winged
edge[11] and radial edge[12] structures. Hierarchical
structures explicitly represent topology in terms of a hier-
archy of increasing topological dimension: vertices,
edges, faces, regions. Although extremely powerful con-
structs, fully elaborated hierarchical structures require
large amounts of memory than the simpler ones just
described.

The cell structure is a variation of the display list
structure with additional hierarchical information. It can
simultaneously represent cells of mixed topology, and
provides constant time access to adjacency information.
Moreover, the cell structure is more compact than hierar-
chical structures since its hierarchical information is
implicitly represented.

2.0 Cell Structure

In this section the mathematical basis, representation,
access methods, and implementation of the cell structure
is described.

2.1 Mathematical Basis

The cell structure is based on the topological con-
struct called a cell, . A cell is an ordered sequence of

O n
2()

O n
2()

Ci

points with where is a set
of n-dimensional points. The particular meaning of the
sequence of points, or cell topology, is determined by the
typeof cell. The number of pointsn defining the cell is the
size of the cell.

Examples of cells (Figure 1) include points (0D
topology), lines (1D topology), polygons and triangle
strips (2D topology), and unstructured grid elements such
as tetrahedron, hexahedron, pyramids, and triangular
prisms (3D topology). Higher dimension cells are also
possible, such as n-dimensional simplices.

A key concept of the cell structure is the “use” of a
point by a cell. A cell “uses” a point when .
Hence the “use set” is the collection of all cells
using :

2.2 Representation

The cell structure expresses the relationship between
pointsP, cellsC, and use setsU. The representation of this
information may take a variety of forms, but the prefer-
ence is for a data structure that is simple, compact, and
can be accessed in constant time. It is also desirable that
the structure can be directly retrieved from or written to
storage. That is, the use of pointers, or memory locations,
is not directly evident in the data structure.

The implementation of the cell structure consists of
four dynamic arrays (Figure 2).A dynamic array is simply
an array (e.g., a contiguous, addressable memory space)
that grows dynamically to accomodate new data. The ele-
ments of the array are addressed with a unique, non-nega-
tive integer id.

The first array represents a list of pointsx-y-z coordi-
nates whose id is the array access id. The second array
represents the cells: the size, type, and a list of point ids
that define the cell. In the third dynamic array the use
arrays for each point are expressed. Each use array con-
sists of the number of cells using a particular point. That
is, at use array positioni the cells that use pointi are
listed. The final dynamic array provides storage and con-
sists of id types in no particular order. This array is not
required, but it provides a contiguous pool of memory
from which the cell arrays and use arrays construct their

lists. Using the storage array reduces memory fragmenta-
tion greatly, and reduces the number of system calls to
acquire memory.

A key feature of the cell structure is that it implicitly
represents intermediate topology between the cell (n-
dimensional) and the defining points (0-dimensional). As
a result, supplemental information is required to address
the layers of intermediate cell topology. If a poly-
gon is represented as an ordered sequence of points, then
pairs of adjacent points represent polygon edges. A more
complex topology is a pyramid. The list shown in Figure 3
allows direct access to the five faces of the pyramid. The
first number represents the number of points defining the
face, followed by a list of ordered indices into the cells
point list (1-offset). This implicit representation of topol-
ogy is the reason why the cell structure can compactly
represent adjacency information.

Other information can represent the relationship
between the cell geometry and topology. A typical exam-
ple is when traversing cells, such as streamline tracking.

Ci p1 p2 … pn, , ,{ }= pi P∈ P

Figure 1. Some example cell types.

vertex polyline triangle polygon

triangle strip tetrahedron hexahedron

Ci pi pi Ci∈
U pi()

pi

U pi() Ci :pi Ci }∈{=

type
npts

pts_list

x-y-z

x-y-z
x-y-z

Figure 2. Cell representation.

Cell

Points

Uses

Point- Cells Storage Uses

type
npts

pts_list

type
npts

pts_list

id
id
id

id

ncells
cell_list
ncells

cell_list

ncells
cell_list

Topology

Implementation

n 2–()

faces = {4, 1,2,3,4,
3, 1,5,2,0,
3, 2,5,3,0,
3, 3,5,4,0,
3, 4,5,1,0}

5

2

1

3

4

Figure 3. Accessing implicit topology

Often the traversal is computed using parametric coordi-
nates, and when a boundary is encountered (parametric
coordinate value), it is necessary to obtain the corre-
sponding topology (e.g., face or edge).

Another important capability of the cell structure is
the ability to simultaneously represent cells of different
type. For example, Figure 5 shows an unstructured grid
consisting of hexadra, tetraheda, pyramids, triangular
prisms (3D topology), polygons (2D topology), and lines
(1D topology).

2.3 Access Methods

There are three categories of methods for manipulat-
ing the cell structure:primitive methods, topological
methods, andadjacency methods. A description of these
methods follow.

2.3.1 Primitive Methods
Primitive methods are used for creating, destroying,

modifying, and traversing the cell structure. Sample meth-
ods include:

Cells = initialize ()
Create an empty cell structure and return a pointer
Cellsto the structure. Optional arguments for spec-
ifying initial storage size are possible.

create_point (Cells, pt_id, x)
Given a point id and x-y-z coordinate, create a
point in theCells structure.

create_cell (Cells, cell_id, type, npts, pts)
Given a cell id, a cell type, the number of points,
and the point ids defining the cell, create a cell in
theCells structure.

build_uses ()
Using the current cells and points, build the use
lists for theCells structure.

npts = get_number_points (Cells)
Return the number of points in the structure.

ncells = get_numer_cells (Cells)
Return the number of cells in the structure.

destroy (Cells)
Release the Cellsstructure back to system mem-
ory.

Building the cell structure consists of creating points
and cells, followed by the building the use lists. This pro-
cess is of linear time complexity. For each cell in the
structure, a traversal of the cell’s point list is made. Then
for each point in the cell’s point list, the corresponding use
list is updated. Once all cells are visited the data structure
is complete. In some applications thebuild_uses() method
need not be executed. Then the structure is basically a dis-
play list.

2.3.2 Topological Methods
Topological methods provide access to the topology

of the cell. Some of these methods are as follows.

get_cell_pts (Cells, cell_id, pts, npts)
Return a list of point ids that define the given cell.

get_pt_cells (Cells, pt_id, cells, ncells)
Return a list of cell ids that use the specified point.

These operators return information directly from the
cell structure. It is also possible to return other topological
information using supplemental information associated
with the type of the topology. For example, if the cell type
is a pyramid, then accessing the faces of the pyramid can
be implemented using the table of Figure 3 and the opera-
tor:

get_cell_face_pts (Cells, cell_id, face_id, npts, pts)
Return a list of point ids that define the specified
face of the given cell.

2.3.3 Adjacency Methods
Adjacency methods are used to obtain information

about the neighbors of a cell. A neighbor of a particular
cell is simply a cell that shares one or more points in
common with . Examples of these methods follow.

get_cell_pt_nbr (Cells, cell_id, pt_id, nbrs, nnbrs)
Given a point and cell, return a list of neighboring
cells that use the point.

get_cell_feature_nbr (Cells,cell_id,pts,npts,nbr,nnbrs)
Given a list of points from a cell, return a list of
neighboring cells that each use all the specified
points.

Theget_cell_feature_nbr() method is useful for
extracting adjacency information across topological fea-
tures. For example, if the feature is specified by two points
defining an edge, this method returns edge neighbors. Or,
if the points define a face, this method returns a face
neighbor.

The adjacency operators are simple set operations.
For a particular cell and point list
with , where typically corrsponds to a topological
feature of the cell, the result of theget_cell_feature_nbrs()
method is the adjacency set . The adjacency set is
simply the intersection of the use sets for each point,
excluding the cell

The adjacency set implicitly represents a variety of
useful information. In a manifold object represented by a
polyhedra, for example, each polygon must have exactly
one edge neighbor for each of its edges. Edges that have
no neighbors are boundary edges; edges that have more
than one edge neighbor represent non-manifold topology.

1±

C
C

C P p1 p2 … pn, , ,()=
P P⊂ P

A C P,()

C

A C P,() U pi()
i 1=

n

∩
 C–=

Volume data sets that consist of 3D cells (e.g., unstruc-
tured grids) are topologically consistent only if for each
cell there is exactly one face neighbor for each face. Faces
that have no neighbors are on the boundary of the volume.
More than one face neighbor implies that the neighbors
are self-intersecting.

The construction of an adjacency set is of time
and space complexity provided that a constant bound can
be placed on the number of uses of a point. Examining
Equation 2 above, if , and

 is independent ofnpts, then the time complex-
ity of the set operations are bounded by a fixed constant. It
is possible to design pathological cases where a particular
point is used by every cell, but in application such situa-
tions do not occur. Typically a point is used by 5-6 trian-
gles in a triangle mesh, or eight hexahedra in a hexahedral
mesh.

3.0 Algorithms

A variety of algorithms have been implemented using
the cell structure. In the following subsections a few are
expressed in pseudo-code using the cell access methods
described earlier. The pseudo-code examples are simpli-
fied to demonstrate the use of the data structure.

3.1 Streamlne Propagation

A common vector field visualization technique is to
generate streamlines. Streamlines are the path that a mass-
less particle takes when moving through the vector field.
Typical examples include visualizing fluid flow.

The cell structure provides a convenient structure to
propagate the streamline through a computational grid
(Figure 6). Computational grids are typically composed of
many thousands or perhaps millions of cells in which
numerical computation is carried out. The streamline
traverses many of these cells, and the propagation algo-
rithm requires tracking the streamline from cell to cell.

determine initial cellcell, positionx, and velocityv;
while (insideCells) {

;
map to cell coordinates(r,s,t);
if ((r,s,t) outside cell){

find cell facef that streamline passed through;
get_cell_face_nbrs (Cells, cell, f, nbrs, nnbrs);
if (nnbrs < 1) outsideCells;
else cell = nbrs[0];

}
evaluate velocity incell at (r,s,t);

;
}

3.2 Decimation

The goal of the decimation algorithm is to reduce the
number of polygons in a polygonal mesh, while maintain-
ing the original topology of the mesh. Schroeder et al[15]
have implemented this algorithm using the cell structure
and have achieved reductions of greater than 90% on max-

imum model sizes of 1.7 million triangles. Figure 7 shows
a 90% decimated model of a human face.

The algorithm repeatedly visits all non-decimated
vertices, gathering the polygons surrounding each vertex
into a list. These polygons are than evaluated against a
local planarity (or edge) condition. If the condition is sat-
isfied, then the vertex and using polygons are deleted, and
the resulting “hole” is triangulated. The process repeats
until an appropriate number of vertices are eliminated.

(pseudo-code)

3.3 Feature Normals

Realistic rendering of polygonal representations
depends upon using vertex normals to smooth the transi-
tion from one polygon to the next. Frequently polygons
are generated without normals, and techniques must be
used to generate the normals from the polygon connectiv-
ity.

One naive approach to normal generation is to com-
pute a vertex normal by averaging the normals of poly-
gons using the vertex. This works well in situations where
the dihedral angles between polygons is small, and when
the polygons are all ordered consistently. In many cases,
e.g., a cube, the angles between polygons are quite large,
resulting in images that appear less than realistic.

In the algorithm that follows, normals are generated
on a polygonal mesh that may or may not be consistently
ordered. In addition, polygons whose dihedral angle is
greater than a specified feature angle are separated along
their common edges (Figure 8).

for eachcell in Cells { /*make order consistent*/
if (not visitedcell) order (cell); /*recursively reorder*/

}
for each cell in Cells { /*compute cell normals*/

get_cell_pts (Cells, cell, pts, npts);
generate polygon normal;

}
for each point p in Cells { /*split feature edges*/

if (not visited p) split(p); /*recursively split*/
}
for each point p in Cells{

get_pt_cells (Cells, p, cells);
determine average normal based on using cells;

}

order (cell) {/* recursive reorder function */
mark cell visited;
get_cell_pts (Cells, cell, pts, npts);
for each edge (p1,p2) in cell pts {

get_cell_edge_nbrs (Cells, cell, p1, p2, nbrs, nnbrs);
if (nnbrs > 0 && nbrs[i] not visited) {

if (nbrs[i] edge order not (p2,p1) reverse(nbrs[i]);
order (nbrs[i]); /*recursive call*/

}}}

split (p) {/* recursive edge splitting function */
mark p visited;
get_pt_cells (Cells, pt, cells, ncells);
for each cell cells[i] {

get_cell_pts (Cells, cells[i], pts, npts);

O n()

n MAX_USE≤ npts«
MAX_USE

xi 1+ xi vi t∆⋅+=
xi 1+

vi
xi xi 1+=

if (nnbrs == 0) {
extrude edge to create triangle strip;

}
}

}
}

4.0 Conclusion

The cell structure is a compact, general data structure
that has been used to implement a variety of visualization
algorithms. The cell structure is particular useful when
cell adjacency information is required. Such operations
requireO(1) time and space complexity. Hence the cell
structure can be used to implement algorithms ofO(n)
time complexity.

As compared to more complex data structures, the
cell structure is limited in two important ways. First, the
cell structure does not represent “ordering” information.
That is, given a topological feature such as an edge, the
particular order of using faces around the edge. Second,
because intermediate topology is implicit, certain types of
topology requiring explicit information cannot be properly
represented. Figure 4 is one such example. Here two cur-
vilinear triangles share common vertices, put not edges. In
such situations more explicit hierarchical structures, such
as the winged edge or radial edge structures, are appropri-
ate. It is possible to address these limitations by perform-
ing local geometric processing to order usage, or to add
conditional hierarchial information to the cell structure.

References
[1] B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization

in Scientific Computing.Computer Graphics, 21(6), Nov. 1987.
[2] N. M. Patrikalakis, editor.Scientific Visualization of Physical Phe-

nomena. Springer-Verlag. Tokyo 1991.
[3] G. M. Nielson and B. Shriver, editors.Visualization in Scientific

Computing. IEEE Computer Society Press. Los Alamitos, CA.
1990.

[4] A. V. Aho and J. E. Hopcroft and J. D. Ullman.Data Structures
and Algorithms. Addison-Wesley Publishing Company. Reading,
MA. 1983.

[5] W. E. Lorensen and H. Cline. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.Computer Graphics,
21(4):163-169, July, 1987.

[6] G. Wyvill and C. McPheeters and B. Wyville. Data Structures for
Soft Objects.Visual Computer. 2(4):227-234

[7] A. Paoluzzi and F. Bernardini and C. Cattani and V. Ferrucci.
Dimension-Independent Modeling with Simplicial Complexes.
ACM Transactions on Graphics. 12(1), January, 1993.

[8] E. Brisson. Representing geometric structures in d-dimensions:
Topology and order.ACM Symposium on Computational Geome-
try. ACM Press, New York,1989.

[9] R. Haimes and M. Giles. VISUAL3: Interactive Unsteady
Unstructured 3D Visualization. AIAA Report No. AIAA-91-
0794. January, 1991.

[10] L. Gelberg, D. Kamins, D. Parker, and J. Stacks. Visualization
Techniques for Structured and Unstructured Scientific Data.SIG-
GRAPH `90 Course Notes for State of the Art Data Visualization.
August, 1990.

Figure 4. Curvilinear triangles

for each cell edge (p,pts[i])
get_cell_edge_nbrs (Cells,cells[i],p,pts[i],nbrs, nnbrs);{
if (nnbrs > 0) && (nnbrs > 1 or

dihedral angle > feature angle) {
create new point pnew;
replace p (in cells[i]) with pnew;

} }
if (not visited pts[i]) split (pts[i]);

}}

3.4 Triangle Strip Generation

Triangle strips are compact representations of adja-
cent triangles. Most rendering hardware supports triangle
strips directly as a high-performance graphics primitive.
Unfortunately triangle strips are not typically generated in
visualization algorithms. Instead, as this simple algorithm
illustrates, triangle strips can be easily generated from tri-
angles (or polygons) using the cell structure.

A typical application of this algorithm is shown in
Figure 9. Here the original data of x polygons is stripped
to produce y strips. The modest length of the strips is mis-
leading: the result is a six-fold increase in rendering
speed.

initialize list of triangle strips strips;
for each cell in cell list Cells {

if cell not visited {
mark cell visited;
start new triangle strip strip;
get_cell_pts (Cells, cell, pts, npts);
for each cell edge p1,p2 { /* assumed triangles */

get_cell_edge_nbrs (Cells, cell, p1, p2, nbrs, nnbrs);
if (nnbrs>0 && (nbr=nbrs[0]) not visited) break;{

}/* start growing strip */
while (nbr != NULL) {

add nbr to strip;
mark nbr visited;
get_cell_edge_nbrs (Cells, nbr, p1, p2, nbrs, nnbrs);
if (nnbrs < 1) nbr = NULL else nbr=nbrs[0];

}
add strip to strips;

}
}

3.5 Extrusion

A simple geometric construct is an extrusion or
sweep. Here it is assumed that the starting point for this
operation is a collection of points, lines, and polygons,
and that the surface is swept along some path to create a
“volume”.

The use of the cell structure in this algorithm is to
identify boundary edges, i.e., polygon edges that are used
by only a single polygon. These edges when swept create
the sides of the resulting polyhedron (Figure 10).

for eachcell in cell list Cells {
if cell type is POINT {

extrude point to create line;
} else if cell type is LINE {

extrude line to create triangle strip;
} else {

for each edge (p1,p2) in cell {
get_cell_edge_nbrs(Cells, cell, p1, p2, nbrs,nnbrs);

Figure 5. Unstructured grid representation. Figure 6. Stream tube propagation.

Figure 7. 90% decimated polygonal mesh, triangles
shrunk to show shape.

Figure 8. Feature normal generation from decimated
geometry of Figure 7.

Figure 9. Triangle strip generation from original range
data. Every other triangle strip is turned off.

Figure 10. Extrusion (along surface normals) of surface
from Figure 8 to create closed geometry.

A Topology Modifying Progressive Decimation Algorithm

William J. Schroeder
GE Corporate R&D Center

Abstract
Triangle decimation techniques reduce the number of trian-
gles in a mesh, typically to improve interactive rendering
performance or reduce data storage and transmission
requirements. Most of these algorithms are designed to pre-
serve the original topology of the mesh. Unfortunately, this
characteristic is a strong limiting factor in overall reduction
capability, since objects with a large number of holes or
other topological constraints cannot be effectively reduced.
In this paper we present an algorithm that yields a guaran-
teed reduction level, modifying topology as necessary to
achieve the desired result. In addition, the algorithm is
based on a fast local decimation technique, and its opera-
tions can be encoded for progressive storage, transmission,
and reconstruction. In this paper we describe the new pro-
gressive decimation algorithm, introduce mesh splitting
operations and show how they can be encoded as a progres-
sive mesh. We also demonstrate the utility of the algorithm
on models ranging in size from 1,132 to 1.68 million trian-
gles and reduction ratios of up to 200:1.

1 Introduction

Even with the increasing speeds of computer hardware,
interactive computer graphics and animation remains an
elusive goal. Model size keeps growing, partly because of
advances in data acquisition, and partly due to ever more
sophisticated computer simulation and modeling tech-
niques. Laser digitizers can generate nearly one million
polygons in a 30 second span, while iso-surface generation
can create 1-10 million polygons. Terrain models from
high-altitude sources such as satellites are even larger: more
than 10 million triangles is not uncommon.

To address this situation a variety of polygon reduction
techniques have been developed to reduce model size. Sig-
graph ‘92 was a seminal year for polygon reduction with
the presentation of two papers. Schroeder et al. [1] pre-
sented an algorithm called triangle decimation based on
local vertex deletion followed by re-triangulation. Turk [2]
described an algorithm based on dispersion of new points
on top of the original mesh, followed by global re-triangula-
tion. At Siggraph ‘93 Hoppe et al [3] presented a mathemat-
ically rigorous algorithm based on optimization techniques.
Later that year Hincker and Hanson [4] described an algo-
rithm based on merging regions of nearly co-planar poly-
gons into a single large polygon, and then re-triangulating.
Since that time other notable algorithms have been pre-
sented including methods that are guaranteed accurate
within a global error bounds [11] or within a simplification
envelope [8].

All of the algorithms described above are designed to
preserve the original topology of the mesh. While this may
be important for many applications (e.g., analysis or com-
putational geometry), preserving topology introduces con-
straints into the reduction process. For example,
Color Plate 1(a) shows a shell mesh with seven holes, and
Plate 1(b) shows the result of reduction where topology is
preserved. As shown in the figure, the topological con-
straint introduced by the holes clearly limits the ability of
an algorithm to reduce the mesh.

In many applications, such as interactive navigation of
geometric databases, preserving topology is not a critical
constraint. Reduction algorithms are typically used to
improve rendering speed or to minimize data size or com-
pression requirements. In such applications topology-pre-
serving reduction schemes are often incapable of achieving
desired reduction levels. This results in unresponsive sys-
tems or the use of crude bounding boxes or bounding hulls
to represent objects. Removing topological constraint can
create large gains in reduction factors and therefore, system
responsiveness and interactivity.

Another important development in the field of polygon
reduction is the progressive mesh [7] introduced by Hoppe.
A progressive mesh is one in which the original mesh can
be decomposed into a simpler base mesh, where the base
mesh is related to the original via a compact series of oper-
ations. In Hoppe’s scheme, the single topology preserving
operationEdgeCollapse (and its inverseEdgeSplit) is suffi-
cient to transform the full resolution mesh into a simpler
base mesh (and the base mesh back to the full resolution
mesh). Progressive meshes offer many attractive properties,
including the ability to compactly store and incrementally
transmit and reconstruct geometry. Such capability is
important for network based rendering and data transmis-
sion.

In this paper we present a new algorithm that can modify
the topology of a mesh in order to guarantee a requested
reduction level. Moreover, the algorithm creates progres-
sive representations by extending the pair of operations
Edge Collapse/Split with another pair of operators:Vertex
Split/Merge. The algorithm is fast by virtue of a local deci-
mation scheme similar to [1]. We begin by describing
related background work, and then describe the algorithm
from a high level, followed by a detailed look at each of its
parts. We conclude by applying the algorithm to five data
sets and report times to reduce the meshes at various levels
of reduction.

2 Objectives

The motivation for this work is to support interactive visu-

alization of large geometric databases. These databases typ-
ically represent the design of industrial equipment such as
aircraft engines or power generation equipment. Our
approach is based on building level-of-detail (LOD) models
for each part, ranging in complexity from full resolution to
a bounding hull consisting of dozens of triangles. The size
of our databases for a complete system may reach 100 mil-
lion triangles and 25,000 separate parts, while an average
database size is approximately 10 million triangles and
10,000 parts. Also, in an active design environment it is
common to have a dozen or more variations of the same
design, or multiple designs ongoing simultaneously. With
this application in mind, we formulated the following
objectives for our reduction algorithm:

• Guaranteed reduction level: Building a LOD database
requires generating meshes of the correct complexity
relative to every other level. In an automatic process
with thousands of parts, only using an algorithm with a
guaranteed reduction level will reliably construct a con-
sistent database.

• Modify topology: Arbitrary reduction levels implies the
need to modify topology. For example, to reduce a flat,
square plate with a single hole that is represented by
1000 polygons to two triangles forming a square with no
hole requires the elimination of the hole.

• Progressive representation: The decimation process
must be encodable into a series of compact, incremental
operations. This facilitates the transmission of the mesh
across a network, and minimizes disk storage.

• Fast: We wish to construct an entire LOD database in a
single day, or rapidly process parts as they are designed
and submitted to the database. From our statistics cited
previously, this requires a triangle processing rate of
approximately 100 million triangles per day. At this rate
we feel confident that we can manage a business-wide
design process.

• Robust: Since the LOD database is built completely
automatically, the algorithm must run without human
intervention or error correction.

3 Background

In this section we briefly describe some related work that
forms the basis of our progressive decimation algorithm.

3.1 Topology Modifying Algorithms

We began our work by investigating two important polygon
reduction algorithms that modify topology. Rossignac [9]
uses a vertex merge technique, where local vertices can be
identified using an octree or 3D bin array. Vertices lying
close to each other are merged into a single vertex, and the
topology of the affected triangles are then updated. This
may consist of either triangle deletion (if two or three of the
vertices are merged), or updating the connectivity list of the
triangle. He et al. [10] use a volume sampling approach,
where the triangles are convolved into a volume to generate
scalar values (e.g., scalar value may be distance from origi-

nal mesh). Then an iso-surfacing technique such as marching
cubes can be used to extract a surface approximating the
original mesh.

Rossignac’s method is capable of generating representa-
tions at any reduction level. Unfortunately, it is not amenable
to a compact progressive operator. For example, if merging
neighboring vertices eliminates 1000 triangles, we need to
keep track of each triangle modified and its relationship to
the merged vertices, and do this for each merging step of the
algorithm. Another problem with this method is that points
can be merged regardless of surface coherence. For example.
points that lie close to one another (measured via Euclidean
distance) but are far apart (via surface distance) or even on
separate surfaces may be merged.

The volume sampling technique can generate representa-
tions at almost any level by judicious selection of the sam-
pling (or volume) dimensions. Unfortunately, it is not
possible to recover the original mesh using this technique,
since the extracted iso-surface has no direct relation to trian-
gles in the original mesh. Also, there is no method to control
the number of triangles produced by the method, and the
number of triangles may vary unpredictably as the volume
dimensions are changed.

3.2 Decimation

The decimation algorithm has been widely used because of
its combination of desirable features:O(n) time complexity,
speed, simplicity, and the ability to treat large meshes. In
addition, it preserves high-frequency information such as
sharp edges and corners, and creates reduced meshes whose
vertices are a subset of the original vertex set, thereby elimi-
nating the need to map vertex information. However, as orig-
inally presented the decimation algorithm is topology
preserving and provides no progressive mesh representation.

The decimation algorithm proceeds by iteratively visiting
each vertex in the triangle mesh. For each vertex, three basic
steps are carried out. The first step classifies the local geome-
try and topology in the neighborhood of the vertex. The clas-

Simple Complex Boundary
Interior
Edge

Corner

Figure 1. Overview of the decimation algorithm.

Classify

Evaluate

Triangulate

d

d

Distance to lineDistance to plane

Recursive 3D
triangulation

Subdivide with
split planes

sification yields one of the five categories shown in
Figure 1:simple, boundary, complex, edge, andcorner
vertex. Based on this classification, in the second step a
local planarity measure is used to determine whether the
vertex can be deleted. Although many different criterion
are possible, distance to plane (for simple vertices) and
distance to line (for edge and boundary vertices) has
proven to be useful. If this decimation criterion is satis-
fied, in the third step the vertex is deleted (along with
associated triangles), and the resulting hole is triangu-
lated. The triangulation process is designed to capture
sharp edges (for vertices classifiededge andcorner) and
generally preserve the original surface geometry. (See [1]
for additional details.)

An attractive feature of the decimation algorithm is its
relative speed. We used the decimation algorithm as the
basis on which to build our progressive algorithm.

3.3 Progressive Meshes

A progressive mesh is a series of triangle meshes
 related by the operations

(1)

where and represent the mesh at full resolution,
and is a simplified base mesh. Here the mesh is
defined in terms of its geometry , or vertex set in and

 is the mesh topology specifying the connectivity of the
mesh triangles.

It is possible to choose the progressive mesh operations
in such a way to make them invertible. Then the opera-
tions can be played back (starting with the base mesh)

(2)

to obtain a mesh of desired reduction level (assuming that
the reduction level isless than the base mesh).

Hoppe’s invertible operator is an edge collapse and its
inverse is the edge split (Edge Collapse/Split) shown in
Figure 5(a). Each collapse of an interior mesh edge results
in the elimination of two triangles (or one triangle if the
collapsed vertex is on a boundary). The operation is repre-
sented by five values

where is the vertex to collapse/split, is the vertex
being collapsed to / split from, and and are two addi-
tional vertices to the left and right of the split edge. These
two vertices in conjunction with and define the two
triangles deleted or added. In Hoppe’s presentation,
represents vertex attribute information, which at a mini-
mum contains the coordinates of the collapsed / split
vertex .

A nice feature of this scheme is that a sequence of these
operators is compact (smaller than the original mesh rep-
resentation), and it is relatively fast to move from one
reduction level to another. One significant problem is that
the reduction level is limited by the reduction value of the
base mesh Since in our application we wish to realize
any given reduction level, the base mesh contains no trian-
gles

(3)

(some vertices are necessary to initiate the edge split oper-
ations). Thus our progressive mesh representation consists
of a series of invertible operations, without requiring any
base mesh triangles.

4 Algorithm

Our proposed algorithm is based on two observations.
First, we recognized that reduction operations (such as
edge collapse) reduce the high-frequency content of the
mesh, and second, topological constraint can only be
removed by modifying the topology of the mesh. The
implication of the first observation is that “holes” in the
mesh (see Plates 1(a)-(c)) tend to close up during reduc-
tion. The only reason they do not close completely is
because topological modification is prevented. The second
observation led us to realize that we could modify the
topology by “splitting” the mesh, i.e., replacing one vertex
with another for a subset of the triangles using the original
vertex. We also realized that any collection of triangles,
whether manifold or non-manifold, could be simplified by
splitting the mesh appropriately. Thus we developed our
algorithm to use topology-preserving operators whenever
possible, to allow hole closing (or non-manifold attach-
ments to form), and to split the mesh when further reduc-
tion was not possible.

4.1 Overview

The algorithm is similar to the decimation algorithm. We
begin by traversing all vertices, and classify each vertex
according to its local topology and geometry. Based on
this classification, an error value is computed for the ver-
tex. The vertex is then inserted into a priority queue,
where highest priority is given to vertices with smallest
error values.

Next, vertices are extracted from the priority queue in
order. The vertex is again classified, and if of appropriate
classification, an attempt is then made to retriangulate the
loop formed by the triangles surrounding the vertex.
Unlike the decimation algorithm, where the hole is formed
by deleting the vertex and triangles, in our algorithm the
retriangulation is formed by an edge collapse. Note that in
this process holes in the mesh may close, and non-mani-
fold attachments may form.

If all allowable triangulations are performed and the
desired reduction level is still not achieved, a mesh split-
ting operation is initiated. In this process, the mesh is sep-
arated along sharp edges, at corners, at non-manifold
vertices, or wherever triangulation fails (due to no legal
edge collapses). This process continues until the desired
reduction rate is achieved.

4.2 Vertex Classification

Vertices are classified based on topological and geometric
characteristics. Key topological characteristics are
whether the vertex is manifold or non-manifold, or
whether the vertex is on the boundary of the mesh. A man-

M
i

M
i

V K,()=

M̂ M
n

=() M
n 1– … M

1
M

0→ → → →

M̂ M
n

M
0

V R
3
,

K

M
0

M
0

M
1 … M

n 1–
M

n→ → → →

M
0

Edge Collapse/Split (vs vt vl vr A), , , ,

vs vt
vl vr

vs vt
A

x
vs

M
0
.

M̂ M
n

=() M
n 1– … M

1
M

0
M V ∅,()=()→ → → →

ifold vertex is one in which the triangles that use the ver-
tex form a complete cycle around the vertex, and each
edge attached to the vertex is used by exactly two trian-
gles. A boundary vertex is used by a manifold semi-cycle
(i.e., two of the edges on the mesh boundary are used by
only one triangle). Note that a vertex with a single triangle
attached to it is a boundary vertex. A vertex not falling
into one of these two categories is classified non-mani-
fold.

Geometric characteristics further refine the classifica-
tion. A feature angle (angle between the normals of two
edge-connected triangles) is specified by the user. This
parameter is used to identify sharp edges or corners in the
mesh, and guide the triangulation process. Whether a tri-
angle is degenerate is another important geometric charac-
teristic. A degenerate triangle is one that has zero area,
either because two or more vertices are coincident, or
because the vertices are co-linear. (Although not common
in most meshes, many CAD systems do produce them.)
Proper treatment of degenerate triangles is necessary to
implement a robust algorithm.

Vertices are classified into seven separate categories as
shown in Figure 2. There are three base types: simple,
boundary, non-manifold; and four types derived from the
three base types: corner, interior edge, crack-tip, and
degenerate. Interior edge vertices have two feature edges,
and corner vertices have three or more feature edges (if
simple), or one or more feature edges (if a boundary ver-
tex).

Crack-tip vertices are types of boundary vertices, except
that the two vertices forming the boundary edges are coin-
cident. These form as a side effect of some splitting opera-
tions. These types must be carefully treated during
triangulation to prevent the propagation of the crack
through the mesh.

4.3 Error Measures

The computation of vertex error is complicated by the fact
that the topology of the mesh is changing. Researchers
such as [8] and [11] have devised elaborate techniques to
limit the global error of a reduced mesh, but these meth-
ods depend on the topology of the mesh remaining con-
stant. When the topology changes, it is hard to build
useful simplification envelopes or to measure a distance to
the mesh surface. Because of these considerations, and

because of our desire for rapid decimation rates, we
choose to retain the distance to plane and distance to line
error measure employed in the decimation algorithm
(Figure 1). Our only modification to the process is to esti-
mate the error of a vertex connected to a single triangle
differently. Instead of using distance to line that a bound-
ary vertex would use, we compute an vertex error based
on the triangle area

(4)

which is an effective edge length. This error measure has
the effect of eliminating small, isolated triangles first.

One improvement we made to the process of error com-
putation is todistribute andaccumulate the error of each
deleted vertex. The idea is as follows: we maintain an
accumulated error value for each vertex . When a
vertex connected to is deleted via an edge collapse,
the error is distributed to using

(5)

Thus the total error is a combination of the local error
(i.e., distance to plane or distance to edge measure)plus
the accumulated error value at that vertex. The error at
each vertex is initially zero, but as the mesh is reduced,
regions that are non-planar will generate errors, and there-
fore propagate the error to neighboring vertices. Figure 3
illustrates this process or a 1D polyline and 2D surface
mesh.

A nice feature of this is approach is that it is relatively
simple to compute a global error measure. As a vertex is
deleted and the hole re-triangulated, the actual error to
the re-triangulated surface (versus the estimated error)
is computed. (The error is computed by determining
the minimum distance from the deleted vertex to the re-tri-
angulated surface.) Then, the accumulated error is actually
a global error bounds. This global error measure is conser-
vative, but it can be used to terminate the algorithm for
applications requiring a limit on surface error. (Note: set-
ting a limit on maximum error may prevent the algorithm
from achieving a specified reduction value.)

4.4 Priority Queue

A central feature of the algorithm is the use of a priority
queue. We use an implementation similar to that described
by [5], but modified to support theDelete(id) method,

Figure 2. Vertex classification. Crack tip vertices shown
displaced to emphasize topological disconnect.

Simple Non-manifoldBoundary

Interior
Edge

Corner
Degenerate

type of

Crack Tip

ei
ai

ei ai=

ei vi
vj vi

ej vi

ei ei ej+=

ei

Error distributed to
surrounding verticesei

ei

Figure 3. Computing and distributing error.

Error = ei + ej

Σekej Error = ei + ek

êj
ej

êj

whereid specifies a vertex not necessarily at the top of the
queue. The implementation is based on a well-balanced,
semi-sorted binary tree structure, represented in a contigu-
ous array. In addition, we have another array indexed by
vertex id, that keeps track of the location of a particular id
in the priority queue array. Figure 4 illustrates the data
structure. (Note that the introduction of the priority queue
means the time complexity of the algorithm isO(n log n)
as compared to theO(n) of the decimation algorithm.)

The addition of theDelete(id) method is necessary
because of the incremental nature of the progressive deci-
mation algorithm. When a vertex is deleted (via an edge
collapse), both the local topology and geometry surround-
ing the vertex are modified. The effect is that the vertices
directly surrounding the deleted vertex (i.e., those con-
nected by an edge) have their topology and geometry
modified as well. Thus the error values of these vertices
must be recomputed. This means that the surrounding ver-
tices are first deleted from the queue, the error is recom-
puted, and the vertices are reinserted back into the priority
queue.

4.5 Triangulation

A vertex marked for deletion is eliminated by an edge col-
lapse operation as shown in Figure 5(a). We identify the
edge to collapse (and the vertex) by identifying the
shortest edge that forms a valid split. If feature
edges are present, we choose the shortest feature edge.
This is not an optimal scheme, but when used with small
feature angle values gives satisfactory results. We chose
this simple approach because of our requirements on tri-
angle processing rate.

A valid split is one that creates a valid local triangula-
tion (i.e., triangles do not overlap or intersect). The edge
collapse may modify the global topology of the mesh,
either by closing a hole or introducing a non-manifold
attachment. Non-manifold attachments may occur, for
example, when a vertex at the entrance of a tunnel is
deleted, and the tunnel entrance collapses to a line. (See
Figure 5(c) and (d).)

