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Course Abstract 
 
3D photography is the process of using cameras and light to capture the shape and appearance of 
real objects.  This process provides a simple way of acquiring graphical models of unparalleled 
detail and realism by scanning them in from the real world.  This course provides an introduction 
to the emerging area of 3D photography, focusing on the current state of the art and the principles 
underlying several leading approaches. 
 
After introducing fundamental concepts, the course surveys a variety of techniques and provides 
an in-depth analysis of a few successful approaches at the forefront of 3D photography, presented 
by leading researchers in the field.  The focus is on passive and active optical methods, including 
stereo vision, photogrammetry, structured light, imaging radar, interferometry, and optical 
triangulation.  The course concludes with a field study:  capturing 3D photographs of 
Michelangelo’s statues. 
 

Scope 
 
The course will cover a variety of methods for recovering shape and appearance from images.  
The course begins with novel 2D sensing technologies such as catadioptric cameras and high 
dynamic range sensors.  A number of standard and emerging passive vision methods will be 
presented, including stereo, structure from motion, shape from focus/defocus, shape from 
shading, interactive photogrammetry, and voxel coloring.  Active vision methods will include 
imaging radar, optical triangulation, moire, active stereo, active depth from defocus, and desktop 
shadow striping.  An overview of reconstructing shape and appearance from range images will be 
followed by the first presentation of the Digital Michelangelo Project to the SIGGRAPH 
community. 

 

Prerequisites 
 
Participants will benefit from an understanding of basic techniques for representing and rendering 
surfaces and volumes.  In particular, the course will assume familiarity with triangular meshes, 
voxels, and implicit functions (isosurfaces of volumes).  Rendering concepts will include light 
interaction with surfaces (e.g., diffuse and specular reflection) and the mathematics of perspective 
projection.  Understanding of basic image-processing will also be important.  Experience with 
still photography will be helpful. 
 

Course Notes Description 
 
Course notes consist of copies of the speakers’ slides, images and VRML files of some of the 
demonstrations, references to related work, and copies of related papers.  Links to online 3D 
Photography resources, additional slides, and other materials may be found on the course web 
page at:  http://www.cs.cmu.edu/~seitz/3DPhoto.html 
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Assistant Professor 
Dept. of Computer Science & Engineering  
University of Washington 
Sieg Hall, Box 352350   
Seattle, WA 98195-2350    
Tel: (206) 685-3796  
Fax: (206) 543-2969 
Email: curless@cs.washington.edu 
Web:  http://www.cs.washington.edu/homes/curless 
 

Brian Curless is an assistant professor of Computer Science and Engineering at the University of 
Washington. He received a B.S. in Electrical Engineering from the University of Texas at Austin 
in 1988 and M.S. and Ph.D. degrees in Electrical Engineering from Stanford University in 1991 
and 1997, respectively. Curless’s recent research has focused on acquiring and building complex 
geometric models using structured light scanning systems. In the vision literature, he has 
published results on fundamentally better methods for optical triangulation, and at SIGGRAPH, 
he published a new method for combining range images that led to the first "3D fax" of a 
geometrically complex object. Curless currently sits on the Technical Advisory Board for 
Paraform, Inc., a company that is commercializing Stanford-developed technology for building 
CAD-ready models from range data and polygonal meshes. In the winter of 1999, Curless worked 
with Marc Levoy on the Digital Michelangelo Project in Florence where they captured the 
geometry and appearance of a number of Michelangelo’s statues. His teaching experience 
includes both graduate and undergraduate graphics courses, including courses related to 3D 
photography taught at Stanford, the University of Washington, CVPR ’99, and SIGGRAPH ’99. 
Curless received a university-wide Outstanding Teaching Award from Stanford in 1992 and an 
NSF CAREER award (1999) and Sloan Fellowship (2000) at the University of Washington. 

 

Steven Seitz  (co-organizer) 
Assistant Professor 
The Robotics Institute 
Carnegie Mellon University 
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Web:  http://www.cs.cmu.edu/~seitz 
 
Steven Seitz is an Assistant Professor of Robotics and Computer Science at Carnegie Mellon 
University, where he conducts research in image-based rendering, graphics, and computer vision. 
Before joining the Robotics Institute in August 1998, he spent a year visiting the Vision 
Technology Group at Microsoft Research, and a previous summer in the Advanced Technology 
Group at Apple Computer. He received his B.A. in computer science and mathematics at the 
University of California, Berkeley in 1991 and his Ph.D. in computer sciences at the University of 
Wisconsin, Madison in 1997. His current research focuses on the problem of acquiring and 
manipulating visual representations of real environments using semi- and fully-automated 
techniques. This effort has led to the development of "View Morphing" techniques for 
interpolating different images of a scene and voxel-based algorithms for computing photorealistic 
scene reconstructions. His work in these areas has appeared at SIGGRAPH and in international 
computer vision conferences and journals, and he co-organized courses on 3D Photography 
taught at CVPR ’99 and SIGGRAPH 99. Seitz was awarded the 1999 David Marr Prize in 
Computational Vision for his co-authored paper on "Space Carving" at ICCV 99. 
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Web:  http://www.vision.caltech.edu/bouguetj 
 

Jean-Yves Bouguet is a researcher at Intel Corporation in the Microprocessor Research Labs. He 
received his diplome d’ingenieur from the Ecole Superieure d’ingenieurs en Electrotechnique et 
Electronique (ESIEE) in 1994 and the M.S. and Ph.D. degrees in Electrical Engineering from the 
California Institute of Technology (Caltech) in 1994 and 1999, respectively. His research interests 
cover passive and active techniques for three-dimensional scene modeling. He has developed a 
simple and inexpensive method for scanning objects using shadows. This work was first 
presented at ICCV’98 and a patent is pending on that invention. He also collaborated with Jim 
Arvo, Peter Schroder and Pietro Perona in teaching a class on 3D photography from 1996 to 1998 
at Caltech. During his Ph.D. studies, Jean-Yves has also been working in collaboration with Larry 
Matthies at JPL on the development of passive visual techniques for three dimensional 
autonomous navigation targeted towards comet modeling and landing.  

 
Paul Debevec 
Research Scientist  
University of California at Berkeley  
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Computer Science Division, UC Berkeley  
Berkeley, CA 94720-1776  
Tel:  (510) 642-9940  
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Paul Debevec earned degrees in Math and Computer Engineering at the University of Michigan 
in 1992 and completed his Ph.D. at the University of California at Berkeley in 1996, where he is 
now a research scientist. Debevec has worked on a variety of image-based modeling and 
rendering projects, beginning in 1991 in deriving a 3D model of a Chevette from photographs for 
an animation project. Debevec has collaborated on projects at Interval Research Corporation in 
Palo Alto that used a variety of image-based techniques for interactive applications; the 
"Immersion ’94" project done with Michael Naimark and John Woodfill developed an image-
based walkthrough of the Banff national forest and his art installation "Rouen Revisited" done 
with Golan Levin showed at the SIGGRAPH 96 art show. His Ph.D. thesis under Jitendra Malik 
in collaboration with C.J. Taylor presented an interactive method of modeling architectural scenes 
from sparse sets of photographs and for rendering these scenes realistically. Debevec has directed 
several computer animations using image-based modeling, rendering, and lighting techniques 
including "The Campanile Movie", "Rendering with Natural Light" and "Fiat Lux" shown in the 
SIGGRAPH Electronic Theater. With Steven Gortler, Debevec organized the course "Image-
Based Modeling and Rendering" at SIGGRAPH 98. 
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Cornell University, and a Ph.D. in Computer Science in 1989 from the University of North 
Carolina at Chapel Hill. Levoy’s early research centered on computer-assisted cartoon animation, 
leading to development of a computer animation system for Hanna-Barbera Productions. His 
recent publications are in the areas of volume visualization, rendering algorithms, computer 
vision, geometric modeling, and user interfaces for imaging and visualization. His current 
research interests include digitizing the shape and appearance of physical objects using multiple 
sensing technologies, the creation, representation, and rendering of complex geometric models, 
image-based modeling and rendering, and applications of computer graphics in art history, 
preservation, restoration, and archeology. Levoy received the NSF Presidential Young 
Investigator Award in 1991 and the SIGGRAPH Computer Graphics Achievement Award in 
1996 for his work in volume rendering.  
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Shree K. Nayar is a Professor at the Department of Computer Science, Columbia University. He 
received his PhD degree in Electrical and Computer Engineering from the Robotics Institute at 
Carnegie Mellon University in 1990. His primary research interests are in computational vision 
and robotics with emphasis on physical models for early visual processing, sensors and 
algorithms for shape recovery, learning and recognition of visual patterns, and vision for 
graphics.  Dr. Nayar has authored and coauthored papers that have received the David Marr Prize 
at the 1995 International Conference on Computer Vision (ICCV’95) held in Boston, Siemens 
Outstanding Paper Award at the 1994 IEEE Computer Vision and Pattern Recognition 
Conference (CVPR’94) held in Seattle, 1994 Annual Pattern Recognition Award from the Pattern 
Recognition Society, Best Industry Related Paper Award at the 1994 International Conference on 
Pattern Recognition (ICPR’94) held in Jerusalem, and the David Marr Prize at the 1990 
International Conference on Computer Vision (ICCV’90) held in Osaka. He holds several U.S. 
and international patents for inventions related to computer vision and robotics. Dr. Nayar was 
the recipient of the David and Lucile Packard Fellowship for Science and Engineering in 1992 
and the National Young Investigator Award from the National Science Foundation in 1993. 
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Course Syllabus 
 
(Note: these times are tentative and subject to change on the day of the course.) 
 
A. 8:30 - 8:50, 20 min   
  Introduction (Seitz) 
    1. Overview of area and the course 
    2. Acquiring 3D models from images 
    3. Applications to computer graphics 
 
B. 8:50 - 9:35, 45 min   
  Sensing for vision and graphics (Nayar) 
    1. The dimensions of visual sensing 
    2. Catadioptric vision 
    3. Panoramic and omnidirectional cameras 
    4. Spherical mosiacs 
    6. Radiometric self calibration 
    7. High dynamic range imaging 
 
C. 9:35 - 10:15, 40 min   
  Overview of passive vision techniques (Seitz) 
    1. Cues for 3D inference (parallax, shading, focus, texture) 
    2. Camera Calibration 
    3. Single view techniques 
    4. Multiple view techniques 
       - Stereo 
       - Structure from motion 
       - Photometric stereo 
    5. Strengths and Limitations 
 
 
<> 10:15 - 10:30 Break 
 
 
D. 10:30 - 11:20, 50 min   
  Façade: modeling architectural scenes (Debevec) 
 
    1. Constrained structure recovery 
       - Architectural primitives 
    2. Photogrammetry 
       - Recovering camera parameters 
       - Importance of user-interaction  
    3. Model-based stereo 
    4. Connections to image-based rendering 
       - Impact of geometric accuracy on rendering quality 
       - Local vs. global 3D models 
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E. 11:20 - 12:00, 40 min   
  Voxels from images (Seitz) 
    1. Voxel-based scene representation 
    2. Volume intersection 
       - Shape from silhouettes 
    3. Voxel coloring 
       - Modeling radiance 
       - Plane-sweep visibility 
    4. Space carving 
       - General visibility modeling 
       - Ambiguities in scene reconstruction 
    5. Related Techniques 
 
<> 12:00 - 1:30 Lunch  
 
F. 1:30 - 2:10, 40 min   
  Overview of active vision techniques (Curless) 
    1. Imaging radar 
       - Time of flight 
       - Amplititude modulation 
    2. Optical triangulation 
       - Scanning with points and stripes 
       - Spacetime analysis 
    3. Interferometry 
       - Moire 
    4. Structured light applied to passive vision 
       - Stereo 
       - Depth from defocus 
    5. Reflectance capture 
       - From shape-directed lighting 
       - Using additional lighting 
 
G. 2:10 - 2:50, 40 min   
  Desktop 3D Photography (Bouguet) 
    1. Traditional scanning is expensive, but... 
         desklamp + pencil = structured light 
    2. Geometry of shadow scanning 
       - Indoor: on the desktop 
       - Outdoor: the sun as structured light 
    3. Image processing: Spacetime analysis for better accuracies  
    4. Calibration issues 
       - Camera calibration 
       - Light source calibration 
    5. Experimental results (indoor and outdoor) 
    6. Error analysis and Real-time implementation 
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H. 2:50 - 3:35, 45 min   
  Shape and appearance from images and range data (Curless) 
    1. Registration 
    2. Reconstruction from point clouds 
    3. Reconstruction from range images 
       - Zippering 
       - Volumetric merging 
    4. Modeling appearance 
 
<> 3:35 - 3:50 Break 
 
I. 3:50 – 5:00, 70 min   
  Application: The Digital Michelangelo Project (Levoy) 
    1.  Scholarly and commercial motivations 
    2.  Hardware and software 
    3.  Scanning the David 
    4.  Acquiring a big light field 
    5.  Implications of 3D scanning 
    6.  Lessons learned from the project 
    7.  The problem of the Forma Urbis Romae 
 
<> Adjourn 
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Introduction
3D photography is an emerging technology for capturing richly detailed models of objects in the real world. Whereas

traditional optical cameras capture scene appearance in the form of radiant light energy, 3D photographs measure surface
characteristics like 3D geometry and reflectance—exactly what is needed to construct graphical models. Consequently this
technology provides a means for acquiring graphical objects and scenes of unprecedented detail and realism by scanning
them in from the real world.

Methods to digitize and reconstruct the shapes of complex three dimensional objects have evolved rapidly in recent years.
The speed and accuracy of digitizing technologies owe much to advances in the areas of physics and electrical engineering,
including the development of lasers, CCD’s, and high speed sampling and timing circuitry. Such technologies allow us to
take detailed shape measurements with precision better than 1 part per 1000 at rates exceeding 10,000 samples per second.
To capture the complete shape of an object, many thousands, sometimes millions of samples must be acquired. The resulting
mass of data requires algorithms that can efficiently and reliably generate computer models from these samples. The future
of 3D photography will see systems that capture precise geometry and reflectance information at even larger spatial scales,
enabling the acquisition of landscapes and complex urban scenes, and fast scanners that enable 3D video at real-time rates.

The applications of 3D photography are wide-ranging and include manufacturing, virtual simulation, human-computer
interaction, scientific exploration, medicine, and consumer marketing.

Dissemination of museum artifacts

Museum artifacts represent one-of-a-kind objects that attract the interest of scientists and lay people world-wide. Tradition-
ally, to visualize these objects, it has been necessary to visit potentially distant museums or obtain non-interactive images
or video sequences. By digitizing these parts, museum curators can make them available for interactive visualization. For
scientists, computer models afford the opportunity to study and measure artifacts remotely using powerful computer tools.
A case in point is the Digital Michelangelo Project headed by Marc Levoy at Stanford University. The goal of this multi-
year project is to create a high-quality 3D computer archive of the sculptures and architecture of Michelangelo. This course
features the first presentation of the Digital Michelangelo Project to the SIGGRAPH community.

Special effects, games, and virtual worlds

Synthetic imagery is playing an increasingly prominent role in creating special effects for cinema. In addition, video games
and gaming hardware are moving steadily toward interactive 3D graphics. Virtual reality as a means of simulating worlds
of experience is also growing in popularity. All of these applications require 3D models that may be taken from real life or
from sculptures created by artists. Digitizing the shapes of physical models will be essential to populating these synthetic
environments.

Reverse engineering

Many manufacturable parts are currently designed with Computer Aided Design (CAD) software. However, in some in-
stances, a mechanical part exists and belongs to a working system but has no computer model needed to regenerate the part.
This is frequently the case for machines currently in service that were designed before the advent of computers and CAD
systems, as well as for parts that were hand-tuned to fit into existing machinery. If such a part breaks, and neither spare
parts nor casting molds exist, then it may be possible to remove a part from a working system and digitize it precisely for
re-manufacture.

Collaborative design

While CAD tools can be helpful in designing parts, in some cases the most intuitive design method is physical interaction
with the model. This is especially true when the model must have esthetic appeal, such as the exteriors of consumer products
ranging from perfume bottles to automobiles. Frequently, companies employ sculptors to design these models in a medium
such as clay. Once the sculpture is ready, it may be digitized and reconstructed on a computer. The computer model is



then suitable for dissemination to local engineers or remote clients for careful review, or it may serve as a starting point for
constructing a CAD model suitable for manufacture.

Medicine

Applications of 3D Photography in medicine are wide ranging as well. Prosthetics can be custom designed when the
dimensions of the patient are known to high precision. Plastic surgeons can use the shape of an individual’s face to model
tissue scarring processes and visualize the outcomes of surgery. When performing radiation treatment, a model of the
patient’s shape can help guide the doctor in directing the radiation accurately.

Web commerce

As the World Wide Web provides a backbone for interaction over the Internet, commercial vendors are taking advantage
of the ability to market products through this medium. By making 3D models of their products available over the Web,
vendors can allow the customer to explore their products interactively. Standards for disseminating 3D models over the web
are already underway (e.g., the Virtual Reality Modeling Language (VRML)).

Course Objectives

In this course we will focus on the technology underlying the field of 3D photography, focusing on the current state-of-
the-art and the principles underlying several leading approaches. Our intent is to cover the fundamentals but also to give
an understanding of current research directions and exciting applications. With these objectives in mind we have designed
a course that brings together several leading researchers and practitioners to present state-of-the-art 3D photography ap-
proaches from the ground up.

The course will cover a variety of methods for recovering shape and reflectance from images. The course begins with
novel 2D sensing technologies such as catadioptric cameras and high dynamic range sensors. Several passive vision methods
will be presented, including stereo, structure from motion, shape from shading, volume intersection, and voxel coloring.
Active vision methods will include imaging radar, optical triangulation, moire, active stereo, active depth from defocus, and
desktop shadow striping. The course concludes with a field study: capturing 3D photographs of Michelangelo’s statues.

We hope the material in this volume will prove useful to you to help gain a deeper understanding of the concepts behind
3D photography, but moreover to help you build your own 3D photography system on your desktop. To this end, we have
provided material that we believe is sufficient to design and build practical 3D photography systems from scratch.

Steve Seitz
Brian Curless

April 2000



1

Acquiring Images

Brian Curless
University of Washington

SIGGRAPH 2000 Course on
3D Photography

The Imaging Pipeline
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Overview

Pinhole camera
Lenses

• Principles of operation
• Limitations

Charge-coupled devices
• Principles of operation
• Limitations

The pinhole camera

The first camera - “camera obscura” - known to 
Aristotle.

Small aperture = high fidelity
but requires long exposure or bright illumination
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Pinhole camera

If aperture is too small, then diffraction causes blur.

[Figure from Hecht87]

Lenses

Lenses focus a bundle of rays to one point.
=> can have larger aperture.

[Figure from Hecht87]
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Lenses

A lens images a bundle of parallel rays to a focal 
point at a distance, f, beyond the plane of the lens.
Note: f is a function of the index of refraction of the 
lens.

An aperture of diameter, D, restricts the extent of 
the bundle of refracted rays.

Lenses

For economical manufacture, lens surfaces are 
usually spherical.

A spherical lens is behaves ideally if is small:

φφφφφ ≈−+−= ...
!5!3

sin
53

The angle restriction means we consider rays near 
the optical axis -- “paraxial rays.”
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Lenses

For a “thin” lens, we ignore lens thickness, and 
the paraxial approximation leads to the familiar 
Gaussian lens formula:

fdd io

111 =+

od id

f

[Figure from Hecht87]

Cardinal points of a lens system

Most cameras do not consist of a single thin lens. 
Rather, they contain multiple lenses, some thick.

A system of lenses can be treated as a “black box” 
characterized by its cardinal points.
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Focal and principal points

The focal and principal points and the principal 
“planes” describe the paths of rays parallel to the 
optical axis.

Nodal points

The nodal points describe the paths of rays that 
are not refracted, but are translated down the 
optical axis.
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Cardinal points of a lens system

If:
• the optical system is surrounded by air

• and the principal planes are assumed planar
then

• the nodal and principal points are the same

The system still obeys Gauss’s law, but all 
distances are now relative to the principal points.

Depth of field

Lens systems do have some limitations.

First, points that are not in the object plane will 
appear out of focus.  

The depth of field is a measure of how far from the 
object plane points can be before appearing “too 
blurry.”
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Monochromatic aberrations

Allowing for the next higher terms in the sin �

approximation:

!3
...

!5!3
sin

353 φφφφφφ −≈−+−=

…we arrive at the third order theory.  Deviations 
from ideal optics are called the primary or Seidel 
aberrations:

• Spherical aberration
• Coma
• Astigmatism

• Petzval curvature
• Distortion

Distortion

Cause:
Oblique rays bent by the edges of the lens

Effect:
Non-radial lines curve out (barrel) or curve in
(pin cushion)

Ways of improving:
Symmetrical design.   

[Figure from Hecht87]
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Distortion

[Figures from Hecht87]

Chromatic aberration

Cause:
Index of refraction varies with wavelength.

Effect:
Focus shifts with color, colored fringes on 
highlights

Ways of improving:
Achromatic designs   

[Figure from Hecht87]
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Flare

Light rays refract and reflect at the interfaces 
between air and the lens.

The “stray” light is not focused at the desired 
point in the image, resulting in ghosts or haziness.

Optical coatings

Optical coatings are tuned to cancel out reflections 
at certain angles and wavelengths.

[Figure from Burke96]
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Vignetting

Light rays oblique to the lens will deliver less 
power per unit area (irradiance) due to:

• mechanical vignetting

• optical vignetting

Result: darkening at the edges of the image.

Mechanical vignetting

Occlusion by apertures and lens extents results in 
mechanical vignetting.

[Figure from Horn87]
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Optical vignetting

At grazing angles, less power per unit area is 
delivered to the image plane -- optical vignetting.

The irradiance at the sensor varies with the angle 
to the image plane, , as:

θ4

2

cos~ 





f

D
LE

Note also: the irradiance is proportional to the 
radiance along the path.

The art of optical design...

[Figure from Goldberg92]



13

Charge-coupled devices

The most popular image recording technology for 
3D photography is the charge-coupled device 
(CCD).

• Image is readily digitized

• CCD cells respond linearly to irradiance
> But, camera makers often re-map the values to correct 

for TV monitor gamma or to behave like film

• Available at low cost

Photo-conversion

When a MOS capacitor is biased into “deep 
depletion,” it can collect charges generated by 
photons.

[Figure from Theuwissen87]
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Charge transfer

By manipulating voltages of neighboring cells, we 
can move a bucket of charge one gate to the right.

[Figure from Theuwissen87]

Three-phase clocking system

With three gates, we can move disjoint charge 
packets along a linear array of CCD’s.

[Figure from Theuwissen87]
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Linear array sensors

[Figure from Theuwissen87]

Full frame CCD
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Frame transfer (FT) CCD

[Figure from Theuwissen87]

Interline transfer (IT) CCD

[Figure from Theuwissen87]
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Frame interline transfer (FIT) CCD’s

[Figure from Theuwissen87]

A closer look...

Frame transfer Interline transfer

[Figure from Muller86]
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Spectral response

[Figure from Theuwissen87]

3-chip color cameras

[Figure from Theuwissen87]
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Single chip color filters

Stripe filters

Mosaic filters

[Figures from Theuwissen87]

Limitations of CCD’s

• Smear vs. aliasing
• Blooming
• Diffusion
• Transfer efficiency
• Noise

• Processing defects

• Dark-current noise

• Output amplifier noise

• Dynamic range
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Blooming and diffusion

Blooming Diffusion

[Figures from Theuwissen87]
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Steve SeitzSteve Seitz
Carnegie Mellon UniversityCarnegie Mellon University

http://www.http://www.cscs..cmucmu..eduedu/~/~seitzseitz

Passive 3D PhotographyPassive 3D Photography

SIGGRAPH 2000 Course onSIGGRAPH 2000 Course on
3D Photography3D Photography

Talk OutlineTalk Outline

1.  Visual Cues1.  Visual Cues

2.  Classical Vision Algorithms2.  Classical Vision Algorithms

3.  State of the Art (video)3.  State of the Art (video)
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MotionMotion

Visual CuesVisual Cues

MotionMotion

ShadingShading

Visual CuesVisual Cues

Merle Norman Cosmetics, Los Angeles
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Visual CuesVisual Cues

MotionMotion

ShadingShading

TextureTexture

The Visual Cliff, by William Vandivert, 1960

Visual CuesVisual Cues

MotionMotion

ShadingShading

TextureTexture

FocusFocus

From The Art of Photography, Canon
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Visual CuesVisual Cues

MotionMotion

ShadingShading

TextureTexture

FocusFocus

Others:Others:
•• HighlightsHighlights

•• ShadowsShadows

•• SilhouettesSilhouettes

•• InterInter--reflectionsreflections

•• SymmetrySymmetry

•• Light PolarizationLight Polarization

•• ......

Reconstruction AlgorithmsReconstruction Algorithms

Shape From XShape From X
•• Stereo (shape from parallax)Stereo (shape from parallax)

•• Structure from motionStructure from motion

•• Shape from shadingShape from shading

•• Photometric stereoPhotometric stereo

•• Shape from textureShape from texture

•• Shape from focus/defocusShape from focus/defocus

•• Shape from silhouettes, ...Shape from silhouettes, ...