We use a half-space comparison method to determine
whether an edge collapse is valid. To determine if a vertex

 forms (in conjunction with) a valid split, we
define the loop of vertices connected to as

. An edge collapse is valid when all

planes passing through the vertices for
and normal to the average plane normal

separate the vertex loop into two non-overlapping sub-
loops. This comparison can be computed by creating the

 split planes and evaluating the plane equation
. The sub-loops are non-overlapping

when all vertices in one sub-loop evaluate either positive
or negative, and all vertices in the other loop evaluate to
the opposite sign.

As we mentioned earlier, crack-tip vertices must be
carefully triangulated to avoid propagating a crack
through the mesh. Crack-tip vertices are treated like sim-
ple vertices by temporarily assuming that the two coinci-
dent vertices are one vertex. Then, if a valid split can be
found, the two coincident vertices are merged with aVer-
texMerge, followed by anEdgeCollapse. Although this
may reverse a previousVertexSplit operation, it does elim-
inate a vertex and two triangles and prevent the crack from
growing. Eventually changes in the local topology and
geometry will either force the crack to grow or to close up.
The process will eventually terminate since the mesh will
eventually be reduced to a desired level, or will be elimi-
nated entirely.

4.6 Vertex Splits

A mesh split occurs when we replace vertex with ver-
tex in the connectivity list of one or more triangles that
originally used vertex (Figure 6(a)). The new vertex
is given exactly the same coordinate value as . Splits
introduce a “crack” or “hole” into the mesh. We prefer not
to split the mesh, but at high decimation rates this relieves
topological constraint and enables further decimation.

Figure 4. Modified priority queue implementation.

ei vi,()
0

ei vi,()
1

e0 v0,()
2

…
ei vi,()

m 1–

ei vi,()
m

Root

Level 1
Children

j v0() 2=

j v1()

j v2()

…
j vn 1–()

j vn()

Array tree
implementation

Index into tree
based on id

vt
vs vt,()

v1 vt= vs
vs

Li v1 v2 … vn, , ,()=

a) An edge collapse and split

Figure 5. Triangulation via edge collapse

vr

vl

vt
vs

c) Closing a hole

d) Forming non-manifold attachment

b) Valid and invalid splits

Collapse

Split
vl

vr

vt

vt v1=

v3

l l
3

v1 v3 v2, ,()=

l r
3

v1 v5 v4 v3, , ,()=

l l
4

l r
4

v5

v2

v4
Invalid

pi vt vj,()
 3 j n 1–≤ ≤ Ni

l i

n 3–
pi Ni vj vt–()⋅=

vs
vt

vs vt
vs

Splitting is only invoked when a valid edge collapse is not
available, or when a vertex cannot be triangulated (e.g., a
non-manifold vertex). Once the split operation occurs, the
vertices and are re-inserted into the priority queue.

Different splitting strategies are used depending on the
classification of the vertex (Figure 6(b)). Interior edge ver-
tices are split along the feature edges, as are corner verti-
ces. Non-manifold vertices are split into separate manifold
pieces. In any other type of vertex splitting occurs by arbi-
trarily separating the loop into two pieces. For example, if
a simple vertex cannot be deleted because a valid edge
collapse is not available, the loop of triangles will be arbi-
trarily divided in half (possibly in a recursive process).

Like the edge collapse/split, the vertex split/merge can
also be represented as a compact operation. A vertex split/
merge operation can be represented with four values

as shown in Figure 6(a). The vertices and define a
sweep of triangles (from to) that are to be separated
from the original vertex (we adopt a counter-clockwise
ordering convention to uniquely define the sweep of trian-
gles).

4.7 Progressive Mesh Storage

The storage requirements for a progressive mesh are
smaller than the standard triangle mesh representation
schemes. We estimate the storage requirements as follows.
A mesh generally consists of about vertices and tri-
angles, for a total of words of storage using a standard
scheme of three vertex indices per triangle, and three
coordinate values per vertex, each stored as one word of
information. Using a progressive mesh representation,
each edge split requires at a minimum the coordinates and
vertex indices , , , and , and creates two triangles
and one vertex, at a cost of words of storage. A vertex
split requires the four vertex indices , , , and ,
and typically no more than splits are required to
reduce the mesh to . We can then estimate the storage

requirements to total words, for a savings of 11% over
the standard scheme. Note that even though the vertex
split requires additional storage over edge collapse, it does
allow us to virtually eliminate the cost of representing the
base mesh.

Further savings are possible by carefully organizing the
order of the playback operations. For example, by renum-
bering the vertices after the forward progression is com-
plete, it is possible to eliminate the vertex index .

As [7] describes, additional storage savings are possible
based on the coherence of local topological operations,
and by 16-bit quantization and compression of the coordi-
nate values. We can also take into account the number of
bits required for a vertex index and use smaller word sizes,
if appropriate.

4.8 Error Inflection Points

An error inflection point occurs when the ratio of the
error is greater than a user-defined value

(6)

The importance of inflection points is that they mark
abrupt transitions in the error of the mesh, and often corre-
spond to significant changes in the appearance of the
mesh. Thus, by tracking these inflection points, we can
find natural points at which to generate LOD’s for a par-
ticular part. For example, the first error inflection point
always occurs at the point in which non-zero error is intro-
duced. Geometrically, this corresponds to the point where
all co-planar triangles have been removed from the inte-
rior of the mesh, and all co-linear vertices are removed
from the boundary of the mesh. This is an important point
in the reduction process, since at this point the reduced
model is indistinguishable from the original mesh using
typical surface-shading techniques.

We use error inflection points to build other levels in our
sequence of LOD models. For a requested reduction level

, we use the mesh with the closest inflection point

(7)

Typical values of range from 10 to 100, and are empir-
ically determined.

4.9 A Variation In Strategy

We found a variation of our splitting strategy to work well
for a certain class of problems. In this variation, wepre-
split the mesh along feature edges, at corners, and at non-
manifold vertices. This strategy works well for objects
with large, relatively flat regions, separated by thin, small
surfaces. This is because splitting isolates regions from
one another, thereby preventing the distortion of the mesh
due to errors from edge collapse across the thin surfaces.
An example of this behavior can be seen in Color Plate 2,
where the triangles forming the thin edges of the plate dis-
appear before the much larger triangles forming the faces
of the plate.

vs vt

Figure 6. Mesh splitting operations. Splits are exaggerated.

a) A vertex split and merge

vr

vl

vs

Split

Merge
vl

vr

vt

vs

b) Splitting different vertex types

Other types

Interior Edge Corner

Non-manifold

Vertex Split/Merge (vs vt vl vr), , ,

vl vr
vr vl

vs

n 2n
9n

vs vt vl vr
7n

vs vt vl vr
n 4⁄

M
0

8n

vt

Ei
Er

ei 1+

ei
----------- Er>

Lk M j

M j : Ej Lk– Ei Lk– for all k i≤ j n≤,≤

Er

5 Results

We implemented the algorithm as a C++ class in the
Visualization Toolkit (vtk) system [6]. The algorithm is
relatively compact requiring less than 2 KLines of code
(including the priority queue implementation). No formal
optimization of the code was attempted other than the
usual compiler optimization. All test results are run on a
190 MHz R10000 processor (compiled and run in 32-bit
mode) with 512 MBytes of memory.

We choose to test the algorithm on five different mod-
els. The first two are shown in Color Plates 1 and 2, and
are a shell mesh and plate with seven holes. The next two
models are extracted from CAD systems. The first is a
heat exchanger with 11,006 original polygons. The next is
a turbine shell consisting of 314,393 polygons. Finally, the
last model is very detailed turbine blade consisting of 1.68
million triangles originally. The data was obtained by gen-
erating an isosurface from a 512 x 512 x 300 industrial CT
scan of the part.

Figure 7 shows elapsed wall clock time in seconds for
these five examples at reduction levels of 0.50, 0.75, 0.90,
and 1.00 (elimination of all triangles). We also show the
number of edge collapses and vertex splits required at
each level of reduction.

Color Plates 3(a)-(f) show results for the heat
exchanger. Plates 4(a)-(f) show results for the turbine
shell. Plates 5(a)-(f) show the results for the turbine blade.
Note that in each case the onset of vertex splitting is
shown. In some of these color plates the red edges are
used to indicate mesh boundaries, while light green indi-
cates manifold, or interior edges.

The ability to modify topology provides us with reduc-
tion levels greater than could be achieved using any topol-
ogy preserving algorithm. Color Plate 4 clearly
demonstrates this since the maximum topology preserving
reduction we could obtain wasr=0.404. We were able to
more than double the reduction level and still achieve a
reasonable representation.

At extreme reduction levels the quality of the mesh var-
ied greatly depending on the model. In some cases a few
large triangles will “grow” and form nice approximations
(e.g., the plate and shell). In other cases, the mesh is frag-
mented by the splitting process and does not generate
larger triangles or good approximations. But in each case
we were able to recognize the part being represented,

which is sufficient for initial camera positioning and navi-
gation. We were generally pleased with the results of the
algorithm, since the creation of non-optimal meshes is
well balanced by the algorithm’s speed, ability to process
large meshes, and robustness.

6 Conclusion

We have described a topology modifying decimation algo-
rithm capable of generating reductions at any level. The
algorithm uses the invertible progressive operatorsEdge
Collapse/Split andVertex Split/Merge to construct com-
pact progressive meshes. The algorithm has a high enough
polygonal processing rate to support a large scale design
and visualization process. We have found it to be an
invaluable tool for creating LOD databases.

References
[1] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of

triangle meshes.Computer Graphics 26(2):65-70, July 1992.
[2] Turk, G. Re-Tiling of polygonal surfaces.Computer Graphics,

26(2):55-64, July 1992.
[3] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle.

Mesh optimization. Computer Graphics Proceedings (SIG-
GRAPH ‘93), pp 19-26, August 1993.

[4] P. Hinker and C. Hansen. Geometric optimization. InProc. of
Visualization ‘93. pages 189-195, October 1993.

[5] A. V. Aho, J. E. Hopcroft, J. D. Ullman.Data Structures and
Algorithms. Addison-Wesley, 1983.

[6] W. J. Schroeder, K. M. Martin, W. E. Lorensen.The Visualization
Toolkit An Object-Oriented Approach To 3D Graphics. Prentice-
Hall, 1996.

[7] H. Hoppe. Progressive Meshes.Proc. SIGGRAPH ‘96, pp 99-108,
August 1996.

[8] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agar-
wal, F. Brooks, W. Wright. Simplification envelopes.Proc. SIG-
GRAPH ‘96, pp 119-128, August 1996.

[9] J. Rossignac and P. Borel. Multi-resolution 3D approximations for
rendering. InModeling in Computer Graphics, pp. 455-465,
Springer-Verlag, June-July 1993.

[10] T. He, L. Hong A. Kaufma, A. Varshney, S. Wang. Voxel based
object simplification. InProc. of Visualization ‘95, pp. 296-303,
October 1995.

[11] R. Klein, G. Liebich, W. Strasser. Mesh reduction with error con-
trol. In Proc. of Visualization ‘96, pp. 311-318, October 1996.

[12] P. Heckbert and M. Garland. Fast polygonal approximation of ter-
rains and height fields. Technical Report CMU-CS-95-181, Carn-
egie Mellon University, August 1995.

Figure 7. Results for five different meshes. Times shown are elapsed seconds. Number of edge collapses and vertex splits are
also shown. The rate is the maximum number of triangles eliminated per elapsed minute.

Model Number
Triangles

Reduction 0.5 Reduction 0.75 Reduction 0.90 Reduction 1.00 Rate
time collapses splits time collapses splits time collapses splits time collapses splits

Shell 1132 0.46 319 0 0.68 494 0 0.70 557 0 0.76 648 0 89,368

Plate 2624 1.07 656 0 1.41 984 0 1.68 1228 169 1.73 1457 221 91,006

Heat Ex. 11,006 3.27 2759 0 4.42 4139 0 5.36 5447 914 5.86 6355 1160 112,689

Turbine 314,393 158 98,401 43,011 202 157,877 69,019 229 202,702 83,214 241 232,281 88,184 78,272

Blade 1,683,472 747 421,042 0 825 631,606 0 914 758,056 0 1042 852,743 24,501 96,937

Plate 1 - Topological constraints prevent further reduction (shell with holes). Red edges are on the
boundary of the mesh, light green edges are in the interior of the mesh.

a) Original model
1,132 triangles

b) Topology unchanged
43 triangles c) Topology modified

Plate 2- Sharp edge splits and hole elimination (thin plate with holes). (b) is a close-up of the mesh
showing the how the hole triangles are disconnected from the top plate.

a) Original model
2,624 triangles

b) Shortly after splitting
157 triangles

c) Final model
4 triangles

a) Original model
11,006 triangles

b) Reduction 50%,
5,518 triangles

c) Just after mesh splitting
2,707 triangles, 75.4% reduction

Plate 3- Heat exchanger at different levels of reduction. (c) shows the edges that are split at the onset of
edge splitting.

d) Reduction 90%,
1,100 triangles

e) Reduction 95%,
550 triangles

f) Reduction 98%,
220 triangles

a) Original model
314,39 triangles

b) Shortly before splitting
187,449 triangles, reduction 40.4%

c) 50% reduction,
157,196 triangles

Plate 4- Turbine shell shown at various reduction levels. Shell has thickness, and many features requiring
vertex splitting.

d) 75% reduction,
78,598 triangles

e) 90% reduction,
31,439 triangles

c) 95% reduction,
15,719 triangles

a) Original model
1,683,472 triangles

b) Close-up of edges
showing holes leading to interior

c) 75% reduction,
420,867triangles

Plate 5 - Turbine blade shown at various levels of reduction. Data derived from 5122 by 300 CT scan.

d) Shortly before splitting
134,120 triangles, 92% reduction

e) 95% reduction,
84,173 triangles

f) 99.5% reduction,
8,417 triangles

•
D

ec
im

at
io

n
of

 T
ria

ng
le

 M
es

he
s

W
ill

 S
ch

ro
ed

er

G
E

 C
or

po
ra

te
 R

&
D

S
ch

en
ec

ta
dy

, N
Y

•
V

er
te

x
D

ec
im

at
io

n
A

lg
or

ith
m

s
–

In
tr

od
uc

tio
n

–
Ta

xo
no

m
y

–
O

ve
rv

ie
w

–
E

rr
or

 M
ea

su
re

s
–

R
es

ul
ts

•
E

xt
en

si
on

s
–

M
od

ify
in

g
To

po
lo

gy
–

P
ro

gr
es

si
ve

 M
es

he
s

–
R

es
ul

ts

•
In

du
st

ria
l A

pp
lic

at
io

n
–

S
ci

en
tifi

c
V

is
ua

liz
at

io
n

–
In

te
ra

ct
iv

e
V

is
ua

liz
at

io
n

–
Te

rr
ai

n
–

D
ig

iti
ze

d
S

ur
fa

ce
s

O
ut

lin
e

Tr
ia

ng
le

 M
es

h
N

on
-m

an
ifo

ld
 fo

rm
s

•
P

ol
yg

on
al

 m
es

h
is

 a
 c

ol
le

ct
io

n
of

 n
on

-in
te

rs
ec

tin
g

po
ly

go
ns

, p
os

-
si

bl
y

jo
in

ed
 a

lo
ng

 c
om

m
on

 e
dg

es
 o

r
at

 v
er

tic
es

•
Tr

ia
ng

le
 m

es
h

is
 a

 p
ol

yg
on

al
 m

es
h

w
ho

se
 p

ol
yg

on
s

ar
e

tr
ia

ng
le

s

•
M

es
he

s
m

ay
 b

e
no

n-
m

an
ifo

ld

Te
rm

in
ol

og
y

D
efi

ni
tio

n
•

F
or

m
 “

go
od

”
ap

pr
ox

im
at

io
n

to
 o

rig
in

al
 m

es
h

–
V

is
ua

l a
pp

ro
xi

m
at

io
ns

–
G

eo
m

et
ric

 a
pp

ro
xi

m
at

io
ns

–
D

at
a

ap
pr

ox
im

at
io

nsR
eq

ui
re

m
en

ts
R

ed
uc

e
nu

m
be

r
of

 tr
ia

ng
le

s

D
es

ira
bl

e
qu

al
iti

es
•

G
en

er
al

 a
pp

lic
ab

ili
ty

•
Tr

ea
t l

ar
ge

 m
es

he
s

(1
06

tr
ia

ng
le

s)

•
O

(n
)

tim
e

co
m

pl
ex

ity
 /

hi
gh

 p
ro

ce
ss

in
g

ra
te

s

•
R

ed
uc

ed
 v

er
te

x
se

t i
s

a
su

bs
et

 o
f o

rig
in

al
 v

er
te

x
se

t
–

pr
es

er
ve

 te
xt

ur
e

co
or

di
na

te
s

–
no

rm
al

s
–

ot
he

r
ve

rt
ex

 a
ttr

ib
ut

es

•
Tr

ea
t l

ar
ge

 m
es

he
s

(1
06

tr
ia

ng
le

s)

•
S

im
pl

e,
 c

om
pa

ct
, e

ffi
ci

en
t a

lg
or

ith
m

•
La

se
r

ra
ng

e
fin

de
rs

•
3D

 c
oo

rd
in

at
e

m
ap

pi
ng

D
at

a
S

ou
rc

es

D
ig

iti
ze

rs
:

•
S

at
el

lit
e

•
R

ad
ar

 M
ap

pi
ng

•
S

on
ar

D
at

a
S

ou
rc

es

Te
rr

ai
n:

•
Is

o-
S

ur
fa

ce
 G

en
er

at
io

n

•
G

eo
m

et
ry

 E
xt

ra
ct

io
n

Te
ch

ni
qu

es

•
G

ly
ph

 G
en

er
at

io
nD

at
a

S
ou

rc
es

V
is

ua
liz

at
io

n:

•
S

te
re

o
Li

th
og

ra
ph

y

•
G

ra
ph

ic
s

R
ep

re
se

nt
at

io
ns

•
M

es
h

G
en

er
at

io
n

/ T
es

se
lla

tio
n

D
at

a
S

ou
rc

es

M
od

el
in

g
/ T

es
se

lla
tio

n:

•
Te

ss
el

la
tio

n
al

go
rit

hm
s

->
 1

04
po

ly
go

ns

•
D

ig
ita

l e
le

va
tio

n
da

ta
 -

>
 1

05
to

 1
07

po
ly

go
ns

•
3D

 D
ig

iti
ze

rs
 -

>
 1

05
to

 1
06

po
ly

go
ns

•
Is

o-
su

rf
ac

e
ge

ne
ra

tio
n

->
 1

06
tr

ia
ng

le
s

M
ot

iv
at

io
n

Tr
ia

ng
le

 m
es

he
s

ar
e

la
rg

e:

•
S

lo
w

er
 r

en
de

rin
g

sp
ee

ds

•
La

rg
e

m
em

or
y

re
qu

ire
m

en
ts

•
M

or
e

ex
pe

ns
iv

e
an

al
ys

is

La
rg

e
m

es
he

s
m

ea
n

Ta
xo

no
m

y
of

 M
et

ho
ds

To
p

o
lo

g
y

P
re

se
rv

in
g

To
p

o
lo

g
y

M
o

d
ify

in
g

Vertex SubsetResample

To
po

lo
gy

 P
re

se
rv

in
g

O
rig

in
al

 to
po

lo
gy

 o
f m

es
h

m
ai

nt
ai

ne
d

To
po

lo
gy

 M
od

ify
in

g
O

rig
in

al
 to

po
lo

gy
 o

f m
es

h
m

ay
 b

e
m

od
ifi

ed

V
er

te
x

S
ub

se
t

S
et

 o
f r

ed
uc

ed
 v

er
tic

es
 is

 a
 s

ub
se

t o
f o

rig
in

al
ve

rt
ic

es
.

R
es

am
pl

e
R

ed
uc

ed
 v

er
tic

es
 d

o
no

t b
el

on
g

to
 o

rig
in

al
 s

et
of

 v
er

tic
es

.

D
ec

im
at

io
n

G
eo

m
et

ric
 O

pt
im

iz
at

io
n

S
ou

cy
, v

er
te

x
re

m
ov

al
 te

ch
-

ni
qu

es

R
os

si
gn

ac
 &

 B
or

re
l

P
ro

gr
es

si
ve

 D
ec

im
at

io
n

V
is

ua
l p

ol
yg

on
s

B
ou

nd
in

g
H

ul
ls

Im
pl

ic
it

M
od

el
in

g

T
ur

k

H
op

pe

M
ul

tir
es

ol
ut

io
n

an
al

ys
is

•
V

is
ib

le
 p

ol
yg

on
s

-
D

is
ca

rd
 p

ol
yg

on
s

no
t v

is
ib

le
 d

ur
in

g
vi

ew
in

g

•
B

ou
nd

in
g

H
ul

ls
-

C
on

ve
x

hu
lls

 (
D

el
au

na
y

tr
ia

ng
ul

at
io

ns
. e

tc
).

-
S

hr
in

k-
w

ra
pp

ed
 p

ol
yg

on
al

 s
ur

fa
ce

s
-

B
ou

nd
in

g
bo

xe
s;

 c
lo

se
 fi

t b
ou

nd
in

g
po

ly
he

dr
a

•
Im

pl
ic

it
m

od
el

in
g

-
Vo

xe
liz

e
ba

se
d

on
 d

is
ta

nc
e

fu
nc

tio
n

-
U

se
 lo

w
-r

es
ol

ut
io

n
vo

lu
m

e
-

E
xt

ra
ct

 is
o-

su
rfa

ce
 o

f d
is

ta
nc

e
va

lu
e

S
im

pl
e

M
et

ho
ds

•
C

ha
ra

ct
er

iz
e

lo
ca

l t
op

ol
og

y
an

d
ge

om
et

ry

•
E

va
lu

at
e

de
ci

m
at

io
n

cr
ite

rio
n

•
If

cr
ite

rio
n

sa
tis

fie
d,

 r
em

ov
e

ve
rt

ic
es

 a
nd

 a
ss

oc
ia

te
d

tr
ia

ng
le

s

•
Tr

ia
ng

ul
at

e
re

su
lti

ng
 h

ol
e

D
ec

im
at

io
n

A
lg

or
ith

m

Ite
ra

te
 o

ve
r

se
t o

f v
er

tic
es

; f
or

 e
ac

h
ve

rt
ex

:

•
Fa

st
 O

(n
)

tim
e

co
m

pl
ex

ity

•
C

re
at

es
 s

im
pl

ifi
ed

 m
es

h
w

ith
 s

ub
se

t o
f v

er
tic

es

•
To

po
lo

gy
 P

re
se

rv
ed

•
F

le
xi

bl
e

fr
am

ew
or

k
fo

r
di

ffe
re

nt
 e

rr
or

 m
ea

su
re

 /
tr

ia
ng

ul
at

io
n

F
ea

tu
re

s

•
T

hr
ee

 b
as

ic
 s

te
ps

 (
re

pe
at

ed
 fo

r
ea

ch
 v

er
te

x)

D
ec

im
at

io
n

S
ch

ro
ed

er
, Z

ar
ge

, L
or

en
se

n,
 P

ro
c.

 S
ig

gr
ap

h
‘9

2.

E
va

lu
at

e
lo

ca
l t

op
ol

-
og

y
/ g

eo
m

et
ry

Tr
ia

ng
ul

at
e

D
el

et
e

Ve
rt

ex

•
Lo

ok
 fo

r
sh

ar
p

co
rn

er
s

/ e
dg

es

•
Lo

ok
 fo

r
no

n-
m

an
ifo

ld
 c

as
es

•
E

va
lu

at
e

de
ci

m
at

io
n

cr
ite

rio
n:

–
ve

rt
ex

 d
is

ta
nc

e
to

 p
la

ne
 (

if
in

te
rio

r
ve

rt
ex

)
–

ve
rt

ex
 d

is
ta

nc
e

to
 li

ne
 (

if
bo

un
da

ry
 v

er
te

x
or

 if
 s

ha
rp

 e
dg

e)

•
O

(n
)

fo
r

ea
ch

 p
as

sD
ec

im
at

io
n

E
va

lu
at

e
lo

ca
l t

op
ol

og
y

/ g
eo

m
et

ry
:

•
V

er
te

x
is

 n
ot

 c
om

pl
ex

•
V

er
te

x
is

 n
ot

 c
la

ss
ifi

ed
 a

s
“c

or
ne

r”
 v

er
te

x

•
V

er
te

x
m

ee
ts

 d
ec

im
at

io
n

cr
ite

rio
n

(i.
e.

, d
is

ta
nc

e
to

 p
la

ne
 fo

r
in

te
-

rio
r

ve
rt

ic
es

, d
is

ta
nc

e
to

 e
dg

e
fo

r
bo

un
da

ry
 v

er
tic

es
 o

r
fo

r
ve

rt
i-

ce
s

on
 s

ha
rp

 e
dg

e)

•
Tr

ia
ng

ul
at

io
n,

 in
cl

ud
in

g
co

ns
tr

ai
nt

s
on

 a
sp

ec
t r

at
io

, i
s

po
ss

ib
le

.

D
ec

im
at

io
n

D
el

et
e

ve
rt

ex
 u

nd
er

 fo
llo

w
in

g
co

nd
iti

on
s:

•
U

se
 3

D
 r

ec
ur

si
ve

 lo
op

 s
pl

itt
in

g

•
P

ol
yg

on
s

cr
ea

se
d

w
ith

 s
ha

rp
 e

dg
e

ar
e

tr
ia

ng
ul

at
ed

 a
lo

ng
 e

dg
e

•
A

sp
ec

t r
at

io
 c

on
tr

ol
le

d
to

 in
su

re
 g

oo
d

re
tr

ia
ng

ul
at

io
ns

D
ec

im
at

io
n

Tr
ia

ng
ul

at
io

n:

•
S

im
pl

e
ve

rt
ex

–
co

m
pl

et
e

cy
cl

e
of

 tr
ia

ng
le

s
–

ea
ch

 tr
ia

ng
le

 e
dg

e
us

ed
 tw

ic
e

•
B

ou
nd

ar
y

ve
rt

ex
–

se
m

i-c
yc

le
 o

f t
ria

ng
le

s
–

bo
un

da
ry

 e
dg

es
 u

se
d

on
ce

–
in

te
rio

r
ed

ge
s

us
ed

 tw
ic

e

•
C

om
pl

ex
 v

er
te

x
–

no
n-

m
an

ifo
ldVe

rt
ex

 C
la

ss
ifi

ca
tio

n

S
im

pl
e

B
ou

nd
ar

y

C
om

pl
ex

•
Id

en
tif

y
fe

at
ur

e
ed

ge
s

(s
pe

ci
fie

d
di

he
dr

al
 a

ng
le

)

•
In

te
rio

r
ed

ge
 v

er
te

x
->

 2
 fe

at
ur

e
ed

ge
s

•
C

or
ne

r
ve

rt
ex

 -
>

 1
 o

r
3

or
 m

or
e

fe
at

ur
e

ed
ge

s

S
im

pl
e

Ve
rt

ex
 C

la
ss

ifi
ca

tio
n

S
im

pl
e

ve
rt

ic
es

 a
re

 fu
rt

he
r c

la
ss

ifi
ed

 b
as

ed
 o

n
ge

om
et

ry
 (

i.e
.,

ev
al

ua
tio

n
of

 fe
at

ur
e

ed
ge

s)

S
im

pl
e

Ve
rt

ex
 C

la
ss

ifi
ca

tio
n

S
im

pl
e

In
te

rio
r

E
dg

e
C

or
ne

r

•
D

is
ta

nc
e

to
 p

la
ne

–
si

m
pl

e
ve

rt
ic

es

•
D

is
ta

nc
e

to
 li

ne
–

bo
un

da
ry

 v
er

tic
es

–
in

te
rio

r
ed

ge
 v

er
tic

es

•
C

or
ne

r
an

d
co

m
pl

ex
 v

er
tic

es
 n

ot
 r

em
ov

ed

D
ec

im
at

io
n

C
rit

er
io

n

V
er

te
x

re
m

ov
al

 b
as

ed
 o

n
de

ci
m

at
io

n
cr

ite
ria

dd
d

•
D

is
ta

nc
e

to
 “

av
er

ag
e”

 p
la

ne
–

si
m

pl
e

ve
rt

ic
es

•
D

is
ta

nc
e

to
 li

ne
–

bo
un

da
ry

 v
er

tic
es

–
in

te
rio

r
ed

ge
 v

er
tic

es

•
H

ol
e

is
 s

ta
r-

sh
ap

ed

•
H

ol
e

is
 g

en
er

al
ly

 n
on

-p
la

na
r

•
U

se
 r

ec
ur

si
ve

 3
D

 lo
op

 s
pl

itt
in

g
pr

oc
es

s

•
S

pl
its

 c
on

tr
ol

le
d

by
 a

sp
ec

t r
at

io
 (

m
ax

im
um

 v
er

te
x

di
st

an
ce

 fr
om

sp
lit

 li
ne

)
/ (

le
ng

th
 o

f s
pl

it
lin

e)
 -

>
 c

ho
os

e
la

rg
e

va
lu

es
.

Tr
ia

ng
ul

at
io

n

V
er

te
x

re
m

ov
al

 c
re

at
es

 h
ol

e
to

 b
e

pa
tc

he
d

S
pl

it
pl

an
e

S
pl

it
lin

e

•
N

ot
 p

os
si

bl
e

to
 fi

nd
 s

pl
it

lin
e

•
A

sp
ec

t r
at

io
 n

ot
 s

at
is

fie
d

•
C

ol
la

ps
in

g
si

m
pl

e
vo

lu
m

es

•
C

ol
la

ps
in

g
tu

nn
el

sTr
ia

ng
ul

at
io

n

Tr
ia

ng
ul

at
io

n
Fa

ilu
re

:

N
on

-m
an

ifo
ld

 a
tta

ch
m

en
ts

 fr
om

 tu
nn

el
s

•
V

er
te

x
lis

t
–

x,
y,

z
co

or
di

na
te

s

•
Tr

ia
ng

le
 li

st
–

3
de

fin
in

g
ve

rt
ic

es

•
V

er
te

x
us

e
lis

t
–

tr
ia

ng
le

s
us

in
g

ve
rt

ex

(s
ee

 in
cl

ud
ed

 p
ap

er
)

D
at

a
S

tr
uc

tu
re

D
at

a
st

ru
ct

ur
e

is
 c

rit
ic

al
 to

 a
lg

or
ith

m
 e

ffi
ci

en
cy

Tr
ia

ng
le

Ve
rt

ex

D
yn

am
ic

F
ix

ed

•
M

ed
ic

al

•
Te

rr
ai

n

•
G

eo
m

et
ric

 M
od

el
in

g

•
La

se
r

D
ig

iti
ze

r

R
es

ul
ts

•
D

is
ta

nc
e

m
ea

su
re

s

•
S

ur
fa

ce
 A

re
a

•
R

em
ov

al
 V

ol
um

e

•
E

ne
rg

y
F

un
ct

io
ns

•
H

au
sd

or
ff

D
is

ta
nc

e

C
ha

ra
ct

er
iz

in
g

A
lg

or
ith

m
s

E
rr

or
 M

ea
su

re
s:

•
A

bs
ol

ut
e

•
R

el
at

iv
e

E
rr

or
 M

ea
su

re
s

D
is

ta
nc

e
M

ea
su

re
s:

dd
d

•
D

is
ta

nc
e

to
 “

av
er

ag
e”

 p
la

ne
•

D
is

ta
nc

e
to

 li
ne

•
To

ta
l a

re
a

of
 m

es
h

be
fo

re
 a

nd
 a

fte
r

re
du

ct
io

n

•
C

an
 b

e
co

m
pu

te
d

in
cr

em
en

ta
lly

 (
in

 m
os

t c
as

es
)

E
rr

or
 M

ea
su

re
s

S
ur

fa
ce

 A
re

a:

S i
S i

1
+

∆
E

i
1

+
S i

1
+

S i
–

=

•
V

ol
um

e
en

cl
os

ed
 b

y
in

iti
al

 a
nd

 r
ed

uc
ed

 m
es

h.

•
C

an
 b

e
co

m
pu

te
d

in
cr

em
en

ta
lly

 in
 s

om
e

ca
se

s.

E
rr

or
 M

ea
su

re
s

R
em

ov
al

 V
ol

um
e:

In
iti

al
 m

es
h

R
ed

uc
ed

 m
es

h

•
C

om
bi

na
tio

ns
 o

f e
rr

or
 fu

nc
tio

ns
, r

ep
re

se
nt

at
io

na
l f

un
ct

io
ns

, a
nd

te
rm

s
to

 g
ua

ra
nt

ee
 m

in
im

um
 v

al
ue

.

•
E

rr
or

 fu
nc

tio
ns

 c
ou

ld
 in

cl
ud

e
di

st
an

ce
, s

ur
fa

ce
 a

re
a,

 a
nd

/o
r

vo
l-

um
e

fu
nc

tio
ns

, a
s

w
el

l a
s

co
ns

tr
ai

nt
s

on
 tr

ia
ng

le
 s

ha
pe

.

E
rr

or
 M

ea
su

re
s

E
ne

rg
y

F
un

ct
io

ns
:

•
T

he
 m

ax
im

um
 d

is
ta

nc
e

be
tw

ee
n

tw
o

di
st

an
ce

 m
ea

su
re

s:
–

D
is

ta
nc

e
of

 p
oi

nt
s

in
 s

im
pl

ifi
ed

 m
es

h
to

 o
rig

in
al

 m
es

h
–

D
is

ta
nc

e
of

 p
oi

nt
s

in
 o

rig
in

al
 m

es
h

to
 s

im
pl

ifi
ed

 m
es

h

•
S

ym
m

et
ric

•
K

le
in

, L
ie

bi
ch

, S
tr

as
se

r,
M

es
h

R
ed

uc
tio

n
w

ith
 E

rr
or

 C
on

tr
ol

,
P

ro
c.

 o
f V

is
ua

liz
at

io
n

‘9
6.

E
rr

or
 M

ea
su

re
s

H
au

sd
or

ff
D

is
ta

nc
e

•
To

po
lo

gy
 C

on
st

ra
in

ts
–

G
en

us
 P

re
se

rv
at

io
n

–
M

an
ifo

ld
 v

s.
 N

on
-M

an
ifo

ld
 T

op
ol

og
y

•
P

ro
gr

es
si

ve
 M

es
he

s
–

S
m

oo
th

 tr
an

si
tio

ns
 b

et
w

ee
n

re
du

ct
io

n
le

ve
l

–
E

nc
od

ab
le

, c
om

pa
ct

 o
pe

ra
tio

ns
 o

n
th

e
m

es
h

E
xt

en
si

on
s

To
 D

ec
im

at
io

n

G
oi

ng
 B

ey
on

d
T

he
se

 L
im

ita
tio

ns

•
C

ol
la

ps
in

g
ho

le
s

To
po

lo
gi

ca
l C

on
st

ra
in

ts

G
en

us
 P

re
se

rv
at

io
n

a)
 O

rig
in

al
 m

od
el

1,
13

2
tr

ia
ng

le
s

b)
 T

op
ol

og
y

un
ch

an
ge

d
43

 tr
ia

ng
le

s
c)

 T
op

ol
og

y
m

od
ifi

ed
(2

 tr
ia

ng
le

s)

•
Tu

nn
el

 c
ol

la
ps

e
ca

n
cr

ea
te

 n
on

-m
an

ifo
ld

 to
po

lo
gy

To
po

lo
gi

ca
l C

on
st

ra
in

ts

G
en

us
 P

re
se

rv
at

io
n

•
R

es
ul

t i
s

tw
o

or
 m

or
e

m
an

ifo
ld

 p
ie

ce
s

S
pl

itt
in

g
M

es
h

N
on

-m
an

ifo
ld

 V
er

tic
es

 C
an

 b
e

S
pl

it

•
A

lo
ng

 s
ha

rp
 e

dg
es

•
Tr

ia
ng

ul
at

e
co

m
pl

ex
 r

eg
io

ns

•
R

ec
ov

er
in

g
fr

om
 m

es
h

de
ge

ne
ra

ci
es

E
xt

en
di

ng
 S

pl
itt

in
g

U
se

 S
pl

itt
in

g
To

 A
dd

re
ss

 O
th

er
 C

as
es

S
pl

it
O

pe
ra

tio
ns

A
 F

am
ily

 o
f O

pe
ra

tio
ns

O
th

e
r

ty
p

e
s

In
te

ri
o

r
E

d
ge

C
o

rn
e

r

N
o

n
-m

a
n

ifo
ld

•
S

m
oo

th
 tr

an
si

tio
ns

 b
et

w
ee

n
re

du
ct

io
n

le
ve

l

•
C

om
pa

ct
, e

nc
od

ab
le

 o
pe

ra
tio

ns
 fo

r
ef

fic
ie

nt
 s

to
ra

ge
 a

nd
tr

an
sm

is
si

on

•
O

rig
in

al
 im

pl
em

en
ta

tio
n

w
as

 to
po

lo
gy

 p
re

se
rv

in
g

ed
ge

 c
ol

la
ps

e
/

ed
ge

 s
pl

it

P
ro

gr
es

si
ve

 M
es

he
s

H
op

pe
 S

ig
gr

ap
h

‘9
6

v r

v l

v t

v s

C
o

lla
p

se

S
p

lit

v l

v r v t

•
V

er
te

x
sp

lit
 -

 c
re

at
e

id
en

tic
al

 v
er

te
x

an
d

up
da

te
 to

po
lo

gy
 o

f m
es

h

•
V

er
te

x
m

er
ge

 -
 m

er
ge

 c
oi

nc
id

en
t v

er
tic

es

To
po

lo
gy

 M
od

ify
in

g
O

pe
ra

tio
ns

P
ro

gr
es

si
ve

 o
pe

ra
tio

ns
 e

xt
en

de
d

v r

v l

v s

S
p

lit

M
e

rg
e

v l

v r

v t

v s

•
Tr

ia
ng

ul
at

io
n

op
er

at
io

n
is

 a
lte

re
d

to
 u

se
 e

dg
e

co
lla

ps
e

•
M

es
h

sp
lit

tin
g

is
 p

er
fo

rm
ed

 to
 r

es
ol

ve
 n

on
-m

an
ifo

ld
 /

co
m

pl
ex

co
nd

iti
on

s

•
P

ro
gr

es
si

ve
 o

pe
ra

tio
ns

 fo
r

ef
fic

ie
nt

 s
to

ra
ge

 a
nd

 tr
an

sm
is

si
on

;
an

d
sm

oo
th

 p
la

yb
ac

k

•
G

ua
ra

nt
ee

d
re

du
ct

io
n

le
ve

l

P
ro

gr
es

si
ve

 D
ec

im
at

io
n

A
lg

or
ith

m

E
xt

en
d

de
ci

m
at

io
n

fo
r

to
po

lo
gi

ca
l m

od
ifi

ca
tio

n

R
es

ul
ts

P
ro

gr
es

si
ve

 d
ec

im
at

io
n

a)
 O

rig
in

al
 m

od
el

2,
62

4
tr

ia
ng

le
s

b)
 S

ho
rt

ly
 a

fte
r

sp
lit

tin
g

15
7

tr
ia

ng
le

s
c)

 F
in

al
 m

od
el

4
tr

ia
ng

le
s

R
es

ul
ts

P
ro

gr
es

si
ve

 d
ec

im
at

io
n

a)
 O

rig
in

al
 m

od
el

11
,0

06
 tr

ia
ng

le
s

b)
 R

ed
uc

tio
n

50
%

,
5,

51
8

tr
ia

ng
le

s
c)

 J
us

t a
fte

r
m

es
h

sp
lit

tin
g

d)
 R

ed
uc

tio
n

90
%

,
1,

10
0

tr
ia

ng
le

s
e)

 R
ed

uc
tio

n
95

%
,

55
0

tr
ia

ng
le

s
f)

 R
ed

uc
tio

n
98

%
,

22
0

tr
ia

ng
le

s

R
es

ul
ts

P
ro

gr
es

si
ve

 d
ec

im
at

io
n

a)
 O

rig
in

al
 m

od
el

31
4,

39
 tr

ia
ng

le
s

b)
 S

ho
rt

ly
 b

ef
or

e
sp

lit
tin

g
18

7,
44

9
tr

ia
ng

le
s,

 r
ed

uc
-

tio
n

40
.4

%

c)
 5

0%
 r

ed
uc

tio
n,

15
7,

19
6

tr
ia

ng
le

s

d)
 7

5%
 r

ed
uc

tio
n,

78
,5

98
 tr

ia
ng

le
s

e)
 9

0%
 r

ed
uc

tio
n,

31
,4

39
 tr

ia
ng

le
s

c)
 9

5%
 r

ed
uc

tio
n,

15
,7

19
 tr

ia
ng

le
s

R
es

ul
ts

P
ro

gr
es

si
ve

 d
ec

im
at

io
n

a)
 O

rig
in

al
 m

od
el

1,
68

3,
47

2
tr

ia
ng

le
s

b)
 C

lo
se

-u
p

of
 e

dg
es

sh
ow

in
g

ho
le

s
le

ad
in

g
to

 in
te

rio
r

c)
 7

5%
 r

ed
uc

tio
n,

42
0,

86
7t

ria
ng

le
s

d)
 S

ho
rt

ly
 b

ef
or

e
sp

lit
tin

g
13

4,
12

0
tr

ia
ng

le
s,

e)
 9

5%
 r

ed
uc

tio
n,

84
,1

73
 tr

ia
ng

le
s

f)
 9

9.
5%

 r
ed

uc
tio

n,
8,

41
7

tr
ia

ng
le

s

•
N

ea
rly

 1
00

,0
00

 tr
ia

ng
le

s
/ e

la
ps

ed
 m

in
ut

e
ra

te

•
C

an
 p

ro
ce

ss
 1

00
 m

ill
io

n
tr

ia
ng

le
s

/ d
ay

•
Tr

ad
e-

of
f b

et
w

ee
n

fid
el

ity
 a

nd
 s

pe
ed

F
ig

ur
e

1.
R

es
ul

ts
 fo

r
fiv

e
di

ffe
re

nt
 m

es
he

s.
 T

im
es

 s
ho

w
n

ar
e

el
ap

se
d

se
co

nd
s.

 N
um

be
r

of
 e

dg
e

co
lla

ps
es

 a
nd

 v
er

te
x

sp
lit

s
ar

e
al

so
 s

ho
w

n.
 T

he
ra

te
 is

 th
e

m
ax

im
um

 n
um

be
r

of
 tr

ia
ng

le
s

el
im

in
at

ed
 p

er
 e

la
ps

ed
 m

in
ut

e.

M
od

el
N

um
be

r
Tr

ia
ng

le
s

R
ed

uc
tio

n
0.

5
R

ed
uc

tio
n

0.
75

R
ed

uc
tio

n
0.

90
R

ed
uc

tio
n

1.
00

R
at

e
tim

e
co

lla
ps

es
sp

lit
s

tim
e

co
lla

ps
es

sp
lit

s
tim

e
co

lla
ps

es
sp

lit
s

tim
e

co
lla

ps
es

sp
lit

s

S
he

ll
11

32
0.

46
31

9
0

0.
68

49
4

0
0.

70
55

7
0

0.
76

64
8

0
89

,3
68

P
la

te
26

24
1.

07
65

6
0

1.
41

98
4

0
1.

68
12

28
16

9
1.

73
14

57
22

1
91

,0
06

H
ea

t E
x.

11
,0

06
3.

27
27

59
0

4.
42

41
39

0
5.

36
54

47
91

4
5.

86
63

55
11

60
11

2,
68

9

T
ur

bi
ne

31
4,

39
3

15
8

98
,4

01
43

,0
11

20
2

15
7,

87
7

69
,0

19
22

9
20

2,
70

2
83

,2
14

24
1

23
2,

28
1

88
,1

84
78

,2
72

B
la

de
1,

68
3,

47
2

74
7

42
1,

04
2

0
82

5
63

1,
60

6
0

91
4

75
8,

05
6

0
10

42
85

2,
74

3
24

,5
01

96
,9

37

R
es

ul
ts

P
ro

gr
es

si
ve

 D
ec

im
at

io
n

•
Is

os
ur

fa
ce

 fr
om

 in
du

st
ria

l C
T

: 1
.6

8
m

ill
io

n
tr

ia
ng

le
s

In
du

st
ria

l A
pp

lic
at

io
n

S
ci

en
tifi

c
V

is
ua

liz
at

io
n

•
Is

os
ur

fa
ce

 fr
om

 m
ed

ic
al

 C
T

:9
0%

 r
ed

uc
tio

n

•
D

at
as

et
s

on
 th

e
or

de
r

of
 1

00
 m

ill
io

n
tr

ia
ng

le
s

•
N

ee
d

to
 p

ro
ce

ss
 d

at
a

w
ith

in
 a

 s
in

gl
e

da
y

In
du

st
ria

l A
pp

lic
at

io
n

In
te

ra
ct

iv
e

V
is

ua
liz

at
io

n

•
95

%
 r

ed
uc

tio
n

w
ith

 te
xt

ur
e

In
du

st
ria

l A
pp

lic
at

io
n

D
ig

iti
ze

d
S

ur
fa

ce
s

InnovMetric’s Multiresolution
Modeling Algorithms

Marc Soucy, Ph.D.

InnovMetric Software Inc.
2014 Jean-Talon Nord

Ste-Foy, Qué., Canada, G1N 4N6
Tel.: (418) 688-2061 Fax: (418) 688-3001

http://www.innovmetric.com

Table of Contents

i

1. Why create detailed polygonal models?... 1-1

2. IMCompress: A vertex decimation technique
that preserves 3-D tolerances.. 2-1

2.1 Development history ...2-1

2.2 Purpose of a vertex decimation technique ...2-1

2.3 Algorithm outline and properties ...2-2

2.3.1 Definitions ...2-2

2.3.2 Algorithm strategy ...2-3

2.3.3 Algorithm geometrical properties ...2-4

2.4 A closer look at the vertex removal operation ...2-5

2.5 Preservation of surface orientation discontinuities ..2-6

2.6 IMCompress implementation ..2-7

2.6.1 Memory requirements ...2-7

2.6.2 Time complexity: A nearly O(n) implementation2-8

2.7 Results ...2-9

2.7.1 Hipbone model ..2-9

2.7.2 Squash model ..2-10

2.7.3 Ivory bear model ...2-11

2.7.4 Additional remarks ..2-12

3. IMTexture: Generating coarse texture-mapped
models from accurate color 3-D models... 3-1

3.1 Development history ...3-1

3.2 Purpose of the algorithm ...3-1

3.3 Algorithm outline ..3-2

3.4 Tessellating the texture image ...3-3

3.5 Interpolating the texture image ..3-6

3.6 Enforcing texture continuity ..3-8

ii

3.7 Results ...3-8

3.7.1 Procedure for creating a texture-mapped model3-8

3.7.2 Squash model ..3-8

3.7.3 Ivory bear model ...3-10

4. Packaging commercial polygon reduction applications... 4-1

4.1 Topological anomalies found in polygonal models ...4-1

4.2 Preserving grouping information ...4-2

4.3 Interactive polygon reduction ..4-2

5. Conclusion .. 5-1

5.1 Reduction of detailed polygonal models ...5-1

5.2 Future developments ...5-1

InnovMetric’s Multiresolution Modeling Algorithms 1-1

1. Why create detailed polygonal models?

There exists surface-generation processes that produce very detailed polygonal
descriptions:

● Laser digitizing (with or without color information)

● CAT/SCAN

● Digital terrain modeling

● Tessellation of CAD models

Why is it preferable to produce a detailed description?

1. To ensure that no features are missing. Adaptive reconstruction of an
unknown surface is a VERY complex issue.

2. In some cases, we WANT the details. Archeologists and museum
curators want highly-detailed models for visually inspecting the fine
3-D texture of their artifacts. They also need reduced representations
to rapidly access areas of interest.

By computing a high-resolution representation in the first place, we have the
potential to generate any desired reduced representation.

InnovMetric’s Multiresolution Modeling Algorithms 2-1

2. IMCompress: A vertex decimation technique
that preserves 3-D tolerances

2.1 Development history

1989-1991
First implementation of the vertex decimation technique.

1992
M. Soucy, A. Croteau, D. Laurendeau, “A multi-resolution surface
model for compact representation of range images”, inProc. of
IEEE Intl. Conf. on Robotics and Automation, pp. 1701-1706,
May 10-15, 1992.

M. Soucy, D. Laurendeau, “Multi-resolution surface modeling
from multiple range views”, inProc. of IEEE Conf. on Computer
Vision and Pattern Recognition, pp. 348-353, June 15-18, 1992.

1994
Second implementation (IMCompress 1.0). A nearlyO(n) time
complexity has been achieved.

1997
IMCompress 2.0 offers support for grouping information, material
properties, and texture coordinates.

2.2 Purpose of a vertex decimation technique

Given an initial triangular mesh, a vertex decimation technique generates reduced
triangular meshes that a) are anchored on a subset of the initial vertices, and b)
optimize fidelity with respect to the original shape.

❏ Input

A dense triangulation model describing a manifold surface embedded in
3-D space. Ideally, the model vertices should be evenly distributed over the
surface.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-2

❏ Output

One or several reduced triangulations having the following characteristics:

● The set of vertices forming the reduced triangulation is a subset of
the original set of vertices.

● The deviation of the reduced model surface with respect to the
original model is known and characterized by a metric.

● Important features (edges, corners) are automatically preserved.

2.3 Algorithm outline and properties

2.3.1 Definitions

❏ Preservation of local topology

Removing a vertex locally modifies a triangulation. A set of triangles is
deleted, and new triangles are computed and inscribed in the triangulation.
Local topology is preserved if the two sets of deleted and newly-created
triangles have the same topology.

❏ 3-D tolerance

The maximum 3-D distance between a reduced triangulation and ALL the
original model vertices.

❏ Mapping of a vertex onto a reduced triangulation

An operation that associates a vertex with a unique corresponding point
located on a triangle of a reduced triangulation.

Topology is preserved Topology is not preserved

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-3

2.3.2 Algorithm strategy

Directly computing the optimal 1216 triangle model that optimizes fidelity with
respect to the original model is a VERY difficult problem.

A more practical approach consists of implementing a sequential optimization
process. At each iteration, one can find the optimal vertex that should be removed.

As the number of iterations increases, the sequential optimization process tends to
deviate from the ideal optimization process. Therefore, we need a very good
optimization function to use sequential optimization.

169 764 triangles 1216 triangles

% of reduction on the number of triangles

3
-D

 e
rr

o
r

Ideal optimization

Sequential optimization

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-4

❏ Vertex decimation based on a sequential optimization process

Algorithm : At each iteration, remove the vertex that minimizes the 3-D
tolerance.

Pseudocode:

/* Initialization of the algorithm */

for (i=0; i< number_vertices; i++) {

compute_retriangulation_vertex_i;

compute_retriangulation_error_vertex_i;
}

built_list_ordered_vertices;

/* Sequential optimization process */

while (maximum_error < THRESHOLD) {

find_vertex_minimizing_error;

find_neighbors_vertex;

remove_vertex;

delete_old_triangles;

inscribe_new_triangles;

for (i=0; i< number_neighbors; i++) {

compute_retriangulation_neighbor_i;

compute_retriangulation_error_neighbor_i;

modify_list_of_vertices;
}

}

2.3.3 Algorithm geometrical properties

❏ Preservation of local surface topology

❏ Preservation of surface edges

The devised sequential optimization process naturally preserves important
orientation discontinuities.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-5

❏ Equiangularity of the reduced triangulations

❏ Mapping of the original vertices onto the reduced triangulations

This property allows the mapping of RGB colors onto a reduced model.

❏ Maximum error norm

The maximum 3-D distance between the original vertices and a reduced
model is bounded by a 3-D tolerance value.

2.4 A closer look at the vertex removal operation

R1

R2

R3

R4

T1

T2

T3

T4

T6

p1

p2

p4

p5

p6

pe

T5

p3

A)

● Vertexpe is to be removed.

● TrianglesT1 to T6 are connected tope.

● Verticesp1 to p6 are connected tope.

● Small dots represent removed vertices.

C)

● Optimize the equiangularity of the new
triangles in 3-D space.

B)

● Project vertices p1 to p6 onto a

retriangulating plane orthogonal to the
surface normal atpe.

● Verify that trianglesT1 to T6 form a

valid triangulation once projected onto
the retriangulating plane.

● Compute 2-D Delaunay triangulation.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-6

❏ Interior vertices and contour vertices

Interior vertices are completely surrounded by triangles. Contour vertices
are connected to a contour edge (an edge connected to a single triangle).
Additional constraints are used to remove a contour vertex:

● A contour vertex must be connected to only two contour edges.

● Interior vertices must remain inside the triangulation when a
contour vertex is removed.

● The error of a removed contour vertex is the smallest 3-D distance
between the vertex and the nearest contour edge.

2.5 Preservation of surface orientation discontinuities

❏ A 2-D demonstration

R1

R2

R3

R4

D)

● Compute 3-D distances between
removed vertices and the new surface.

● Find the largest 3-D distance.

e p1 p2
p3

p-1

p-2

p-3C-

C+

● Two continuous curvesC- and C+

are connected. The tangent is
discontinuous at their intersection.

● The curves are sampled and modeled
by a set of line segments.

● One of the sampled vertex (e) is
located near the tangent
discontinuity.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-7

❏ Preservation of surface edges

The previous 2-D example demonstrates the existence of a sequential
strenghtening phenomenon. This phenomenon is also observed in 3-D.
Vertices located near a surface edge are strenghtened by the removal of
vertices located on both sides of the edge.

An edge compression phenomenon is also observed. A vertexe located on
an orientation discontinuity may be removed if the retriangulation contains
an edge joining the predecessor and successor ofe on the edge. Therefore,
surface edges are preserved and reduced, as the 3-D tolerance gradually
increases.

2.6 IMCompress implementation

2.6.1 Memory requirements

IMCompress requires approximately 115 bytes per triangle.

A custom memory manager has been developed to provide garbage collection
capabilities.

e p1 p2
p3

p-1

p-2

p-3C-

C+

● If the discontinuity is locally
significant, p1 and p-1 will be

removed BEFOREe.

● As a result, the maximum error
resulting from the removal ofe
almost doubles.

Before:distance(e, (p-1,p1))

After: distance(e, (p-2,p2))

● The sequential optimization process
gradually strenghtens the tangent
discontinuity, such that vertexe will
remain in the linear approximation.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-8

2.6.2 Time complexity: A nearly O(n) implementation

/* Sequential optimization process */

while (maximum_error < THRESHOLD) {

find_vertex_minimizing_error;

find_neighbors_vertex;

remove_vertex;

delete_old_triangles;

inscribe_new_triangles;

for (i=0; i< number_neighbors; i++) {

compute_retriangulation_neighbor_i;

compute_retriangulation_error_neighbor_i;

modify_list_of_vertices;
}

}

The pseudocode in bold represents the time consuming operations.

● The number of neighbors is constant on average.

● The time required to compute the retriangulation of a fixed number of
vertices is constant on average.

● The time required to compute the maximum retriangulation error
gradually increases as vertices are removed. All removed vertices are
considered in this computation.

● The time required to modify the list of vertices is constant on average.

Therefore, time complexity has a linear and an exponential component. In order to
achieve a nearly-linear time complexity, we have heavily optimized the maximum
error computation. A 500 000 triangle model is completely reduced in 30 minutes
on a 250 MHz workstation.

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-9

2.7 Results

2.7.1 Hipbone model

The hipbone model has been generated using 15 Cyberware scans and
InnovMetric’s POLYWORKS 3-D modeling software. The original high-
resolution model contains 339 478 triangles.

339 478 triangles 20 000 triangles

5 000 triangles 1 000 triangles

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-10

2.7.2 Squash model

The squash model has been generated using 6 scans from the National Research
Council of Canada’s color laser rangefinder and InnovMetric’s POLYWORKS
3-D modeling software. The original high-resolution model contains 419 616
triangles. The squash is a courtesy of our local grocer.

419 616 triangles

5 000 triangles

1 000 triangles

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-11

2.7.3 Ivory bear model

The ivory bear model has been generated using 20 NRCC’s color laser scans and
InnovMetric’s POLYWORKS 3-D modeling software. The original high-
resolution model contains 443 160 triangles. The ivory bear has been carved about
2 000 years ago in the central Arctic.

443 160 triangles

15 511 triangles

1 396 triangles

 IMCompress: A vertex decimation technique that preserves 3-D tolerances

InnovMetric’s Multiresolution Modeling Algorithms 2-12

2.7.4 Additional remarks

All reduced models have been generated in a single pass of the IMCompress
program. No hidden thresholds have been set to obtain these results. For the first
two objects, the compression criteria have been specified as numbers of triangles.
For the last object, the compression criteria have been specified as 3-D tolerances
(1.0 and 2.0 millimeters).

The three objects have been completely reduced in 41, 56, and 59 minutes

respectively on a Silicon Graphics Indigo2 workstation equipped with a 100 MHz
CPU.

InnovMetric’s Multiresolution Modeling Algorithms 3-1

3. IMTexture: Generating coarse texture-mapped
models from accurate color 3-D models

3.1 Development history

1993-1994
First implementation of the texture mapping algorithm.

1994
Second implementation (IMTexture 1.0). The generated models
must be rendered using the nearest texel texture-rendering mode.

1996
M. Soucy, G. Godin, R. Baribeau, F. Blais, M. Rioux, “Sensors
and algorithms for the construction of digital 3-D colour models
of real objects”, inProc. of the International Conference on Image
Processing, pp. 409-412, September 16-19, 1996.

1997
IMTexture 2.0 generates texture-mapped models that can be
rendered using either the nearest texel or bilinear texture-
rendering mode.

3.2 Purpose of the algorithm

Using color laser digitizers, we can produce high-precision surface triangulations
in which RGB colors are computed for each triangulation vertex. Large
triangulation models with color per vertex information are very realistic, but they
cannot be displayed within a real-time visualization environment. The purpose of
the texture-mapping algorithm is to produce coarse texture-mapped models that
look similar to high-resolution models, but contain very small numbers of
triangles.

❏ Input

● A reduced triangulation.

● The set of original vertices, their RGB colors, and their mapping
positions on the reduced triangulation.

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-2

● Texture image width and height.

❏ Example of input data

❏ Output

The algorithm generates:

● A texture image.

● Texture coordinates for the triangles of the reduced triangulation.

3.3 Algorithm outline

Strictly speaking, IMTexture is not a tool that maps textures onto a surface.
IMTexture is an algorithm that generates a geometric representation that can be
displayed by texture-mapping rendering software.

❏ First step: Tessellating the texture image

The texture image is tessellated to accomodate all the triangles of the
reduced triangulation.

❏ Second step: Interpolating the texture image

The high-resolution color vertices are mapped onto the texture image, and
RGB colors are computed for all texels.

Vertex of the reduced triangulation

Removed vertex mapped onto the
reduced triangulation

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-3

❏ Third step: Enforcing texture continuity

Constraints are applied to ensure texture continuity on the 3-D surface.

3.4 Tessellating the texture image

The user specifies the texture image width and height. The IMTexture algorithm
has to distribute this texture space among all triangles. The following issues must
be considered when devising a tessellation algorithm:

● The input triangulation topology should not be constrained.

● The input triangles have different 3-D sizes.

● Texture continuity must be achieved over the 3-D surface.

❏ Tessellation strategy

● The input triangulation is segmented into pairs of triangles using a
recursive method. A few triangles remain orphan.

● Pairs of 3-D triangles and orphan triangles are mapped as texture squares.

● The dimensions of texture squares are powers of two.

● The four texture square corners are anchored onto texel centers.

4

p1

p3

p2

p4

p1

p2

p3

p4

Mapping a pair of triangles onto a 4x4 texture square

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-4

❏ Achieving texture continuity on a triangle edge

p1 p2

p1

p2

Texture image

Pair #1

Pair #2
ta1 ta2 ta3 ta4 ta5

tb1

tb2

tb3

In the bilinear texture-rendering mode, texture will be continuous on the
p1-p2 edge if the following constraints are verified in the RGB space:

● ta1= tb1 ta3= tb2 ta5= tb3

● ta2= 0.5*(ta1+ta3) ta4= 0.5*(ta3+ta5)

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-5

❏ Tessellation algorithm

An algorithm has been devised to automatically determine the dimensions
and positions of all texture squares. The image below illustrates a 512x512
texture image tessellated into 1000 texture squares whose dimensions are

powers of two. It should be noted that a 2n by 2n texture square requires

2n+1 by 2n+1 texels.

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-6

3.5 Interpolating the texture image

First, the original vertices are mapped onto the texture image, and their RGB values
are attributed to the 4 neighboring texels. The contribution of a vertex is weighted
using bilinear interpolation weights. The image below illustrates a 512x512 texture
image after the original color data has been mapped onto it.

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-7

❏ Assigning RGB values to all texels

One may observe that some texels did not receive any color contribution.
An additional step is thus required to assign RGB values to these empty
texels. A 3-D nearest-neighbor interpolation algorithm based on a
modified fast distance transform is used for this purpose. The texture
image shown below results from this final interpolating step.

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-8

3.6 Enforcing texture continuity

The last processing step consists of enforcing texture continuity over the 3-D
surface:

● A vertex is constrained to have a unique texture. All the texels whose
centers correspond to a particular vertex must have the same RGB values.

● Texture must be continuous across an edge shared by two triangles. Texels
located on triangle edges are constrained (refer to Section 3.4).

3.7 Results

3.7.1 Procedure for creating a texture-mapped model

The following procedure is used to generate a texture-mapped model from color
3-D data:

● First, a high-resolution polygonal model with color per vertex information
is created from several color 3-D scans.

● IMCompress is then used to reduce the high-resolution model. The
mapping information of each vertex is preserved in a file.

● IMTexture is finally invoked to generate the texture map and texture
coordinates for each triangle. The user specifies the texture map
dimensions. The texture map width and height must be powers of two.

Generating a 1024x1024 texture map requires approximately 1 minute.

3.7.2 Squash model

The squash model has already been shown in Section 2.7.2 without color
information. The high-resolution model made of 419 616 triangles is displayed
using a color per vertex rendering mode. The two reduced models are displayed
using the nearest texel texture-rendering mode. The light sources and materials
have been specified to ensure that the two rendering modes produce equivalent
colors.

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-9

419 616 triangles

5 000 triangles

1 000 triangles

IMTexture: Generating coarse texture-mapped models from accurate color 3-D models

InnovMetric’s Multiresolution Modeling Algorithms 3-10

3.7.3 Ivory bear model

The ivory bear model has already been shown in Section 2.7.3 without color
information. The high-resolution model made of 443 160 triangles is displayed
using a color per vertex rendering mode. The two reduced models are displayed
using the bilinear texture-rendering mode.

443 160 triangles

15 511 triangles

1 396 triangles

InnovMetric’s Multiresolution Modeling Algorithms 4-1

4. Packaging commercial polygon
reduction applications

4.1 Topological anomalies found in polygonal models

A surface-based polygon reduction algorithm must be immune to the following
anomalies, frequently encountered in tessellated models:

● A) Degenerate triangles

When two or three vertices of a triangle are equal, the triangle becomes an
edge or a single point and is therefore degenerate.

● B) Duplicate triangles

This problem arises when there are several copies of the same triangle in a
model.

● C) Degenerate edges

A degenerate edge is shared by more than two triangles.

● D) Inconsistent edges

An inconsistent edge is shared by two adjacent triangles that have opposite
orientations. One triangle is oriented in counter-clockwise order and the
other in clockwise order.

A) B) C) D)

Packaging commercial polygon reduction applications

InnovMetric’s Multiresolution Modeling Algorithms 4-2

4.2 Preserving grouping information

IMCompress preserves grouping information during the polygon reduction
process:

● Groups of triangles are identified in the input file.

● Boundaries between adjacent groups are detected.

● A vertex located on a group boundary can only be removed if the local
boundary is preserved.

4.3 Interactive polygon reduction

Interactive polygon reduction is implemented within a 3-D rendering window by:

● Letting the user select a 3-D area on a polygonal model

● Letting the user select important vertices that must be preserved

● Invoking a polygon reduction algorithm

Interactive polygon reduction lets the user apply different compression criteria to
different parts of a model.

Normal triangle edge

Group boundary edge

The group boundary has been preserved while vertex p has been removed

p

InnovMetric’s Multiresolution Modeling Algorithms 5-1

5. Conclusion

5.1 Reduction of detailed polygonal models

We have presented a unique vertex decimation technique providing superior
polygon reduction capabilities for detailed polygonal models. The algorithm:

● Is fully automated

● Guarantees 3-D tolerances

● Produces equiangular triangulations

● Naturally preserves important features

● Is fast

● Preserves a mapping between the original and reduced models

5.2 Future developments

One important application which is not addressed by IMCompress is the reduction
of typical CAD models generated by solid modeling software. Generating coarse
LOD representations of tessellated solid models is a very important issue. In our
opinion, an algorithm performing this task should:

● Be based on a volumetric method

● Be entirely automatic

● Detect and preserve edges and corners

● Be immune to topological anomalies

A Hierarchy of Techniques for Simplifying Polygonal
Models

Amitabh Varshney
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

varshney@cs.sunysb.edu

1 Introduction

It is evident from these course notes and their references that there is a tremendous interest in the
general area of simplification of polygonal objects. There are several ways in which one can clas-
sify the various simplification techniques. One of these is by examining the nature of the performed
simplifications. This section of the course will overview some representative techniques from a hi-
erarchy of increasingly aggressive simplification techniques. In Section 2 we overview a popular
approach to compress the connectivity information for polygonal objects – by using triangle strips.
Section 3 overviewsSimplification Envelopesand their features. In Section 4 we overview some
of our research in simplifying the genus of an object. Constructing a multiresolution hierarchy
is only part of the solution in a level-of-detail-based rendering scheme. Switching levels of de-
tail among different objects and at different regions within the same object is quite important for
view-dependent level-of-detail rendering and is discussed in Section 5. Section 6 concludes this
part of the course by overviewing some of our experiences in writing software for simplification
of real-life objects.

2 Connectivity Compression: Triangle Strips

The speed of high-performance rendering engines on triangular meshes in computer graphics can
be bounded by the rate at which triangulation data is sent into the machine. Obviously, each
triangle can be specified by three vertices, but to maximize the use of the available data bandwidth,
it is desirable to order the triangles so that consecutive triangles share an edge. Using such an
ordering, only the incremental change of one vertex per triangle need be specified, potentially
reducing the rendering time by a factor of three by avoiding redundant clipping and transformation
computations. Besides, such an approach also has obvious benefits in compression for storing and
transmitting models.

Consider the triangulation in Figure 2. Without using triangle strips, we would have to specify
the five triangles with three vertices each. By using triangle strips, as supported by the OpenGL

1

2 4

1

6 8

753

Figure 1: A Triangle Strip

graphics library (Ope93; ONDW93), we can describe the triangulation using the strip(1; 2; 3; 4; 5; 6; 7; 8),
and assuming the convention that theith triangle is described by theith, (i + 1)st, and(i + 2)nd
vertices of thesequentialstrip. Such a sequential strip can reduce the cost to transmitn triangles
from 3n to n + 2 vertices.

1

5 6

3

2 4

1 2 3 Swap 4 5 6 = 1 2 3 2 4 5 6

Figure 2: Replacing a swap requires an extra vertex.

To allow greater freedom in the creation of triangle strips, a “swap” command permits one to
alter the first-in-first-out queuing discipline in a triangle strip (Sil91). A swap command swaps
the order of the two latest vertices in the buffer so that the instead of vertexi replacing the vertex
(i � 2) in a buffer of size2, vertexi replaces the vertex(i � 1). This allows for a single triangle
strip representation of the collection of triangles shown in Figure 2, as(1; 2; 3; SWAP; 4; 5; 6).
This form of a triangle strip that includes swap commands is referred to as ageneralized triangle
strip.

SGI Stripe

SGI Stripe

Figure 3: Visual Comparison of Triangle Strips Generated by SGI and Stripe

2

Although the swap command is supported in the GL graphics library (Sil91), keeping porta-
bility considerations in mind it was decided to not support it in OpenGL. With OpenGL gaining
rapid acceptance in the graphics software community, the one-bit-per-vertex cost model that was
appropriate for a swap command in GL is now outdated. A more appropriate cost for such a swap
command under the OpenGL model is a penalty of one vertex as explained next. One can simulate
a swap command in OpenGL by re-transmitting the vertex that had to be swapped. This results
in an empty triangle two of whose vertices are the same. This is illustrated in Figure 2, where we
simulate(1; 2; 3; SWAP; 4; 5; 6) by (1; 2; 3; 2; 4; 5; 6). Note that, even though a swap costs one
vertex in the OpenGL model, it is still cheaper than starting a new triangle strip that costs two
vertices.

We have considered the problem of constructing good triangle strips from polygonal models.
Often such models are not fully triangulated, and contain quadrilaterals and other non-triangular
faces, which must be triangulated prior to rendering. The choice of triangulation can significantly
impact the cost of the resulting strips. We have recently proved that the problem of triangulating
a polygonal model for optimal strips is NP-complete (ESV97). Our work on efficient triangle
strips therefore explores several heuristics that we have empirically observed to produce good
triangle strips on real-life models (ESV96). Our linear-time algorithm manages to achieve this by
exploiting both the local and the global structure of the model. Our analysis of the global structure
of a geometric model is done via a non-geometric technique we termpatchification, which we
believe is of general interest as an efficient tool for logically partitioning polygonal models.

The best previous code for constructing triangle strips which we are aware of is (AHB90),
implementing what we will call the SGI algorithm. The SGI algorithm seeks to create strips that
tend to minimize leaving isolated triangles. It is a greedy algorithm, which always chooses as the
next triangle in a strip the triangle that is adjacent to the least number of neighbors.

We have experimented with several variants of local and global algorithms; the details are avail-
able in (ESV96). For our local approaches there were ten different options for each data file that we
ran our experiments on. Similarly, for our global approaches there were ten different options for
each data file that we ran our experiments on. After comparing the results we had from the above-
mentioned20 different approaches on over200 datasets, we found that the best option was to use
the the global row or column strips with a patch cutoff size of 5. In this approach we first partition
the model into regions that have collections ofm � n quadrilaterals arranged inm rows andn
columns, which we refer to as apatch. Each patch whose number of quadrilaterals,mn, is greater
than a specified cutoff, in our case 5, is converted into one strip, at a cost of three swaps per turn.
Further, every such strip is extended backwards from the starting quadrilateral and forwards from
the ending quadrilateral of the patch to the extent possible. For extension, we use an algorithm
similar to the SGI algorithm. However, we triangulate our faces “on the fly”, which gives us more
freedom in producing triangle strips. We have implemented this option in our tool,Stripe. This util-
ity is available from our web-sitehttp://www.cs.sunysb.edu/˜evans/stripe.html
and is free for non-commercial use.

The times for execution of our algorithms behaved linearly with respect the input size. When
rendering the models with the triangle strips that were produced by each algorithm, the savings
in transmission time to the renderer did prove to be a significant savings in rendering time. The
triangle strips produced by our code were up to 27% faster to draw than those produced by the SGI
algorithm, and were up to 65% faster to draw than without using triangle strips at all. Figure 3

3

provides visual comparison of the results obtained by our tool Stripe and those obtained by the
earlier algorithm being used by SGI.

3 Simplification Envelopes

In (Var94; CVM+96) we have presented the framework ofsimplification envelopesfor computing
various levels of detail of a given polygonal model. Simplification envelopes are a generalization of
offset surfaces. Given a polygonal representation of an object, they allow the generation of minimal
approximations that are guaranteed not to deviate from the original by more than a user-specifiable
amount while preserving global topology. We surround the original polygonal surface with two
envelopes, then perform simplification within this volume. We have demonstrated this technique
in conjunction with two algorithms, one global, the other local. The global algorithm computes the
solution by generating and considering approximating triangles in a globally exhaustive manner.
The local algorithm provides a fast method for generating approximations to large input meshes
(at least hundreds of thousands of triangles). A sample application of the algorithms we describe
can be seen in Figure 4, where four levels of details of a torpedo roller in a notional submarine
are substituted at increasing distances in (a) and are shown side-by-side in (b). The four levels of
detail of the torpedo rollers in Figure 4(b) consist of 2346, 1180, 676, and 514 triangles from left
to right.

(a) Receding

(b) Upclose

Figure 4: Visual Comparison of Four Levels-of-Detail of a Torpedo Roller

4

Such an approach has several benefits in computer graphics. First, one can very precisely
quantify the amount of approximation that is tolerable under given circumstances. Given a user-
specified error in number of pixels of deviation of an object’s silhouette, it is possible to choose
which level of detail to view from a particular distance to maintain that pixel error bound. Second,
this approach allows one a fine control over which regions of an object should be approximated
more and which ones less. This could be used for selectively preserving those features of an
object that areperceptuallyimportant. Third, the user-specifiable tolerance for approximation is
the only parameter required to obtain the approximations; fine tweaking of several parameters
depending upon the object to be approximated is not required. Thus, this approach is quite useful
for automating the processof genus-preserving simplifications of a large number of objects.