✔
✔
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StereoStereo

The Stereo ProblemThe Stereo Problem
•• Reconstruct scene geometry from two or more Reconstruct scene geometry from two or more 

calibrated calibrated imagesimages

scene point

focal point

image plane

StereoStereo

The Stereo ProblemThe Stereo Problem
•• Reconstruct scene geometry from two or more Reconstruct scene geometry from two or more 

calibrated calibrated imagesimages

Basic Principle:  TriangulationBasic Principle:  Triangulation
•• Gives reconstruction as intersection of two raysGives reconstruction as intersection of two rays
•• Requires Requires point correspondencepoint correspondence
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Stereo CorrespondenceStereo Correspondence

Determine Pixel CorrespondenceDetermine Pixel Correspondence
•• Pairs of points that correspond to same scene pointPairs of points that correspond to same scene point

Epipolar Epipolar ConstraintConstraint
•• Reduces correspondence problem to 1D search along Reduces correspondence problem to 1D search along 

conjugateconjugate epipolarepipolar lineslines

epipolar plane
epipolar lineepipolar line

Stereo Matching AlgorithmsStereo Matching Algorithms

Match Pixels in ConjugateMatch Pixels in Conjugate EpipolarEpipolar LinesLines
•• Assume color of point does not changeAssume color of point does not change

•• PitfallsPitfalls
>> specularities specularities (non(non--Lambertian Lambertian surfaces)surfaces)
>> ambiguity (lowambiguity (low--contrast regions)contrast regions)

>> missing data (occlusions)missing data (occlusions)

>> intensity error (intensity error (quantizationquantization, sensor error), sensor error)

>> position error (camera calibration)position error (camera calibration)

•• Numerous approachesNumerous approaches
>> winnerwinner--take alltake all

>> dynamic programming [dynamic programming [Ohta Ohta 85]85]
>> smoothness smoothness functionalsfunctionals

>> more images (more images (trinoculartrinocular, N, N--ocular) [ocular) [OkutomiOkutomi 93]93]
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Structure from MotionStructure from Motion

The SFM ProblemThe SFM Problem
•• Reconstruct scene Reconstruct scene geometrygeometry and camera and camera motionmotion from from 

two or more imagestwo or more images

AssumeAssume
•• Pixel correspondencePixel correspondence

>> via trackingvia tracking

•• Projection model Projection model 
>> classic methods are orthographicclassic methods are orthographic

Orthographic ProjectionOrthographic Projection

121212
tXu
××××

+=
33

image point projection
matrix

scene
point

image
offset

TrickTrick
•• Choose scene origin to be Choose scene origin to be centroid centroid of 3D pointsof 3D points

•• Choose image origins to be Choose image origins to be centroid centroid of 2D pointsof 2D points

•• Allows us to drop the camera translation:Allows us to drop the camera translation:

1212
Xu
×××

=
33
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Shape by Factorization Shape by Factorization [[TomasiTomasi & & KanadeKanade, 92], 92]

[ ] [ ]
n3n2n2 ××

=
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Π n21n21 XXXuuu LL

projection of n features in one image:
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projection of n features in f images

W measurement M motion S shape

n332fn2f
SMW
×××

= ’’

Factorization TechniqueFactorization Technique
•• WW is at most rank 3 (assuming no noise)is at most rank 3 (assuming no noise)

•• We can use We can use singular value decompositionsingular value decomposition to factor W:to factor W:

Shape by Factorization Shape by Factorization [[TomasiTomasi & & KanadeKanade, 92], 92]

•• S’S’ differs from differs from SS by a linear transformation by a linear transformation AA::

•• Solve for Solve for AA by enforcing constraints on by enforcing constraints on MM

))((’’ ASMASMW 1−==

n332fn2f
SMW
×××

=known solve for
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Shape from ShadingShape from Shading

Classical ApproachClassical Approach
•• Suppose reflected light depends only on Suppose reflected light depends only on αα

Shape from Shading [Horn, 1970]Shape from Shading [Horn, 1970]

αcoskradiance =

ααNN LL
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The Reflectance MapThe Reflectance Map

ImageImage

αα
NN

LL

Reflectance Map: RReflectance Map: R
[ ]1qpN −=

The Reflectance MapThe Reflectance Map

Reflectance MapReflectance Map ImageImage



11

Finding a Unique SolutionFinding a Unique Solution

Three ApproachesThree Approaches
•• Characteristic Strip Method [Horn, 77]Characteristic Strip Method [Horn, 77]

>> select a few points where normal is knownselect a few points where normal is known

>> grow solution by moving direction of grow solution by moving direction of ∇∇RR

•• VariationalVariational Method [Method [Ikeuchi Ikeuchi & Horn, 81]& Horn, 81]
>> start with an initial guess of surface shapestart with an initial guess of surface shape

>> define energy functiondefine energy function

>> refine to minimize energy functionrefine to minimize energy function

•• Photometric Stereo [Photometric Stereo [Woodham Woodham 80]80]
>> use more imagesuse more images

Photometric StereoPhotometric Stereo

Two Images Under Different LightingTwo Images Under Different Lighting

Need Three Images for Unique SolutionNeed Three Images for Unique Solution
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Photometric Stereo:  Matrix FormulationPhotometric Stereo:  Matrix Formulation

Write Equations in Matrix FormWrite Equations in Matrix Form

NL

NL

NL

T
3

T
2

T
1

ˆˆ

ˆˆ

ˆˆ

3

2

kI

kI

kI1

•=

•=

•=

13I × 3×3L 1

~
×3N

N

ILN 1
1

~

~

=

= −

k

Advantage:Advantage:
•• Can solve for variable reflectance Can solve for variable reflectance kk

ResourcesResources

Computer Vision Home PageComputer Vision Home Page
•• http://www.http://www.cscs..cmucmu..eduedu//afsafs//cscs/project//project/cilcil/ftp/html/vision.html/ftp/html/vision.html

Computer Vision TextbooksComputer Vision Textbooks
•• D. H. Ballard and C. M. Brown, D. H. Ballard and C. M. Brown, Computer VisionComputer Vision, Prentice, Prentice--Hall, 1982.Hall, 1982.

•• O.O. FaugerasFaugeras, , ThreeThree--Dimensional Computer VisionDimensional Computer Vision, MIT Press, 1993. , MIT Press, 1993. 

•• B. K. P. Horn, B. K. P. Horn, Robot VisionRobot Vision, McGraw, McGraw--Hill, 1986. Hill, 1986. 

•• R.R. JainJain, R., R. KasturiKasturi and B. G.and B. G. SchunckSchunck, , Machine VisionMachine Vision, McGraw, McGraw--Hill, 1995. Hill, 1995. 

•• R.R. KletteKlette, K., K. SchlunsSchluns and A.and A. KoschanKoschan, , Computer Vision: ThreeComputer Vision: Three--Dimensional Data from Dimensional Data from 
ImagesImages, Springer, Springer--VerlagVerlag, 1998. , 1998. 

•• V. S. V. S. NalwaNalwa, , A Guided Tour of Computer VisionA Guided Tour of Computer Vision, Addison, Addison--Wesley, 1993. Wesley, 1993. 

•• M.M. SonkaSonka, V., V. HlavacHlavac and R. Boyle, and R. Boyle, Image Processing, Analysis, and Machine VisionImage Processing, Analysis, and Machine Vision, , 
Brooks/Cole Publishing, 1999. Brooks/Cole Publishing, 1999. 

•• E.E. TruccoTrucco and A.and A. VerriVerri, , Introductory Techniques for 3Introductory Techniques for 3--D Computer VisionD Computer Vision, Prentice, Prentice--Hall, Hall, 
1998. 1998. 

•• D. Marr, D. Marr, VisionVision, Freeman, 1982. , Freeman, 1982. 

•• J.J. KoenderinkKoenderink, , Solid ShapeSolid Shape, MIT Press, 1990. , MIT Press, 1990. 



13

StereoStereo
•• YuichiYuichi OhtaOhta & & Takeo KanadeTakeo Kanade, "Stereo by Intra, "Stereo by Intra-- and Interand Inter--ScanlineScanline Search Using Search Using 

Dynamic Programming", IEEE Trans. on Pattern Analysis and MachinDynamic Programming", IEEE Trans. on Pattern Analysis and Machine Intelligence, e Intelligence, 
7(2), 1985, pp. 1297(2), 1985, pp. 129--154.154.

•• MasatoshiMasatoshi OkutomiOkutomi & & Takeo KanadeTakeo Kanade, ”A Multiple, ”A Multiple--Baseline Stereo", IEEE Trans. on Baseline Stereo", IEEE Trans. on 
Pattern Analysis and Machine Intelligence", 15(4), 353Pattern Analysis and Machine Intelligence", 15(4), 353--363, 1985.363, 1985.

StructureStructure--fromfrom--MotionMotion
•• CarloCarlo TomasiTomasi && Takeo KanadeTakeo Kanade, ”Shape and Motion from Image Streams Under , ”Shape and Motion from Image Streams Under 

Orthography:  A Factorization Method", Int. Journal of Computer Orthography:  A Factorization Method", Int. Journal of Computer Vision, 9(2), 1992, Vision, 9(2), 1992, 
pp. 137pp. 137--154.154.

Shape from ShadingShape from Shading
•• B. Horn and M. Brooks, “Shape from Shading”, 1989, MIT Press.B. Horn and M. Brooks, “Shape from Shading”, 1989, MIT Press.

•• L. Wolff, S. Shafer, and G. E. Healey, “PhysicsL. Wolff, S. Shafer, and G. E. Healey, “Physics--Based Vision:  Shape Recovery”, 1992, Based Vision:  Shape Recovery”, 1992, 
Jones and Bartlett.Jones and Bartlett.

•• R. J.R. J. WoodhamWoodham, “Photometric Method for Determining Surface Orientation from , “Photometric Method for Determining Surface Orientation from 
Multiple Images”, Optical Engineering, 1980, pp. 139Multiple Images”, Optical Engineering, 1980, pp. 139--144.144.

BibliographyBibliography

VideoVideo



Shape and Motion from Image Streams:

a Factorization Method
Full Report on the Orthographic Case

Carlo Tomasi Takeo Kanade

March 1992

Cornell TR 92-1270 and Carnegie Mellon CMU-CS-92-104

This research was sponsored by the Avionics Laboratory, Wright Research and Devel-

opment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson

AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the o�cial policies, either expressed or implied,

of the U.S. government.



Keywords: computer vision, motion, shape, time-varying imagery



Abstract

Inferring scene geometry and camera motion from a stream of images is
possible in principle, but is an ill-conditioned problem when the objects are

distant with respect to their size. We have developed a factorization method

that can overcome this di�culty by recovering shape and motion without

computing depth as an intermediate step.

An image stream can be represented by the 2F � P measurement matrix of
the image coordinates of P points tracked through F frames. We show that
under orthographic projection this matrix is of rank 3.
Using this observation, the factorization method uses the singular value de-

composition technique to factor the measurement matrix into two matrices
which represent object shape and camera motion respectively. The method
can also handle and obtain a full solution from a partially �lled-in measure-
ment matrix, which occurs when features appear and disappear in the image

sequence due to occlusions or tracking failures.

The method gives accurate results, and does not introduce smoothing in
either shape or motion. We demonstrate this with a series of experiments on
laboratory and outdoor image streams, with and without occlusions.



Chapter 1

Introduction

The structure from motion problem { recovering scene geometry and camera
motion from a sequence of images { has attracted much of the attention of

the vision community over the last decade. Yet it is common knowledge

that existing solutions work well for perfect images, but are very sensitive
to noise. We present a new method called the factorization method which

can robustly recover shape and motion from a sequence of images without
assuming a model of motion, such as constant translation or rotation.

More speci�cally, an image sequence can be represented as a 2F � P

measurement matrix W , which is made up of the horizontal and vertical
coordinates of P points tracked through F frames. If image coordinates are
measured with respect to their centroid, we prove the rank theorem: under
orthography, the measurement matrix is of rank 3. As a consequence of
this theorem, we show that the measurement matrix can be factored into

the product of two matrices R and S. Here, R is a 2F � 3 matrix that

represents camera rotation, and S is a 3 � P matrix which represents shape
in a coordinate system attached to the object centroid. The two components

of the camera translation along the image plane are computed as averages of
the rows of W . When features appear and disappear in the image sequence

due to occlusions or tracking failures, the resultant measurement matrix W

is only partially �lled-in. The factorization method can handle this situation
by growing a partial solution obtained from an initial full submatrix into a
full solution with an iterative procedure.

The rank theorem precisely captures the nature of the redundancy that

exists in an image sequence, and permits a large number of points and frames

1



to be processed in a conceptually simple and computationally e�cient way to

reduce the e�ects of noise. The resulting algorithm is based on the singular

value decomposition, which is numerically well-behaved and stable. The
robustness of the recovery algorithm in turn enables us to use an image

sequence with a very short interval between frames (an image stream), which

makes feature tracking relatively easy.
We have demonstrated the accuracy and robustness of the factorization

method in a series of experiments on laboratory and outdoor sequences, with
and without occlusions.