Our simplification envelopes approach guarantees non-self-intersecting approximations and al-
lows the user to do adaptive approximations by simply editing the simplification envelopes (either
manually or automatically) in the regions of interest. It allows for a global error tolerance, preser-
vation of the input genus of the object, and preservation of sharp edges. Our approach requires
only one user-specifiable parameter, allowing it to work on large collections of objects with no
manual intervention if so desired. It is rotationally and translationally invariant, and can elegantly
handle holes and bordered surfaces through the use of cylindrical tubes. Simplification envelopes
are general enough to permit both simplification algorithms with good theoretical properties such
as our global algorithm, as well as fast, practical, and robust implementations like our local algo-
rithm. Additionally, envelopes permit easy generation of correspondences across several levels of
detail. For details, the interested reader can refer to (Var94; CVM+96).

4 Genus Simplifications

A constraint common to most existing work on automatic generation of multi-resolution object
hierarchies has been the genus preservation criterion. Genus is related to the number of holes in
an object – a sphere has genus0, a torus has genus1, and digit 8 has genus2. We have developed
methods to simplify the genus of an object in acontrolledfashion. Preservation of topology (or the
genus) is crucial for certain applications such as study of tolerances in mechanical CAD. Clearly,
if the target application demands topology preservation, then the simplification algorithm should
adhere to it. However, if the goal is fast and realistic rendering, such as for virtual reality CAD
visualization, the topology preservation criterion could stand in the way of efficient simplification.
Let us consider a flythrough in a virtual reality CAD model. A tiny hole on the surface of a
mechanical part in this model will gradually disappear as the observer moves away from the part.
However, genus preserving simplification of this object will retain such features, thereby reducing
frame rates (due to limits on the amount of geometry-simplification that one can achieve while
preserving topology) and increasing image-space aliasing (due to undersampling, especially in
perspective viewing).

We view the simplification of an object of arbitrary topological type as a two-stage process –
simplification of the topology (i.e. reduction of the genus) and simplification of the geometry (i.e.
reduction of the number of vertices, edges, and faces). One can mix the execution of these two
stages in any desired order. We have observed that genus reductions by small amounts can lead
to large overall simplifications. This observation together with the fact that genus-reducing sim-

5

plifications are usually faster than genus-preserving simplifications, makes such an approach quite
attractive for generating multiresolution hierarchies. Our research extends the underlying concepts
of �-hulls(EM94) to polygonal datasets and allows one to perform genus-reducing simplifications.
The primary targets of our research are the interactive three-dimensional graphics and visualiza-
tion applications where topology can be sacrificed if (a) it does not directly impact the application
underlying the visualization and (b) produces no visual artifacts. Both of these goals are easier
to achieve if the simplification of the topology is finelycontrolledand has a sound mathematical
basis.

We first developed a method to perform genus simplifications in the volumetric domain (HHVW96).
We have recently also developed an algorithm that can directly perform genus-reducing simplifica-
tions in the polygonal domain. The intuitive idea underlying our approach is to simplify the genus
of a polygonal object by rolling a sphere of radius� over it and filling up all the regions that are not
accessible to the sphere. This also happens to be the underlying idea behind�-hulls over point-sets.
The problem of planning the motion of a sphere amidst polyhedral obstacles in three-dimensions
has been very nicely worked out (BK88). We use these ideas in our approach. Let us first assume
that our polygonal dataset consists of only triangles; if not, we can triangulate the individual poly-
gons (Sei91; NM95). Planning the motion of a sphere of radius�, sayS(�), amongst triangles is
equivalent to planning the motion of a point amongst “grown” triangles. Mathematically, a grown
triangleTi(�) is the Minkowski sum of the original triangleti with the sphereS(�). Formally,
Ti(�) = ti � S(�), where� denotes the Minkowski sum which is equivalent to the convolution
operation. Thus, our problem reduces to efficiently and robustly computing the union of the grown
trianglesTi(�). The boundary of this union,@

S
n

i=1 Ti(�), wheren is the number of triangles in
the dataset, will represent the locus of the center of the sphere as it is rolled in contact with one or
more triangles and can be used to guide the genus simplification stage.

We have tested our approach on several real-life datasets and have achieved encouraging re-
sults. Results of our approach on a couple of polygonal mechanical CAD objects are shown in
figures 5 and 6.

(a)

(b)

Figure 5: Hierarchical simplifications of the genus

6

(a) (b)

Figure 6: Genus-reducing simplifications for an industrial CAD part

face f

edge e

(a) T-Junction

Vertex v

Edge e

(b) T-Edge

Figure 7: Permissible non-manifold degeneracies

In addition to two-manifold polygonal objects our approach also works in presence of some
limited cases of non-manifold polygonal objects including those that have T-junctions and T-edges
(shown in Figure 7). Such degeneracies are quite common in mechanical CAD datasets from the
manufacturing industry due to numerical inaccuracies in computing surface-surface intersections
and in conversion from B-reps to polygonal representations.

5 View-Dependent Level-of-Detail Rendering

Constructing a fixed number of levels of detail, is well-suited for virtual reality walkthroughs and
flythroughs of large and complex structures with several thousands of objects. Examples of such
environments include architectural buildings, airplane and submarine interiors, and factory layouts.
However, for scientific visualization applications where the goal often is to visualize one or two
highly detailed objects at close range, most of the previous work is not directly applicable. For
instance, consider a biochemist visualizing the surface of a molecule or a physician inspecting
the iso-surface of a human head extracted from a volume dataset. It is very likely during such a
visualization session, that the object being visualized will not move adequately far away from the
viewer to allow the rendering algorithm to switch to a lower level of detail. What is desirable in
such a scenario is an algorithm that can allow several different levels of details to co-exist across
different regions of the same object. Such a scheme needs to satisfy the following two important
criteria:

7

� It should be possible to select the appropriate levels of detail across different regions of the
same object in real time.

� Different levels of detail in different regions across an object should merge seamlessly with
one another without introducing any cracks and other discontinuities.

Level-of-detail-based rendering has thus far emphasized object-space simplifications with min-
imal feedback from the image space. The feedback from the image space has been in the form of
very crude heuristics such as the ratio of the screen-space area of the bounding box of the object to
the distance of the object from the viewer. As a result, one witnesses coarse image-space artifacts
such as the distracting “popping” effect when the object representation changes from one level of
detail to the next (Hel95). Attempts such as alpha-blending between the old and the new levels of
detail during such transitions serve to minimize the distraction at the cost of rendering two repre-
sentations. However alpha blending is not the solution to this problem since it does not address the
real cause – lack of sufficient image-space feedback to select the appropriate local level of detail
in the object space; it merely tries to cover-up the distracting artifacts.

Increasing the feedback from the image space allows one to make better choices regarding the
level of detail selection in the object-space. We next outline some of the ways in which image-
space feedback can influence the level of detail selection in the object-space.

5.1 Local Illumination

Increasing detail in a direction perpendicular to, and proportional to, the illumination gradient
across the surface is a good heuristic (ARB90). This allows one to have more detail in the regions
where the illumination changes sharply and therefore one can represent the highlights and the
sharp shadows well. Since surface normals play an important role in local illumination one can
take advantage of the coherence in the surface normals to build a hierarchy over a continuous
resolution model that allows one to capture the local illumination effects well.

5.2 Screen-Space Projections

Decision to keep or collapse an edge should depend upon the length of its screen-space projection
instead of its object-space length. At a first glance this might seem very hard to accomplish in
real-time since this could mean checking for the projected lengths of all edges at every frame.
However, usually there is a significant coherence in the ratio of the image-space length to the
object-space length of edges across the surface of an object and from one frame to the next. This
makes it possible to take advantage of a hierarchy built upon the the object-space edge lengths for
an object. We use an approximation to the screen-space projected edge length that is computed
from the object-space edge length.

5.3 Visibility Culling

During interactive display of any model there is usually a significant coherence between the visible
regions from one frame to the next. This is especially true of the back-facing polygons that account
for almost half the total number of polygons and do not contribute anything to the visual realism.

8

A hierarchy over a continuous resolution representation of an object allows one to significantly
simplify the invisible regions of an object, especially the back-facing ones. This view-dependent
visibility culling can be implemented in a straightforward manner using the hierarchy on vertex
normals.

5.4 Silhouette boundaries

Silhouettes play a very important role in perception of detail. Screen-space projected lengths
of silhouette edges (i.e., edges for which one of the adjacent triangles is visible and the other
is invisible), can be used to very precisely quantify the amount of smoothness of the silhouette
boundaries. A hierarchy built upon a continuous-resolution representation of a object allows one
to do this efficiently.

In contrast to the traditional approaches of precomputing a fixed number of level-of-detail
representations for a given object we have developed an approach that involves statically generating
a continuous level-of-detail representation for the object (XESV97; XV96). This representation
is then used at run-time to guide the selection of appropriate triangles for display. The list of
displayed triangles is updated incrementally from one frame to the next. Our scheme can construct
seamless and adaptive level-of-detail representations on-the-fly for polygonal objects. Since these
representations are view-dependent, they take advantage of view-dependent illumination, visibility,
and frame-to-frame coherence to maximize visual realism and minimize the time taken to construct
and draw such objects. Our approach shows how one can adaptively define such levels of detail
based on (a) scalar attributes such as distance from the viewpoint and (b) vector attributes such as
the direction of vertex normals. For the details of this approach, the interested reader is referred to
(XESV97).

6 Conclusions

We have overviewed several representative approaches for building and using different kinds of
simplification schemes for polygonal models. These can be thought of as belonging to a hier-
archy of progressively aggressive simplification techniques – from the lossless compression of
connectivity as provided by triangle strips, to genus-preserving simplifications from Simplification
Envelopes, to genus-reducing simplifications. An orthogonal component of multiresolution hier-
archy generation is the selection of various levels of detail. We have outlined how view-dependent
selection of detail incorporates various image-space and object-space criteria to achieve a good
balance between speed and visual realism.

There are various problems in using the multiresolution techniques outlined in this course and
elsewhere. These have not received much attention in the simplification research community thus
far. Some of these have been outlined below:

Data Degeneracies:Almost all datasets that we have worked on have had various manifestations
of geometric degeneracies, such as T-junctions, cracks, T-edges, and coincident polygons.
Such dataset deformities have their sources in both human as well as computer-generated
errors. Almost all multiresolution techniques assume that such degeneracies do not exist in
their input. Bridging this gap should be a very fruitful area for further research.

9

Numbers of Objects: Large numbers of (relatively) low complexity objects versus small numbers
of high complexity objects are best rendered using different techniques for simplification as
well as level-of-detail-based renderings. For instance, if an approach requires even one user-
specified constant per object, it becomes difficult to automatically generate multiresolution
hierarchies for say, a hundred thousand objects, each with ten thousand polygons. Most of
the current multiresolution techniques are optimized for small numbers of high representa-
tion complexity objects.

Geometric Debugging: Current tools that can help debug geometric software are woefully inade-
quate for the task. It will be useful to build tools that actively assist in geometric debugging.

Acknowledgements

Several people have influenced this research over the last eight years through their insightful com-
ments, critiques, enthusiasm, and hard work. These include Fred Brooks, Pankaj Agarwal, John
Airey, Jon Cohen, Bruno Costa, Lucia Darsa, Jihad El-Sana, Francine Evans, Taosong He, Lichan
Hong, Arie Kaufman, Dinesh Manocha, Jai Menon, Joe Mitchell, Steve Skiena, Greg Turk, Sidney
Wang, Hans Weber, Bill Wright, and Julie Xia. The objects that appear in Figures 4 and 6 are
parts of the dataset of a notional submarine provided to us by the Electric Boat Division of General
Dynamics. The objects in Figure 3 have been provided to us by Viewpoint DataLabs.

References

K. Akeley, P. Haeberli, and D. Burns. tomesh.c : C Program on SGI Developer’s Toolbox CD,
1990.

J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with interactive update
rates in complex virtual building environments. In Rich Riesenfeld and Carlo Sequin, editors,
Computer Graphics (1990 Symposium on Interactive 3D Graphics), volume 24, No. 2, pages
41–50, March 1990.

C. Bajaj and M.-S. Kim. Generation of configuration space obstacles: the case of a moving sphere.
IEEE Journal of Robotics and Automation, 4, No. 1:94–99, February 1988.

J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P. Brooks, Jr., and W. V.
Wright. Simplification envelopes. InProceedings of SIGGRAPH ’96 (New Orleans, LA,
August 4–9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages 119 –
128. ACM SIGGRAPH, ACM Press, August 1996.

H. Edelsbrunner and E. P. M¨ucke. Three-dimensional alpha shapes.ACM Transactions on Graph-
ics, 13(1):43–72, January 1994.

F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. InIEEE
Visualization ’96 Proceedings, pages 319 – 326. ACM/SIGGRAPH Press, October 1996.

10

F. Evans, S. Skiena, and A. Varshney. Efficient triangle strips for fast rendering.ACM Transactions
on Graphics, 1997. (submitted).

J. Helman. Graphics techniques for walkthrough applications. InInteractive Walkthrough of Large
Geometric Databases, Course Notes 32, SIGGRAPH ’95, pages B1–B25, 1995.

T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simplification.IEEE Transactions
on Visualization and Computer Graphics, 2(2):171–184, June 1996.

A. Narkhede and D. Manocha. Fast polygon triangulation based on seidel’s algorithm.Graphics
Gems 5, pages 394–397, 1995.

Open GL Architecture Review Board, J. Neider, T. Davis, and M. Woo.OpenGL Programming
Guide. Addison-Wesley Publishing Company, Reading, MA, 1993.

Open GL Architecture Review Board.OpenGL Reference Manual. Addison-Wesley Publishing
Company, Reading, MA, 1993.

R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decom-
positions and for triangulating polygons.Comput. Geom. Theory Appl., 1:51–64, 1991.

Silicon Graphics, Inc. Graphics Library Programming Guide, 1991.

A. Varshney. Hierarchical geometric approximations. Ph.D. Thesis TR-050-1994, Department of
Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, 1994.

J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polyg-
onal models.IEEE Transactions on Visualization and Computer Graphics, June 1997. (to
appear).

J. Xia and A. Varshney. Dynamic view-dependent simplification for polygonal models. InIEEE
Visualization ’96 Proceedings, pages 327 – 334. ACM/SIGGRAPH Press, October 1996.

11

Optimizing Triangle Strips for Fast Rendering

Francine Evans Steven Skiena Amitabh Varshney

State University of New York at Stony Brook

Abstract

Almost all scientific visualization involving surfaces is currently
done via triangles. The speed at which such triangulated sur-
faces can be displayed is crucial to interactive visualization and
is bounded by the rate at which triangulated data can be sent to
the graphics subsystem for rendering. Partitioning polygonal mod-
els into triangle strips can significantly reduce rendering times over
transmittingeach triangle individually.

In this paper, we present new and efficient algorithms for con-
structing triangle strips from partially triangulated models, and ex-
perimental results showing these strips are on average15% better
than those from previous codes. Further, we study the impact of
larger buffer sizes and various queuing disciplines on the effective-
ness of triangle strips.

1 Introduction

Interactive display rates are crucial to exploratory scientific visu-
alization and virtual reality. The speed of high-performance ren-
dering engines on triangular meshes in computer graphics can be
bounded by the rate at which triangulation data is sent into the ma-
chine. Obviously, each triangle can be specified by three vertices,
but to maximize the use of the available data bandwidth, it is de-
sirable to order the triangles so that consecutive triangles share an
edge. Using such an ordering, only the incremental change of one
vertex per triangle need be specified, potentially reducing the ren-
dering time by a factor of three by avoiding redundant lighting and
transformation computations. Besides, such an approach also has
obvious benefits in compression for storing and transmitting mod-
els.

2 4

1

6 8

753

Figure 1: A Triangle Strip

Consider the triangulation in Figure 1. Without using triangle
strips, we would have to specify the six triangles with three vertices
each. By using triangle strips, as supported by the OpenGL graph-
ics library [11, 12], we can describe the triangulation using the strip
(1; 2; 3; 4; 5; 6; 7; 8), and assuming the convention that theith tri-
angle is described by theith, (i + 1)st, and(i + 2)nd vertices of
thesequentialstrip. Such a sequential strip can reduce the cost to
transmitn triangles from3n to n+ 2 vertices.

In this paper, we consider the problem of constructing good
triangle strips from polygonal models. Often such models are

c1996 IEEE, reprinted with permission from IEEE Visualization 96
Proceedings, pages 319 – 326, October 1996

not fully triangulated, and contain quadrilaterals and other non-
triangular faces, which must be triangulated prior to rendering. The
choice of triangulation can significantly impact the cost of the re-
sulting strips. For example, Figure 2 demonstrates that one triangle
strip suffices to represent a cube, provided it is triangulated in a
particular manner. Although we have shown that the problem of
triangulating a polygonal model for optimal strips is NP-complete
[7], here we provide heuristics which exploit the freedom to trian-
gulate these faces to produce strips that are on average15% better
than those of previous codes. Our linear-time algorithm manages
to achieve this by exploiting both the local and the global structure
of the model. Our analysis of the global structure of a geometric
model is done via a non-geometric technique we termpatchifica-
tion, which we believe is of general interest as an efficient tool for
logically partitioning polygonal models.

1342

76 8 5

6

2

4 3

1

5

Start

End

Strip: 4 3 7 8 5 3 1 4 2 7 6 5 2 1

Figure 2: Triangulating a cube for one sequential strip.

To allow greater freedom in the creation of triangle strips, a
“swap” command permits one to alter the FIFO (first-in, first-out)
queuing discipline in a triangle strip [13]. A swap command swaps
the order of the two latest vertices in the buffer so that instead of
vertexi replacing the vertex(i � 2) in a buffer of size2, vertexi
replaces the vertex(i � 1). This allows for a single triangle strip
representation of the collection of triangles shown in Figure 3, as
(1; 2; 3; SWAP; 4; 5; 6). This form of a triangle strip that includes
swap commands is referred to as ageneralized triangle strip.

The swap command gives greater freedom in the creation of tri-
angle strips at the cost of one bit per vertex. Although the swap
command is supported in the GL graphics library [13], keeping
portability considerations in mind it was decided to not support it in
OpenGL [8]. With OpenGL gaining rapid acceptance in the graph-
ics software community, the one-bit-per-vertex cost model that was
appropriate for a swap command in GL is now outdated. A more ap-
propriate cost for such a swap command under the OpenGL model
is a penalty of one vertex as explained next. One can simulate a
swap command in OpenGL by re-transmitting the vertex that had

to be swapped. This results in an empty triangle two of whose ver-
tices are the same. This is illustrated in Figure 3, where we simu-
late(1; 2; 3; SWAP; 4; 5; 6) by (1; 2; 3; 2; 4; 5; 6). Note that, even
though a swap costs one vertex in the OpenGL model, it is still
cheaper than starting a new triangle strip that costs two vertices. In
this paper, we evaluate all algorithms for both the GL and OpenGL
cost models.

1

5 6

3

2 4

1 2 3 Swap 4 5 6 = 1 2 3 2 4 5 6

Figure 3: Replacing a swap requires an extra vertex.

Special-purpose rendering hardware is needed to fully exploit
the advantages of triangle strips, by maintaining a buffer with thek
previously transmitted vertices as determined by a certain queuing
discipline. Although current rendering engines use a buffer of size
of k = 2 and FIFO queuing discipline, there has been recent inter-
est in studying the impact of larger buffer sizes, for both rendering
[3] and geometric compression [6]. The decomposition of a trian-
gular mesh into a triangle strip data structure that back-references
the previousk vertices,k � 2 is referred to as ageneralized tri-
angle mesh[6]. Towards this end, we provide extensive analysis
of the impact of buffer size and queuing discipline on triangle strip
performance. We demonstrate that relatively small buffer sizes are
sufficient to achieve most of the potential benefits of triangle strips,
making for a desirable tradeoff between increasing hardware cost
versus the speedup in rendering time.

In Section 2, we summarize previous work on triangular strips.
In Section 3, we describe our local and global algorithms for con-
structing quality triangle strips from polygonal meshes. Experi-
mental results are presented in Section 4. In Section 5, we study
the impact of buffer size on triangle strip performance. Conclusions
and plans for future work are discussed in Section 6.

2 Previous Work

The problem of constructing quality triangle strips has received
attention from both the graphics and the computational geometry
communities.

Akeley, Haeberli, and Burns have written a program that con-
verts triangle meshes to triangle strips [1]. We discuss the approach
in this program in greater details in Section 3. Deering has pro-
posed the use of generalized triangle meshes for compressing con-
nectivity information in geometric polygonal models [6]. He has
proposed maintaining a stack of sizek = 16 to store16 previ-
ous vertices. A vertex for a new triangle is specified either through
back-referencing one of the existing vertices on the stack, or by
reading-in a new vertex and replacing an existing vertex on the
stack. Although a novel idea, no algorithms have been proposed
there to suggest how one can decompose polygonal models into
generalized triangle meshes for a given buffer sizek. An interest-
ing alternative to compressing connectivity information is presented
by Hoppe in [9] where vertex-split/edge-collapse information is en-
coded efficiently with respect to its neighbors. Although not as ef-
ficient as generalized triangle meshes for a single resolution model,

this approach has the advantage of being able to encode multireso-
lution models compactly.

Within computational geometry, interest has focused on con-
structing and recognizing Hamiltonian and sequential triangula-
tions. A triangulation isHamiltonian if its dual graph contains a
Hamiltonian cycle. Hamiltonian triangulations can be represented
by using generalized triangle strips (triangle strips with swaps).
Arkin, et.al. [2] proved that every point set has a Hamiltonian trian-
gulation. Further, they showed that the problem of testing whether a
triangulation is Hamiltonian is NP-complete. They gave anO(n2)
algorithm for constructing a Hamiltonian triangulation of a polygon
that has since been improved toO(n lg n) by Narasimhan [10].

A triangulation issequentialif its dual graph contains a Hamil-
tonian cycle whose turns alternate left-right. Sequential triangu-
lations can be represented by using one triangle strip without any
swaps. A Hamiltonian triangulation is sequential if three consecu-
tive edges do not share a common vertex. Arkin, et.al. [2] proved
that for anyn � 9 there exists a set ofn points in general position
that do not admit a sequential triangulation. Although linear time
suffices to test whether a triangulation is sequential, we [7] have
shown that problem of finding a sequential triangulation of a par-
tially triangulated surface is NP-complete using a reduction from
3-satisfiability. Hence, heuristics such as those described in this
paper are required to find good sequential strips.

A simple path in the dual of a triangulation identifies a sequence
of triangles that form a “strip” or a (triangular) “ribbon” . Bhat-
tacharya and Rosenfeld [4] have studied geometric and topological
properties of ribbons. The Hamiltonian triangulation problem can
be considered that of identifying if a set of points or a polygon has
a triangulation that consists of a single strip (triangular ribbon).

Bose and Toussaint [5] have recently studied a set of problems
involving quadrangulationof point sets, and have obtained several
interesting results. A quadrangulation of a point setS is a decom-
position of the convex hull into quadrilaterals, such thateach point
of S is a vertex of some quadrilateral. In particular, they have ap-
plied the notion of Hamiltonian triangulations to this problem, and
they have obtained an alternate method of computing Hamiltonian
path triangulations.

By Euler’s theorem on graphs, the number of triangles in a trian-
gulation is at most twice the number of vertices, and on average we
will have to send each vertex twice to the renderer using sequential
triangle strips and a buffer of size 2. Bar-Yehuda and Gotsman [3]
studied the extent to which we can increase the stack (buffer) size
to reduce this duplication of vertices. This yields a time-versus-
space tradeoff; for as we increase memory usage, rendering time
will decrease. Bar-Yehuda and Gotsman have shown that a buffer
of size13:35

p
n is sufficient to render any mesh onn vertices in

the optimal timen, and that a buffer size of1:649
p
n is necessary

for optimal rendering in the worst-case. They show the problem
of minimizing the buffer-size for a given mesh is NP-hard, using
a reduction from the problem of finding minimum separators of a
planar graph.

3 Constructing Triangle Strips

In this section, we propose several heuristics for constructing trian-
gle strips from polygonal models. There are at least three different
objectives such heuristics might reasonably seek to achieve:

� Maximize the length of each strip– since each strip of lengths
representss� 2 triangles, maximizing strip length minimizes
this overhead.

� Minimizing swaps– since each swap costs one additional ver-
tex in the OpenGL cost model.

� Minimizing the number of singleton strips– since each trian-
gle left isolated after removing a strip creates a singleton strip,
we should seek to begin and end our strips on low-degree
faces of the triangulation.

The best previous code for constructing triangle strips which we
are aware of is [1], implementing what we will call the SGI algo-
rithm. The SGI algorithm seeks to create strips that tend to min-
imize leaving isolated triangles. It is a greedy algorithm, which
always chooses as the next triangle in a strip the triangle that is adja-
cent to the least number of neighbors (i.e. minimizes the number of
adjacencies). When there is more than one triangle with the same,
least number of neighbors, the algorithm looks one level ahead to
its neighbors’ neighbors, and chooses the direction of minimum de-
gree, choosing arbitrarily if there is again a tie. After starting from
an arbitrary lowest degree triangle, it extends its strips in both direc-
tions, so that each strip is as long as possible. There is no reluctance
to generate swaps, and understandably so, since this algorithm was
aimed at generating triangle strips for Iris GL. A fast, linear-time
implementation is obtained by using hash tables to store the ad-
jacency information, linked to a priority queue maintaining strip
length to choose which triangle starts a new strip.

Figure 4 illustrates how the algorithm breaks ties. Starting with
a face of lowest adjacency (of degree 1 on the upper center of the
figure), the algorithm always selects the lower degree face as the
next triangle in the strip to peel off the marked strip. At the face of
degree 3 it turns left because a neighbor to the left adjacent face is
of degree 1 as opposed to 2.

1
2

3 2
12

1
2

Figure 4: Adjacency counts in the SGI algorithm

The SGI algorithm uses strictly local adjacency information in
constructing the triangle strips. However, fully exploiting the free-
dom to triangulate quads seems to require a more global approach.
We have experimented with several variants of local and global al-
gorithms, as discussed in the following two sections.

3.1 Local Algorithms

Our class of local heuristics starts from the same basic idea as the
SGI algorithm – to use least adjacencies as the basis for choosing
the next face in a strip. However, we have tried to improve upon
their algorithm by dynamic triangulation and alternate tie-breaking
procedures.

We have considered three different approaches to triangulating
faces:

� Static triangulation– In this approach, we triangulate all
quads and larger faces in our model as a pre-processing step
before we begin finding strips. We use alternate left-right
turns, as shown in Figure 5(b) because such a triangulation is
inherently sequential, as opposedto the simpler and more con-
ventional fan triangulation. The SGI algorithm accepts only
triangulated models as input. Therefore, to compare their ap-
proach with ours we pre-triangulate all non-triangulated mod-
els using this static triangulation approach and then run their
algorithm.

a b

Figure 5: Fan vs sequential triangulation of a polygonal face.

� Dynamic whole-face triangulation– A second approach com-
pletely triangulates each face when we first enter it via some
edge on a strip. After using one of the tie-breaking procedures
described below to determine the exit edgee, we can triangu-
late the face as sequentially as possible while exiting ate. If
the surface normals do not vary across a face, then whole face
triangulation has the additional advantage of encoding fewer
normal transitions.

� Dynamic partial-face triangulation– Partial-face triangula-
tion provides the freedom to triangulate and walk only part
of a face before exiting it. This approach canunder certain
conditions provably perform better than the whole-face trian-
gulation, as is seen in the example where we represent a cube
using a single sequential triangle strip. After identifying the
exit edgee of the face with the minimum number of adjacen-
cies, we sequentially triangulate the smallest portion possible
of the face from the input edge to exit ate. This is illustrated
in Figure 6.

Whole

1
2

12

Partial

1
2

122

1
2

1

13 2

Input

Figure 6: Examples of partial and whole-face triangulation.

We have considered several different approaches in breaking ties
when there is more than one polygon that has the least number of
adjacencies to the current face. Such ties often occur since the pos-
sible number of adjacencies ranges only over 1, 2, and 3. In partic-
ular, we tried:

� Arbitrary – meaning that we use the first face found among
the low-adjacency faces.

� Look-ahead– this is the same approach that SGI algorithm
takes, as described above.

� Alternate– this rule tries to alternate directions in choosing
the next polygonal face. To motivate this option, note that
sequential strips alternate directions.

� Random– chooses the next face randomly from those that
were tied.

� Sequential– chooses the next face that will not produce a
swap, and picks randomly if there is no such face.

To quickly identify the lowest adjacency face to start from, we
maintain a priority queue ordered by the number of adjacent poly-
gons to each face. The faces in the priority queue are linked to the
adjacency list data structure representing the dual graph of the tri-
angulation. This enables fast lookup to find and delete faces when
forming the triangle strips.

3.2 Global Algorithms

Although the problem of finding the strip-minimal triangulation is
NP-complete, we perform a global analysis of the structure of a
polygonal model using a technique we callpatchification, which
we believe is of independent interest.

In typical polyhedral models, there are many quadrilateral faces,
often arranged in large connected regions. We attempt to find large
“patches”, rectangular regions consisting only of quadrilaterals, as
illustrated in Figure 7. Figure 8 shows the largest patches in a typ-
ical model. These patches can be triangulated sequentially along
each row or column, although there is a cost of either 3 swaps per
turn or 2 vertices to stop and restart each strip at the end of a row or
column.

Figure 7: A rectangular patch of quadrilaterals.

Figure 8: The six largest patches in a triceratops model.

Efficient patchification requires computing the number of poly-
gons to the east, west, north, and south of each face, and making
sure that when forming the patches, the polygons in the patch are
all adjacent. Hence, we have to “walk” through the faces and cal-
culate the number of adjacent polygons to them in each orientation.
Each “walk” only visits each face exactly 2 times: once for the
north-south direction and once for the east-west direction; once we
visit a face in a walk, that face does not require visiting again. To
avoid generating too many small patches, we keep apatch cutoff

sizewhich is the area of the smallest patch we would like to gener-
ate. Since we generate patches in decreasing order of size, we can
conveniently stop the process once the areas of the patches being
generated falls below this cutoff size. This approach takes us time
O(pn) wherep is the number of patches found. In our studiesp
was much smaller thann and therefore this approach demonstrated
a linear behavior.

We tried two different approaches for exploiting the coherence
identified in large patches:

� Row or column strips– After selecting all patches whose
size was greater than a specified cutoff size, we partitioned
the patches into sequential strips along rows or columns
(whichever direction yielded larger strips) and deleted them
from the model. Next, a local algorithm (using whole-face
triangulation) was used on the remaining model. By gener-
ating one strip along each row or column, we minimize the
number of swaps needed.

� Full-patch strips– Each patch larger than the cutoff size was
converted into one strip, at a cost of 3 swaps per turn. Further,
every such strip was extended backwards from the starting
quadrilateral and forwards from the ending quadrilateral of
the patch to the extent possible. As before, the local algorithm
was used on the model left after removing the patches and
their forward and backward extensions.

4 Experimental Results

We have exhaustively tested our local and global algorithms on sev-
eral datsets and compared them with the best known triangle strip
code [1]. For our local approaches there were ten different options
for each data file that we ran our experiments on: (a) whole-face tri-
angulation and (b) partial-face triangulation, for each of the five tie
breaking methods – (i) arbitrary, (ii) look-ahead, (iii) alternate, (iv)
random, and (v) sequential. For our global approaches there were
ten different options for each data file that we ran our experiments
on: (a) row/column strips and (b) full-patch strips, for each of five
different patch cutoff sizes of – 5, 10, 15, 20, and 25.

Table 1 shows the results of comparison of our best option, which
was the global row/column strips with a patch cutoff size of 5,
against the SGI algorithm. The cost columns show the total number
of vertices required to represent the dataset in a generalized triangle
strip representation under the OpenGL cost model (we are counting
each vertex and swap that needs to be sent to the renderer).

Data File Num Num Cost Savings
Verts Tris SGI Ours

plane 1508 2992 4005 3509 12%
skyscraper 2022 3692 5621 4616 18%
triceratops 2832 5660 8267 6911 16%
power lines 4091 8966 12147 10621 13%

porsche 5247 10425 14227 12367 11%
honda 7106 13594 16599 15075 9%

bell ranger 7105 14168 19941 16456 17%
dodge 8477 16646 20561 18515 10%
general 11361 22262 31652 27702 12%

Table 1: Comparison of triangle strip algorithms.

Figure 9 shows the performance comparisons between our best
local and best global algorithms against the SGI algorithm for (a)
GL and (b) OpenGL cost models. The models sorted by number of
triangles are along thex-axis and the cost of generalized triangle
strip representation is along they-axis in this figure.

Observations include:

� Little if any savings seems possible by sophisticated algo-
rithms under the GL model. However, under the more real-
istic model the combined local/global algorithm can save up
to about 20% over the SGI algorithm.

� Our results are close to the theoretical lower bound of the
number of triangles + (the number of connected components
in the model * 2), so there is limited potential for better algo-
rithms.

� Although the number of swaps required is sensitive to the
composition of the model, the total cost grows linear in the
size of the model.

Our times for execution of these algorithms behaved linearly
with respect to the input size. The timings for our local algo-
rithms were about a factor of two slower than those generated by
SGI. Thus, for example, dynamic partial-face method with sequen-
tial triangulation took around8 seconds on the22K triangle model
general whereas the SGI code took around4 seconds.

For local algorithms under the GL cost model whole-face trian-
gulations worked better than those with partial-face triangulations;
under the OpenGL cost model the reverse was true. Partial-face tri-
angulations produce less swaps than whole-face triangulations be-
cause the former have a greater choice in selecting the next face
in a strip, and are therefore more likely to be able to select faces
that do not require a swap. For global algorithms, full-patch strips
with cutoff size of 25 have the best performance under the GL cost
model whereas row/column strips with a cutoff size of 5 have the
best performance under the OpenGL cost model. This is because a
cutoff size of 5 generates more patches than a cutoff size of 25 and
more patches means lesser number of swaps.

5 Impact of Buffer Size

The benefits realized by using triangle strips could be further
enhanced by special-purpose hardware that has additional buffer
space (beyond the usual storage for two vertices) and alternate
queuing disciplines. In this section, we study the impact of such
resources on performance, to provide guidance for future hardware
design.

Increasing the buffer size from a capacity of two vertices natu-
rally decreases the cost of transmission, since we can now specify
which of the previousk vertices in the buffer defines the next tri-
angle. The cost of specification becomesdlg ke bits, instead of
number of bits representing one vertex, thus enabling us to poten-
tially represent polygonal models at a cost of less than one vertex
per triangle. In our paper, we will ignore the costs of these index
bits, since we only seek to determine an upper bound potential im-
provement in rendering time to assess whether it might be worth the
increase in hardware costs.

We considered two different queuing disciplines for maintaining
the buffer:

� First-in, first-out (FIFO) – This implies that there is no re-
arrangement of the vertices in the buffer, excluding swaps.
FIFO is easiest to implement in hardware, and would thus be
preferable if performance is comparable.

� Least recently used (LRU)– LRU dynamically rearranges the
vertices in the buffer, by placing a vertex that was used most
recently into the spot in the buffer that holds the most recently
admitted vertex. The least recently used vertex is eliminated
when a new vertex is added to the queue. LRU provides the
benefit that popular vertices are held in the buffer in the hope
that they will likely be used in the near future.

The results of running our tests on several datasets using the
whole-face local triangulation method with buffer size ofk � 2
are presented in Figure 10. A larger buffer size implies that we
are reusing more of the vertices that were previously transmitted.
These figures show the cost of the LRU and FIFO queuing disci-
plines versus the dataset sizes. As can be seen the advantages to
be gained from larger buffer sizes diminish rapidly beyond a buffer
size of about8. For buffer sizes less than8, LRU performs better
than the FIFO scheme by a factor of about10%.

6 Conclusions and Future Work

We have explored a total of twenty different local and global al-
gorithms in our quest for an effective triangle strip generation al-
gorithm that can perform well under the prevalent OpenGL cost
model. Our conclusion is that the best approach for the OpenGL
cost model is global row/column strips with a patch cutoff size of
5.

As can be seen from the results of Table 1, we are able to outper-
form the SGI algorithm significantly. We typically produce a sig-
nificantly lower number of strips than they do (usually 60%-80%
less strips using the local whole-triangulation algorithm), resulting
in an average cost savings of about 15% less than SGI algorithm
under the OpenGL model. Further, our cost averages just 10%
more than the theoretical minimum of using one sequential strip
with no swaps, when using the global full-patch strips algorithm
with a patch cutoff size of 5, as shown in Figure 9.

We have found that using global algorithms for detecting large
strips of quads proves very effective for reducing swaps. This has
proved to be quite useful for generating efficient triangle strips for
the OpenGL cost model where every swap costs one vertex.