2



Chapter 2

Relation to Previous Work

In Ullman's original proof of existence of a solution [Ullman, 1979] for the
structure from motion problem under orthography, as well as in the perspec-

tive formulation in [Roach and Aggarwal, 1979], the coordinates of feature

points in the world are expressed in a world-centered system of reference.
Since then, however, this choice has been replaced by most computer vision

researchers with that of a camera-centered representation of shape [Prazdny,
1980], [Bruss and Horn, 1983], [Tsai and Huang, 1984], [Adiv, 1985], [Wax-
man and Wohn, 1985], [Bolles et al., 1987], [Horn et al., 1988], [Heeger and

Jepson, 1989], [Heel, 1989], [Matthies et al., 1989], [Spetsakis and Aloimonos,
1989], [Broida et al., 1990]. With this representation, the position of feature
points is speci�ed by their image coordinates and by their depths, de�ned as
the distances between the camera center and the feature points, measured
along the optical axis. Unfortunately, although a camera-centered repre-

sentation simpli�es the equations for perspective projection, it makes shape

estimation di�cult, unstable, and noise sensitive.
There are two fundamental reasons for this. First, when camera motion

is small, e�ects of camera rotation and translation can be confused with
each other: for example, small rotation about the vertical axis and small

translation along the horizontal axis both generate a very similar change

in an image. Any attempt to recover or di�erentiate between these two
motions, though doable mathematically, is naturally noise sensitive. Second,
the computation of shape as relative depth, for example, the height of a

building as the di�erence of depths between the top and the bottom, is

very sensitive to noise, since it is a small di�erence between large values.
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These di�culties are especially magni�ed when the objects are distant from

the camera relative to their sizes, which is usually the case for interesting

applications such as site modeling.
The factorization method we present in this paper takes advantage of

the fact that both di�culties disappear when the problem is reformulated in

world-centered coordinates, unlike the conventional camera-centered formu-
lation. This new (old { in a sense) formulation links object-centered shape

to image motion directly, without using retinotopic depth as an intermedi-
ate quantity, and leads to a simple and well-behaved solution. Furthermore,

the mutual independence of shape and motion in world-centered coordinates
makes it possible to cast the structure-from-motion problem as a factorization

problem, in which a matrix representing image measurements is decomposed
directly into camera motion and object shape.

We �rst introduced this factorization method in [Tomasi and Kanade,
1990a, Tomasi and Kanade, 1990b], where we treated the case of single-
scanline images in a 
at, two-dimensional world. In [Tomasi and Kanade,
1991] we presented the theory for the case of arbitrary camera motion in

three dimensions and full two-dimensional images. This paper extends the

factorization method for dealing with feature occlusions as well as presenting
more experimental results with real-world images. Debrunner and Ahuja

have pursued an approach related to ours, but using a di�erent formalism
[Debrunner and Ahuja, 1990, Debrunner and Ahuja, 1991]. Assuming that
motion is constant over a period, they provide both closed-form expressions

for shape and motion and an incremental solution (one image at a time) for
multiple motions by taking advantage of the redundancy of measurements.
Boult and Brown have investigated the factorization method for multiple
motions [Boult and Brown, 1991], in which they count and segment separate
motions in the �eld of view of the camera.
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Chapter 3

The Factorization Method

Given an image stream, suppose that we have tracked P feature points over
F frames. We then obtain trajectories of image coordinates f(ufp; vfp) j f =

1; . . . ; F; p = 1; . . . ; P g. We write the horizontal feature coordinates ufp into

an F � P matrix U : we use one row per frame, and one column per feature
point. Similarly, an F � P matrix V is built from the vertical coordinates

vfp. The combined matrix of size 2F � P

W =

"
U

V

#

is called the measurement matrix. The rows of the matrices U and V are
then registered by subtracting from each entry the mean of the entries in the
same row: eufp = ufp � afevfp = vfp � bf ;

(3:1)

where

af =
1

P

PX
p=1

ufp

bf =
1

P

PX
p=1

vfp :

This produces two new F �P matrices eU = [eufp] and eV = [evfp]. The matrix

fW =

" eUeV
#
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is called the registered measurement matrix. This is the input to our factor-

ization method.

3.1 The Rank Theorem

We now analyze the relation between camera motion, shape, and the entries

of the registered measurement matrix fW . This analysis leads to the key

result that fW is highly rank-de�cient.

Referring to Figure 3.1, suppose we place the origin of the world reference
system x � y � z at the centroid of the P points sp = (xp; yp; zp)

T ; p =
1; . . . ; Pg, in space which correspond to the P feature points tracked in the

image stream. The orientation of the camera reference system corresponding

to frame number f is determined by a pair of unit vectors, ifand jf , pointing
along the scanlines and the columns of the image respectively, and de�ned
with respect to the world reference system. Under orthography, all projection
rays are then parallel to the cross product of ifand jf :

kf = if � jf :

From Figure 3.1 we see that the projection (ufp; vfp), i.e., the image feature
position, of point sp = (xp; yp; zp)

T onto frame f is given by the equations

ufp = if
T (sp � tf)

vfp = jf
T (sp � tf ) ;

where tf = (af ; bf ; cf )
T is the vector from the world origin to the origin of

image frame f . Here note that since the origin of the world coordinates is

placed at the centroid of object points,

1

P

PX
p=1

sp = 0 :

We can now write expressions for the entries eufp and evfp de�ned in (3.1) of
the registered measurement matrix. For the the registered horizontal image
projection we have

eufp = ufp � af

6



f + 2

f + 1

sp

t
f

object point p
(x  , y  , z  )p pp image frame f

u
fp

v
fp

i
f

j
f

k
f

X

Y

Z

object
centroid

Figure 3.1: The systems of reference used in our problem formulation.

= if
T (sp � tf )�

1

P

PX
q=1

if
T (sq � tf )

= if
T

0@sp � 1

P

PX
q=1

sq

1A
= if

Tsp : (3.2)

We can write a similar equation for evfp. To summarize,

eufp = if
Tspevfp = jf
T sp :

(3:3)

Because of the two sets of F�P equations (3.3), the registered measurement
matrix fW can be expressed in a matrix form:fW = RS (3:4)

where

R =

266666666664

iT
1

...
iTF
jT
1

...

jTF

377777777775
(3:5)

represents the camera rotation, and

S =
h
s
1

� � � sP

i
(3:6)
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is the shape matrix. In fact, the rows of R represent the orientations of the

horizontal and vertical camera reference axes throughout the stream, while

the columns of S are the coordinates of the P feature points with respect to
their centroid.

Since R is 2F �3 and S is 3�P , the equation (3.4) implies the following.

Rank Theorem: Without noise, the registered measurement ma-

trix fW is at most of rank three.

The rank theorem expresses the fact that the 2F � P image measurements
are highly redundant. Indeed, they could all be described concisely by giving

F frame reference systems and P point coordinate vectors, if only these were
known.

From the �rst and the last line of equation (3.2), the original unregistered

matrix W can be written as

W = RS + teTP ; (3:7)

where t = (a
1
; . . . ; aF ; b1; . . . ; bF )

T is a 2F -dimensional vector that collects

the projections of camera translation along the image plane (see equation
(3.2)), and eTP = (1; . . . ; 1) is a vector of P ones. In scalar form,

ufp = iTf sp + af

vfp = jTf sp + bf : (3.8)

Comparing with equations (3.1), we see that the two components of camera

translation along the image plane are simply the averages of the rows of W .
In the equations above, if and jf are mutually orthogonal unit vectors,

so they must satisfy the constraints

jif j = jjf j = 1 and iTf jf = 0 : (3.9)

Also, the rotation matrixR is unique if the system of reference for the solution

is aligned, say, with that of the �rst camera position, so that:

i
1
= (1; 0; 0)T and j

1
= (0; 1; 0)T : (3.10)

The registered measurement matrix fW must be at most of rank three

without noise. When noise corrupts the images, however, fW will not be
exactly of rank 3. However, the rank theorem can be extended to the case

of noisy measurements in a well-de�ned manner. The next sectionintroduces

the notion of approximate rank, using the concept of singular value decom-
position [Golub and Reinsch, 1971].
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3.2 Approximate Rank

Assuming 1 that 2F � P , the matrix fW can be decomposed [Golub and

Reinsch, 1971] into a 2F � P matrix O
1
, a diagonal P � P matrix �, and a

P � P matrix O
2
, fW = O

1
�O

2
; (3:11)

such that OT
1
O
1
= OT

2
O
2
= O

2
OT
2

= I, where I is the P � P identity

matrix. � is a diagonal matrix whose diagonal entries are the singular values

�
1
� . . . � �P sorted in non-decreasing order. This is the Singular Value

Decomposition (SVD) of the matrix fW .
Suppose that we pay attention only to the �rst three columns of O

1
, the

�rst 3 � 3 submatrix of � and the �rst three rows of O
2
. If we partition the

matrices O
1
, �, and O

2
as follows:

O
1

=
h
O0

1
O00

1

i
g2F

|{z}
3

|{z}
P�3

� =

"
�0 0

0 �00

#
g3

gP�3

|{z}
3

|{z}
P�3

O
2

=

"
O0

2

O00

2

#
g3

gP�3

|{z}
P

;

(3:12)

we have
O
1
�O

2
= O0

1
�0O0

2
+O00

1
�00O00

2
:

Let fW �

be the ideal registered measurement matrix, that is, the matrix

we would obtain in the absence of noise. Because of the rank theorem, fW �

has at most three non-zero singular values. Since the singular values in �

are sorted in non-increasing order, �0 must contain all the singular values of

1This assumption is not crucial: if 2F < P , everything can be repeated for the transpose

of fW .
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fW �

that exceed the noise level. As a consequence, the term O00

1
�00O00

2
must

be due entirely to noise, and the best possible rank-3 approximation to the

ideal registered measurement matrix fW �

is the product:

Ŵ = O0

1
�0O0

2

We can now restate our rank theorem for the case of noisy measurements.

Rank Theorem for Noisy Measurements: All the shape and

rotation information in fW is contained in its three greatest sin-

gular values, together with the corresponding left and right eigen-

vectors.

Now if we de�ne

R̂ = O0

1
[�0]1=2

Ŝ = [�0]1=2O0

2
;

we can write

Ŵ = R̂Ŝ : (3:13)

The two matrices R̂ and Ŝ are of the same size as the desired rotation and
shape matrices R and S: R̂ is 2F � 3, and Ŝ is 3� P . However, the decom-
position (3.13) is not unique. In fact, if Q is any invertible 3� 3 matrix, the
matrices R̂Q and Q�1Ŝ are also a valid decomposition of Ŵ , since

(R̂Q)(Q�1Ŝ) = R̂(QQ�1)Ŝ = R̂Ŝ = Ŵ :

Thus, R̂ and Ŝ are in general di�erent from R and S. A striking fact,
however, is that except for noise the matrix R̂ is a linear transformation of
the true rotation matrix R, and the matrix Ŝ is a linear transformation of
the true shape matrix S. Indeed, in the absence of noise, R and R̂ both

span the column space of the registered measurement matrix fW = fW �

= Ŵ .
Since that column space is three-dimensional because of the rank theorem,

R and R̂ are di�erent bases for the same space, and there must be a linear

transformation between them.
Whether the noise level is low enough that it can be ignored at this

juncture depends also on the camera motion and on shape. Notice, however,

that the singular value decomposition yields su�cient information to make

this decision: the requirement is that the ratio between the third and the
fourth largest singular values of fW be su�ciently large.
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3.3 The Metric Constraints

We have found that the matrix R̂ is a linear transformation of the true

rotation matrix R. Likewise, Ŝ is a linear transformation of the true shape
matrix S. More speci�cally, there exists a 3� 3 matrix Q such that

R = R̂Q

S = Q�1Ŝ :
(3:14)

In order to �nd Q we observe that the rows of the true rotation matrix
R are unit vectors and the �rst F are orthogonal to corresponding F in

the second half of R. These metric constraints yield the over-constrained,
quadratic system

îf
T
QQT îf = 1

ĵf
T
QQT ĵf = 1

îf
T
QQT ĵf = 0

(3:15)

in the entries of Q. This is a simple data �tting problem which, though
nonlinear, can be solved e�ciently and reliably. Its solution is determined

up to a rotation of the whole reference system, since the orientation of the
world reference system was arbitrary. This arbitrariness can be removed by
enforcing the constraints (3.10), that is, selecting the x�y axes of the world

reference system to be parallel with those of the �rst frame.

3.4 Outline of the Complete Algorithm

Based on the development in the previous chapters, we now have a complete

algorithm for the factorization of the registered measurement matrix fW de-

rived from a stream of images into shape S and rotation R as de�ned in
equations (3.4) - (3.6).

1. Compute the singular-value decomposition fW = O
1
�O

2
.

2. De�ne R̂ = O0

1
(�0)1=2 and Ŝ = (�0)1=2O0

2
, where the primes refer to the

block partitioning de�ned in (3.12).

3. Compute the matrix Q in equations (3.14) by imposing the metric

constraints (equations (3.15)).
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4. Compute the rotation matrix R and the shape matrix S as R = R̂Q

and S = Q�1Ŝ.

5. If desired, align the �rst camera reference system with the world ref-

erence system by forming the products RR
0
and RT

0
S, where the or-

thonormal matrix R
0
= [i

1
j
1
k
1
] rotates the �rst camera reference

system into the identity matrix.
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Chapter 4

Experiment

We test the factorization method with two real streams of images: one taken
in a controlled laboratory environment with ground-truth motion data, and

the other in an outdoor environment with a hand-held camcorder.

4.1 "Hotel" Image Stream in a Laboratory

Some frames in this stream are shown in �gure 4.1. The images depict a

small plastic model of a building. The camera is a Sony CCD camera with a
200 mm lens, and is moved by means of a high-precision positioning platform.
Camera pitch, yaw, and roll around the model are all varied as shown by the
dashed curves in �gure 4.2. The translation of the camera is such as to keep
the building within the �eld of view of the camera.

For feature tracking, we extended the Lucas-Kanade method described in
[Lucas and Kanade, 1981] to allow also for the automatic selection of image

features. The Lucas-Kanade method of tracking obtains the displacement
vector of the window around a feature as the solution of a linear 2�2 equation
system. As good image features we select those points for which the above

equation systems are stable. The details are presented in [Tomasi, 1991,

Tomasi and Kanade, 1992].

The entire set of 430 features thus selected is displayed in �gure 4.3, over-
laid on the �rst frame of the stream. Of these features, 42 were abandoned

during tracking because their appearance changed too much. The trajecto-

ries of the remaining 388 features are used as the measurement matrix for

13



the computation of shape and motion.

The motion recovery is precise. The plots in �gure 4.2 compare the rota-

tion components computed by the factorization method (solid curves) with
the values measured mechanically from the mobile platform (dashed curves).

The di�erences are magni�ed in �gure 4.4. The errors are everywhere less

than 0.4 degrees and on average 0.2 degrees. The computed motion follows
closely also rotations with curved pro�les, such as the roll pro�le between

frames 1 and 20 (second plot in �gure 4.2), and faithfully preserves all dis-
continuities in the rotational velocities: the factorization method does not

smooth the results.
Between frames 60 and 80, yaw and pitch are nearly constant, and the

camera merely rotates about its optical axis. That is, the motion is actually
degenerate during this period, but still it has been correctly recovered. This

demonstrates that the factorization method can deal without di�culty with
streams that contain degenerate substreams, because the information in the
stream is used as a whole in the method.

The shape results are evaluated qualitatively in �gure 4.5, which shows

the computed shape viewed from above. The view in �gure 4.5 is similar

to that in �gure 4.6, included for visual comparison. Notice that the walls,
the windows on the roof, and the chimneys are recovered in their correct

positions.
To evaluate the shape performance quantitatively, we measured some

distances on the actual house model with a ruler and compared them with the

distances computed from the point coordinates in the shape results. Figure
4.7 shows the selected features. The diagram in �gure 4.8 shows the distances
between pairs of features measured on the actual model and those computed
by the factorization method. The measured distances between the steps along
the right side of the roof (7.2 mm) were obtained by measuring �ve steps

and dividing the total distance (36 mm) by �ve. The di�erences between
computed and measured results are of the order of the resolution of our ruler

measurements (one millimeter).
Part of the errors in the results is due to the use of orthography as the

projection model. However, it tends to be fairly small for many realistic

situations. In fact, it has been shown that errors due to the orthogrphic

distortion are approximately about the same percentage as the ratio of the
object size in depth to the distance of the object from the camera [Tomasi,

1991].
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4.2 Outdoor "House" Image Stream

The factorization method has been tested with an image stream of a real

building, taken with a hand-held camera. Figure 4.9 shows some of the 180
frames of the building stream. The overall motion covers a relatively small

rotation angle, approximately 15 degrees. Outdoor images are harder to

process than those produced in a controlled environment of the laboratory,
because lighting changes less predictably and the motion of the camera is

more di�cult to control. As a consequence, features are harder to track:

the images are unpredictably blurred by motion, and corrupted by vibra-

tions of the video recorder's head, both during recording and digitization.

Furthermore, the camera's jumps and jerks produce a wide range of image
disparities.

The features found by the selection algorithm in the �rst frame are shown
in �gure 4.10. There are many false features. The re
ections in the window
partially visible in the top left of the image move non-rigidly. More false

features can be found in the lower left corner of the picture, where the vertical
bars of the handrail intersect the horizontal edges of the bricks of the wall
behind. We masked away these two parts of the image from the analysis.

In total, 376 features were found by the selection algorithm and tracked.

Figure 4.11 plots the tracks of some (60) of the features for illustration.

Notice the very jagged trajectories due to the vibrating motion of the hand-
held camera.

Figures 4.12 and 4.13 show a front and a top view of the building as re-

constructed by the factorization method. To render these �gures for display,
we triangulated the computed 3D points into a set of small surface patches

and mapped the pixel values in the �rst frame onto the resulting surface. The

structure of the visible part of the building's three walls has clearly been re-
constructed. In these �gures, the left wall appears to bend somewhat on the

right where it intersects the middle wall. This occurred because the feature
selector found features along the shadow of the roof just on the right of the

intersection of the two walls, rather than at the intersection itself. Thus,

the appearance of a bending wall is an artifact of the triangulation done for

rendering.
This experiment with an image stream taken outdoors with the jerky

motion produced by a hand-held camera demonstrates that the factorization

method does not require a smooth motion assumption. The identi�cation of
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false features, that is, of features that do not move rigidly with respect of

the environment, remains an open problem that must be solved for a fully

autonomous system. An initial e�ort has been seen in [Boult and Brown,
1991].
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Chapter 5

Occlusions

In reality, as the camera moves, features can appear and disappear from
the image, because of occlusions. Also, a feature tracking method will not

always succeed in tracking features throughout the image stream. These

phenomena are frequent enough to make a shape and motion computation
method unrealistic if it cannot deal with them.

Sequences with appearing and disappearing features result in a measure-
ment matrix W which is only partially �lled in. The factorization method
introduced in chapter3 cannot be applied directly. However, there is usually

su�cient information in the stream to determine all the camera positions and
all the three-dimensional feature point coordinates. If that is the case, we can
not only solve the shape and motion recovery problem from the incomplete
measurement matrix W , but we can even hallucinate the unknown entries of
W by projecting the computed three-dimensional feature coordinates onto

the computed camera positions.

5.1 Solution for Noise-Free Images

Suppose that a feature point is not visible in a certain frame. If the same

feature is seen often enough in other frames, its position in space should
be recoverable. Moreover, if the frame in question includes enough other
features, the corresponding camera position be recoverable as well. Then

from point and camera positions thus recovered, we should also be able to

reconstruct the missing image measurement. Formally, we have the following
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Figure 5.1: The Reconstruction Condition. If the dotted entries of the mea-

surement matrix are known, the two unknown ones (question marks) can be
reconstructed.

su�cient condition.

Condition for Reconstruction: In the absence of noise, an
unknown image measurement pair (ufp; vfp) in frame f can be
reconstructed if point p is visible in at least three more frames
f
1
; f

2
; f

3
, and if there are at least three more points p

1
; p

2
; p

3
that

are visible in all the four frames: the original f and the additional

f
1
; f

2
; f

3
.

Referring to Figure 5.1, this means that the dotted entries must be known
to reconstruct the question marks. This is equivalent to Ullman's result [Ull-
man, 1979] that three views of four points determine structure and motion.

In this section, we prove the reconstruction condition in our formalism and

develop the reconstruction procedure. To this end, we notice that the rows

and columns of the noise-free measurement matrix W can always be per-
muted so that f

1
= p

1
= 1, f

2
= p

2
= 2, f

3
= p

3
= 3, f = p = 4. We can

therefore suppose that u
44

and v
44

are the only two unknown entries in the
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8� 4 matrix

W =

"
U

V

#
=

266666666666664

u
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u
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u
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u
23

u
24

u
31

u
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u
33

u
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u
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u
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u
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?

v
11
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v
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v
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v
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v
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v
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v
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v
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v
34

v
41

v
42

v
43

?

377777777777775
:

Then, the factorization method can be applied to the �rst three rows of U

and V , that is, to the 6� 4 submatrix

W
6�4 =

2666666664

u
11

u
12

u
13

u
14

u
21

u
22

u
23

u
24

u
31

u
32

u
33

u
34

v
11

v
12

v
13

v
14

v
21

v
22

v
23

v
24

v
31

v
32

v
33

v
34

3777777775
(5:1)

to produce the partial translation and rotation submatrices

t
6�1 =

2666666664

a
1

a
2

a
3

b
1

b
2

b
3

3777777775
and R

6�3 =

26666666664

iT
1

iT
2

iT
3

jT
1

jT
2

jT
3

37777777775
(5.2)

and the full shape matrix

S =
h
s
1
s
2
s
3
s
4

i
(5:3)

such that

W
6�4 = R

6�3S + t
6�1e

T
4

where eT
4
= (1; 1; 1; 1).

To complete the rotation solution, we need to compute the vectors i
4

and j
4
. However, a registration problem must be solved �rst. In fact, only

three points are visible in the fourth frame, while equation (5.3) yields all
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four points in space. Since the factorization method computes the space

coordinates with respect to the centroid of the points, we have s
1
+ s

2
+ s

3
+

s
4
= 0, while the image coordinates in the fourth frame are measured with

respect to the centroid of just three observed points (1, 2, 3). Thus, before

we can compute i
4
and j

4
we must make the two origins coincide by referring

all coordinates to the centroid

c =
1

3
(s

1
+ s

2
+ s

3
)

of the three points that are visible in all four frames. In the fourth frame,

the projection of c has coordinates

a0
4

=
1

3
(u

41
+ u

42
+ u

43
)

b0
4

=
1

3
(v

41
+ v

42
+ v

43
) ;

so we can de�ne the new coordinates

s0p = sp � c for p = 1; 2; 3

in space and

u0
4p = u

4p � a0
4

v0
4p = v

4p � b0
4

for p = 1; 2; 3

in the fourth frame. Then, i
4
and j

4
are the solutions of the two 3�3 systemsh

u0
41

u0
42

u0
43

i
= iT

4

h
s0
1
s0
2
s0
3

i
h
v0
41

v0
42

v0
43

i
= jT

4

h
s0
1
s0
2
s0
3

i
(5.4)

derived from equation (3.4). The second equation in (5.2) and the solution
to (5.4) yield the entire rotation matrix R, while shape is given by equation

(5.3).

The components a
4
and b

4
of translation in the fourth frame with re-

spect to the centroid of all four points can be computed by postmultiplying

equation (3.7) by the vector �
4
= (1; 1; 1; 0)T :

W�
4
= RS�

4
+ teT

4
�
4
:
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Since eT
4
�
4
= 3, we obtain

t =
1

3
(W �RS)�

4
: (5:5)

In particular, rows 4 and 8 of this equation yield a
4
and b

4
. Notice that the

unknown entries u
44
and v

44
are multiplied by zeros in equation (5.5).

Now that both motion and shape are known, the missing entries u
44
,

v
44

of the measurement matrix W can be found by orthographic projection

(equation (3.8)):

u
44

= iT
4
s
4
+ a

4

v
44

= jT
4
s
4
+ b

4
:

The procedure thus completed factors the full 6� 4 submatrix of W and

then reasons on the three points that are visible in all the frames to compute
motion for the fourth frame. Alternatively, one can �rst apply factorization
to the 8� 3 submatrix

W
8�3 =

266666666666664

u
11

u
12

u
13

u
21

u
22

u
23

u
31

u
32

u
33

u
41

u
42

u
43

v
11

v
12

v
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(5:6)

to produce the full translation and rotation submatrices

t0 =

266666666666664

a0
1

a0
2

a0
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a0
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b0
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b0
3
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4

377777777777775
and R =

2666666666666664
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3

iT
4
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4

3777777777777775
(5.7)
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and the partial shape matrix

S
3�3 =

h
s0
1
s0
2
s0
3

i
(5:8)

such that

W
8�3 = RS0

3�3
+ t0eT

3
:

The primes here signal again that coordinates refer to the centroid of only

the �rst three points. Then, this partial solution can be extended to s0
4
by

solving the following overconstrained system of six equations in the three

unknown entries of s0
4
:26666666664

i
T
1

iT
2

iT
3

jT
1

jT
2

jT
3

37777777775
s0
4
+

2666666664
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3777777775
=

2666666664
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u0
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v0
14

v0
24

v0
34

3777777775
(5.9)

where

u0f4 = uf4 � a0f
v0f4 = vf4 � b0f

for f = 1; 2; 3 :

The "primed" shape coordinates can now be registered with respect to their
centroid to yield the "unprimed" coordinates:

sp = s0p �
1

4
S0e

4
for p = 1; 2; 3; 4

and the "unprimed" translation can again be found from equation (5.5).