All our algorithms run in linear time. Although the SGI algo-
rithm does have a slightly better running time, we do not believe
this to be a serious drawback of our approach since the triangle-
strip generation phase is typically done off-line before interactive
visualization.

The results of our experiments with larger buffer sizes offer only
limited room for optimism. As we increase the buffer-size the sav-
ings do increase, however the improvements diminish very quickly.
LRU seems to work much better than FIFO in the smaller buffers,
although this must be contrasted with the time and hardware needed
to maintain a LRU buffer. The theoretical minimum of using larger
buffers is the number of vertices in the model, since each vertex
would only have to be transmitted exactly one time, and then could
remain in the buffer forever to be used again, provided the buffer
is large enough. However, in our implementation we had been as-
suming that the buffer gets flushed between renderings of different
generalized triangle meshes, i.e. a generalized triangle mesh can-
not take advantage of the buffer references left behind by a pre-
vious mesh. Even if we do not make this assumption, achieving
close to the minimum requires a prohibitively large buffer, which is
not feasible for hardware implementation. Further, as the result of
Bar-Yehuda and Gotsman [3] shows, to achieve this minimum for a
mesh of sizen a buffer of size1:649

p
n is necessary, thus making

the size of the buffer depend on the size of the input mesh. All of
these factors combined with our results seem to make a choice of a
small buffer size, say around8, attractive.

Future work includes:

� Investigate other ways to globally analyze a model prior to
finding triangle strips. Currently we only find patches con-
sisting of quadrilaterals, however we can also seek large se-
quential patches of other polygons, such as triangles. We can
experiment with running other local options on the remain-
ing model, although we predict that there will only be slight
differences.

Costs to the renderer for GL

SGI

Whole sequential

Full patch 25

Lower Bound

COST x 103

3TRIANGLES x 102.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

5.00 10.00 15.00 20.00

Costs to the renderer for OpenGL

SGI data

Partial sequential data

Extended cutoff 5

Lower Bound

COST x 103

3TRIANGLES x 102.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

5.00 10.00 15.00 20.00

(a) GL Cost Model (b) OpenGL Cost Model

Figure 9: GL and OpenGL cost model comparisons.

� Creating and distributing a robust and efficient utility for cre-
ating strips for polygonal models, based on the algorithms de-
scribed in this paper.

� Perform a careful study of algorithms for constructing triangle
strips from fully triangulated models, since this work exploits
freedom which is not present in this common situation.

� Our current cost function has been motivated by systems that
are bandwidth limited or perform all transformations sequen-
tially. However, on many multi-processor graphics systems
the triangles/second curve levels-off as the system approaches
its parallel processing and cache memory limits. For such a
system, if most of the peak performance is achieved by strips
of length, say16 triangles, then rendering two strips of lengths
30 and2 will be slower than rendering two strips of lengths
16 each. Our current cost model does not account for this and
we plan to explore this further.

Acknowledgements

We would like to acknowledge several valuable discussionswe have
had on triangle strips with Joe Mitchell, Martin Held, Estie Arkin,
Jarek Rossignac, Josh Mittleman, and Jim Helman. We would also
like to thank the anonymous referees for their helpful comments.
The datasets that we have used have been provided by Viewpoint
DataLabs. Francine Evans is supported in part by a NSF Graduate
Fellowship and a Northrop Grumman Fellowship. Steven Skiena
is supported by ONR award 400x116yip01. Amitabh Varshney is
supported in part by NSF Career Award CCR-9502239.

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c : C Program
on SGI Developer’s Toolbox CD, 1990.

[2] E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian
triangulations for fast rendering. InSecond Annual Euro-
pean Symposium on Algorithms, volume 855, pages 36–47.
Springer-Verlag Lecture Notes in Computer Science, 1994.

[3] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for
polygon mesh rendering.ACM Transactions on Graphics,
1996. (to appear).

[4] P. Bhattacharya and A. Rosenfeld. Polygonal ribbons in two
and three dimensions. Technical report, Department of Com-
puter Science, University of Maryland, 1994.

[5] J. Bose and G. Toussaint. No quadrangulation is extremely
odd. Technical Report 95-03, Department of Computer Sci-
ence, University of British Columbia,1995.

[6] M. Deering. Geometry compression.Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH,
pages 13–20, 1995.

[7] F. Evans, S. Skiena, and A. Varshney. Completing sequential
triangulations is hard. Technical report, Dept of Computer
Science, State University of New York at Stony Brook, NY
11794-4400, 1996.

[8] J. Helman. Personal Communication.

[9] H. Hoppe. Progressive meshes.Computer Graphics Proceed-
ings, Annual Conference Series, ACM SIGGRAPH, 1996. (to
appear).

[10] G. Narasimhan. On hamiltonian triangulations in simple poly-
gons. InProceedings of the Fifth MSI-Stony Brook Workshop
on Computational Geometry, page 15, October 1995.

[11] Open GL Architecture Review Board.OpenGL Reference
Manual. Addison-Wesley Publishing Company, Reading,
MA, 1993.

Effects of changing the buffer sizes for plane

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for sky

LRU

FIFO

Lower bound

COST x 103

BUFFER-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

4.20

4.40

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for tricer

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for power

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for porsche

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for honda

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for bell

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for dodge

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

10.00 20.00 100.00 1000.00

Effects of changing the buffer sizes for general

LRU

FIFO

Lower bound

COST x 103

BUFFER

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

10.00 20.00 100.00 1000.00

Figure 10: Cost versus buffer size for nine models.

[12] Open GL Architecture Review Board, J. Neider, T. Davis, and
M. Woo. OpenGL Programming Guide. Addison-Wesley
Publishing Company, Reading, MA, 1993.

[13] Silicon Graphics, Inc. Graphics Library Programming Guide,
1991.

Simplification Envelopes
Jonathan Cohen� Amitabh Varshneyy Dinesh Manocha� Greg Turk� Hans Weber�

Pankaj Agarwalz Frederick Brooks� William Wright�

http://www.cs.unc.edu/˜geom/envelope.html

Abstract

We propose the idea of simplification envelopes for gen-
erating a hierarchy of level-of-detail approximations for a
given polygonal model. Our approach guarantees that all
points of an approximation are within a user-specifiable
distance � from the original model and that all points of the
original model are within a distance � from the approxima-
tion. Simplificationenvelopes provide a general framework
within which a large collection of existing simplification
algorithms can run. We demonstrate this technique in con-
junction with two algorithms, one local, the other global.
The local algorithm provides a fast method for generating
approximations to large input meshes (at least hundreds of
thousands of triangles). The global algorithm provides the
opportunity to avoid local “minima” and possibly achieve
better simplifications as a result.

Each approximation attempts to minimize the total num-
ber of polygons required to satisfy the above � constraint.
The key advantages of our approach are:

� General technique providing guaranteed error bounds
for genus-preserving simplification

� Automation of both the simplification process and the
selection of appropriate viewing distances

� Prevention of self-intersection
� Preservation of sharp features
� Allows variation of approximation distance across dif-

ferent portions of a model

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation — Display
algorithms; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling — Curve, surface, solid,
and object representations.
Additional Key Words and Phrases: hierarchical approx-
imation, model simplification, levels-of-detail generation,
shape approximation, geometric modeling, offsets.

�Department of Computer Science, University of North Carolina,
Chapel Hill, NC 27599-3175.
fcohenj,weberh,manocha,turk,brooks,wrightg@cs.unc.edu

yDepartment of Computer Science, State University of New York,
Stony Brook, NY 11794-4400. varshney@cs.sunysb.edu

zDepartment of Computer Science, Duke University, Durham, NC
27708-0129. pankaj@cs.duke.edu

1 Introduction

We present the framework of simplification envelopes for
computing various levels of detail of a given polygonal
model. These hierarchical representations of an object can
be used in several ways in computer graphics. Some of
these are:

� Use in a level-of-detail-based rendering algorithm for
providing desired frame update rates [4, 9].

� Simplifyingtraditionallyover-sampled models such as
those generated from volume datasets, laser scanners,
and satellites for storage and reducing CPU cycles
during processing, with relatively few or no disadvan-
tages [10, 11, 13, 15, 21, 23].

� Using low-detail approximations of objects for illumi-
nation algorithms, especially radiosity [19].

Simplification envelopes are a generalization of offset
surfaces. Given a polygonal representation of an object,
they allow the generation of minimal approximations that
are guaranteed not to deviate from the original by more than
a user-specifiable amount while preserving global topol-
ogy. We surround the original polygonal surface with two
envelopes, then perform simplification within this volume.
A sample application of the algorithms we describe can be
seen in Figure 1.

Figure 1: A level-of-detail hierarchy for the rotor from a brake
assembly.

Such an approach has several benefits in computer graph-
ics. First, one can very precisely quantify the amount of
approximation that is tolerable under given circumstances.
Given a user-specified error in number of pixels of devia-
tion of an object’s silhouette, it is possible to choose which
level of detail to view from a particular distance to maintain
that pixel error bound. Second, this approach allows one a
fine control over which regions of an object should be ap-
proximated more and which ones less. This could be used
for selectively preserving those features of an object that
are perceptually important. Third, the user-specifiable tol-
erance for approximation is the only parameter required to
obtain the approximations; fine tweaking of several param-
eters depending upon the object to be approximated is not
required. Thus, this approach is quite useful for automat-
ing the process of topology-preserving simplifications of a
large number of objects. This problem of scalability is im-
portant for any simplification algorithm. One of our main
goals is to create a method for simplification which is not
only automatic for large datasets, but tends to preserve the
shapes of the original models.

The rest of the paper is organized in the following man-
ner: we survey the related work in Section 2, explain our
assumptions and terminology in Section 3, describe the en-
velope and approximation computations in Sections 4 and
5, present some useful extentions to and properties of the
approximation algorithms in Section 6, and explain our im-
plementation and results in Section 7.

2 Background

Approximation algorithms for polygonal models can be
classified into two broad categories:

� Min-# Approximations: For this version of the ap-
proximation problem, given some error bound �, the
objective is to minimize the number of vertices such
that no point of the approximation A is farther than �
distance away from the input model I.

� Min-� Approximations: Here we are given the num-
ber of vertices of the approximationA and the objec-
tive is to minimize the error, or the difference, between
A and I.

Previous work in the area of min-# approximations has
been done by [6, 20] where they adaptively subdivide a
series of bicubic patches and polygons over a surface until
they fit the data within the tolerance levels.

In the second category, work has been done by several
groups. Turk [23] first distributes a given number of vertices
over the surface depending on the curvature and then re-
triangulates them to obtain the final mesh. Schroeder et
al. [21] and Hinker and Hansen [13] operate on a set of
local rules — such as deleting edges or vertices from almost
coplanar adjacent faces, followed by local re-triangulation.
These rules are applied iteratively till they are no longer
applicable. A somewhat different local approach is taken in
[18] where vertices that are close to each other are clustered
and a new vertex is generated to represent them. The mesh
is suitably updated to reflect this.

Hoppe et al. [14] proceed by iteratively optimizing an
energy function over a mesh to minimize both the distance
of the approximating mesh from the original, as well as the
number of approximating vertices. An interesting and ele-
gant solution to the problem of polygonal simplification by
using wavelets has been presented in [7, 8] where arbitrary
polygonal meshes are first subdivided into patches with

subdivision connectivity and then multiresolution wavelet
analysis is used over each patch. This wavelet approach
preserves global topology.

In computational geometry, it has been shown that com-
puting the minimal-facet �-approximation is NP-hard for
both convex polytopes [5] and polyhedral terrains [1]. Thus,
algorithms to solve these problems have evolved around
finding polynomial-time approximations that are close to
the optimal.

Let ko be the size of a min-# approximation. An
algorithm has been given in [16] for computing an �-
approximation of size O(ko logn) for convex polytopes.
This has recently been improved by Clarkson in [3]; he
proposes a randomized algorithm for computing an approx-
imation of size O(ko logko) in expected time O(kon

1+�)
for any � > 0 (the constant of proportionality depends on
�, and tends to+1 as � tends to 0). In [2] Brönnimann and
Goodrich observed that a variant of Clarkson’s algorithm
yields a polynomial-time deterministic algorithm that com-
putes an approximation of size O(k0). Working with poly-
hedral terrains, [1] present a polynomial-time algorithm
that computes an �-approximation of size O(ko logko) to a
polyhedral terrain.

Our work is different from the above in that it allows
adaptive, genus-preserving, �-approximation of arbitrary
polygonal objects. Additionally, we can simplify bordered
meshes and meshes with holes. In terms of direct compari-
son with the global topologypreserving approach presented
in [7, 8], for a given � our algorithm has been empirically
able to obtain “reduced" simplifications, which are much
smaller in output size (as demonstrated in Section 7). The
algorithm in [18] also guarantees a bound in terms of the
Hausdorff metric. However, it is not guaranteed to preserve
the genus of the original model.

3 Terminology and Assumptions
Let us assume thatI is a three-dimensional compact and ori-
entable object whose polygonal representation P has been
given to us. Our objective is to compute a piecewise-linear
approximationA of P. Given two piecewise linear objects
P andQ, we say thatP andQ are �-approximationsof each
other iff every point on P is within a distance � of some
point of Q and every point on Q is within a distance � of
some point ofP. Our goal is to outline a method to generate
two envelope surfaces surroundingP and demonstrate how
the envelopes can be used to solve the following polygonal
approximation problem. Given a polygonal representation
P of an object and an approximation parameter �, generate
a genus-preserving �-approximationA with minimal num-
ber of polygons such that the vertices of A are a subset of
vertices of P.

We assume that all polygons in P are triangles and that
P is a well-behaved polygonal model, i.e., every edge has
either one or two adjacent triangles, no two triangles inter-
penetrate, there are no unintentional “cracks" in the model,
no T-junctions, etc.

We also assume that each vertex ofP has a single normal
vector, which must lie within 90o of the normal of each of
its surrounding triangles. For the purpose of rendering,
each vertex may have either a single normal or multiple
normals. For the purpose of generating envelope surfaces,
we shall compute a single vertex normal as a combination
of the normals of the surrounding triangles.

The three-dimensional �-offset surface for a parametric
surface

f (s; t) = (f1(s; t); f2(s; t); f3(s; t));

whose unit normal to f is

n(s; t) = (n1(s; t); n2(s; t); n3(s; t));

is defined as f �(s; t) = (f�1 (s; t); f
�
2 (s; t); f

�
3 (s; t)), where

f�i (s; t) = fi(s; t) + �ni(s; t):

Note that offset surfaces for a polygonal object can self-
intersect and may contain non-linear elements. We define
a simplification envelope P(+�) (respectively P(��)) for
an object I to be a polygonal surface that lies within a dis-
tance of � from every point p on I in the same (respectively
opposite) direction as the normal to I at p. Thus, the simpli-
fication envelopes can be thought of as an approximation to
offset surfaces. Henceforth we shall refer to simplification
envelope by simply envelope.

Let us refer to the triangles of the given polygonal repre-
sentation P as the fundamental triangles. Let e = (v1; v2)
be an edge of P. If the normals n1;n2 to I at both v1 and
v2, respectively, are identical, then we can construct a plane
�e that passes through the edge e and has a normal that is
perpendicular to that of v1. Thus v1, v2 and their normals
all lie along �e. Such a plane defines two half-spaces for
edge e, say �+e and ��e (see Fig 2(a)). However, in general
the normals n1 and n2 at the vertices v1 and v2 need not
be identical, in which case it is not clear how to define the
two half-spaces for an edge. One choice is to use a bilinear
patch that passes through v1 and v2 and has a tangent n1 at
v1 and n2 at v2. Let us call such a bilinear patch for e as the
edge half-space �e. Let the two half-spaces for the edge e
in this case be �+e and ��e . This is shown in Fig 2(b).

e

v
1

v
2

−
e e

+
e

1
n

2
n

e
v
1

v
2

1
n

2
n−

e

e

e
+

(a) (b)

Figure 2: Edge Half-spaces

Let the vertices of a fundamental triangle be v1, v2, and
v3. Let the coordinates and the normal of each vertex v be
represented as c(v) andn(v), respectively. The coordinates
and the normal of a (+�)-offset vertex v+i for a vertex vi
are: c(v+i) = c(vi) + �n(vi), and n(v+i) = n(vi). The
(��)-offset vertex can be similarly defined in the opposite
direction. These offset vertices for a fundamental triangle
are shown in Figure 3.

Now consider the closed object defined by v+i and v�i ,
i = 1; 2; 3. It is defined by two triangles, at the top and
bottom, and three edge half-spaces. This object contains
the fundamental triangle (shown shaded in Figure 3) and
we will henceforth refer to it as the fundamental prism.

4 Envelope Computation
In order to preserve the input topology of P, we desire
that the simplification envelopes do not self-intersect. To
meet this criterion we reduce our level of approximation
at certain places. In other words, to guarantee that no
intersections amongst the envelopes occur, we have to be

v
1

v
2

v
3

v
3
+

v
3
−

v −

v −

v
+

1

2

v
+
2

1

1
n

n
2

n
3

Figure 3: The Fundamental Prism

content at certain places with the distance betweenP and the
envelope being smaller than �. This is how simplification
envelopes differ from offset surfaces.

We construct our envelope such that each of its trian-
gles corresponds to a fundamental triangle. We offset each
vertex of the original surface in the direction of its normal
vector to transform the fundamental triangles into those of
the envelope.

If we offset each vertex vi by the same amount �, to
get the offset vertices v+i and v�i , the resulting envelopes,
P(+�) and P(��), may contain self-intersections because
one or more offset vertices are closer to some non-adjacent
fundamental triangle. In other words, if we define a Voronoi
diagram over the fundamental triangles of the model, the
condition for the envelopes to intersect is that there be at
least one offset vertex lying in the Voronoi region of some
non-adjacent fundamental triangle. This is shown in Fig-
ure 4 by means of a two-dimensional example. In the figure,
the offset vertices b+ and c+ are in the Voronoi regions of
edges other than their own, thus causing self-intersection of
the envelope.

ε

ε

b

c

b

c

+

+
Offset Voronoi

Original
surface

edge

Figure 4: Offset Surfaces

Once we make this observation, the solution to avoid self-
intersections becomes quite simple — just do not allow
an offset vertex to go beyond the Voronoi regions of its
adjacent fundamental triangles. In other words, determine
the positive and negative � for each vertex vi such that
the vertices v+i and v�i determined with this new � do not
lie in the Voronoi regions of the non-adjacent fundamental
triangles.

While this works in theory, efficient and robust com-
putation of the three-dimensional Voronoi diagram of the
fundamental triangles is non-trivial. We now present two
methods for computing the reduced � for each vertex, the
first method analytical, and the second numerical.

4.1 Analytical � Computation
We adopt a conservative approach for recomputing the � at
each vertex. This approach underestimates the values for
the positive and negative �. In other words, it guarantees
the envelope surfaces not to intersect, but it does not guar-
antee that the � at each vertex is the largest permissible �.
We next discuss this approach for the case of computing
the positive � for each vertex. Computation of negative �
follows similarly.

Consider a fundamental triangle t. We define a prism
tp for t, which is conceptually the same as its fundamental
prism, but uses a value of 2� instead of � for defining the
envelope vertices. Next, consider all triangles ∆i that do
not share a vertex with t. If ∆i intersects tp above t (the
directions above and below t are determined by the direction
of the normal to t, above is in the same direction as the
normal to t), we find the point on ∆i that lies within tp and
is closest to t. This point would be either a vertex of ∆i,
or the intersection point of one of its edges with the three
sides of the prism tp. Once we find the point of closest
approach, we compute the distance �i of this point from t.
This is shown in Figure 5.

v
1

v
2 v

3

2

i t

tp

i

Figure 5: Computation of �i

Once we have done this for all ∆i, we compute the new
value of the positive � for the triangle t as �new = 1

2 mini �i.
If the vertices for this triangle t have this value of positive �,
their positive envelope surface will not self-intersect. Once
the �new(t)values for all the triangles thave been computed,
the �new(v) for each vertex v is set to be the minimum of
the �new(t) values for all its adjacent triangles.

We use an octree in our implementation to speed up the
identification of triangles ∆i that intersect a given prism.

4.2 Numerical � Computation
To compute an envelope surface numerically, we take an it-
erative approach. Our envelope surface is initially identical
to the input model surface. In each iteration, we sequen-
tially attempt to move each envelope vertex a fraction of
the � distance in the direction of its normal vector (or the
opposite direction, for the inner envelope). This effectively
stretches or contracts all the triangles adjacent to the vertex.
We test each of these adjacent triangles for intersection with
each other and the rest of the model. If no such intersections
are found, we accept the step, leaving the vertex in this new
position. Otherwise we reject it, moving the vertex back
to its previous position. The iteration terminates when all
vertices have either moved � or can no longer move.

In an attempt to guarantee that each vertex gets to move
a reasonable amount of its potential distance, we use an

adaptive step size. We encourage a vertex to move at least
K (an arbitrary constant which is scaled with respect to �
and the size of the object) steps by allowing it to reduce its
step size. If a vertex has moved less than K steps and its
move is been rejected, it divides its step size in half and tries
again (with some maximum number of divides allowed on
any particular step). Notice that if a vertex moves i steps
and is rejected on the (i+ 1)st step, we know it has moved
at least i=(i+ 1) % of its potential distance, so K=(K + 1)
which is a lower bound of sorts. It is possible, though rare,
for a vertex to move less than K steps, if its current position
is already quite close to another triangle.

Each vertex also has its own initial step size. We first
choose a global, maximum step size based on a global prop-
erty: either some small percentage of the object’s bounding
box diagonal length or �=K, whichever is smaller. Now
for each vertex, we calculate a local step size. This local
step size is some percentage of the vertex’s shortest incident
edge (only those edges within 90o of the offset direction are
considered). We set the vertex’s step size to the minimum
of the global step size and its local step size. This makes it
likely that each vertex’s step size is appropriate for a step
given the initial mesh configuration.

This approach to computing an envelope surface is ro-
bust, simple to implement (if difficult to explain), and fair
to all the vertices. It tends to maximize the minimum off-
set distance amongst the envelope vertices. It works fairly
well in practice, though there may still be some room for
improvement in generating maximal offsets for thin objects.
Figure 6 shows internal and external envelopes computed
for three values of � using this approach.

As in the analytical approach, a simple octree data struc-
ture makes these intersection tests reasonably efficient, es-
pecially for models with evenly sized triangles.

5 Generation of Approximation
Generating a surface approximation typically involves start-
ing with the input surface and iteratively making modifica-
tions to ultimately reduce its complexity. This process may
be broken into two main stages: hole creation, and hole
filling. We first create a hole by removing some connected
set of triangles from the surface mesh. Then we fill the hole
with a smaller set of triangles, resulting in some reduction
of the mesh complexity.

We demonstrate the generality of the simplification en-
velope approach by designing two algorithms. The hole
filling stages of these algorithms are quite similar, but their
hole creation stages are quite different. The first algorithm
makes only local choices, creating relatively small holes,
while the second algorithm uses global information about
the surface to create maximally-sized holes. These design
choices produce algorithms with very different properties.

We begin by describing the envelope validity test used to
determine whether a candidate triangle is valid for inclusion
in the approximation surface. We then proceed to the two
example simplification algorithms and a description of their
relative merits.

5.1 Validity Test
A candidate triangle is one which we are considering for
inclusion in an approximation to the input surface. Valid
candidate triangles must lie between the two envelopes.
Because we construct candidate triangles from the vertices
of the original model, we know its vertices lie between
the two envelopes. Therefore, it is sufficient to test the
candidate triangle for intersections with the two envelope

Inner Envelopes � Outer Envelopes
Figure 6: Simplification envelopes for various �

surfaces. We can perform such tests efficiently using a
space-partitioning data structure such as an octree.

A valid candidate triangle must also not cause a self-
intersection in our surface, Therefore, it must not intersect
any triangle of the current approximation surface.

5.2 Local Algorithm
To handle large models efficiently within the framework
of simplification envelopes we construct a vertex-removal-
based local algorithm. This algorithm draws heavily on
the work of [21], [23], and [14]. Its main contributions
are the use of envelopes to provide global error bounds as
well as topology preservation and non-self-intersection. We
have also explored the use of a more exhaustive hole-filling
approach than any previous work we have seen.

The local algorithm begins by placing all vertices in
a queue for removal processing. For each vertex in the
queue, we attempt to remove it by creating a hole (remov-
ing the vertex’s adjacent triangles) and attempting to fill it.
If we can successfully fill the hole, the mesh modification
is accepted, the vertex is removed from the queue, and its
neighbors are placed back in the queue. If not, the vertex is
removed from the queue and the mesh remains unchanged.
This process terminates when the global error bounds even-
tually prevent the removal of any more vertices. Once the
vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing
all adjacent triangles. We begin the hole-filling process by
generating all possible triangles formed by combinations

of the vertices on the hole boundary. This is not strictly
necessary, but it allows us to use a greedy strategy to favor
triangles with nice aspect ratios. We fill the hole by choos-
ing a triangle, testing its validity, and recursively filling the
three (or fewer) smaller holes created by adding that trian-
gle into the hole (see figure 7). If a hole cannot be filled
at any level of the recursion, the entire hole filling attempt
is considered a failure. Note that this is a single-pass hole
filling strategy; we do not backtrack or undo selection of a
triangle chosen for filling a hole. Thus, this approach does
not guarantee that if a triangulation of a hole exists we will
find it. However, it is quite fast and works very well in
practice.

A

B C

Figure 7: Hole filling: adding a triangle into a hole creates up
to three smaller holes

We have compared the above approach with an exhaus-
tive approach in which we tried all possible hole-filling tri-
angulations. For simplifications resulting in the removal of
hundreds of vertices (like highly oversampled laser-scanned
models), the exhaustive pass yielded only a small improve-
ment over the single-pass heuristic. This sort of confirma-
tion reassures us that the single-pass heuristic works well
in practice.

5.3 Global Algorithm
This algorithm extends the algorithm presented in [3] to
non-convex surfaces. Our major contribution is the use of
simplification envelopes to bound the error on a non-convex
polygonal surface and the use of fundamental prisms to
provide a generalized projection mechanism for testing for
regions of multiple covering (overlaps). We present only a
sketch of the algorithm here ; see [24] for the full details.

We begin by generating all possible candidate triangles
for our approximation surface. These triangles are all 3-
tuples of the input vertices which do not intersect either of
the offset surfaces. Next we determine how many vertices
each triangle covers. We rank the candidate triangles in
order of decreasing covering.

We then choose from this list of candidate triangles in a
greedy fashion. For each triangle we choose, we create a
large hole in the current approximation surface, removing
all triangles which overlap this candidate triangle. Now
we begin the recursive hole-filling process by placing this
candidate triangle into the hole and filling all the subholes
with other triangles, if possible. One further restriction in
this process is that the candidate triangle we are testing
should not overlap any of the candidate triangles we have
previously accepted.

5.4 Algorithm Comparison
The local simplification algorithm is fast and robust enough
to be applied to large models. The global strategy is the-
oretically elegant. While the global algorithm works well
for small models, its complexity rises at least quadratically,

envelope curve

envelope curve

original curve

approximating curve

Figure 8: Curve at local minimum of approximation

making it prohibitive for larger models. We can think of the
simplification problem as an optimization problem as well.
A purely local algorithm may get trapped in a local “min-
imum” of simplification, while an ideal global algorithm
will avoid all such minima.

Figure 8 shows a two-dimensional example of a curve for
which a local vertex removal algorithm might fail, but an
algorithm that globally searches the solutionspace will suc-
ceed in finding a valid approximation. Any of the interior
vertices we remove would cause a new edge to penetrate
an envelope curve. But if we remove all of the interior
vertices, the resulting edge is perfectly acceptable.

This observation motivates a wide range of algorithms of
which our local and global examples are the two extremes.
We can easily imagine an algorithm that chooses nearby
groups of vertices to remove simultaneously rather than
sequentially. This could potentially lead to increased speed
and simplification performance. However, choosing such
sets of vertices remains a challenging problem.

6 Additional Features

Envelope surfaces used in conjunction with simplification
algorithms are powerful, general-purpose tools. As we will
now describe, they implicitly preserve sharp edges and can
be extended to deal with bordered surfaces and perform
adaptive approximations.

6.1 Preserving Sharp Edges
One of the important properties in any approximation
scheme is the way it preserves any sharp edges or normal
discontinuities present in the input model. Simplification
envelopes deal gracefully with sharp edges (those with a
small angle between their adjacent faces). When the � tol-
erance is small, there is not enough room to simplify across
these sharp edges, so they are automatically preserved. As
the tolerance is increased, it will eventually be possible to
simplify across the edges (which should no longer be vis-
ible from the appropriate distance). Notice that it is not
necessary to explicitly recognize these sharp edges.

6.2 Bordered Surfaces
A bordered surface is one containing points that are home-
omorphic to a half-disc. For polygonal models, this corre-
sponds to edges that are adjacent to a single face rather than
two faces. Depending on the context, we may naturally
think of this as the boundary of some plane-like piece of a
surface, or a hole in an otherwise closed surface.

The algorithms described in 5 are sufficient for closed
triangle meshes, but they will not guarantee our global er-
ror bound for meshes with borders. While the envelopes
constrain our error with respect to the normal direction

of the surface, bordered surfaces require some additional
constraints to hold the approximation border close to the
original border. Without such constraints, the border of the
approximation surface may “creep in,” possibly shrinking
the surface out of existence.

In many cases, the complexity of a surface’s border
curves may become a limiting factor in how much we can
simplify the surface, so it is unacceptable to forgo simpli-
fying these borders.

We construct a set of border tubes to constrain the error
in deviation of the border curves. Each border is actually
a cyclic polyline. Intuitively speaking, a border tube is a
smooth, non-self-intersecting surface around one of these
polylines. Removing a border vertex causes a pair of border
edges to be replaced by a single border edge. If this new
border edge does not intersect the relevant border tube, we
may safely attempt to remove the border vertex.

To construct a tube we define a plane passing through
each vertex of the polyline. We choose a coordinate system
on this plane and use that to define a circular set of vertices.
We connect these vertices for consecutive planes to con-
struct our tube. Our initial tubes have a very narrow radius
to minimize the likelihood of self-intersections. We then
expand these narrow tubes using the same technique we
used previously to construct our simplification envelopes.

The difficult task is to define a coordinate system at
each polyline vertex which encourages smooth, non-self-
intersecting tubes. The most obvious approach might be to
use the idea of Frenet frames from differential geometry to
define a set of coordinate systems for the polyline vertices.
However, Frenet frames are meant for smooth curves. For
a jagged polyline, a tube so constructed often has many
self-intersections.

Instead, we use a projection method to minimize the
twist between consecutive frames. Like the Frenet frame
method, we place the plane at each vertex so that the normal
to the plane approximates the tangent to the polyline. This
is called the normal plane.

At the first vertex, we choose an arbitrary orthogonal pair
of axes for our coordinate system in the normal plane. For
subsequent vertices, we project the coordinate system from
the previous normal plane onto the current normal frame.
We then orthogonalize this projected coordinate system in
the plane. For the normal plane of the final polyline vertex,
we average the projected coordinate systems of the previous
normal plane and the initial normal plane to minimize any
twist in the final tube segment.

6.3 Adaptive Approximation
For certain classes of objects it is desirable to perform an
adaptive approximation. For instance, consider large ter-
rain datasets, models of spaceships, or submarines. One
would like to have more detail near the observer and less
detail further away. A possible solution could be to sub-
divide the model into various spatial cells and use a dif-
ferent �-approximation for each cell. However, problems
would arise at the boundaries of such cells where the �-
approximation for one cell, say at a value �1 need not nec-
essarily be continuous with the �-approximation for the
neighboring cell, say at a different value �2.

Since all candidate triangles generated are constrained
to lie within the two envelopes, manipulation of these en-
velopes provides one way to smoothly control the level of
approximation. Thus, one could specify the � at a given
vertex to be a function of its distance from the observer —
the larger the distance, the greater is the �.

As another possibility, consider the case where certain

features of a model are very important and are not to be
approximated beyond a certain level. Such features might
have human perception as a basis for their definition or
they might have mathematical descriptions such as regions
of high curvature. In either case, a user can vary the �
associated with a region to increase or decrease the level of
approximation. The bunny in Figure 9 illustrates such an
approximation.

Figure 9: An adaptive simplification for the bunny model.
� varies from 1/64% at the nose to 1% at the tail.

7 Implementation and Results

We have implemented both algorithms and tried out the
local algorithm on several thousand objects. We will first
discuss some of the implementation issues and then present
some results.

7.1 Implementation Issues

The first important implementation issue is what sort of
input model to accept. We chose to accept only manifold
triangle meshes (or bordered manifolds). This means that
each edge is adjacent to two (one in the case of a border)
triangles and that each vertex is surrounded by a single ring
of triangles.

We also do not accept other forms of degenerate meshes.
Many mesh degeneracies are not apparent on casual in-
spection, so we have implemented an automatic degener-
acy detection program. This program detects non-manifold
vertices, non-manifold edges, sliver triangles, coincident
triangles, T-junctions, and intersecting triangles in a pro-
posed input mesh. Note that correcting these degeneracies
is more difficult than detecting them.

Robustness issues are important for implementations of
any geometric algorithms. For instance, the analytical
method for envelope computation involves the use of bi-
linear patches and the computation of intersection points.

The computation of intersection points, even for linear el-
ements, is difficult to perform robustly. The numerical
method for envelope computation is much more robust be-
cause it involves only linear elements. Furthermore, it
requires an intersection test but not the calculation of inter-
section points. We perform all such intersection tests in a
conservative manner, using fuzzy intersection tests that may
report intersections even for some close but non-intersecting
elements.

Another important issue is the use of a space-partitioning
scheme to speed up intersection tests. We chose to use an
octree because of its simplicity. Our current octree im-
plementation deals only with the bounding boxes of the
elements stored. This works well for models with trian-
gles that are evenly sized and shaped. For CAD models,
which may contain long, skinny, non-axis-aligned triangles,
a simple octree does not always provide enough of a speed-
up, and it may be necessary to choose a more appropriate
space-partitioning scheme.

7.2 Results

We have simplified a total of 2636 objects from the auxiliary
machine room (AMR) of a submarine dataset, pictured in
Figure 10 to test and validate our algorithm. We reproduce
the timings and simplifications achieved by our implemen-
tation for the AMR and a few other models in Table 1.
All simplifications were performed on a Hewlett-Packard
735/125 with 80 MB of main memory. Images of these
simplifications appear in Figures 11 and 12. It is interest-
ing to compare the results on the bunny and phone models
with those of [7, 8]. For the same error bound, we are able
to obtain much improved solutions.

We have automated the process which sets the � value
for each object by assigning it to be a percentage of the
diagonal of its bounding box. We obtained the reductions
presented in Table 1 for the AMR and Figures 11 and 12 by
using this heuristic.

For the rotor and AMR models in the above results, the
ith level of detail was obtained by simplifying the i � 1th
level of detail. This causes to total � to be the sum of
all previous �’s, so choosing �0s of 1, 2, 4, and 8 percent
results in total �0s of 1, 3, 7, and 15 percent. There are two
advantages to this scheme:
(a) It allows one to proceed incrementally, taking advantage
of the work done in previous simplifications.
(b) It builds a hierarchy of detail in which the vertices at the
ith level of detail are a subset of the vertices at the i � 1th
level of detail.

One of the advantages of the setting � to a percent of
the object size is that it provides an a way to automate
the selection of switching points used to transition between
the various representations. To eliminate visual artifacts,
we switch to a more faithful representation of an object
when � projects to more than some user-specified number
of pixels on the screen. This is a function of the � for
that approximation, the output display resolution, and the
corresponding maximum tolerable visible error in pixels.

8 Future Work

There are still several areas to be explored in this research.
We believe the most important of these to be the generation
of correspondences between levels of detail and the moving
of vertices within the envelope volume.

Bunny Phone Rotor AMR
� % # Polys Time � % # Polys Time � % # Polys Time � % # Polys Time

0 69,451 N/A 0 165,936 N/A 0 4,735 N/A 0 436,402 N/A
1=64 44,621 9 1=64 43,537 31 1=8 2,146 3 1 195,446 171
1=32 23,581 10 1=32 12,364 35 1=4 1,514 2 3 143,728 61
1=16 10,793 11 1=16 4,891 38 3=4 1,266 2 7 110,090 61
1=8 4,838 11 1=8 2,201 32 1 3=4 850 1 15 87,476 68
1=4 2,204 11 1=4 1,032 35 3 3=4 716 1 31 75,434 84
1=2 1,004 11 1=2 544 33 7 3=4 688 1

1 575 11 1 412 30 15 3=4 674 1

Table 1: Simplification �’s and run times in minutes

8.1 Generating Correspondences
A true geometric hierarchy should contain not only repre-
sentations of an object at various levels of detail, but also
some correspondence information about the relationship
between adjacent levels. These relationships are neces-
sary for propagating local information from one level to the
next. For instance, this information would be helpful for
using the hierarchical geometric representation to perform
radiosity calculations. It is also necessary for performing
geometric interpolation between the models when using the
levels of detail for rendering. Note that the envelope tech-
nique preserves silhouettes when rendering, so it is also a
good candidate for alpha blending rather than geometric
interpolation to smooth out transitions between levels of
detail.

We can determine which elements of a higher level of
detail surface are covered by an element of a lower level of
detail representation by noting which fundamental prisms
this element intersects. This is non-trivial only because
of the bilinear patches that are the sides of a fundamental
prism. We can approximate these patches by two or more
triangles and then tetrahedralize each prism. Given this
tetrahedralization of the envelope volume, it is possible to
stab each edge of the lower level-of-detail model through
the tetrahedrons to determine which ones they intersect,
and thus which triangles are covered by each lower level-
of-detail triangle.

8.2 Moving Vertices
The output mesh generated by either of the algorithms we
have presented has the property that its set of vertices is
a subset of the set of vertices of the original mesh. If we
can afford to relax this constraint somewhat, we may be
able to reduce the output size even further. If we allow the
vertices to slide along their normal vectors, we should be
able to simplify parts of the surface that might otherwise
be impossible to simplify for some choices of epsilon. We
are currently working on a goal-based approach to mov-
ing vertices within the envelope volume. For each vertex
we want to remove, we slide its neighboring vertices along
their normals to make them lie as closely as possible to a
tangent plane of the original vertex. Intuitively, this should
increase the likelihood of successfully removing the vertex.
During this whole process, we must ensure that none of
the neighboring triangles ever violates the envelopes. This
approach should make it possible to simplify surfaces using
smaller epsilons than previously possible. In fact, it may
even enable us to use the original surface and a single en-
velope as our constraint surfaces rather than two envelopes.
This is important for objects with areas of high maximal
curvature, like thin cylinders.

9 Conclusion

We have outlined the notion of simplification envelopes and
how they can be used for generation of multiresolution hi-
erarchies for polygonal objects. Our approach guarantees
non-self-intersecting approximations and allows the user
to do adaptive approximations by simply editing the sim-
plification envelopes (either manually or automatically) in
the regions of interest. It allows for a global error toler-
ance, preservation of the input genus of the object, and
preservation of sharp edges. Our approach requires only
one user-specifiable parameter, allowing it to work on large
collections of objects with no manual intervention if so de-
sired. It is rotationallyand translationally invariant, and can
elegantly handle holes and bordered surfaces through the
use of cylindrical tubes. Simplification envelopes are gen-
eral enough to permit both simplification algorithms with
good theoretical properties such as our global algorithm, as
well as fast, practical, and robust implementations like our
local algorithm. Additionally, envelopes permit easy gen-
eration of correspondences across several levels of detail.

10 Acknowledgements

Thanks to Greg Angelini, Jim Boudreaux, and Ken Fast
at Electric Boat for the submarine model, Rich Riesen-
feld and Elaine Cohen of the Alpha 1 group at the Uni-
versity of Utah for the rotor model, and the Stanford
Computer Graphics Laboratory for the bunny and tele-
phone models.Thanks to Carl Mueller, Marc Olano, and
Bill Yakowenko for many useful suggestions, and to the
rest of the UNC Simplification Group (Rui Bastos, Carl
Erikson, Merlin Hughes, and David Luebke) for provid-
ing a great forum for discussing ideas. The funding for
this work was provide by a Link Foundation Fellowship,
Alfred P. Sloan Foundation Fellowship, ARO Contract P-
34982-MA, ARO MURI grant DAAH04-96-1-0013, NSF
Grant CCR-9319957, NSF Grant CCR-9301259, NSF Ca-
reer Award CCR-9502239, ONR Contract N00014-94-1-
0738, ARPA Contract DABT63-93-C-0048, NSF/ARPA
Center for Computer Graphics and Scientific Visualization,
NIH Grant RR02170, an NYI award with matching funds
from Xerox Corp, and a U.S.-Israeli Binational Science
Foundation grant.

References
[1] P. Agarwal and S. Suri. Surface approximation and geometric par-

titions. In Proceedings Fifth Symposium on Discrete Algorithms,
pages 24–33, 1994.

[2] H. Brönnimann and M. Goodrich. Almost optimal set covers in
finite VC-dimension. In Proceedings Tenth ACM Symposium on
Computational Geometry, pages 293–302, 1994.

[3] K. L. Clarkson. Algorithms for polytope covering and approxima-
tion. In Proc. 3rd Workshop Algorithms Data Struct., Lecture Notes
in Computer Science, 1993.

[4] M. Cosman and R. Schumacker. System strategies to optimize CIG
image content. In Proceedings of the Image II Conference, Scotts-
dale, Arizona, June 10–12 1981.

[5] G. Das and D. Joseph. The complexity of minimum convex nested
polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom., pages 296–
301, 1990.

[6] M. J. DeHaemer, Jr. and M. J. Zyda. Simplification of objects
rendered by polygonal approximations. Computers & Graphics,
15(2):175–184, 1991.

[7] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis
for surface of arbitrary topological type. Report 93-10-05, Depart-
ment of Computer Science, University of Washington, Seattle, WA,
1993.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution analysis of arbitrary meshes. Computer
Graphics: Proceedings of SIGGRAPH’95, pages 173–182, 1995.

[9] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual en-
vironments. In Computer Graphics (SIGGRAPH ’93 Proceedings),
volume 27, pages 247–254, August 1993.

[10] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility.
In Computer Graphics: Proceedings of SIGGRAPH 1993, pages
231–238. ACM SIGGRAPH, 1993.

[11] T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel-
based object simplification. In G. M. Nielson and D. Silver, editors,
IEEE Visualization ’95 Proceedings, pages 296–303, 1995.

[12] P. Heckbert and M. Garland. Multiresolution modeling for fast
rendering. Proceedings of Graphics Interface, 1994.

[13] P. Hinker and C. Hansen. Geometric optimization. In Gregory M.
Nielson and Dan Bergeron, editors, Proceedings Visualization ’93,
pages 189–195, October 1993.

[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh optimization. In James T. Kajiya, editor, Computer Graphics
(SIGGRAPH ’93 Proceedings), volume 27, pages 19–26, August
1993.

[15] A. D. Kalvin and R. H. Taylor. Superfaces: Polyhedral approxi-
mation with bounded error. Technical Report RC 19135 (#82286),
IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY 10958, 1993.

[16] J. Mitchell and S. Suri. Separation and approximation of polyhedral
surfaces. In Proceedings of 3rd ACM-SIAM Symposium on Discrete
Algorithms, pages 296–306, 1992.

[17] Kevin J. Renze and J. H. Oliver. Generalized surface and volume
decimation for unstructured tessellated domains. In Proceedings of
SIVE’95, 1995.

[18] J. Rossignac and P. Borrel. Multi-resolution 3D approximations
for rendering. In Modeling in Computer Graphics, pages 455–465.
Springer-Verlag, June–July 1993.

[19] H. E. Rushmeier, C. Patterson, and A. Veerasamy. Geometric sim-
plification for indirect illumination calculations. In Proceedings
Graphics Interface ’93, pages 227–236, 1993.

[20] F. J. Schmitt, B. A. Barsky, and W. Du. An adaptive subdivision
method for surface-fitting from sampled data. Computer Graphics
(SIGGRAPH ’86 Proceedings), 20(4):179–188, 1986.

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. In Edwin E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

[22] G. Taubin. A signal processing approach to fair surface design. In
Proc. of ACM Siggraph, pages 351–358, 1995.

[23] G. Turk. Re-tiling polygonal surfaces. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 55–64, July 1992.

[24] A. Varshney. Hierarchical geometric approximations. Ph.D. The-
sis TR-050-1994, Department of Computer Science, University of
North Carolina, Chapel Hill, NC 27599-3175, 1994.

Figure 10: Looking down into the auxiliary machine room
(AMR) of a submarine model. This model contains nearly 3,000
objects, for a total of over half a million triangles. We have sim-
plified over 2,600 of these objects, for a total of over 430,000
triangles.

Figure 11: An array of batteries from the AMR. All parts but the
red are simplified representations. At full resolution, this array
requires 87,000 triangles. At this distance, allowing 4 pixels of
error in screen space, we have reduced it to 45,000 triangles.

(a) bunny model: 69,451 triangles (e) phone model: 165,936 triangles (i) rotor model: 4,736 triangles

(b) � = 1=16%, 10; 793 triangles (f) � = 1=32%, 12; 364 triangles (j) � = 1=8%, 2; 146 triangles

(c) � = 1=4%, 2; 204 triangles (g) � = 1=16%, 4; 891 triangles (k) � = 3=4%, 1; 266 triangles

(d) � = 1%, 575 triangles (h) � = 1%, 412 triangles (l) � = 3 3=4%, 716 triangles

Figure 12: Level-of-detail hierarchies for three models. The approximation distance, �, is taken as a percentage of the bounding box
diagonal.

Copyright 1996 IEEE, reprinted with permission from IEEE Transactions on Visualization and Computer Graphics, 2(2):171-184, 1996.

Controlled Topology Simplification

Taosong He‡, Lichan Hong‡, Amitabh Varshney‡, and Sidney Wang*

‡Department of Computer Science *Sony-Kihara Research Center, Inc.
State University of New York at Stony Brook 1-14-10 Higashigotanda
Stony Brook, NY 11794-4400, U.S.A. Shinagaw a-ku, Tokyo, 141 Japan

Abstract
We present a simple, robust, and practical method for object simplification for applications where
gradual elimination of high frequency details is desired. This is accomplished by converting an object
into multi-resolution volume rasters using a controlled filtering and sampling technique. A multi-
resolution triangle-mesh hierarchy can then be generated by applying the Marching Cubes algorithm.
We further propose an adaptive surface generation algorithm to reduce the number of triangles
generated by the standard Marching Cubes. Our method simplifies the topology of objects in a
controlled fashion. In addition, at each level of detail, multi-layered meshes can be used for an
efficient antialiased rendering.

1. Introduction

Interactive and realistic rendering is of importance in many applications such as scientific
visualization and virtual reality. Howev er, there has always been a conflict between the ever larger
datasets and the limited rendering capabilities of graphics engines. Object simplification provides one
way to reconcile scene realism with interactivity. The basic idea is to use object simplification to
automatically generate a multi-resolution object hierarchy, and perform level-of-detail-based
rendering. A level-of-detail-based rendering scheme uses the perceptual importance of a given object
in the scene to select its appropriate level of representation in the multi-resolution object hierarchy [6,
8, 15]. Thus, higher detail representations are used when the object is perceptually more important
and lower detail representations are used when the object is perceptually less significant. This method
allows one to achieve higher frame update rates while maintaining good visual realism.

Most existing algorithms in the area of object simplification preserve the object topology [10, 12,
21, 35, 37, 38]. Topology in this context means the properties such as the holes, tunnels, and cavities
of an object. Preservation of topology is crucial for certain applications, such as molecular surface
modeling, where the presence (or absence) of interior tunnels and cavities in a molecule conveys
important structural and chemical information to the biochemist. Clearly, if the target application
demands topology preservation, then the simplification algorithm should adhere to it. However, if the
primary goal is fast and realistic rendering, such as for virtual reality or some other time critical
applications, the topology preservation criterion could stand in the way of efficient simplification.

Let us consider a virtual fly-through in a CAD model. A tiny hole on the surface of a mechanical
part in this model will gradually disappear as the observer moves away from the part. However,
topology-preserving simplification of this object will retain such features, thereby reducing
simplification rates due to limits on the amount of geometry-simplification one can achieve while
preserving topology. Another disadvantage is that rendering of a simplified object retaining high

2

frequency details would increase image-space aliasing due to undersampling, especially in perspective
viewing, thereby causing distracting effects such as flickering. On the other hand, by appropriately
simplifying the topology of the model, both simplification rates and visual realism can be increased.
This idea was previously demonstrated in [8], where a chair was shown at three levels of detail with no
preservation of the topology across them.

We therefore classify an object simplification process into the following two stages:
(a) geometry simplification, in which the number of geometry primitives, such as vertices, edges, and
faces, is reduced;
(b) topology simplification, in which the number of holes, tunnels, cavities, as well as the number of
geometry primitives, is reduced.
Depending upon the target application, these two stages should be performed either independently or
jointly. For example, topology simplification itself naturally includes the reduction of geometry
primitives, while geometry simplification can be applied on a topology simplified model to further
reduce its complexity. Howev er, most of the existing work for object simplification deals exclusively
with geometry simplification, and the extension to topology simplification is usually difficult and
complicated. The primary goal of our research is to address the topology simplification stage in a
simple and robust way, and thereby also help the geometry simplification algorithms to achieve better
results for certain applications.

In this paper we present a voxel-based topology simplification algorithm for the generation of
multi-resolution object hierarchy, with gradual elimination of high-frequency features including, but
not limited to, tiny holes, tunnels, and cavities. In our approach all formats of input objects are first
converted into three-dimensional volume rasters by applying a controlled filtering and sampling
technique, which is an extension of the volume sampling method proposed by Wang and Kaufman
[39]. Then a surface-fitting technique such as Marching Cubes can be applied on the volume rasters to
produce simplified polygon meshes. By simply adjusting the size of each voxel, thereby adjusting the
resolution of the volume raster, the desired level of detail can be achieved, and consequently, a multi-
resolution hierarchy of polygon meshes can be generated.

An earlier version of this work has been presented in [17]. One of the major potential problems
left unresolved in [17] is that surface-fitting techniques, such as Marching Cubes, could generate a
large number of redundant triangles in the regions of low surface curvature. To alleviate this problem,
we adopt the idea of adaptive subdivision of volume space [30], and present in this paper an adaptive
Marching Cubes algorithm. Since surface extraction from the multi-resolution volume rasters should
preserve the already simplified topology of the model, our adaptive Marching Cubes algorithm
guarantees that the simplified mesh is within a given bound of the mesh generated by the standard
Marching Cubes.

Although our controlled filtering and sampling technique effectively eliminates the object-space
aliasing in the multi-resolution volume representations, both image-space and object-space aliasings
are re-introduced when the binary surface-fitting technique is applied. To solve this problem, we have
developed a multi-layered triangle mesh rendering algorithm. Our idea is to smooth out the transition
between the boundary of an object and empty space surrounding it by using multiple layers of triangle
mesh with increasing translucency from the innermost layer to the outermost one. Unlike the earlier
antialiasing techniques presented in [1, 5], the prefiltering of the projected objects in image-space is
replaced here by a view-independent filtering in object space, which is performed only once in a pre-
rendering stage.

3

The rest of the paper is organized as follows. We first summarize the previous work on object
simplification in Section 2. We then present our voxel-based topology simplification in Section 3. We
discuss the adaptive Marching Cubes in Section 4, and introduce the multi-layered Marching Cubes
for antialiasing in Section 5. We hav e implemented our algorithm and tested it on several kinds of
objects, and we summarize our results in Section 6. Conclusions and some ideas on future work appear
in Section 7.

2. Previous Work on Object Simplification

The last few years have seen extensive research in the area of object simplification for level-of-
detail-based rendering. Thus far no single algorithm works well for all kinds of objects under all
conditions. Some algorithms work best on smooth objects with no sharp edges, whereas others work
best for objects that have large areas that are almost coplanar, and yet others are fine-tuned to exploit
special object properties such as convexity. It is therefore natural that research on hierarchy generation
has evolved around different classes of objects. These are mainly convex polytopes, polyhedral
terrains, and arbitrary three-dimensional polygonal objects.

Convex Objects: Automatic simplification of convex objects is now a relatively well-understood
subject, due mainly to some recent seminal papers on this topic. It has been shown that computing the
minimal-facet approximation within a certain error bound is NP-hard for convex polytopes [9]. Thus
algorithms for approximation of convex objects focus mainly on fast heuristics that produce
approximations close to the optimal [3, 7, 28].

Polyhedral Terrains: Simplification of polyhedral terrains has been an active area of research for
almost two decades because of its considerable importance to the GIS (Geographical Information
System) community. It is impossible to do full justice to such a vast area in a mere section. We would,
however, like to point interested readers to a recent paper on this topic by Heckbert and Garland [18],
for a comprehensive survey of the field.

General Three-Dimensional Objects: Research on simplification of general (non-convex, non-
terrain, possibly high genus) three-dimensional objects has spanned the entire gamut of highly local to
purely global algorithms, with several approaches in between that have both local and global steps.
Local algorithms work by applying a set of local rules, which primarily work under some definition of
a local neighborhood, for simplifying an object. The local rules are iteratively applied under a set of
constraints, and the algorithm terminates when it is no longer possible to apply the local rule without
violating some constraint. The global algorithms optimize the simplification process over the whole
object, and are not necessarily limited to the small neighborhood regions on the object.

Some of the local rules that have appeared in the literature are mentioned below:
• Vertex Deletion: Delete a vertex with its adjacent triangles and retriangulate the resulting hole. This
is used by Schroeder et al. in [35] with some very good results. A generalization of this, deleting
several neighboring vertices at once and retriangulating the resulting hole, is proposed by Varshney
[38].
• Vertex Collapsing: Merge all the vertices that satisfy a given criterion into one vertex. This is used in
conjunction with a global grid by Rossignac and Borrel [32].
• Edge Collapsing: Merge the two vertices of an edge into one, thereby deleting the two adjacent
triangles of the edge. This is used as a subroutine in the mesh optimization algorithm by Hoppe et al.
[21].
• Polygon Merging: Merge the adjacent coplanar polygons into larger polygons [20].

4

Some of the global rules that have been used are:
• Uniform Distribution of Fewer Vertices: In a re-tiling approach to simplification outlined by Turk
[37], the program first distributes a given number of vertices over the surface and then repositions them
based on a global repulsion method to uniformly spread them as a function of the curvature. These
new vertices are then retriangulated and the old vertices deleted to obtain the approximation mesh.
• Minimization of Energy Function: Hoppe et al. [21] globally optimize the energy function
representing (a) the sum of squared distances from the mesh, (b) the number of vertices, and (c) the
edge lengths over the vertices of the newer mesh. The overall optimization procedure alternates
between local and global optimization steps.
• Minimization by Set Partitioning: Varshney [38] uses a greedy set-partitioning-based minimization
approach to reducing the number of triangles. His method can relate the quality of the approximation
produced to the optimal for the sameε tolerance.
• Wav elets: An interesting solution to the problem of polygonal simplification by using wav elets is
presented in [12, 26], where arbitrary polygonal meshes are first subdivided into patches with
subdivision connectivityand then multi-resolution wav elet analysis is used over each patch.

The issue of preservation or simplification of topology is independent of whether an algorithm
uses local rules, or global rules, or both to simplify. With the exception of Rossignac and Borrel [32],
all other papers cited above preserve the topology of the input object. Preservation of input topology is
mathematically elegant and aesthetically pleasing. However, if interactivity is the bottomline, as is
often the case in interactive three-dimensional graphics and visualization applications, topology can
and should be sacrificed if the topology simplification (a) does not directly impact the application
underlying the visualization and (b) does not decrease visual realism. Both of these goals are easier to
achieve if the simplification of the topology is finelycontrolledand has a sound mathematical basis. In
the next section we outline our approach, which has these properties and is global in nature.

3. Controlled Topology Simplification

In order to better motivate our approach to object simplification, we turn to the classic example of
rendering a tilted checkerboard, in which the top of the checkerboard is placed further away from the
viewer than the bottom of the board. Once rendered, the Moire patterns are especially noticeable at
the top of the image, where too many details from the checkerboard are forced into too few image
pixels. This is mainly due to the pyramidal viewing frustum of perspective projection. The same
problem occurs when highly detailed objects far from the viewer are rendered. Therefore, our goals
for object simplification are twofold. First, we would like to avoid the Moire patterns by gradually
eliminating detailed features of an object as it moves away from the viewer. Second, as in the case of
most existing level-of-detail algorithms, we would like to increase the frame rate by establishing a
multi-resolution object representation, and using simplified models for distant objects.

A flow diagram illustrating our overall object simplification algorithm is outlined in Fig. 1. The
algorithm starts by first overlaying the object with a three-dimensional grid and applying a three-
dimensional low-pass filter at each grid point. A three-dimensional volume raster data-structure is
used to store these filtered grid-point values. Once the filtering and sampling process is completed, a
reconstruction process is employed to generate the detail-eliminated object from the set of filtered
sample points represented in the volume raster. In this section, we first explain the controlled filtering
and sampling process, then discuss the establishment of the hierarchical representation and the smooth
transition between levels of detail. The reconstruction process will be presented in Section 4.

5

Volume data

Polygonal data

and Sampling

Controlled Filtering scalar field

Polygonal

Range scanned

Volume

Mathematical

Reconstruction

Fig. 1:Pipeline for controlled topology simplification.

3.1. Controlled filtering and sampling

To simplify the topology in a controlled fashion, we adopt a signal-processing approach to object
detail-elimination by low-pass filtering the object to gradually remove the high frequencies (i.e.,
detailed features) from the object. The class of input objects that our algorithm can accept and process
includes polygonal meshes, volume datasets, objects derived from range-scanners, and algebraic
mathematical functions such as fractals. Our algorithm is backed by a sound and elegant mathematical
framework of sampling and filtering theory. In fact, a similar sampling and filtering principle has been
used extensively in the image processing communities to reduce noise and smooth sharp features in 2D
images. Wang and Kaufman [39] generalized the concept into 3D to remove aliasing in volume-based
modeling of geometric objects. Our approach utilizes their volume sampling approach, and extends it
to incorporate more precise control over the filtering and sampling process. In the following
discussion we assume readers are familiar with the basic concepts of sampling and filtering theory. A
good reference text is [43].

Fourier analysis tells us that a signal’s (or an object’s) shape is determined by its frequency
spectrum. The more details the signal contains, the richer it is in high-frequency components of its
spectrum. Therefore, to gradually eliminate the detail features from an object, we create a smoother
signal by removing the offending high frequencies from the original signal. This process is known as
low-pass filtering, or band-limiting the signal, and is described mathematically in frequency domain
as:

(1)FT(fnew) = FT(forig) ⋅ H(ν)

where

(2)H(ν) =

1

0

− k ≤ ν ≤ k

otherwise
.

The more high frequencies we remove (i.e., the smaller thek), the more details that are eliminated
from the object. Since the multiplication in the frequency domain corresponds exactly to convolution
in the spatial domain, the equations can be rewritten to operate in the spatial domain as:

(3)fnew = forig ∗ sinc

6

where∗ is the convolution operator, andsinc is the ideal low-pass filter. Although analytic evaluation
of Equation 3 is sometimes possible for objects which are represented by algebraic mathematical
functions, for general mathematical functions, polygon meshes, or volume datasets, an analytical
solution either does not exist or is too expensive to be calculated. For such cases, a discrete
approximation must be used. To minimize the discrete approximation error, the original object is kept
in its continuous form while the three-dimensional filter is divided into a number of bins, each having
a precomputed filter weight. Note that the resolutions of the bins should be finer than that of the
sampling grid to achieve good approximation. These weights are computed by evaluating the filter
function at these discrete bin positions and multiplying them by a normalization factor to ensure that
the sum of all weights equals unity. Thus, during convolution, a lookup table is used to obtain the
corresponding set of weights, which is then applied to the intersected region between the filter kernel
and the object. That is, for a grid point (i , j , k) in the volume raster, the resulting filtered density
f (i , j , k) is calculated as:

(4)
f (i , j , k) =

∫ ∫ ∫ h(i − α , j − β , k − γ) S(α , β ,γ) dγ dβ dα

whereh is a low-pass filter of choice andS(α , β ,γ) is a binary function defined as:

(5)S(α , β ,γ) =

1

0

if point (α , β ,γ) ∈ object

otherwise

Thus an important criterion of our input object is that for a given point (α , β ,γ), it can be determined
whether that point is inside or outside of the object. For example, only those polygonal meshes that
form the boundary of a solid can be treated by the algorithm.

The issues that still remain to be addressed are the determination of the appropriate resolution of
the sampling volume raster and the appropriate size of the filter support. From Shannon’s sampling
theorem, these two variables are directly related to each other. That is, the volume raster must be
sampled at a frequency that is greater than twicefh, the highest frequency component in the signal.
This lower bound on the sampling rate is known as the Nyquist rate, or Nyquist frequencyNF.
Suppose that we have a volume raster consisting ofX × Y × Z sampling resolution, which is used to
represent a rectangular volume region ofp × q × r unit3 of space; then the Nyquist frequency and the
sampling frequencyfv of the volume raster are:

(6)NF = fv =

fvx
, fvy

, fvz

=

X

p
,

Y

q
,

Z

r

Hence, ideally, the cut-off frequencyfg of the low-pass filter must be set toNF/2 in order to filter out
all offending high frequencies. However, in practice, since the ideal low-pass filter is rarely used,fh is
usually set far less thanNF/2. In our experiments, approximate filters such as Gaussian filters and
hyper-cone filters are often employed [17]. The use of these non-ideal filters results in a combination
of frequency leakages and non-unity gains. Fortunately, substantial improvement can be made by
filtering out more high frequencies from the objects to allow some error margins caused by the non-
ideal filters. This is achieved by the following calculation offh:

(7)fh =
NF

2
⋅ errornon_ideal

where 0 <errornon_ideal < 1. Generally, depending on the type of non-ideal filter used, anerrornon_ideal

7

factor between 0. 5 and 0. 85 achieves satisfactory results. More in-depth discussions on the selection
and error estimation of three-dimensional filters can be found in [4, 27]. Given the cut-off frequency
fg, the size of the corresponding low-pass filter support is determined accordingly. Highfh, therefore
high resolution of the volume raster, corresponds to small support in the spatial domain, and vice
versa.

3.2. Multi-resolution hierarchy

Now that we have established the direct correspondence between the size of the filter support and
the resolution of the volume raster, a hierarchical level-of-detail object representation can be easily
constructed by controlling the amount of high frequency removed from the spectrum, as one goes from
one level of the hierarchy to another. In frequency domain, that is,

(8)FT(fi) = FT(forig) ⋅ Hi (ν), 0 ≤ i ≤ L

and

(9)Hi (ν) =

1

0

− k − δ ⋅ (L − i) ≤ ν ≤ k + δ ⋅ (L − i)

otherwise

where fi represents thei-th level of the level-of-detail hierarchy andL represents the total number of
levels.

The base of the proposed hierarchy contains the most detailed and the highest resolution version
of the object, and the top contains the blurriest and lowest resolution version of the object. Thus,
during volume raster hierarchy construction, as one moves up the hierarchy, the sampling resolution of
the volume raster decreases. Consequently, a low-pass filter with wider support is applied. Finally, if
desired, a surface-fitting technique can be used to reconstruct a polygon mesh model for each level of
the volume raster hierarchy. During rendering, the appropriate level of the hierarchy is selected for
each object in the scene. The heuristic that we have used is that the footprint of each filtered sample
point covers approximately one and a half times the area of a pixel.

Furthermore, in order to reduce temporal aliasing during animation, smooth interpolation
between two adjacent resolution meshes should be generated, which is generally a non-trivial task.
However, in our algorithm, an arbitrary integer resolution volume raster can be generated by adjusting
the low-pass filter support. It is also straightforward and efficient to directly interpolate between two
adjacent resolution volume rasters to generate an in-between resolution volume raster. This is achieved
by first linearly interpolating the resolution of the volume rasters at adjacent levels. Then the density
at a grid point of the in-between volume raster is decided by linearly interpolating the densities at the
corresponding positions of the two adjacent resolution volume rasters. A two-dimensional example of
this process is demonstrated in Fig. 2.

The topology simplification algorithm presented above issimple, robust, and widely applicable.
By continuously adjusting the filter support, the user can control the elimination of appropriate amount
of high frequency in the model. The desired passband for filtering can be precisely calculated
according to the distance from the model to the eyepoint. At first glance, it might seem somewhat
similar to the clustering scheme [32] or the three-dimensional "mip-map" approach [24, 33]. However,
our approach follows a control-based filtering for gradual elimination of high frequencies, which is
different from the locality-based clustering of geometry as presented in [32]. As for the three-
dimensional "mip-map" approach, every level of the hierarchy is formed by averaging several voxels

8

Fig. 2:Interpolation between two adjacent resolution volume rasters.

from the previous level. In our approach, every level of the volume raster hierarchy is created by
convolving the original object with a low-pass filter of an appropriate support, whose size can
theoretically be any positive real number. Thus, errors caused by a non-ideal filter do not propagate
and accumulate from level to lev el. Furthermore, the sampling resolution of our volume raster
hierarchy need not be the same for all three axes nor even be required to be a power of two.

4. Surface Reconstruction

Once the filtered value for each volume raster grid point is generated, surface-fitting techniques
can be used to reconstruct the isodensity surfaces, if desired. Alternatively, if a polygonal model is not
required for the simplification result, one can delay the reconstruction process until rendering, instead
of reconstructing the isodensity surface using polygonal elements. In other words, if the direct volume
rendering [23, 40] technique is employed to render the volume raster of filtered values, then the
reconstruction process is done during rendering, without resorting to intermediate polygonal
representation. In this paper, we focus on the polygon reconstruction.

Marching Cubes, originally proposed by Lorensen and Cline [25], has been considered the
standard approach to surface extraction from a volume raster of scalar values. In this algorithm, an
isodensity surface is approximated by determining its intersections with edges of every voxel in the
volume raster. Up to five triangles are used to approximate the surface within a voxel, depending on
the configurations of the voxel with respect to an isodensity value. One advantage of Marching Cubes
is that it can be efficiently implemented using a precomputed lookup table for the various
arrangements of surface-voxel intersections. However, despite its extensive applications, the original
algorithm proposed by Lorensen and Cline [25] has some particular problems, in turn provoking
substantial research aimed at the solutions. One of the problems is that the 15 basic configurations
proposed in [25] are incomplete, and could generate topology inconsistent surfaces due to the
ambiguities [11]. Several solutions have been proposed to add additional configurations [31, 41].

9

Recently, Schroeder, Martin, and Lorensen have published the Visualization Toolkit [36]. It contains
an implementation of a topology-consistent Marching Cubes based on a complete set of 256
configurations. Since this implementation is simple and available, it has been adopted in this paper.
Another problem of Marching Cubes is that the time of computation spent for empty voxels with no
surface intersection could be considerable. It can be solved by avoiding the visiting and testing of
empty regions [42].

For the purpose of object simplification, the number of triangles generated by Marching Cubes is
particularly important. Since the maximum size of the triangles is limited by the regular grid spacing
of the volume raster, there could be excessive fragmentation of the output data even in the area of low
curvature. The solutions proposed to solve this problem can be classified into either filter-based or
adaptive techniques. A filter-based technique starts with a large number of primitives and removes or
replaces them to reduce the model size. For example, Montani et al. [29] discretize the intersection
points between the surface and the edges of voxel and merge the coplanar facets. Schroeder et al. [35]
have proposed a decimation algorithm based on multiple filtering passes and vertex deletion. It
analyzes the geometry and topology of a triangle mesh locally and recursively removes vertices that
pass a minimum distance or curvature-angle criterion. The advantage of this approach is that any lev el
of reduction can be obtained, on the condition that a sufficiently coarse approximation threshold is set.
Kalvin and Taylor [22] have proposed asuperfacealgorithm by merging faces. It guarantees a
bounded approximation and can be applied on any polyhedral mesh that is a valid manifold. On the
other hand, adaptive techniques produce more primitives in selected areas, such as an area with highly
detailed features. For example, Schmitt [34] starts with a rough bi-cubic patch approximation to
sample data, and then subdivides those patches that are not sufficiently close to the underlying
samples. Adaptive techniques have been used for terrains [13], implicit modeling [2], and general
polygon meshes [10].

As mentioned in the introduction, the surface-fitting technique used for our algorithm must
preserve the topology of the model, since the topology simplification has been appropriately achieved
in the stage of controlled filtering and sampling. One method is to first generate a triangle mesh using
the standard Marching Cubes, and then apply the existing topology preserving geometry simplification
algorithm on the mesh. As an alternative, we adopt the adaptive idea and propose a simple algorithm
based directly on Marching Cubes. The basic idea is to adapt the size of the generated triangles and
hence their number to the shape of the isodensity surface. To achieve this, Muller and Stark [30] have
proposed a Splitting-box algorithm. Ouradaptive Marching Cubesis based on Splitting-box, but with
some major improvements. In this section, we first introduce the Splitting-box algorithm, following
the description in [30], and then discuss the difference between it and our algorithm.

4.1. Splitting-box algorithm

The input of the Splitting-box algorithm, like Marching Cubes, consists of a regular 3D grid of
scalar values and an isodensity value for the surface. A vertex of the grid is calledblack if its value is
greater than or equal to the isodensity, andwhite otherwise. A box is a rectangular parallelepiped,
whose edges are induced by linear sequences of vertices of the grid. For Marching Cubes, the
assumption is that the box edge length is always 2, and the surface has one and only one intersection at
the box edges whose vertices are of different colors. For Splitting-box, a box can have longer edges,
but the second assumption still holds. An edge is calledMC if the color changes at most once along its
grid vertex sequences. A face is calledMC if its four edges areMC edges, and a box isMC if its six

10

faces areMC faces., An example of anMC box is shown in Fig. 3a.

Splitting-box starts with the box given by the input grid. This box is bisected perpendicular to its
longest edge into two sub-boxes. The process of bisection is recursively performed until a 2×2×2 box
is reached. Meanwhile, the bisection is postponed for the boxes arising during the bisection process if
they are recognizedMC. Instead, triangle chains are generated for such boxes, according to the rules of
Marching Cubes configurations. One important point here is that a triangle vertex on anMC edge is
interpolated between the pair of consecutive vertices of different colors on the edge similar to
Marching Cubes. Thus, the vertex coincides exactly with the one generated by Marching Cubes. After
the generation of the triangle chains for anMC box, the bisection is continued to check the quality of
approximation of the triangle chains with respect to the true triangle chains both on the faces of and
inside theMC box. If the approximation is acceptable, it will be part of the output. Otherwise, the
chain is discarded, and a new approximation is tested in the sub-boxes. A satisfactory approximation is
generated, at worst, at the level of a 2×2×2 box.

The purpose of checking the quality of the approximation of the triangle chains is to preserve the
topology. With the bisection of anMC box B into two sub-boxesB1 andB2, if one of B1 andB2 is not
MC, then essentially the approximation ofB will not be acceptable. If bothB1 andB2 areMC boxes,
then a satisfactory approximation ofB must satisfy the following two criteria. First, the intersections
between the chains inB and the new edges on the common face ofB1 andB2 must lie between a pair
of consecutive vertices with different colors. If this condition is satisfied, the respective triangle
vertices inB1 and B2 are replaced by the intersection point. Second, the triangle chain ofB must be
geometrically coincident with those ofB1 and B2. Using these criteria, Splitting-box preserves the
exact separation of black and white vertices, and guarantees that the topology of the surface coincides
with and is not more than the sampling distance apart from the Marching Cubes solution.

Splitting-box provides a simple and practical framework for reducing the number of triangles
generated by Marching Cubes. One of the problems of this approach, however, is that the algorithm
achieves only a fixed-bound approximation. In other words, the Splitting-box mesh is always within
sampling distance of the Marching Cubes mesh, and this bound can not be changed by the users. This
is due to the requirement to preserve the exact separation of black and white vertices. This requirement
also limits the possible reduction of polygons, even with the sampling distance bound.

(a) (b)

Fig. 3:(a) An MC box for Splitting Box. (b) An AMC box for adaptive Marching Cubes.

11

4.2. Adaptive Marching Cubes

To solve this problem, we propose an adaptive Marching Cubes algorithm. By slightly change the
definition ofMC of Splitting-box, we propose the concept ofAMC. The definition ofAMC edges and
AMC faces are the same as of Splitting-box. However, a box in a 3D grid isAMC if and only if all the
edges induced by linear sequences of grid vertices on the face and inside the box areAMC (Fig. 3b). In
other words, when we define anAMC box, we not only consider the faces, but also the interior.
Therefore, together with the quality checking process discussed below, we guarantee that a satisfactory
approximation in anAMCbox does not affect the topology of the model.

The adaptive Marching Cubes algorithm follows a similar bisection process to Splitting-box. The
process is recursively performed, but postponed to generate the triangle chain according to Marching
Cubes configurations when a box is recognizedAMC. The quality of the triangle chain approximation
of thisAMCbox is then checked, and bisection is continued if the approximation is not satisfactory.