In summary, the full motion and shape solution can be found in either of
the following ways:

1. factor W
6�4 to �nd a partial motion and full shape solution, and prop-

agate it to include motion for the remaining frame (equations (5.4)).

This will be used for reconstructing the complete W by row-wise ex-
tension.

2. factorW
8�3 to �nd a full motion and partial shape solution, and propa-

gate it to include the remaining feature point (equation (5.9)). This will

be used for reconstructing the complete W by column-wise extension.
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5.2 Solution in the Presence of Noise

The solution propagation method introduced in the previous sectioncan be

extended to 2F � P measurement matrices with F � 4 and P � 4. In
fact, the only di�erence is that the propagation equations (5.4) and (5.9)

now become overconstrained. If the measurement matrix W is noisy, this

redundancy is bene�cial, since equations (5.4) and (5.9) can be solved in the
Least Square Error sense, and the e�ect of noise is reduced.

In the general case of a noisy 2F �P matrix W the solution propagation

method can be summarized as follows. A possibly large, full subblock of W

is �rst decomposed by factorization. Then, this initial solution is grown one

row or one column at a time by solving systems analogous to those in (5.4)
or (5.9) in the Least Square Error sense.

However, because of noise, the order in which the rows and columns
of W are incorporated into the solution can a�ect the exact values of the
�nal motion and shape solution. Consequently, once the solution has been

propagated to the entire measurement matrix W , it may be necessary to
re�ne the results with a steepest-descent minimization of the residue

kW �RS �
1

P
teTPk

(see equation (3.7)).
There remain the two problems of how to choose the initial full subblock

to which factorization is applied and in what order to grow the solution. In
fact, however, because of the �nal re�nement step, neither choice is critical

as long as the initial matrix is large enough to yield a good starting point.
We illustrate this point in the next chapterof experiments.
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Chapter 6

More Experiments

We will �rst test the propagation method with image streams which include
substantial occlusions. We �rst use an image stream taken in a laboratory.

Then, we demonstrate the robustness of the factorization method with an-

other stream taken with a hand-held amateur camera.

6.1 "Ping-Pong Ball" Image Stream

A ping-pong ball with black dots marked on its surface is rotated 450 de-
grees in front of the camera, so features appear and disappear. The rotation
between adjacent frames is 2 degrees, so the stream is 226 frames long. Fig-
ure 6.14 shows the �rst frame of the stream, with the automatically selected
features overlaid.

Every 30 frames (60 degrees) of rotation, the feature tracker looks for

new features. In this way, features that disappear on one side around the

ball are replaced by new ones that appear on the other side. Figure 6.15
shows the tracks of 60 features, randomly chosen among the total 829 found
by the selector.

If all measurements are collected into the noisy measurement matrix W ,

the U and V parts of W have the same �ll pattern: if the x coordinate of

a measurement is known, so is the y coordinate. Figure 6.16 shows this �ll

matrix for our experiment. This matrix has the same size as either U or

V , that is, F � P . A column corresponds to a feature point, and a row to

a frame. Shaded regions denote known entries. The �ll matrix shown has
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226 � 829 = 187354 entries, of which 30185 (about 16 percent) are known.

To start the motion and shape computation, the algorithm �nds a large

full submatrix by applying simple heuristics based on typical patterns of
the �ll matrix. The choice of the starting matrix is not critical, as long as

it leads to a reliable initialization of the motion and shape matrices. The

initial solution is then grown by repeatedly solving overconstrained versions
of the linear system corresponding to (5.4) to add new rows, and of the

system corresponding to (5.9) to add new columns. The rows and columns
to add are selected so as to maximize the redundancy of the linear systems.

Eventually, all of the motion and shape values are determined. As a result,
the unknown 84 percent of the measurement matrix can be hallucinated from

the known 16 percent.
Figure 6.17 shows two views of the �nal shape results, taken from the

top and from the side. The missing features at the bottom of the ball in the
side view correspond to the part of the ball that remained always invisible,
because it rested on the rotating platform.

To display the motion results, we look at the if and jf vectors directly. We

recall that these unit vectors point along the rows and columns of the image

frames f in 1; . . . ; F . Because the ping-pong ball rotates around a �xed axis,
both if and jf should sweep a cone in space, as shown in Figure 6.18. The

tips of if and jf should describe two circles in space, centered along the axis of
rotation. Figure 6.19 shows two views of these vector tips, from the top and
from the side. Those trajectories indicate that the motion recovery was done

correctly. Notice the double arc in the top part of �gure 6.19 corresponding
to more than 360 degrees rotation. If the motion reconstruction were perfect,
the two arcs would be indistinguishable.

6.2 "Cup and Hand" Image Stream

In this sectionwe describe an experiment with a natural scene including oc-

clusion as a dominant phenomenon. A hand holds a cup and rotates it by
about ninety degrees in front of the camera mounted on a �xed stand. Figure

6.20 shows four out of the 240 frames of the stream.

An additional need in this experiment is �gure/ground segmentation.
Since the camera was �xed, however, this problem is easily solved: features
that do not move belong to the background. Also, the stream includes some
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nonrigid motion: as the hand turns, the con�guration and relative position

of the �ngers changes slightly. This e�ect, however, is small and did not

a�ect the results appreciably.
A total of 207 features was selected. Occlusions were marked by hand

in this experiment. The �ll matrix of �gure 6.22 illustrates the occlusion

pattern. Figure 6.21 shows the image trajectory of 60 randomly selected
features.

Figures 6.23 and 6.24 show a front and a top view of the cup and the
visible �ngers as reconstructed by the propagation method. The shape of

the cup was recovered, as well as the rough shape of the �ngers. These
renderings were obtained, as for the "House" image stream in section4.1, by

triangulating the tracked feature points and mapping pixel values onto the
resulting surface.
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Chapter 7

Conclusion

The rank theorem, which is the basis of the factorization method, is both
surprising and powerful. Surprising because it states that the correlation

among measurements made in an image stream has a simple expression no

matter what the camera motion is and no matter what the shape of an object

is, thus making motion or surface assumptions (such as smooth, constant,

linear, planar and quadratic) fundamentally super
uous. Powerful because
the rank theorem leads to factorization of the measurement matrix into shape
and motion in a well-behaved and stable manner.

The factorization method exploits the redundancy of the measurement
matrix to counter the noise sensitivity of structure-from-motion and allows
using very short inter-frame camera motion to simplify feature tracking. The
structural insight into shape-from-motion a�orded by the rank theorem led to
a systematic procedure to solve the occlusion problem within the factorization

method. The experiments in the lab demonstrate the high accuracy of the

method, and the outdoor experiments show its robustness.
The rank theorem is strongly related to Ullman's twelve year old result

that three pictures of four points determine structure and motion under or-
thography. Thus, in a sense, the theoretical foundation of our result has been

around for a long time. The factorization method evolves the applicability of

that foundation from mathematical images to actual noisy image streams.
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Figure 4.1: Some frames in the sequence. The whole
sequence is 150 frames.
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Figure 4.2: True and computed camera yaw, roll, pitch.

Figure 4.3: The 430 features selected by the automatic
detection method.
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Figure 4.4: Blow-up of the errors in �gure 4.2.
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Figure 4.5: A view of the computed shape from approx-
imately above the building (compare with �gure 4.6).

Figure 4.6: A real picture from above the building, sim-
ilar to �gure 4.5.

Figure 4.7: For a quantitative evaluation, distances be-
tween the features shown in the picture were measured
on the actual model, and compared with the computed
results. The comparison is shown in �gure 4.8.
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Figure 4.8: Comparison between measured and com-
puted distances for the features in �gure 4.7. The num-
ber before the slash is the measured distance, the one af-
ter is the computed distance. Lengths are in millimeters.
Computed distances were scaled so that the computed
distance between features 117 and 282 is the same as the
measured distance.
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120 180

Figure 4.9: Four out of the 180 frames of the real house
image stream.

Figure 4.10: The features selected in the �rst frame of
the real house stream (�gure 4.9)
.

Figure 4.11: Tracks of 60 randomly selected features
from the real house stream (�gure 4.9.)

Figure 4.12: A front view of the three reconstructed
walls, with the original image intensities mapped onto
the resulting surface.

Figure 4.13: A view from above of the three recon-
structed walls, with image intensities mapped onto the
surface.
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Figure 6.14: The �rst frame of the ping-pong stream,
with overlaid features.

Figure 6.15: Tracks of 60 randomly selected features
from the stream of �gure 6.14.

Figure 6.16: The �ll matrix for the ping-pong ball ex-
periment. Shaded entries are known.

Figure 6.17: Top and side views of the reconstructed
ping-pong ball.

i
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Figure 6.18: Rotational component of the camera mo-
tion for the ping-pong stream. Because rotation occurs
around a �xed axis, the two mutually orthogonal unit
vectors if and jf , pointing along rows and columns of
the image sensor, sweep two 450-degree cones in space.
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Figure 6.19: Top and side views of the if and jf vectors
identifying the camera rotation. See Figure 6.18.
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Figure 6.20: Four out of the 240 frames of the cup image
stream.

Figure 6.21: Tracks of 60 randomly selected features
from the cup stream.

Figure 6.22: The 240�207 �ll matrix for the cup stream
(�gure 6.20). Shaded entries are known.

Figure 6.23: A front view of the cup and �ngers, with
the original image intensities mapped onto the resulting
surface.

Figure 6.24: A view from above of the cup and �ngers
with image intensities mapped onto the surface.
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Abstract

We describe how 3D affine measurements may be com-
puted from a single perspective view of a scene given only
minimal geometric information determined from the image.
This minimal information is typically the vanishing line of
a reference plane, and a vanishing point for a direction not
parallel to the plane. It is shown that affine scene structure
may then be determined from the image, without knowledge
of the camera’s internal calibration (e.g. focal length), nor
of the explicit relation between camera and world (pose).

In particular, we show how to (i) compute the distance
between planes parallel to the reference plane (up to a com-
mon scale factor); (ii) compute area and length ratios on
any plane parallel to the reference plane; (iii) determine the
camera’s (viewer’s) location. Simple geometric derivations
are given for these results. We also develop an algebraic
representation which unifies the three types of measurement
and, amongst other advantages, permits a first order error
propagation analysis to be performed, associating an un-
certainty with each measurement.

We demonstrate the technique for a variety of applica-
tions, including height measurements in forensic images
and 3D graphical modelling from single images.

1. Introduction

In this paper we describe how aspects of the affine 3D
geometry of a scene may be measured from a single per-
spective image. We will concentrate on scenes containing
planes and parallel lines, although the methods are not so
restricted. The methods we develop extend and generalize
previous results on single view metrology [8, 9, 13, 14].

It is assumed that images are obtained by perspective
projection. In addition, we assume that the vanishing line of
a reference planein the scene may be determined from the
image, together with a vanishing point for anotherreference

�The authors would like to thank Andrew Fitzgibbon for assistance
with the TargetJr libraries, and David Liebowitz and Luc van Gool for dis-
cussions. This work was supported by the EU Esprit Project IMPROOFS.

direction(not parallel to the plane). We are then concerned
with three canonical types of measurement: (i) measure-
ments of the distancebetweenany of the planes which are
parallel to the reference plane; (ii) measurementson these
planes (and comparison of these measurements to those ob-
tained on any plane); and (iii) determining the camera’s po-
sition in terms of the reference plane and direction. The
measurement methods developed here are independent of
the camera’s internal parameters: focal length, aspect ratio,
principal point, skew.

The ideas in this paper can be seen as reversing the rules
for drawing perspective images given by Leon Battista Al-
berti [1] in his treatise on perspective (1435). These are
the rules followed by the Italian Renaissance painters of the
15th century, and indeed we demonstrate the correctness
of their mastery of perspective by analysing a painting by
Piero della Francesca.

We begin in section 2 by giving geometric interpretations
for the key scene features, and then give simple geomet-
ric derivations of how, in principle, three dimensional affine
information may be extracted from the image. In section
3 we introduce an algebraic representation of the problem
and show that this representation unifies the three canoni-
cal measurement types, leading to simple formulae in each
case. In section 4 we describe how errors in image mea-
surements propagate to errors in the 3D measurements, and
hence we are able to compute confidence intervals on the 3D
measurements, i.e. a quantitative assessment of accuracy.
The work has a variety of applications, and we demonstrate
two important ones: forensic measurement and virtual mod-
elling in section 5.