However, there are several important differences between the two algorithms. First, for Splitting-
box, a box is always bisected perpendicular to its longest edge. In some situations, this could cause
unnecessary bisections. For example, if all the edges along a certain axis areAMC in a non-AMC box,
bisecting along this axis would still generatenon-AMC boxes. On the other hand, for adaptive
Marching Cubes, only anAMC box is still bisected perpendicular to its longest edges. For non-AMC,
we first find those axes along which there is at least one non-AMC edge, then bisect perpendicular to
the longest edges along those axes. An example is shown in Fig. 4, where more than three bisections
must be performed to make all the sub-boxesAMC using the Splitting-box approach, while only one
bisection is needed perpendicular to the shortest edge along the Z axis using the adaptive Marching
Cubes approach.

The major difference between the two algorithms lies in the quality checking process. Given a
user-specified boundε , the goal of our algorithm is to satisfy the following conditions:
(1) The set of adaptive Marching Cubes generated mesh vertices is a subset of the set of Marching
Cubes generated mesh vertices.
(2) The topology of the standard Marching Cubes generated mesh is preserved in theadaptive
Marching Cubesgenerated mesh.
(3) All the vertices of the standard Marching Cubes generated mesh are withinε distance of the

X

Y

Z

Fig. 4:Bisecting of a non-AMC Box.

12

adaptive Marching Cubes generated mesh.

The first condition is met through the method of generating the approximating triangle chain in
an AMC box, and the second condition is satisfied by approximating only the mesh in anAMC box.
To satisfy the third condition, for eachAMC box B, we test the distance between all the Marching
Cubes vertices to the approximating chain. To check whether the distance between a point and a
triangle is within a certain bound, we conservatively approximate the distance by calculating the
distance between the point and the triangle along X, Y, and Z axes. Since quality checking is always
performed between the approximating chain and the Marching Cubes vertices, it can be achieved
without the recursive bisection of Splitting-box.

A potential problem for adaptive approximation is the cracks generated on the common face
between different levels of the hierarchy. An example of the possible cracks is shown in Fig. 5a. To
make things clear, we present only triangles related to the cracks in Fig. 5. For Splitting-box, the crack
is first detected, then eliminated by exploiting the restriction that the intersections between the
approximation chains in anMC box and the common faces of the sub-boxes lie between a pair of
consecutive vertices with different colors. Since this restriction is released for adaptive Marching
Cubes, we develop a simplestitchingalgorithm for the elimination of the cracks. The basic idea is to
first find those potential crack edges on the common faces, then retriangulate them to stitch the cracks.
The edge on a common face betweenB1 and B2 is defined asgood if it appears in more than one
triangle in the union ofB1 chain andB2 chain, andcrackotherwise. The retriangulation is performed
among the triangles with at least one crack edge. An example of such retriangulation is shown in Fig.
5b, where one triangle in the coarse resolutionAMC box on the right is split into two triangles. Notice
that many additional triangles could be generated using this simple stitching algorithm. Another
possible retriangulation with fewer triangles but more complicated implementations is shown in Fig.
5c, where the position of the corresponding vertices of the triangles in the fine resolutionAMC box on
the left is moved.

5. Multi-Layered Marching Cubes Rendering

The controlled filtering and sampling technique discussed in Section 3 effectively eliminates the
high frequencies above the Nyquist frequency in the multi-resolution volume rasters. They can be
appropriately rendered through antialiased volume rendering. However, as discussed above, surface-
fitting techniques, such as our adaptive Marching Cubes, are sometimes needed to generate an
isodensity surface from the volume representations. Generally, these techniques apply a binary surface
classification to extract an isodensity surface from the 3D grid. Although the isodensity surface is
considered to be good from the point of view of modeling, it does introduce infinitely high
frequencies. Since these frequencies cannot be fully represented by a discrete image, they can cause
image-space aliasing. As an alternative to the commonly used hardware-supported antialiasing for
rendering, we have dev eloped a multi-layered Marching Cubes antialiased rendering algorithm. This
approach takes advantage of the low-pass filtering applied during the controlled filtering and sampling
stage. The non-binary surface classifier that we have used permits surfaces to be associated with a
continuous range of densities, thereby allowing a smooth transition from the object-boundary to the
empty space. Another motivation for this approach is to more appropriately represent the low-pass-
filtered models using polygon meshes. Since a simplified model is represented in a volume raster with
densities ranging continuously from 0 to 1, a single layer of surface with one isodensity sometimes
cannot always produce a good simplified effect, especially when the object is far away and a very low

13

stitch stitch

(c)(b)

(a)

crack

Fig. 5:Crack Stitching: (a) Crack, (b, c) Examples of solutions.

resolution volume raster is used. For these situations, object-space aliasing introduced by surface-
fitting needs to be reduced.

Besides our work in [17], the idea of utilizing multiple layers of triangle meshes generated by
Marching Cubes has been independently proposed by Heidrich et al. [19] for the purpose of interactive
maximum projection. However, their algorithm is not concerned about the composition of semi-
transparent layers. Fujishiro et al. [14] have generalized Marching Cubes to handle an interval volume
with isodensities falling into a close interval [α , β]. Their algorithm generates polyhedra, instead of
triangles, but still cannot handle semi-transparent interval volumes. Guo [16] has proposed using

Translucency

Density

Translucency

Density

1.0

1.0
(a)

Isodensity
(b)

Isodensity 1.0

1.0

Fig. 6: (a) Binary surface classification. (b) Continuous surface classification and discrete approxima-
tion.

14

α -shape to approximate the interval volumes. The advantage of his approach is that theα -shape can be
rendered as RGBA clouds, thereby producing a correct semi-transparent effect. However, too many
tetrahedra would be generated if the interval [α , β] is large.

The basic idea of our algorithm is to discretely approximate the surface boundary by generating
several layers of triangle meshes using Marching Cubes, with increasing translucency from the
innermost layer to the outermost one (Fig. 6b). Then, by appropriately compositing these layers of
triangle meshes using hardware-assisted blending, a high frame rate of antialiased rendering can be
achieved. The accuracy of the discrete approximation of the continuous surface classification is
determined by the number of mesh layers used and their corresponding isodensities. Better
approximation can be achieved with more layers, at the cost of increased storage space and rendering
time. The minimum number of layers needed for the approximation to be within a user-specified error
bound depends upon both the low-pass filter employed to generate the volume raster and the geometry
of the original polygon mesh (e.g., Fig. 7). However, it can be computed approximately by the
following method.

First, it is assumed that the translucency of a point with a certain densityd is

(10)1 −
d

m
wherem is the maximum isodensity value associated with the innermost layerM of the multi-layered
surfaces. Therefore, the problem of approximating a translucency function is simplified into the
approximation of a density function. Then, by assuming that the density of a point is decided solely
by its distance toM , we can approximate the density at every point. Mathematically, centering the
low-pass filterh with supportR at a point with distancer from M , and assuming the filter intersects a
planar surface (Fig. 7a), the density of this point is:

(11)d(r) = ∫
R

r ∫
√ R2−α 2

−√ R2−α 2 ∫
√ R2−α 2−β 2

−√ R2−α 2−β 2
h(α , β , γ)dγ dβ dα

Fig. 7:Different intersections between a surface (solid) and the filter (dashed).

15

Therefore, given an error boundε , the minimum number of layers needed and their
corresponding isodensities are decided by a piecewise constant functionp with a minimum number of
segments which satisfies:

(12)∫
R

0
|p(x) − d(x)| dx ≤ ε

The optimal piecewise constant functionp might not be analytically derivable for certain filters.
However, by discretely approximatingd, and using the heuristic that more layers should be placed
where the change of the functiond is high, sub-optimalp can be recursively generated. The number
of layers of triangle meshes is then equal to the number of segments in the functionp, and the
isodensities of the meshes are the corresponding constants of that function. In addition, the
corresponding translucency can be computed using Equation 10.

In order to generate the correct composition of semi-transparent meshes, the triangles should be
projected in a back-to-front or a front-to-back order, either of which generally involves an expensive
sorting process. A nice property of a Marching Cubes generated mesh is that it is associated with a
volume raster. As a result, sorting can be accomplished by traversing only the surface-intersected
voxels in a slice-by-slice fashion. However, because of the generation of multiple layer meshes with
different isodensities, when adaptive Marching Cubes is applied, the sorting is not always possible.
Projection of multiple objects is even more complicated. One simple solution is to perform the sorting
on bounding boxes of the volume rasters associated with the objects. A more accurate and still
efficient sorting algorithm takes advantage of the volume rasters associated with the meshes of these
objects, since intersections among the regularly partitioned volume rasters are easy to compute.
Therefore, all the surface-intersected voxels can be rapidly traversed in an almost correct order.

6. Results

We hav e implemented our controlled topology simplification algorithm and applied it on a variety
of objects. The results have been very encouraging and are summarized below. All the experiments
were conducted on a Silicon Graphics Onyx VTX, equipped with two 100Mhz R4400 processors and
128MB of RAM. Only one of the processors was used.

An interesting feature of our voxel-based topology simplification algorithm is that it can simplify
not only individual objects but also collections of objects. This is achieved by filtering and sampling
the object cluster into one volume raster hierarchy. Fig. 8 illustrates the triangle-mesh hierarchy of a
fractal ellipsoid-flake with 820 ellipsoids in the original model. The original triangle mesh, shown in
Fig. 8a, is reconstructed from a high resolution volume raster to preserve the details. By convolving
the original fractal functions with Gaussian filters with different radius supports, we decrease the
resolution of volume rasters accordingly, and the resulting number of triangles in the simplified mesh
is reduced. The simplification results are presented in Table 1, with the index specifying the
corresponding image in Fig. 8. The discrete approximations of the applied Gaussian filters are at
resolution 11× 11× 11. The surfaces have been reconstructed using standard Marching Cubes from
multi-resolution volume rasters using an isodensity of 0.5 on a normalized scale of 0 to 1. The running
time is from several seconds to several minutes.

To further reduce the number of triangles in the simplified model, we have applied our adaptive
Marching Cubes on the multi-resolution ellipsoid-flake volume rasters with different approximation

17

Table 1:Simplification of a fractal ellipsoid-flake

Index Resolution Triangles
a 200×200×200 320455
b 100×100×100 64687
c 50×50×50 13589
d 30×30×30 3746
e 15×15×15 640
f 5×5×5 8

bounds. Fig. 9 illustrates the results of applying this geometry simplification algorithm on the volume
raster with 200×200×200 resolution. The approximation bound is 0. 0 in Fig. 9a, 0. 5 in Fig. 9b, 1. 0 in
Fig. 9c, and 2. 0 in Fig. 9d, and the running times are 190sec, 260sec, 190sec, and 163sec, respectively.
The simplification results of all the multi-resolution ellipsoid-flake volume rasters are presented in
Table 2. In this example we use the simple stitching algorithm as presented in Fig. 5b.

Fig. 10 demonstrates a mechanical part generated by CSG operations using volume-sampled
voxelized primitives [39]. The level-of-detail meshes established by applying Gaussian filters of
different radius supports are presented in Table 3, with the index specifying the corresponding image
in Fig. 10. The surfaces have been reconstructed with Marching Cubes from multi-resolution volume
rasters using an isodensity of 0.5 on a normalized scale of 0 to 1. These images have been rendered
using a solid steel texture. From these results, it can be seen that our algorithm provides a controlled
way to gradually reduce the genus and small features. Fig. 11 presents the effect of the simplification
on an assembly of identical mechanical parts at different resolutions, as shown in Fig. 10. The
selection of resolution depends on the distance of the parts from the viewpoint. To reduce the
temporal aliasing, we apply the smooth interpolation algorithm as described in Section 3. The effect is
illustrated in Fig. 12, where the interpolation is performed between the 100×100×60 volume raster (top
left) and 50×50×30 volume raster (bottom right). It should be noted that to generate the polygon mesh
from interpolated volume rasters using Marching Cubes, only those voxels which might contain
surfaces are examined. An interpolated voxel might contain a surface only if at least one of the
corresponding regions in the two volume rasters contains a surface, or exactly one of the

Table 2:Triangle number of a multi-resolution fractal ellipsoid-flake mesh using adaptive Marching Cubes

Bound 0.0 0.5 1.0 2.0
Resolution
200×200×200 321400 108103 79338 71364
100×100×100 64460 22519 16117 13267
50×50×50 13348 6500 4740 4199
30×30×30 3692 1813 1175 1033
15×15×15 620 314 217 205
5×5×5 4 4 4 4

20

corresponding regions in the two adjacent resolution volume rasters is inside the surface. Such voxels
can be efficiently generated since the regions in the two volume rasters satisfying above conditions can
be pre-computed.

We hav e also applied our algorithm on volumetric datasets. Fig. 13 presents the result of
simplifying the head and neck of the Visible Man fresh CT data [44]. The data is first aligned and
downsampled from 512×512×217×16 bits to 256×256×117×8 bits. Then, the simplified meshes
reconstructed using Marching Cubes are presented in Table 4, with the index specifying the
corresponding images in Fig. 13.

Unlike the volume raster generated from a solid object, a sampled or simulated volumetric dataset
generally does not have a well-defined surface. However, for a given point, it is still possible to test
whether this point is inside or outside the surface by tri-linearly interpolating the point value from the
neighboring eight vertices and comparing it to the isodensity, and therefore Equations 4 and 5 can still
be applied. Another method of simplifying volumetric datasets without well-defined surfaces is to
directly apply the reconstruction filters with different radius supports to the original volumes. The
application of 3D reconstruction filter for volumetric datasets has been previously discussed for
volume rendering [40].

We also tested our adaptive Marching Cubes algorithm on the multi-resolution head and neck
volume rasters with different approximation bounds. Fig. 14 illustrates the results of applying the
algorithm on the original model with 256×256×225 resolution. The approximation bound is 0. 0 in
Fig. 14a, 0. 5 in Fig. 14b, 1. 0 in Fig. 14c, and 2. 0 in Fig. 14d, and the running times are 223sec,
416sec, 312sec, and 280sec, respectively. The simplification results of all the multi-resolution volume

Table 3:Simplification of a CSG mechanical part

Index Resolution Triangles
a 200×200×120 271504
b 100×100×60 64344
c 50×50×30 13292
d 40×40×24 8660
e 20×20×12 1508
f 5×5×3 88

Table 4:Simplification of the head and neck of Visible Man Fresh CT

Index Resolution Triangles
a 256×256×117 334564
b 192×192×88 180996
c 128×128×59 76088
d 64×64×30 16852
e 32×32×15 3284
f 16×16×8 568

22

rasters are presented in Table 5. In this example, we apply the complicated stitching algorithm as
presented in Fig. 5c.

The effect of our antialiasing algorithm is demonstrated by employing five layers of meshes on a
bolt, shown in the bottom half of Fig. 15, and contrasted with the aliased result of applying the
traditional algorithm with binary surface classification shown at the top half of Fig. 15. The
antialiased effect can be clearly seen in the zoom view. Fig. 16 presents another example of applying
the multi-layered Marching Cubes rendering on a lamp cover. It should be emphasized that the multi-
layered Marching Cubes rendering generally requires more memory, and the rendering speed might be
slower than other hardware-supported antialiasing algorithms. However, it provides a competitive
object-space antialiasing method, and is quite useful when a high-quality antialiasing effect is
required. It also helps the algorithm more appropriately represent a filtered model.

7. Conclusions and Future Work

Object simplification is an important research area for interactive applications. While most of the
existing work focuses on geometry simplification, we have outlined in this paper a practical and robust
method for topology simplification by controlled filtering and sampling an object into alias-free multi-
resolution volume rasters. The strengths of our method are that it (a) works for a wide variety of
objects; (b) simplifies the object topology in a controlled way; (c) is relatively easy to implement; and
(d) is based on the robust theoretical foundation of signal-processing theory. To reduce the potentially
large number of redundant triangles generated by the traditional surface-fitting algorithms, we have
presented an adaptive Marching Cubes, which adheres to the topology preservation criterion, and
guarantees that the generated mesh is within the user-specified error bound of the mesh generated by
the standard Marching Cubes. To overcome the problems caused by the binary surface classification,
we have further introduced a multi-layered Marching Cubes algorithm for hardware-assisted
antialiasing.

Surface generation from multi-resolution volume rasters is an important step in our object
simplification process. Our adaptive Marching Cubes, as well as the other existing geometry
simplification algorithms, can be used to simplify the geometry of a model as a postprocess of the
topology simplification stage. As part of our ongoing research in this area, we are currently developing
a method of controlled low-pass filtering and sampling a polygon mesh or other formats of object into

Table 5:Triangle number of a multi-resolution head and neck mesh using adaptive Marching Cubes

Bound 0.0 0.5 1.0 2.0
Resolution
256×256×256 333259 102253 75739 68859
192×192×88 180310 64181 47357 42853
128×128×59 75790 30739 23278 21452
64×64×30 16784 7935 6254 5820
32×32×15 3236 1654 1326 1273
16×16×8 536 276 248 242

23

volume raster with adaptive size voxels, where the high curvature areas are represented by small
voxels and the smooth areas by large voxels. The adaptive Marching Cubes is then modified to
combine the topology and geometry simplification into one stage.

One of the restrictions of our algorithm, as mentioned in Section 3.1, is that it only works
properly for closed surfaces. A possible solution for open polygonal patches is to first close them with
dummy patches. Another area that promises to be of interest, and one that we are currently exploring,
is the use of multi-resolution object hierarchies for collision detection. The idea here is to recursively
perform collision detection among the multi-resolution descriptions of objects, starting from the lowest
resolution representations and moving up to the higher resolutions only when an intersection is
suspected. This approach works because every time a low-pass filter is applied with a larger support,
the area affected by it becomes a superset since a larger filter support is applied. Thus, computation
time is saved by avoiding intersection detection in regions that cannot possibly collide. Furthermore,
this hierarchical approach can be interrupted, allowing users to trade accuracy for speed.

Acknowledgments

This work has been partially supported by the National Science Foundation under grants
CCR-9205047 and CCR-9502239 and by the Department of Energy under the PICS grant. We thank
Arie Kaufman for his contribution to the original ideas of this project. The source of the Visible
Human data set is the National Library of Medicine and the Visible Human Project.

References

1. Amanatides, J., ‘‘Ray Tracing with Cones’’,Computer Graphics (SIGGRAPH ’84 Proceedings),
18, 3 (July 1984), 129-135.

2. Bloomenthal, J., ‘‘Polygonization of Implicit Surfaces’’,Computer Aided Geometric Design, 5,
(1988), 341-355.

3. Bronnimann, H. and Goodrich, M., ‘‘Almost optimal set covers in finite VC-dimension’’,
Proceedings Tenth ACM Symposium on Computational Geometry, 1994, 293-302.

4. Carlbom, I., ‘‘Optimal Filter Design for Volume Reconstruction and Visualization’’,IEEE
Visualization’93 Proceedings, San Jose, CA, October 1993, 54-61.

5. Carpenter, L., ‘‘The A-buffer, an Antialiased Hidden Surface Method’’,Computer Graphics
(SIGGRAPH ’84 Proceedings), 18, 3 (July 1984), 103-108.

6. Clark, J., ‘‘Hierarchical Geometric Models for Visible Surface Algorithms’’,Communications of
the ACM, 19, 10 (1976), 547-554.

7. Clarkson, K. L., ‘‘Algorithms for Polytope Covering and Approximation’’,Proc. 3rd Workshop
Algorithms Data Structure, Lecture Notes in Computer Science, 1993.

8. Crow, F. C., ‘‘A More Flexible Image Generation Environment’’,Computer Graphics
(SIGGRAPH ’82 Proceedings), 16, 3 (1982), 9-18.

9. Das, G. and Joseph, D., ‘‘The complexity of minimum convex nested polyhedra’’,Proc. 2nd
Canad. Conf. Comput. Geom., 1990, 296-301.

10. DeHaemer, Jr., M. and Zyda, M. J., ‘‘Simplification of objects rendered by Polygonal
Approximations’’,Computers and Graphics, 15, 2 (1991), 175-184.

24

11. Durst, M., ‘‘Letters: Additional Reference to Marching Cubes’’,Computer Graphics, 22, 2
(1988), .

12. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M. and Stuetzle, W.,
‘‘Multiresolution Analysis of Arbitrary Meshes’’,Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1995, 173-182.

13. Fowler, R. and Little, J., ‘‘Automatic Extraction of Irregular Network Digital Terrain Models’’,
Computer Graphics, 13, 2 (August 1979), 199-207.

14. Fujishiro, I., Maeda, Y. and Sato, H., ‘‘Interval Volume: A Solid Fitting Technique for
Volumetric Data Display and Analysis’’,IEEE Visualization’95 Proceedings, Atlanta, GA,
October 1995, 151-158.

15. Funkhouser, T. A. and Sequin, C. H., ‘‘Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual Environments’’,Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH, August 1993, 247-254.

16. Guo, B., ‘‘Interval Set: A Volume Rendering Technique Generalizing Isosurface Extraction’’,
IEEE Visualization’95 Proceedings, Atlanta, GA, October 1995, 3-10.

17. He, T., Hong, L., Kaufman, A., Varshney, A. and Wang, S., ‘‘Voxel-Based Object
Simplification’’, IEEE Visualization’95 Proceedings, Atlanta, GA, October 1995, 296-303.

18. Heckbert, P. and Garland, M., ‘‘Fast Polygonal Approximation of Terrains and Height Fields’’,
Technical Report CMU-CS-95-181, September 1995.

19. Heidrich, W., McCool, M. and Stevens, J., ‘‘Interactive Maximum Projection Volume
Rendering’’,IEEE Visualization’95 Proceedings, Atlanta, GA, October 1995, 11-18.

20. Hinker, P. and Hansen, C., ‘‘Geometric Optimization’’,IEEE Visualization’93 Proceedings, San
Jose, CA, October 1993, 189-195.

21. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W., ‘‘Mesh Optimization’’,
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, August 1993,
19-26.

22. Kalvin, A. D. and Taylor, R. H., ‘‘SuperFaces: Polyhedral Approximation with Bounded Error’’,
Technical Report RC 19808, IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY 10958, 1994.

23. Levo y, M., ‘‘Display of Surfaces from Volume Data’’,IEEE Computer Graphics and
Applications, 8, 5 (May 1988), 29-37.

24. Levo y, M. and Whitaker, R., ‘‘Gaze-Directed Volume Rendering’’,Computer Graphics (Proc.
1990 Symposium on Interactive 3D Graphics), 24, 2 (March 1990), 217-223.

25. Lorensen, W. E. and Cline, H. E., ‘‘Marching Cubes: A High Resolution 3D Surface
Construction Algorithm’’, Computer Graphics (SIGGRAPH ’87 Proceedings), 21, 4 (July
1987), 163-169.

26. Lounsbery, M., DeRose, T. D. and Warren, J., ‘‘Multiresolution Analysis for Surfaces of
Arbitrary Topological Type’’, Tech. Rep. 93-10-05B, University of Washington at Seattle,
January 1994.

27. Machiraju, R. and Yagel, R., ‘‘Accuracy Control of Reconstruction Errors in Volume Slicing’’,
Biomedical Visualization Proceedings’95, Atlanta, GA, October 1995, 50-57.

25

28. Mitchell, J. and Suri, S., ‘‘Separation and approximation of polyhedral surfaces’’,Proceedings
of 3rd ACM-SIAM Symposium on Discrete Algorithms, 1992, 296-306.

29. Montani, C., Scateni, R. and Scopigno, R., ‘‘Discretized Marching Cubes’’,IEEE
Visualization’94 Proceedings, Washington, D.C., 1994, 281-287.

30. Muller, H. and Stark, M., ‘‘Adaptive generation of surface in volume data’’,The Visual
Computer, 1993, 182-199.

31. Payne, B. and Toga, A., ‘‘Surface Mapping Brain Functions on 3D models’’,IEEE Computer
Graphics and Applications, 10, 2 (July 1992), 41-53.

32. Rossignac, J. and Borrel, P., ‘‘Multi-Resolution 3D Approximations for Rendering Complex
Scenes’’, inModeling in Computer Graphics, B. Falcidieno and T. L. Kunni, (eds.), Springer-
Verlag, 1993, 455-465.

33. Sakas, G. and Hartig, J., ‘‘Interactive Visualization of Large Scalar Voxel Fields’’,IEEE
Visualization’92 Proceedings, Boston, MA, October 1992, 29-36.

34. Schmitt, F. J., Barsky, B. A. and Du, W., ‘‘An Adaptive Subdivision Method for Surface-fitting
from Sample Data’’,Computer Graphics (SIGGRAPH ’86 Proceedings), 20, 4 (1986), 179-188.

35. Schroeder, W., Zarge, J. and Lorensen, W., ‘‘Decimation of Triangle Meshes’’,Computer
Graphics (SIGGRAPH ’92 Proceedings), 26, 2 (July 1992), 65-70.

36. Schroeder, W., Martin, K. and Lorensen, W.,The Visualization Toolkit, Prentice Hall, 1996.

37. Turk, G., ‘‘Re-Tiling Polygonal Surfaces’’,Computer Graphics (SIGGRAPH ’92 Proceedings),
26, 2 (July 1992), 55-64.

38. Varshney, A., ‘‘Hierarchical Geometric Approximations’’, Doctoral Dissertation, Department of
Computer Science, Tech. Rep.-050-1994, Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599-3175, 1994.

39. Wang, S. W. and Kaufman, A. E., ‘‘Volume-Sampled 3D Modeling’’,IEEE Computer Graphics
& Applications, 14, 5 (September 1994), 26-32.

40. Westover, L., ‘‘Footprint Evaluation for Volume Rendering’’,Computer Graphics
(SIGGRAPH’90 Proceedings), 24, 4 (August 1990), 367-376.

41. Wilhelms, J. and Van Gelder, A., ‘‘Topological Consideration in Isosurface Generation’’,ACM
Computer Graphics, 24, 5 (November 1990), 79-86.

42. Wilhelms, J. and Gelder, A. V., ‘‘Octree for Faster Isosurface Generation’’,ACM Computer
Graphics, 24, 5 (November 1990), 57-62.

43. Wolberg, G.,Digital Image Warping, IEEE Computer Science Press, 1990.

44. ‘‘National Library of Medicine. Electronic Imageings: Report of the Board of Regions.’’,NIH
Publications 90-2197, National Insistitute of Health, 1990.

Adaptive Real-Time Level-of-detail-based Rendering
for Polygonal Models

Julie C. Xia Jihad El-Sana Amitabh Varshney

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract

We present an algorithm for performing adaptive real-time level-of-detail-based rendering
for triangulated polygonal models. The simplifications are dependent on viewing direction,
lighting, and visibility and are performed by taking advantage of image-space, object-space,
and frame-to-frame coherences. In contrast to the traditional approaches of precomputing a
fixed number of level-of-detail representations for a given object our approach involves stati-
cally generating a continuous level-of-detail representation for the object. This representation
is then used at run-time to guide the selection of appropriate triangles for display. The list
of displayed triangles is updated incrementally from one frame to the next. Our approach is
more effective than the current level-of-detail-based rendering approaches for most scientific
visualization applications where there are a limited number of highly complex objects that stay
relatively close to the viewer. Our approach is applicable for scalar (such as distance from the
viewer) as well as vector (such as normal direction) attributes.

1 Introduction

The scientific visualization and virtual reality communities have always faced the problem that
their “desirable” visualization dataset sizes are one or more orders of magnitude larger than what
the hardware can display at interactive rates. Recent research on graphics acceleration for the
navigation of such three-dimensional environments has been motivated by attempts to bridge the
gap between the desired and the actual hardware performance, through algorithmic and software
techniques. This research has involved reducing the geometric and rendering complexities of the
scene by using

� statically computed level-of-detail hierarchies [35, 32, 31, 10, 25, 14, 22],

� visibility-based culling that is statically computed [1, 34] and dynamically computed [18,
27, 17],

c1997 IEEE, reprinted with permission from IEEE Transactions on Visualization and Computer Graphics, June
1997

1

� various levels of complexity in shading and illumination models[4],

� texture mapping [6, 5], and

� image-based rendering [8, 7, 29, 33, 13].

In this paper we will focus on reducing the geometric complexity of a three-dimensional en-
vironment by using dynamically computed level-of-detail hierarchies. Research on simplification
of general three-dimensional polygonal objects (non-convex, non-terrain, possibly high genus) has
spanned the entire gamut of highly local to global algorithms, with several approaches in between
that have both local and global steps.

Local algorithms work by applying a set of local rules, which primarily work under some
definition of alocal neighborhood, for simplifying an object. The local rules are iteratively applied
under a set of constraints and the algorithm terminates when it is no longer possible to apply the
local rule without violating some constraint. The global algorithms optimize the simplification
process over the whole object, and are not necessarily limited to the small neighborhood regions on
the object. Some of the local approaches have been – vertex deletion by Schroederet al [32], vertex
collapsing by Rossignac and Borrel [31], edge collapsing by Hoppeet al [26] and Guéziec [20],
triangle collapsing by Hamann [21], and polygon merging by Hinker and Hansen [24]. Some of
the global approaches have been – redistributing vertices over the surface by Turk [35], minimizing
global energy functions by Hoppeet al [26], using simplification envelopes by Varshney [36] and
Cohenet al [10], and wavelets by DeRoseet al [14]. The issue of preservation or simplification
of the genus of the object is independent of whether an algorithm uses local rules, or global rules,
or both, to simplify. Recent work by Heet al [22] provides a method to perform a controlled
simplification of the genus of an object.

Simplification algorithms such as those mentioned above are iteratively applied to obtain a
hierarchy of successively coarser approximations to the input object. Such multiresolution hier-
archies have been used in level-of-detail-based rendering schemes to achieve higher frame update
rates while maintaining good visual realism. These hierarchies usually have a number of distinct
levels of detail, usually5 to 10, for a given object. At run time, the perceptual importance of a
given object in the scene is used to select its appropriate level of representation from the hierarchy
[9, 11, 12, 16, 30, 28]. Thus, higher detail representations are used when the object is perceptually
more important and lower detail representations are used when the object is perceptually less sig-
nificant. Transitions from one level of detail to the next are typically based on simple image-space
metrics such as the ratio of the image-space area of the object (usually implemented by using the
projected area of the bounding box of the object) to the distance of the object from the viewer.

Previous work, as outlined above, is well-suited for virtual reality walkthroughs and flythroughs
of large and complex structures with several thousands of objects. Examples of such environments
include architectural buildings, airplane and submarine interiors, and factory layouts. However, for
scientific visualization applications where the goal often is to visualize one or two highly detailed
objects at close range, most of the previous work is not directly applicable. For instance, consider
a biochemist visualizing the surface of a molecule or a physician inspecting the iso-surface of a
human head extracted from a volume dataset. It is very likely during such a visualization session,
that the object being visualized will not move adequately far away from the viewer to allow the
rendering algorithm to switch to a lower level of detail. What is desirable in such a scenario is an

algorithm that can allow several different levels of details to co-exist across different regions of the
same object. Such a scheme needs to satisfy the following two important criteria:

� It should be possible to select the appropriate levels of detail across different regions of the
same object in real time.

� Different levels of detail in different regions across an object should merge seamlessly with
one another without introducing any cracks and other discontinuities.

In this paper we present a general scheme that can construct such seamless and adaptive level-
of-detail representations on-the-fly for polygonal objects. Since these representations are view-
dependent, they take advantage of view-dependent illumination, visibility, and frame-to-frame
coherence to maximize visual realism and minimize the time taken to construct and draw such
objects. Our approach shows how one can adaptively define such levels of detail based on (a)
scalar attributes such as distance from the viewpoint and (b) vector attributes such as the direction
of vertex normals. An example using our approach is shown in Figure 1.

2 Previous Work

Adaptive levels of detail have been used in terrains by Grosset al [19] by using a wavelet decompo-
sition of the input data samples. They define wavelet space filters that allow changes to the quality
of the surface approximations in locally-defined regions. Thus, the level of detail around any re-
gion can adaptively refine in real-time. This work provides a very elegant solution for terrains and
other datasets that are defined on a regular grid.

Some of the previous work in the area of general surface simplification has addressed the is-
sue of adaptive approximation of general polygonal objects. Turk [35] and Hamann [21] have
proposed curvature-guided adaptive simplification with lesser simplification in the areas of higher
surface curvature. In [36, 10], adaptive surface approximation is proposed with different amounts
of approximation over different regions of the object. Gu´eziec [20] proposes adaptive approxima-
tion by changing the tolerance volume in different regions of the object. However in all of these
cases, once the level of approximation has been fixed for a given region of the object, a discrete
level of detail corresponding to such an approximation is statically generated. No methods have
been proposed there that allow free intermixing of different levels of detail across an object in real
time in response to changing viewing directions.

Work on surface simplification using wavelets [14, 15] and progressive meshes [25] goes a step
further. These methods produce a continuous level-of-detail representation for an object in contrast
to a set of discrete number of levels of detail. In particular, Hoppe [25] outlines a method for
selective refinement – i.e. refinement of a particular region of the object based upon view frustum,
silhouette edges, and projected screen-space area of the faces. Since the work on progressive
meshes by Hoppe [25] is somewhat similar to our work we overview his method next and discuss
how our method extends it.

Progressive meshes offer an elegant solution for a continuous resolution representation of
polygonal meshes. A polygonal mesĥM = Mk is simplified into successively coarser meshes
M i by applying a sequence of edge collapses. An edge collapse transformation and its dual, the
vertex split transformation, is shown in Figure 2.

(a) Sphere with 8192 triangles (uniform LOD)

(b) Sphere with 512 triangles (uniform LOD)

(c) Sphere with 537 triangles (adaptive LOD)

Figure 1: Uniform and adaptive levels of detail

Thus, a sequence ofk successive edge collapse transformations yields a sequence of succes-
sively simpler meshes:

Mk collapsek�1
! Mk�1 collapsek�2

! : : :M1 collapse0! M0 (1)

We can retrieve the successively higher detail meshes from the simplest meshM0 by using a
sequence of vertex-split transformations that are dual to the corresponding edge collapse transfor-
mations:

M0 split0! M1 split1! : : :Mk�1 splitk�1
! (M̂ = Mk) (2)

Hoppe [25] refers to(M0; fsplit0; split1; : : : ; splitk�1g) as aprogressive meshrepresentation.
Progressive meshes present a novel approach to storing, rendering, and transmitting meshes by us-
ing a continuous-resolution representation. However we feel that there is some room for improve-

Vertex Split

 Edge Collapse

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

Figure 2: Edge collapse and vertex split

ment in adapting them for performing selective refinement in an efficient manner. In particular,
following issues have not yet been addressed by progressive meshes:

� The sequence of edge collapses is aimed at providing good approximationsM i to (M̂ =
Mk). However, if a sequence of meshesM i are good approximations tôM under some
distance metric, it does not necessarily mean that they also provide a “good” sequence of
edge collapse transformations for selective refinement. Let us consider a two-dimensional
analogy of a simple polygon as shown in Figure 3. Assume that verticesv0; v6; v7; and
v8 are “important” vertices (under say some perceptual criteria) and can not be deleted.
An approach that generates approximations based on minimizing distances to the original
polygon will collapse vertices in the orderv1 ! v2; v2 ! v3; v3 ! v4; v4 ! v5; v5 ! v6
to get a coarse polygon(v0; v6; v7; v8). Then if selective refinement is desired around vertex
v1, verticesv6; v5; v4; v3; v2 will need to be split in that order before one can get to vertex
v1. An approach that was more oriented towards selective refinement might have collapsed
v1 ! v2; v3 ! v4; v5 ! v6; v2 ! v4; v4 ! v6 for better adaptive results, even though the
successive approximations are not as good as the previous ones under the distance metric.

� Since the edge collapses are defined in a linear sequence, the total number of child links to
be traversed before reaching the desired node isO(n).

� No efficient method for incrementally updating the selective refinements from one frame to
the next is given. The reverse problem of selective refinement – selective simplification too
is not dealt with.

In this paper we provide a solution to the above issues with the aim of performing real-time
adaptive simplifications and refinements. We define a criterion for performing edge collapses that
permits adaptive refinement around any vertex. Instead of constructing a series of sequential edge
collapses we construct amerge treeover the vertices of mesĥM so that one can reach any child
vertex inO(log n) links. We then describe how one can perform incremental updates within this
tree to exploit frame-to-framecoherence, view-dependent illumination, and visibility computations
using both scalar and vector attributes.

v0

v1

v2

v3

v4

v5

v6

v7v8

Figure 3: Good versus efficient selective simplification

3 Simplification with Image-Space Feedback

Level-of-detail-based rendering has thus far emphasized object-space simplifications with minimal
feedback from the image space. The feedback from the image space has been in the form of very
crude heuristics such as the ratio of the screen-space area of the bounding box of the object to
the distance of the object from the viewer. As a result, one witnesses coarse image-space artifacts
such as the distracting “popping” effect when the object representation changes from one level
of detail to the next [23]. Attempts such as alpha-blending between the old and the new levels
of detail during such transitions serve to minimize the distraction at the cost of rendering two
representations. However alpha blending is not the solution to this problem since it does not
address the real cause – lack of sufficient image-space feedback to select the appropriate local
level of detail in the object space; it merely tries to cover-up the distracting artifacts.