2. Geometry

The camera model employed here is central projection.
We assume that the vanishing line of a reference plane in
the scene may be computed from image measurements, to-
gether with a vanishing point for another direction (not par-
allel to the plane). This information is generally easily ob-
tainable from images of structured scenes [3, 11, 12]. Ef-



image plane

reference plane

camera centreplane vanishing line

vanishing
point

v

l ref.
dir.

Figure 1: Basic geometry:The plane’s vanishing linel is the intersection
of the image plane with a plane parallel to the reference plane and passing
through the camera centre. The vanishing pointv is the intersection of
the image plane with a line parallel to the reference direction through the
camera centre.

fects such as radial distortion (often arising in slightly wide-
angle lenses typically used in security cameras) which cor-
rupt the central projection model can generally be removed
[6], and are therefore not detrimental to our methods (see,
for example, figure 9).

Although the schematic figures show the camera centre
at a finite location, the results we derive apply also to the
case of a camera centre at infinity, i.e. where the images are
obtained by parallel projection. The basic geometry of the
plane’s vanishing line and the vanishing point are illustrated
in figure 1. The vanishing linel of the reference plane is the
projection of the line at infinity of the reference plane into
the image. The vanishing pointv is the image of the point
at infinity in the reference direction. Note that the reference
direction need not be vertical, although for clarity we will
often refer to the vanishing point as the “vertical” vanishing
point. The vanishing point is then the image of the vertical
“footprint” of the camera centre on the reference plane.

It can be seen (for example, by inspection of figure 1)
that the vanishing line partitions all points in scene space.
Any scene point which projects onto the vanishing line is
at the same distance from the plane as the camera centre;
if it lies “above” the line it is further from the plane, and if
“below” the vanishing line, then it is closer to the plane than
the camera centre.

Two points on separate planes (parallel to the reference
plane)correspondif the line joining them is parallel to the
reference direction; hence the image of each point and the
vanishing point are collinear. For example, if the direction
is vertical, then the top of an upright person’s head and the
sole of his/her foot correspond.

2.1. Measurements between parallel planes

We wish to measure the distance between two parallel
planes, specified by the image pointst andb, in the refer-
ence direction. Figure 2 shows the geometry, with points
t andb in correspondence. The four points marked on the
figure define a cross-ratio. The vanishing point is the image
of a point at infinity in the scene [15]. In the image the value

v

π

t

b

l

vanishing point

vanishing line

π /

i

Figure 2: Cross ratio: The pointb on the plane� corresponds to the
point t on the plane�0. They are aligned with the vanishing pointv. The
four pointsv, t, b and the intersectioni of the line joining them with the
vanishing line define a cross-ratio. The value of the cross-ratio determines
a ratio of distances between planes in the world, see text.

of the cross-ratio provides an affine length ratio. In fact we
obtain the ratio of the distance between the planes contain-
ing t andb, to the camera’s distance from the plane� (or
�
0 depending on the ordering of the cross-ratio). The abso-

lute distance can be obtained from this distance ratio once
the camera’s distance from� is specified. However it is
usually more practical to determine the distance via a sec-
ond measurement in the image, that of a known reference
length.

Furthermore, since the vanishing line is the imaged axis
of the pencil of planes parallel to the reference plane, the
knowledge of the distance betweenany pair of the planes
is sufficient to determine the absolute distance between an-
other two of the planes.
Example. Figure 3 shows that a person’s height may be
computed from an image given a vertical reference height
elsewhere in the scene. The formula used to compute this
result is given in section 3.1.

2.2. Measurements on parallel planes

If the reference plane� is affine calibrated (we know
its vanishing line) then from image measurements we can
compute: (i) ratios of lengths of parallel line segments on
the plane; (ii) ratios of areas on the plane. Moreover the
vanishing line is shared by the pencil of planes parallel to
the reference plane, hence affine measurements may be ob-
tained for any other plane in the pencil. However, although
affine measurements, such as an area ratio, may be madeon
a particular plane, the areas of regions lying on two parallel
planes cannot be compared directly. If the region is parallel
projected in the scene from one plane onto the other, affine
measurements can then be made from the image since both
regions are now on the same plane, and parallel projection
between parallel planes does not alter affine properties.
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Figure 3: Measuring the height of a person:(top) original image; (bot-
tom) the height of the person is computed from the image as 178.8cm (the
true height is 180cm, but note that the person is leaning down a bit on his
right foot). The vanishing line is shown in white and the reference height
is the segment (tr;br). The vertical vanishing point is not shown since it
lies well below the image.t is the top of the head andb is the base of the
feet of the person whilei is the intersection with the vanishing line.

A map in the world between parallel planes induces a
map in the image between images of points on the two
planes. This image map is aplanar homology[15], which is
a plane projective transformation with five degrees of free-
dom, having a line of fixed points, called theaxis and a
distinct fixed point not on the axis known as thevertex. Pla-
nar homologies arise naturally in an image when two planes
related by a perspectivity in 3-space are imaged [16]. The
geometry is illustrated in figure 4.

In our case the vanishing line of the plane, and the verti-
cal vanishing point, are, respectively, the axis and vertex of
the homology which relates a pair of planes in the pencil.
This line and point specify four of the five degrees of free-
dom of the homology. The remaining degree of freedom of
the homology is uniquely determined from any pair of im-
age points which correspond between the planes (pointsb

andt in figure 4).
This means that we can compare measurements made

on two separate planes by mapping between the planes in
the reference direction via the homology. In particular we
may compute (i) the ratio between two parallel lengths, one
length on each plane; (ii) the ratio between two areas, one
area on each plane. In fact we can simply transfer all points
from one plane to the reference plane using the homol-
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π /

X/ l

v

b

t

πx

π/
/

i

x

Figure 4: Homology mapping between parallel planes:(left) A point
X on plane� is mapped into the pointX0 on�0 by a parallel projection.
(right) In the image the mapping between the images of the two planes is
a homology, withv the vertex andl the axis. The correspondenceb ! t

fixes the remaining degree of freedom of the homology from the cross-ratio
of the four points:v, i, t andb.

Figure 5: Measuring the ratio of lengths of parallel line segments lying
on two parallel scene planes:The pointst andb (together with the plane
vanishing line and the vanishing point) define the homology between the
two planes on the facade of the building.

ogy and then, since the reference plane’s vanishing line is
known, make affine measurements in the plane, e.g. parallel
length or area ratios.
Example. Figure 5 shows that given the reference vanish-
ing line and vanishing point, and a point correspondence (in
the reference direction) on each of two parallel planes, then
the ratio of lengths of parallel line segments may be com-
puted from the image. The formula used to compute this
result is given in section 3.2.

2.3. Determining the camera position

In section 2.1, we computed distances between planes as
a ratio relative to the camera’s distance from the reference
plane. Conversely, we may compute the camera’s distance
from a particular plane knowing a single reference distance.



Furthermore, by considering figure 1 it is seen that the
location of the camera relative to the reference plane is the
back-projection of the vanishing point onto the reference
plane. This back-projection is accomplished by a homog-
raphy which maps the image to the reference plane (and
vice-versa). Although the choice of coordinate frame in the
world is somewhat arbitrary, fixing this frame immediately
defines the homography uniquely and hence the camera po-
sition.

We show an example in figure 12, where the location of
the camera centre has been determined, and superimposed
into a virtual view of the scene.

3. Algebraic Representation

The measurements described in the previous section are
computed in terms of cross-ratios. In this section we de-
velop a uniform algebraic approach to the problem which
has a number of advantages over direct geometric construc-
tion: first, it avoids potential problems with ordering for the
cross-ratio; second, it enables us to deal with both mini-
mal or over-constrained configurations uniformly; third, we
unify the different types of measurement within one rep-
resentation; and fourth, in section 4 we use this algebraic
representation to develop an uncertainty analysis for mea-
surements.

To begin we define an affine coordinate systemXY Z in
space. Let the origin of the coordinate frame lie on the refer-
ence plane, with theX andY -axes spanning the plane. The
Z-axis is the reference direction, which is thus any direc-
tion not parallel to the plane. The image coordinate system
is the usualxy affine image frame, and a pointX in space is
projected to the image pointx via a3� 4 projection matrix
P as:

x = PX =
�
p1 p2 p3 p4

�
X

where x and X are homogeneous vectors in the form:
x = (x; y; w)>, X = (X;Y; Z;W )>, and ‘=’ means
equality up to scale.

If we denote the vanishing points for theX , Y andZ
directions as (respectively)vX , vY andv, then it is clear by
inspectionthat the first three columns ofP are the vanishing
points; vX = p1, vY = p2 andv = p3, and that the
final column ofP is the projection of the origin of the world
coordinate system,o = p4. Since our choice of coordinate
frame has theX andY axes in the reference planep1 = vX
andp2 = vY are two distinct points on the vanishing line.
Choosing these points fixes theX andY affine coordinate
axes. We denote the vanishing line byl, and to emphasise
that the vanishing pointsvX andvY lie on it, we denote
them byl?

1
, l?

2
, with l?

i
� l = 0.

Columns 1, 2 and 4 of the projection matrix are the three
columns of the reference plane to image homography. This
homography must have rank three, otherwise the reference

plane to image map is degenerate. Consequently, the final
column (the origin of the coordinate system) must not lie
on the vanishing line, since if it does then all three columns
are points on the vanishing line, and thus are not linearly
independent. Hence we set it to beo = p4 = l=jjljj = l̂.

Therefore the final parametrization of the projection ma-
trix P is:

P =
�
l?1 l?2 �v l̂

�
(1)

where� is a scale factor, which has an important rˆole to
play in the remainder of the paper.

In the following sections we show how to compute
various measurements from this projection matrix. Mea-
surements between planes are independent of the first two
(under-determined) columns ofP. For these measurements
the only unknown quantity is�. Coordinate measurements
within the planes depend on the first two and the fourth
columns ofP. They define an affine coordinate frame within
the plane. Affine measurements (e.g. area ratios), though,
are independent of the actual coordinate frame and depend
only on the fourth column ofP. If any metric information
on the plane is known, we may impose constraints on the
choice of the frame.

3.1. Measurements between parallel planes

We wish to measure the distance between scene planes
specified by a base pointB on the reference plane and top
pointT in the scene. These points may be chosen as respec-
tively (X;Y; 0) and(X;Y; Z), and their images areb and
t. If P is the projection matrix then the image coordinates
are

b = P

2
664
X
Y
0
1

3
775 ; t = P

2
664
X
Y
Z
1

3
775

The equations above can be rewritten as

b = �(Xp1 + Y p2 + p4) (2)

t = �(Xp1 + Y p2 + Zp3 + p4) (3)

where� and� are unknown scale factors, andpi is theith
column of theP matrix.

Taking the scalar product of (2) witĥl yields� = l̂ � b,
and combining this with the third column of (1) and (3) we
obtain

�Z =
�jjb� tjj

(̂l � b)jjv � tjj
(4)

Since�Z scales linearly with� we have obtained affine
structure. If� is known, then we immediately obtain a met-
ric value forZ. Conversely, ifZ is known (i.e. it is a refer-
ence distance) then we have a means of computing�, and
hence removing the affine ambiguity.



Figure 6: Measuring heights using parallel lines: Given the vertical
vanishing point, the vanishing line for the ground plane and a reference
height, the distance of the top of the window on the right wall from the
ground plane is measured from the distance between the two horizontal
lines shown, one defined by the top edge of the window, and the other on
the ground plane.

Example. In figure 6 heights from the ground plane are
measured between two parallel lines, one off the plane (top)
and one on the plane (base). In fact, thanks to the plane
vanishing line, given one line parallel to the reference plane
it is easy to compute the family of parallel lines. Computing
the distance between them is a straightforward application
of (4).

3.2. Measurements on parallel planes

The projection matrixP from the world to the image is
defined above with respect to a coordinate frame on the ref-
erence plane. In this section we determine the projection
matrixP0 referred to the parallel plane�0 and we show how
the homology between the two planes can be derived di-
rectly from the two projection matrices.

Suppose the world coordinate system is translated from
the plane� onto the plane�0 along the reference direction,
then it is easy to show that we can parametrize the new pro-
jection matrixP0 as:

P
0 =

�
p1 p2 �v �Zv + l̂

�
whereZ is the distance between the planes. Note that if
Z = 0 thenP0 = P correctly.

The plane to image homographies can be extracted from
the projection matrices ignoring the third column, to give:

H =
�
p1 p2 l̂

�
; H

0 =
�
p1 p2 �Zv + l̂

�
Then~H = H

0
H
�1 maps image points on the plane� onto

points on the plane�0 and so defines the homology.
A short computation gives the homology matrix~H as:

~H = I+ �Zvl̂
>

(5)

Given the homology between two planes in the pencil we
can transfer all points from one plane to the other and make
affine measurements in the plane (see fig 5 and fig 7).