Increasing the feedback from the image space allows one to make better choices regarding the
level of detail selection in the object-space. We next outline some of the ways in which image-
space feedback can influence the level of detail selection in the object-space.

3.1 Local Illumination

Increasing detail in a direction perpendicular to, and proportional to, the illumination gradient
across the surface is a good heuristic [2]. This allows one to have more detail in the regions
where the illumination changes sharply and therefore one can represent the highlights and the
sharp shadows well. Since surface normals play an important role in local illumination one can
take advantage of the coherence in the surface normals to build a hierarchy over a continuous
resolution model that allows one to capture the local illumination effects well. We outline in
Section 4.3 how one can build such a hierarchy.

3.2 Screen-Space Projections

Decision to keep or collapse an edge should depend upon the length of its screen-space projection
instead of its object-space length. At a first glance this might seem very hard to accomplish in
real-time since this could mean checking for the projected lengths of all edges at every frame.
However, usually there is a significant coherence in the ratio of the image-space length to the
object-space length of edges across the surface of an object and from one frame to the next. This
makes it possible to take advantage of a hierarchy built upon the the object-space edge lengths for
an object. We use an approximation to the screen-space projected edge length that is computed
from the object-space edge length. We outline in Section 4.2 how one can build such a hierarchy.

3.3 Visibility Culling

During interactive display of any model there is usually a significant coherence between the visible
regions from one frame to the next. This is especially true of the back-facing polygons that account
for almost half the total number of polygons and do not contribute anything to the visual realism.
A hierarchy over a continuous resolution representation of an object allows one to significantly
simplify the invisible regions of an object, especially the back-facing ones. This view-dependent
visibility culling can be implemented in a straightforward manner using the hierarchy on vertex
normals discussed in Section 4.3.

3.4 Silhouette boundaries

Silhouettes play a very important role in perception of detail. Screen-space projected lengths
of silhouette edges (i.e., edges for which one of the adjacent triangles is visible and the other
is invisible), can be used to very precisely quantify the amount of smoothness of the silhouette
boundaries. A hierarchy built upon a continuous-resolution representation of a object allows one
to do this efficiently.

4 Construction of Merge Tree

We would like to create a hierarchy that provides us a continuous-resolution representation of an
object and allows us to perform real-time adaptive simplifications over the surface of an object
based upon the image-space feedback mechanisms mentioned in Section 3. Towards this end we
implement amerge treeover the vertices of the original model. In our current implementation, the
merge tree stores the edge collapses in a hierarchical manner. However, as we discuss in Section 7
the concept of a merge tree is a very general one and it can be used with other local simplification
approaches as well. Note that the merge tree construction is done as an off-line preprocessing step
before the interactive visualization.

4.1 Basic Approach

In Figure 2, the vertexc is merged with the vertexp as a result of collapsing the edge(pc). Con-
versely, during a vertex split the vertexc is created from the vertexp. We shall henceforth refer to

c as the child vertex of the parent vertexp. The merge tree is constructed upwards from the high-
detail meshM̂ to a low-detail meshM0 by storing these parent-child relationships in a hierarchical
manner over the surface of an object.

At each levell of the tree we determine parent-child relationships amongst as many vertices at
level l as possible. In other words, we try to determine all vertices that can be safely merged based
on criterion defined in Section 4.4. The vertices that are determined to be the children remain at
levell and all the other vertices at levell are promoted to levell+1. Note that the vertices promoted
to levell+1 are a proper superset of the parents of the children left behind at levell. This is because
there are vertices at levell that are neither parents nor children. We discuss this in greater detail in
the context ofregions of influencelater in this section. We apply the above procedure recursively
at every level until either (a) we are left with a user-specified minimum number of vertices, or
(b) we cannot establish any parent-child relationships amongst the vertices at a given level. Case
(b) can arise because in determining a parent-child relationship we are essentially collapsing an
edge and not all edge collapses are considered legal. For a detailed discussion on legality of edge
collapses the interested reader can refer to [26]. Since in an edge collapse only one vertex merges
with another, our merge tree is currently implemented as a binary tree.

To construct a balanced merge tree we note that the effects of an edge collapse are local. Let
us define theregion of influenceof an edge(v0; v1) to be the union of triangles that are adjacent to
eitherv0 or v1 or both. The region of influence of an edge is the set of triangles that can change
as an edge is gradually collapsed to a vertex, for example, in a morphing. Thus, in Figure 2 as
vertexc merges to vertexp, (or p splits toc), the changes to the mesh are all limited to within the
region of influence of edge(pc) enclosed byn0; n1; : : : n6. Note that all the triangles in region of
influence will change if verticesp andc are merged to form an intermediate vertex, say(p + c)=2.
In our current implementation, the position of the intermediate vertex is the same as the position
of the parent vertexp. However our data-structures can support other values of the intermediate
vertex too. Such values could be used, for example, in creating intermediate morphs between two
level-of-detail representations.

To create a reasonably balanced merge tree we try to collapse as many edges as possible at
each level such that there are no common triangles in their respective regions of influence. Since
this step involves only local checks, we can accomplish this step in time linear in the number
of triangles at this level. If we assume that the average degree (i.e. the number of neighboring
triangles) of a vertex is6, we can expect the number of triangles in an edge’s region of influence to
be10. After the collapse this number of triangles reduces to8. Thus the number of triangles can
be expected to reduce roughly by a factor of4=5 from a higher-detail level to a lower-detail level.
Thus, in an ideal situation, the total time to build the tree will be given byn+ 4n

5
+ 16n

25
+: : : = O(n).

However, this assumes that we arbitrarily choose the edges to be collapsed. A better alternative
is to sort the edges by their edge lengths and collapse the shortest edges first. Collapsing an edge
causes the neighboring edges to change their lengths. However as mentioned above, since changes
are local we can maintain the sorted edge lengths in a heap for efficient updates. With this strategy
one can build the merge tree in timeO(n log n).

4.2 Scalar Subtree Attributes

To allow real-time refinement and simplification we can store at every parent node (i.e. a node that
splits off a child vertex) of the merge tree, a range of scalar attributes of the children in the subtree
below it. Then image-space feedback can be used to determine if this range of scalar attributes
merits a refinement of this node or not. We explain this process of incremental refinement and
simplification in greater details in Section 5.1.

In our current implementation every merge tree nodev stores the Euclidean distances to its
child and parent that determine whenv’s child will merge intov and whenv will merge into its
parent. The former is called thedownswitch distanceand the latter is called theupswitch distance.
These distances are built up during the merge tree creation stage. If the maximum possible screen-
space projection of the downswitch distance at the vertexv in the object space is greater than some
pre-set threshold, we permit refinement atv. However, if the maximum possible screen-space
projection of the upswitch distance atv in the object space is less than the threshold, it means that
this region occupies very little screen space and can be simplified.

4.3 Vector Subtree Attributes

Our implementation also allows incremental simplification and refinement based upon the coher-
ences of the surface normals. This allows us to implement view-dependent real-time simplifica-
tions based on local illumination and visibility. The regions with low intensity gradients are drawn
in lower detail, while the regions with high intensity gradients are drawn in higher detail. Similarly,
regions of the object that are back-facing are drawn at a much lower detail then the front-facing
regions.

Figure 4: Bounding cone for normal vectors

Since we are using frame-to-frame coherences in computing the levels of detail we need to
adopt a data-structure that represents the variation in the normal vectors amongst all the descen-
dents of any given vertex. To identify a possible representation, let us consider the idea behind
a Gauss map. A Gauss map is a mapping of the unit normals to the corresponding points on the
surface of a unit sphere. Thus, all the normal variations in a subtree will be represented by a closed
and connected region on the surface of a sphere using a Gauss map. To simplify the computations
involved, we have decided to approximate such regions by circles on the surface of the unit sphere,

i.e. bounding cones containing all the subtree normal vectors. This is demonstrated in Figure 4
where the normal vectors in the surface shown on the left are contained within the cone (i.e. a
circle on the Gauss map) on the right.

At the leaf-level, each vertex is associated with a normal-cone whose axis is given by its normal
vector and whose angle is zero. As two vertices merge, the cones of the child and parent vertices
are combined into a new normal cone that belongs to the parent vertex at the higher level. The idea
behind this merging of cones is shown in Figure 5.

b)Merged Parent Conea) Child Cones

Figure 5: Cone merging

4.4 Merge Tree Dependencies

By using techniques outlined in Section 5.1, one can determine which subset of vertices is sufficient
to reconstruct an adaptive level-of-detail for a given object. However, it is not simple to define a
triangulation over these vertices and guarantee that the triangulation will not “fold back” on itself
or otherwise represent a non-manifold surface (even when the original was not so). Figure 6 shows
an example of how an undesirable folding in the adaptive mesh can arise even though all the edge
collapses that were determined statically were correct.A shows the initial state of the mesh. While
constructing the merge tree, we first collapsed vertexv2 to v1 to get meshB and then collapsed
vertexv3 to v4 to get meshC. Now suppose at run-time we determined that we needed to display
verticesv1; v2, andv4 and could possibly collapse vertexv3 to v4. However, if we collapsev3 to v4
directly, as in mesh D, we get a mesh fold where there should have been none. One could devise
elaborate procedures for checking and preventing such mesh fold-overs at run-time. However, such
checks involve several floating-point operations and are too expensive to be performed on-the-fly.

To solve the above problem we introduce the notion of dependencies amongst the nodes of
a merge tree. Thus, the collapse of an edgee is permitted only when all the vertices defining
the boundary of the region of influence of the edgee exist and are adjacent to the edgee. As an
example, consider Figure 2. Vertexc can merge with vertexp only when the verticesn0; n1; : : : ; nk

exist and are adjacent top andc. From this we determine the following edge collapse dependencies,
restricting the level difference between adjacent vertices:

1. c can collapse top, only whenn0, n1, . . . ,nk are present as neighbors ofp andc for display.

A B

CD

v1
v3 v1(v2) v3

v1(v2)

v4(v3)

v4 v4

v4(v3)

v2
v1

v2

Figure 6: Mesh folding problem

2. n0; n1; : : : ; nk can not merge with other vertices, unlessc first merges withp.

Similarly, to make a safe split fromp to p and c, we determine the following vertex split
dependency:

1. p can split toc andp, only whenn0; n1; : : : ; nk are present as neighbors ofp for display.

2. n0; n1; : : : ; nk can not split, unlessp first splits top andc.

The above dependencies are followed during each vertex-split or edge collapse during real-
time simplification. These dependencies are easily identified and stored in the merge tree during
its creation. Considering Figure 6 again, we can now see that collapse of vertexv3 to v4 depends
upon the adjacency of vertexv1 to v3. If vertexv2 is present thenv1 will not be adjacent tov3 and
thereforev3 will not collapse tov4. Although having dependencies might sometimes give lesser
simplification than otherwise, it does have the advantage of eliminating the expensive floating-point
run-time checks entirely. The basic idea behind merge tree dependencies has a strong resemblance
to creatingbalanced subdivisionsof quad-trees as presented by Baumet al in [3] where only a
gradual change is permitted from regions of high simplifications to low simplifications. Details of
how these merge tree dependencies are used during run-time are given in Section 5.1.

The pseudocode outlining the data-structure for a merge tree node is given in Figure 7. The
pseudocode for building and traversing the merge tree is given in Figure 8. We are representing
the triangular mesh by the winged-edge data-structure to maintain the adjacency information.

struct NODE {
struct VERTEX *vert ; /* associated vertex */
struct NODE *parent ; /* parent node for merging */
struct NODE *child[2] ; /* child nodes for refinement */
float upswitch ; /* threshold to merge */
float downswitch; /* threshold to refine */
struct CONE *cone ; /* range of subtree normals */
struct VERTEX **adj_vert ; /* adjacent vertices */
int adj_num ; /* number of adjacent vertices */
struct VERTEX **depend_vert;/* dependency list for merge */
int depend_num ;/* number of vertices in the */

}; /* dependency list */

Figure 7: Data-structure for a merge tree node

5 Real-Time Triangulation

Once the merge tree with dependencies has been constructed off-line it is easy to construct an
adaptive level-of-detail mesh representation at run-time. Real-time adaptive mesh reconstruction
involves two phases – determination of vertices that will be needed for reconstruction and deter-
mination of the triangulation amongst them. We shall refer to the vertices selected for display at
a given frame asdisplay verticesand triangles for display asdisplay triangles. The phases for
determination of display vertices and triangles are discussed next.

5.1 Determination of display vertices

In this section we outline how we determine the display vertices using the scalar and vector attribute
ranges stored with the nodes of the merge tree. We first determine theprimary display vertices
using the screen-space projections and the normal vector cones associated with merge tree nodes.
These are the only vertices that would be displayed if there were no triangulation constraints or
mesh-folding problems. Next, from these primary display vertices we determine thesecondary
display verticesthat are the vertices that need to be displayed due to merge tree dependencies to
avoid the mesh fold-overs in run-time triangulations.

5.1.1 Primary Display Vertices

Screen-Space Projection
As mentioned earlier, every merge tree nodev stores a Euclidean distance for splitting a vertex

to its child (downswitch distance) as well as the distance at which it will merge to its parent
(upswitch distance). If the maximum possible screen-space projection of the downswitch distance
at the vertexv in the object space is greater than some pre-set thresholdT , we permit refinement
at v and recursively check the children ofv. However, if the maximum possible screen-space
projection of the upswitch distance atv in the object space is less than the thresholdT , it means

/* Given a mesh, build_mergetree() constructs a list of merge trees - one
* for every vertex at the coarsest level of detail.
*/

build_mergetree(struct MESH *mesh, struct NODE **roots)
{ struct HEAP *current_heap, *next_heap ;

int level ;

current_heap = InitHeap(mesh);
next_heap = InitHeap(nil) ;
for (level = 0 ; HeapSize(current_heap) > MIN_RESOLUTION_SIZE; level ++)
{ while (HeapSize(current_heap) > 0)

{ edge = ExtractMinEdge(current_heap);
node = CreatNode(edge);
SetDependencies(node);
SetCone(node); /* Set vector attributes */
SetSwitchDistances(node); /* Set scalar attributes */
InsertHeap(next_heap, node);

}
FreeHeap(current_heap);
current_heap = next_heap ;
next_heap = InitHeap(nil);

}
FlattenHeap(roots, current_heap);

}

/* Given a list of nodes of the merge tree that were active in the previous
* frame, traverse_mergetree() constructs a list of new merge tree nodes by
* either refining or simplifying each of the active merge tree nodes.
*/

traverse_mergetree(struct NODE **current_list,
struct VIEW view, struct LIGHTS *lights)

{ int switch ;

for each node in current_list do
{ switch = EvalSwitch(node, view, lights);

if (switch == REFINE)
RefineNode(node);

else if (switch == SIMPLIFY)
MergeNode(node);

}
}

Figure 8: Pseudocode for building and traversing the merge tree

that this region occupies very little screen space and can be simplified, so we markv as inactive
for display.
Normal Vectors

We need to determine the direction and the extent of the normal vector orientation within the
subtree rooted at a display vertex, with respect to the viewing direction as well as light source, to
accomplish view-dependent local illumination and visibility-based culling.

To determine silhouettes and the back-facing regions of an object, we check to see if the normal
vector cone at a vertex lies entirely in a direction away from the viewer. If so, this vertex can be
marked inactive for display. If not, this vertex is a display vertex and is a candidate for further
refinement based on other criteria such as screen-space projection, illumination gradient, and sil-
houette smoothness. In such a case we recursively check its children. The three possible cases are
shown in Figure 9.

Silhouette

Back-facing Front-facing

Figure 9: Selective refinement and simplification using normal cones

Similarly, for normal-based local illumination, such as Phong illumination, we use the range
of the reflection vectors and determine whether they contain the view direction or not to determine
whether to simplify or refine a given node of the merge tree.

We follow the procedures outlined above to select all those vertices for display that either (a)
are leaf nodes and none of their parents have been marked as inactive, or (b) have their immediate
child marked as inactive. This determines the list of primary display vertices.

5.1.2 Secondary Display Vertices

We follow the merge dependencies from the list of primary display vertices to select the final set
of display vertices in the following manner. If a vertexv is in the initial list of display vertices and
for it to be created (via a vertex split), the verticesvd0; vd1; : : : ; vdk had to be present, we add the
verticesvd0 ; vd1; : : : ; vdk to the list of display vertices and recursively consider their dependencies.
We continue this process until no new vertices are added.

When determining the vertices for display in framei+1 we start from the vertex list for display
used in framei. We have found a substantial frame-to-frame coherence and the vertex display list
does not change substantially from one frame to the next. There are minor local changes in the
display list on account of vertices either refining or merging with other vertices. These are easily
captured by either traversing the merge tree up or down from the current vertex position. The

scalar and vector attribute ranges stored in merge tree nodes can be used to guide refinements if the
difference in the display vertex lists from one frame to the next becomes non-local for any reason.
We compute the list of display vertices for first frame by initializing the list of display vertices for
frame0 to be all the vertices in the model and then proceeding as above.

5.2 Determination of display triangles

If the display triangles for framei are known, determination of the display triangles for frame
i+ 1 proceeds in an interleaved fashion with the determination of display vertices for framei+ 1

from framei. Every time a display vertex of framei merges in framei+ 1 we simply delete and
add appropriate triangles to the list of display triangles as shown in Figure 10. The case where a
display vertex in framei splits for framei+ 1 is handled analogously. Incremental determination
of display triangles in this manner is possible because of the dependency conditions mentioned in
Section 4.4. The list of display triangles for the first frame is obtained by initializing the list for
frame0 to be all the triangles in the model and then following the above procedure.

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

- -

-
-

- +
+ + Edge Collapse

Figure 10: Display triangle determination

6 Results and Discussion

We have tried our implementation on several large triangulated models and have achieved encour-
aging results. These are summarized in Table 1 The images of teapot, bunny, crambin, phone,
sphere, buddha, and dragon models that were produced for the times in Table 1 are shown in Fig-
ures 1, 11, 13, and 14 respectively. All of these timings are in milliseconds on a Silicon Graphics
Onyx with RE2 graphics, a 194MHz R10000 processor, and 640MB RAM. It is easy to see that
the time to traverse the merge tree and construct the list of triangles to be displayed from frame to
frame is relatively small. This is because of our incremental computations that exploit image-space,
object-space, and frame-to-frame coherences. The above times hold as the user moves through the
model or moves the lights around. The triangulation of the model changes dynamically to track
the highlights as well as the screen-space projections of the faces.

As can be seen from the merge tree depths, the trees are not perfectly balanced. However, they
are still within a small factor of the optimal depths. This factor is the price that has to be paid

Highest detail Crambin surface Simplified Crambin surface

Highest detail Bunny Simplified Bunny

Highest detail Teapot Simplified Teapot

Highest detail Phone Simplified Phone

Figure 11: Dynamic adaptive simplification

Highest detail model – bottom light source

Dynamic adaptive simplification – top light source

Dynamic adaptive simplification – top light source

Figure 12: Dynamic adaptive simplification for the head of the Dragon

Highest detail Simplified

Figure 13: Dynamic adaptive simplification for the Buddha

Highest detail Simplified

Figure 14: Dynamic adaptive simplification for the Dragon

Highest Detail Adaptive Detail Reduction Ratio

Dataset Display Display Display Tree Traverse Display Total Display Display

Tris Time Tris Levels Tree Time Time Tris Time

Teapot 3751 57 1203 36 10 17 27 32.0% 47.3 %

Sphere 8192 115 994 42 8 16 24 12.1% 20.8 %

Bunny 69451 1189 13696 65 157 128 285 19.7% 23.9 %

Crambin 109884 1832 19360 61 160 194 354 17.6% 19.3 %

Phone 165963 2629 14914 63 112 144 256 8.9 % 9.7 %

Dragon 202520 3248 49771 66 447 394 842 24.5% 25.9 %

Buddha 293232 4618 68173 69 681 546 1227 23.2% 26.5 %

Table 1: Adaptive level of detail generation times

to incorporate dependencies and avoid the expensive run-time floating-point checks for ensuring
good triangulations. For each dataset, we continued the merge tree construction till8 or fewer
vertices were left. As expected, the factor by which the number of vertices decreases from one
level to the next tapers off as we reach lower-detail levels since there are now fewer alternatives
left to counter the remaining dependency constraints. As an example, for sphere, only64 vertices
were present at level30 and it took another12 levels to bring down the number to8. If the tree
depth becomes a concern one can stop sooner, trading-off the tree traversal time for the display
time.

An interesting aspect of allowing dependencies in the merge tree is that one can now influence
the characteristics of the run-time triangulation based upon static edge-collapse decisions during
pre-processing. As an example, we have implemented avoidance of slivery (long and thin) triangles
in the run-time triangulation. As Gu´eziec [20], we quantify the quality of a triangle with areaa
and lengths of the three sidesl0; l1; andl2 based on the following formula:

Quality =
4
p
3a

l20 + l21 + l22
(3)

Using Equation 3 the quality of a degenerate triangle evaluates to0 and that of an equilateral
triangle to1. We classify all edge collapses that result in slivery triangles to be invalid, trading-off
quantity (amount of simplification) for quality.

One of the advantages of using normal cones for back-face simplification and silhouette defi-
nition is that it allows the graphics to focus more on the regions of the object that are perceptually
more important. Thus, for instance, for generating the given image of the molecule crambin, 8729
front-facing vertices were traversed as compared to 3361 backfacing vertices; 1372 were classified
as silhouette vertices. Similarly, for the model of phone, our approach traversed 6552 front-facing
vertices compared to only 1300 backfacing vertices; 900 were classified as silhouette vertices.

Clearly, there is a tradeoff here between image-quality and amount of simplification achieved.
The results for our simplifications given in this section correspond to the images that we thought
were comparable to the images from the original highest detail models. Higher levels of simplifi-
cations (that are faster to incrementally compute and display) with correspondingly lower quality

images are obviously possible, allowing easy implementations of progressive refinement for dis-
play.

7 Conclusions and Future Work

We have outlined a simple approach to maintain dynamically adaptive level of detail triangulations.
Crucial to this approach is the notion of merge trees that are computed statically and are used
during run-time to take advantage of the incremental changes in the triangulation. In our current
implementation we are using the method of edge collapses. However the idea behind merge trees
is pretty general and can be used in conjunction with other local heuristics for simplification such
as vertex deletion and vertex collapsing. We plan to study some of these other heuristics in the
future and compare them with our current implementation that uses edge collapses.

At present we do not store color ranges at the nodes of the merge tree. Storing and using these
should improve the quality of the visualizations produced using merge trees even further. Also of
some interest will be techniques that create better balanced merge trees while still incorporating
dependencies. We plan to investigate these issues further.

Of course, our approach also makes dynamically-specified manual simplifications possible,
where the user can interactively specify the amounts of approximation desired at various regions
of the object. Using this, certain parts of the object can be rendered at lower or higher details than
otherwise. However, in this paper we have only considered automatic object simplifications during
interactive display.

Acknowledgements

We would like to acknowledge several useful discussions with Arie Kaufman and Greg Turk. We
should like to thank Greg Turk, Marc Levoy, and the Stanford University Computer Graphics lab-
oratory for generously sharing models of the bunny, the phone, the dragon, and the happy Buddha.
We should also like to acknowledge the several useful suggestions made by the anonymous re-
viewers that have helped improve the presentation of this paper. This work has been supported in
part by the National Science Foundation CAREER award CCR-9502239 and a fellowship from the
Fulbright/Israeli Arab Scholarship Program.

References

[1] J. M. Airey. Increasing Update Rates in the Building Walkthrough System with Automatic
Model-Space Subdivision and Potentially Visible Set Calculations. PhD thesis, University of
North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC 27599-
3175, 1990.

[2] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with interactive update
rates in complex virtual building environments. In Rich Riesenfeld and Carlo Sequin, editors,
Computer Graphics (1990 Symposium on Interactive 3D Graphics), volume 24, No. 2, pages
41–50, March 1990.

[3] D. R. Baum, Mann S., Smith K. P., and Winget J. M. Making radiosity usable: Automatic pre-
processing and meshing techniques for the generation of accurate radiosity solutions.Com-
puter Graphics: Proceedings of SIGGRAPH’91, 25, No. 4:51–60, 1991.

[4] L. Bergman, H. Fuchs, E. Grant, and S. Spach. Image rendering by adaptive refinement. In
Computer Graphics: Proceedings of SIGGRAPH’86, volume 20, No. 4, pages 29–37. ACM
SIGGRAPH, 1986.

[5] Jim F. Blinn. Simulation of wrinkled surfaces. InSIGGRAPH ’78, pages 286–292. ACM,
1978.

[6] Jim F. Blinn and M. E. Newell. Texture and reflection in computer generated images.CACM,
19(10):542–547, October 1976.

[7] S. Chen. Quicktime VR – an image-based approach to virtual environment navigation. In
Computer Graphics Annual Conference Series (SIGGRAPH ’95), pages 29–38. ACM, 1995.

[8] S. Chen and L. Williams. View interpolation for image synthesis. InComputer Graphics
(SIGGRAPH ’93 Proceedings), volume 27, pages 279–288, August 1993.

[9] J. Clark. Hierarchical geometric models for visible surface algorithms.Communications of
the ACM, 19(10):547–554, 1976.

[10] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P. Brooks, Jr., and
W. V. Wright. Simplification envelopes. InProceedings of SIGGRAPH ’96 (New Orleans,
LA, August 4–9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages
119 – 128. ACM SIGGRAPH, ACM Press, August 1996.

[11] M. Cosman and R. Schumacker. System strategies to optimize CIG image content. InPro-
ceedings of the Image II Conference, Scottsdale, Arizona, June 10–12 1981.

[12] F. C. Crow. A more flexible image generation environment. InComputer Graphics: Pro-
ceedings of SIGGRAPH’82, volume 16, No. 3, pages 9–18. ACM SIGGRAPH, 1982.

[13] L. Darsa, B. Costa, and A. Varshney. Navigating static environments using image-space
simplification and morphing. InProceedings, 1997 Symposium on Interactive 3D Graphics,
1997.

[14] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis for surface of arbi-
trary topological type. Report 93-10-05, Department of Computer Science, University of
Washington, Seattle, WA, 1993.

[15] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. InProceedings of SIGGRAPH 95 (Los Angeles, California,
August 6–11, 1995), Computer Graphics Proceedings, Annual Conference Series, pages 173–
182. ACM SIGGRAPH, August 1995.

[16] T. A. Funkhouser and C. H. S´equin. Adaptive display algorithm for interactive frame rates
during visualization of complex virtual environments. InProceedings of SIGGRAPH 93
(Anaheim, California, August 1–6, 1993), Computer Graphics Proceedings, Annual Confer-
ence Series, pages 247–254. ACM SIGGRAPH, August 1993.

[17] N. Greene. Hierarchical polygon tiling with coverage masks. InProceedings of SIGGRAPH
’96 (New Orleans, LA, August 4–9, 1996), Computer Graphics Proceedings, Annual Confer-
ence Series, pages 65 – 74. ACM Siggraph, ACM Press, August 1996.

[18] Ned Greene and M. Kass. Hierarchical Z-buffer visibility. InComputer Graphics Proceed-
ings, Annual Conference Series, 1993, pages 231–240, 1993.

[19] M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolution surface meshing. In G. M. Nielson
and D. Silver, editors,IEEE Visualization ’95 Proceedings, pages 135–142, 1995.

[20] A. Guéziec. Surface simplification with variable tolerance. InProceedings of the Second
International Symposium on Medical Robotics and Computer Assisted Surgery, MRCAS ’95,
1995.

[21] B. Hamann. A data reduction scheme for triangulated surfaces.Computer Aided Geometric
Design, 11:197–214, 1994.

[22] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simplification.IEEE Trans-
actions on Visualization and Computer Graphics, 2(2):171–184, June 1996.

[23] James Helman. Graphics techniques for walkthrough applications. InInteractive Walk-
through of Large Geometric Databases, Course Notes 32, SIGGRAPH ’95, pages B1–B25,
1995.

[24] P. Hinker and C. Hansen. Geometric optimization. In Gregory M. Nielson and Dan Bergeron,
editors,Proceedings Visualization ’93, pages 189–195, October 1993.

[25] H. Hoppe. Progressive meshes. InProceedings of SIGGRAPH ’96 (New Orleans, LA, August
4–9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages 99 – 108.
ACM SIGGRAPH, ACM Press, August 1996.

[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In
Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993), Computer Graphics
Proceedings, Annual Conference Series, pages 19–26. ACM SIGGRAPH, August 1993.

[27] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of potentially visible
sets. InProceedings, 1995 Symposium on Interactive 3D Graphics, pages 105 – 106, 1995.

[28] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using textured clus-
ters. InProceedings of the 1995 Symposium on Interactive 3D Computer Graphics, pages
95–102, 1995.

[29] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. In
Computer Graphics Annual Conference Series (SIGGRAPH ’95), pages 39–46. ACM, 1995.

[30] J. Rohlf and J. Helman. IRIS performer: A high performance multiprocessing toolkit for real–
Time 3D graphics. In Andrew Glassner, editor,Proceedings of SIGGRAPH ’94 (Orlando,
Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual Conference Series,
pages 381–395. ACM SIGGRAPH, July 1994.

[31] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering. InModeling
in Computer Graphics, pages 455–465. Springer-Verlag, June–July 1993.

[32] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes. InCom-
puter Graphics: Proceedings SIGGRAPH ’92, volume 26, No. 2, pages 65–70. ACM SIG-
GRAPH, 1992.

[33] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical image caching
for accelerated walkthroughs of complex environments. InProceedings of SIGGRAPH ’96
(New Orleans, LA, August 4–9, 1996), Computer Graphics Proceedings, Annual Conference
Series, pages 75–82. ACM SIGGRAPH, ACM Press, August 1996.

[34] S. Teller and C. H. S´equin. Visibility preprocessing for interactive walkthroughs.Computer
Graphics: Proceedings of SIGGRAPH’91, 25, No. 4:61–69, 1991.

[35] G. Turk. Re-tiling polygonal surfaces. InComputer Graphics: Proceedings SIGGRAPH ’92,
volume 26, No. 2, pages 55–64. ACM SIGGRAPH, 1992.

[36] A. Varshney. Hierarchical geometric approximations. Ph.D. Thesis TR-050-1994, Depart-
ment of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, 1994.

A Hierarchy of Techniques
for Simplifying Polygonal

Datasets

Amitabh Varshney
Department of Computer Science

State University of New York at Stony Brook

Levels of Simplification

• Lossless

• Genus-preserving

• Genus-reducing

Switching Criteria

• Coarse-grained
– Screen projected object area
– Distance to the eye

• Fine-grained
– Screen projected edge length
– Local illumination
– Silhouettes
– Visibility-based culling

Talk Outline
• Lossless compression

Triangle strips

• Genus-preserving simplification
Simplification Envelopes

• Genus-reducing simplification
Volumetric approach

• View-Dependent Rendering
Merge Trees

Triangle Strips for Efficient
Rendering, Transmission, Storage

a

b

c

d

e

f

g

(abc, bcd, cde, def, efg) (abcdefg)

Generalized Triangle Strips

a

b

c

d

e

f

g

h(abcdef SWAP gh) ≡ (abcdefegh)

Triangle Strip Generation Complexity

• Finding Hamiltonian Triangulations
 (generalized triangle strips with swaps)
 is NP-complete [Arkin et al 94]

• Finding Sequential Triangulations
 (simple triangle strips without swaps)
 is NP-complete [Evans, Skiena,Varshney 97]

Experiments with Triangle Strips

Francine Evans, Steve Skiena, Amitabh Varshney
IEEE Visualization 1996

Tried 20 approaches for triangle strips

• Local versus Global

• Static vs Dynamic / 1D vs 2D patches

• Various tie-breaking heuristics

STRIPE

• Tested on over 100 polygonal models

• Best heuristic: Global row/column strips

• Compared to previous best (on an average):
 50% less strips
 30% faster to render
 Two times slower in pre-processing

• Available free for non-commercial use from
 http://www.cs.sunysb.edu/~evans/stripe.html

Visual Comparison of Results

STRIPESGI

Dataset Courtesy: Viewpoint Datalabs

Visual Comparison of Results

STRIPESGI

Dataset Courtesy: Viewpoint Datalabs

Stanford Bunny Model

69,451 triangles

2D Simplification Envelopes

Original Surface

Outer Envelope

Inner Envelope

Analytically-computed Envelope

Original Surface

Outer Envelope

Inner Envelope

ε+

ε-

Results

Results

Cohen, Varshney, Manocha, Turk,
Weber,Agarwal, Brooks, Wright

ACM Siggraph 96

Dataset Courtesy:
Electric Boat Division
of General Dynamics

Results

Dataset Courtesy: Electric Boat Division of General Dynamics

Simplifications of the
 Brake Assembly

Dataset Courtesy: University of Utah, Alpha-1 Project

Genus-Reducing Simplifications

Taosong He, Lichan Hong, Amitabh Varshney, Sidney Wang
IEEE Trans. Vis. & Comp. Graphics 1996

Requirements for
View-Dependent Simplifications

• Varying levels of detail across
different regions of object

• Seamless merging

• Real-time determination

1

1

2

2

3 3
3

1

2

3

Julie C. Xia, Jihad El-Sana, Amitabh Varshney
IEEE Visualization 96,

IEEE Trans on Vis & Comp Graphics, June 97

Merge Tree

• Levels in Merge Tree
represent levels of detail

• Off-line construction of
Merge Tree

• Real-time Retriangulation

2

3

4

1

Merge Tree Construction
• Construct from high to low detail level
• Determine parent-child relationships

• Order for edge collapses: shortest edge first

p

c

pEdge Collapse

Vertex Split

Real-Time Triangulation

• Display Vertices and Display Triangles

• Determination of Display Vertices

• Determination of Display Triangles

• Utilize frame-to-frame temporal coherence

Mesh Folding Problem

A

D

B

C

v1

v1 v1

v1
v2

v2

v4

v4 v4

v4

v3v3
(v2,v1)

(v3,v4) (v3,v4)

Merge Tree Dependencies

• Sliver triangles

• Edge collapse and vertex split dependencies

• Run-time dependency checking versus
floating-point checking

Simplification Factors

• Screen-Space Projection

• Local Illumination

• Visibility Culling

• Silhouettes

Results

8192 triangles

537 triangles

Results

 Original (293 K tris, 4.6 secs) Simplified (68 K tris, 1.2 secs)
Dataset Courtesy: Stanford Computer Graphics Lab

Watch out for

• Data degeneracies

• Dataset complexity distribution

• Geometric debugging

Conclusion
Select right level in hierarchy of simplification

techniques based on target application

• Triangle strips – almost always

• Genus-preserving – realism then speed, screen querying

• Genus-reducing – speed over topological fidelity

• View-dependent – sci viz, high complexity objects

	course25-part5.pdf
	Table of Contents
	1. Why create detailed polygonal models?
	2. IMCompress: A vertex decimation technique that preserves 3-D tolerances
	2.1 Development history
	2.2 Purpose of a vertex decimation technique
	2.3 Algorithm outline and properties
	2.3.1 Definitions
	2.3.2 Algorithm strategy
	2.3.3 Algorithm geometrical properties

	2.4 A closer look at the vertex removal operation
	2.5 Preservation of surface orientation discontinuities
	2.6 IMCompress implementation
	2.6.1 Memory requirements
	2.6.2 Time complexity: A nearly O(n) implementation

	2.7 Results
	2.7.1 Hipbone model
	2.7.2 Squash model
	2.7.3 Ivory bear model
	2.7.4 Additional remarks

	3. IMTexture: Generating coarse texture-mapped models from accurate color 3-D models
	3.1 Development history
	3.2 Purpose of the algorithm
	3.3 Algorithm outline
	3.4 Tessellating the texture image
	3.5 Interpolating the texture image
	3.6 Enforcing texture continuity
	3.7 Results
	3.7.1 Procedure for creating a texture-mapped model
	3.7.2 Squash model
	3.7.3 Ivory bear model

	4. Packaging commercial polygon reduction applications
	4.1 Topological anomalies found in polygonal models
	4.2 Preserving grouping information
	4.3 Interactive polygon reduction

	5. Conclusion
	5.1 Reduction of detailed polygonal models
	5.2 Future developments