Figure 7: Measuring ratios of areas on separate planes:The image
pointst andb together with the vanishing line of the two parallel planes
and the vanishing point for the orthogonal direction define the homology
between the planes. The ratio between the area of the window on the left
plane and that of the window on the right plane is computed.

3.3. Determining camera position

Suppose the camera centre isC = (Xc; Yc; Zc;Wc)
> in

affine coordinates (see figure 1). Then sincePC = 0 we
have

PC = l?
1
Xc + l?

2
Yc + �vZc + l̂Wc = 0 (6)

The solution to this set of equations is given (using Cramer’s
rule) by

Xc = �det
�
l?2 v l̂

�
, Yc = det

�
l?1 v l̂

�
�Zc = �det

�
l?
1

l?
2

l̂
�
, Wc = det

�
l?
1

l?
2

v
� (7)

Note that once again we obtain structure off the plane up to
the affine scale factor�. As before, we may upgrade the
distance to metric with knowledge of�, or use knowledge
of camera height to compute� and upgrade the affine struc-
ture.

Note that affine viewing conditions (where the camera
centre is at infinity) present no problem to the expressions
in (7), since in this case we havêl =

�
0 0 �

�>
and

v =
�
� � 0

�>
. HenceWc = 0 so we obtain a cam-

era centre on the plane at infinity, as we would expect. This
point on�1 represents the viewing direction for the paral-
lel projection.

If the viewpoint is finite (i.e. not affine viewing condi-
tions) then the formula for�Zc may be developed further
by taking the scalar product of both sides of (6) with the
vanishing linêl. The result is:�Zc = �(̂l � v)�1.

4. Uncertainty Analysis

Feature detection and extraction – whether manual or au-
tomatic (e.g. using an edge detector) – can only be achieved
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Figure 8: Maximum likelihood estimation of the top and base points
(closeup of fig. 9): (left) The top and base uncertainty ellipses, respec-
tively �t and�b, are shown. These ellipses are specified by the user, and
indicate a confidence region for localizing the points. (right) MLE top and
base pointŝt andb̂ are aligned with the vertical vanishing point (outside
the image).

to a finite accuracy. Any features extracted from an image,
therefore, are subject to errors. In this section we consider
how these errors propagate through the measurement for-
mulae in order to quantify the uncertainty on the final mea-
surements.

When making measurements between planes, uncer-
tainty arises from the uncertainty inP, and from the uncer-
tain image locations of the top and base pointst andb. The
uncertainty inP depends on the location of the vanishing
line, the location of the vanishing point, and on�, the affine
scale factor. Since only the final two columns contribute,
we model the uncertainty inP as a6� 6 homogeneous co-
variance matrix,�P. Since the two columns have only five
degrees of freedom (two forv, two for l and one for�),
the covariance matrix is singular, with rank five. Details
of its computation are given in [4] and are omitted here for
brevity.

Likewise, the uncertainty in the top and base points (re-
sulting largely from the finite accuracy with which these
features may be located in the image) is modelled by covari-
ance matrices�b and�t. Since in the error-free case, these
points must be aligned with the vertical vanishing point we
can determine maximum likelihood estimates of their true
locations (̂t andb̂) by minimising the objective

(b2 � b̂2)
>��1

b2
(b2 � b̂2) + (t2 � t̂2)

>��1
t2
(t2 � t̂2)

(which is the sum of the Mahalanobis distances between
the input points and the ML estimates, the subscript 2 in-
dicates inhomogeneous 2-vectors)subject to the alignment
constraint v � (̂t � b̂) = 0. Using standard techniques [7]
we obtain a first order approximation to the4�4, rank three
covariance of the parametersẑ = ( t̂

>

2
b̂
>

2
)>. Figure 8

illustrates the idea.

Figure 9: Uncertainty analysis on height measurements:The image
shown was captured from a cheap security type camera which exhibited
radial distortion. This has been corrected and the height of the man es-
timated (measurements are in cm). (left) The height of the man and the
associated uncertainty are computed as 190.6cm (c.f. ground truth value
190cm). The vanishing line for the ground plane is shown in white at
the top of the image. When one reference height is used the uncertainty
(3-sigma) is�4:1cm, while (right) it reduces to�2:9cm as two more ref-
erence heights are introduced (the filing cabinet and the table on the left).

Now, assuming the statistical independence ofẑ andP
we obtain a first order approximation for the variance of the
distance measurement:

�2
h
=rh

�
�ẑ 0

0 �P

�
rh

> (8)

whererh is the1 � 10 Jacobian matrix of the function
which maps the projection matrix and top and base points to
a distance between them (4). The validity of all approxima-
tion has been tested by Monte Carlo simulations and by a
number of measurements on real images where the ground
truth was known.
Example. An image obtained from a poor quality security
camera is shown in figure 9. It has been corrected for ra-
dial distortion using the method described in [6], and the
floor taken as the reference plane. Vertical and horizontal
lines are used to compute theP matrix of the scene. One
reference height is used to obtain the affine scale factor�
from (4), so other measurements in the same direction are
metric.

The computed height of the man and an associated 3-
standard deviation uncertainty are displayed in the figure.
The height obtained differs by only 6mm from the known
true value. As the number of reference distances is in-
creased, so the uncertainty onP (in fact just on�) de-
creases, resulting in a decrease in uncertainty of the mea-
sured height, as theoretically expected.

5. Applications

5.1. Forensic science

A common requirement in surveillance images is to ob-
tain measurements from the scene, such as the height of a
felon. Although, the felon has usually departed the scene,
reference lengths can be measured from fixtures such as ta-
bles and windows.



Figure 10: Measuring the height of a person in an outdoor scene:The
ground plane is the reference plane, and its vanishing line is computed
from the slabs on the floor. The vertical vanishing point is computed from
the edges of the phone box, whose height is known and used as reference.
The veridical height is 187cm, but note that the person is leaning slightly
on his right foot.

Figure 11: Measuring heights of objects on separate planes:Using the
homology between the ground plane (initial reference) and the plane of the
table, we can determine the height of the file on the table.

In figure 10 the edges of the paving stones on the floor
are used to compute the vanishing line of the ground plane;
the edges of the phonebox to compute the vertical vanishing
point; and the height of the phone box provides the metric
calibration in the vertical direction. The height of the person
is then computed using (4).

Figure 11 shows an example where the homology is used
to project points between planes so that a vertical distance
may be measured given the distance between a plane and
the reference plane.

5.2. Virtual modelling

In figure 12 we show an example of complete 3D re-
construction of a scene. Two sets of horizontal edges are
used to compute the vanishing line for the ground plane,
and vertical edges used to compute the vertical vanishing
point. Four points with known Euclidean coordinates deter-
mine the metric calibration of the ground plane and thus for
the pencil of horizontal planes which share the vanishing
line. The distance of the top of the window to the ground,
and the height of one of the pillars are used as reference

Figure 12: Complete 3D reconstruction of a real scene:(left) original
image; (right) a view of the reconstructed 3D model; (bottom) A view of
the reconstructed 3D model which shows the position of the camera centre
(plane location X,Y and height) with respect to the scene.

lengths. The position of the camera centre is also estimated
and is shown in the figure.

5.3. Modelling paintings

Figure 13 shows a masterpiece of Italian Renaissance
painting, “La Flagellazione di Cristo” by Piero della
Francesca (1416 - 1492). The painting faithfully follows the
geometric rules of perspective, and therefore we can apply
the methods developed here to obtain a correct 3D recon-
struction of the scene.

Unlike other techniques [8] whose main aim is to cre-
ate convincing new views of the painting regardless of the
correctness of the 3D geometry, here we reconstruct a geo-
metrically correct 3D model of the viewed scene.

In the painting analyzed here, the ground plane is chosen
as reference and its vanishing line can be computed from
the several parallel lines on it. The vertical vanishing point
follows from the vertical lines and consequently the relative
heights of people and columns can be computed. Further-
more the ground plane can be rectified from the square floor
patterns and therefore the position on the ground of each



vertical object estimated [5, 10]. The measurements, up to
an overall scale factor, are used to compute a three dimen-
sional VRML model of the scene. Two different views of
the model are shown in figure 13.

6. Summary and Conclusions

We have explored how the affine structure of 3-space
may be partially recovered from perspective images in
terms of a set of planes parallel to a reference plane and a
reference direction not parallel to the reference plane. More
generally, affine 3 space may be represented entirely by sets
of parallel planes and directions [2]. We are currently in-
vestigating how this full geometry is best represented and
computed from a single perspective image.
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Figure 13: Complete 3D reconstruction of a Renaissance painting:
(top) La Flagellazione di Cristo, (1460, Urbino, Galleria Nazionale delle
Marche). (middle) A view of the reconstructed 3D model. The patterned
floor has been reconstructed in areas where it is occluded by taking advan-
tage of the symmetry of its pattern. (bottom) another view of the model
with the roof removed to show the relative positions of people and archi-
tectural elements in the scene. Note the repeated geometric pattern on the
floor in the area delimited by the columns (barely visible in the painting).
Note that the people are represented simply as flat silhouettes since it is not
possible to recover their volume from one image, they have been cut out
manually from the original image. The columns have been approximated
with cylinders.
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Camera CalibrationCamera Calibration
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GG = space of all colorings (C    )= space of all colorings (C    )

ℵℵℵℵ = space of all photo= space of all photo--consistent colorings (computable?)consistent colorings (computable?)
S = true scene (not computable)S = true scene (not computable)

NN33

Complexity and ComputabilityComplexity and Computability
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1.  C=2 (silhouettes)1.  C=2 (silhouettes)
•• Volume intersection [Martin 81, Volume intersection [Martin 81, SzeliskiSzeliski 93]93]

2.  C unconstrained, viewpoint constraints2.  C unconstrained, viewpoint constraints
•• Voxel coloring algorithm [Seitz & Dyer 97]Voxel coloring algorithm [Seitz & Dyer 97]

3.  General Case3.  General Case
•• Space carving [Kutulakos & Seitz 98]Space carving [Kutulakos & Seitz 98]

Voxel Coloring SolutionsVoxel Coloring Solutions

Reconstruction from Silhouettes (C = 2)Reconstruction from Silhouettes (C = 2)

BinaryBinary ImagesImages

Approach:  Approach:  
•• BackprojectBackproject each silhouetteeach silhouette

•• Intersect backprojected volumesIntersect backprojected volumes
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Volume IntersectionVolume Intersection

Reconstruction Contains the True SceneReconstruction Contains the True Scene
•• But is generally not the same (no concavities)But is generally not the same (no concavities)

•• In the limit (all views) get In the limit (all views) get visual hullvisual hull or or line hullline hull
>> Complement of all lines that don’t intersect SComplement of all lines that don’t intersect S

Voxel Algorithm for Volume IntersectionVoxel Algorithm for Volume Intersection

Color voxel black if on silhouette in every imageColor voxel black if on silhouette in every image
•• O(MNO(MN33), for M images, N), for M images, N33 voxelsvoxels

•• Don’t have to search 2Don’t have to search 2NN33 possible scenes!possible scenes!



5

Properties of Volume IntersectionProperties of Volume Intersection

ProsPros
•• Easy to implement, fastEasy to implement, fast

•• Accelerated viaAccelerated via octreesoctrees [[SzeliskiSzeliski 1993]1993]

ConsCons
•• No concavitiesNo concavities

•• Reconstruction is not photoReconstruction is not photo--consistentconsistent

•• Requires identification of silhouettesRequires identification of silhouettes

1.  C=2 (silhouettes)1.  C=2 (silhouettes)
•• Volume intersection [Martin 81, Volume intersection [Martin 81, SzeliskiSzeliski 93]93]

2.  C unconstrained, viewpoint constraints2.  C unconstrained, viewpoint constraints
•• Voxel coloring algorithm [Seitz & Dyer 97]Voxel coloring algorithm [Seitz & Dyer 97]

3.  General Case3.  General Case
•• Space carving [Kutulakos & Seitz 98]Space carving [Kutulakos & Seitz 98]

Voxel Coloring SolutionsVoxel Coloring Solutions
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1.  Choose voxel1.  Choose voxel
2.  Project and correlate2.  Project and correlate
3.  Color if consistent3.  Color if consistent

Voxel Coloring ApproachVoxel Coloring Approach

Visibility Problem:  Visibility Problem:  in which images is each voxel visible?in which images is each voxel visible?

The Global Visibility ProblemThe Global Visibility Problem

Inverse VisibilityInverse Visibility
known imagesknown images

Unknown SceneUnknown Scene

Which points are visible in which images?Which points are visible in which images?

Known SceneKnown Scene

Forward VisibilityForward Visibility
known sceneknown scene
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LayersLayers

Depth Ordering:  visit Depth Ordering:  visit occludersoccluders first!first!

SceneScene
TraversalTraversal

Condition:  Condition:  depth order is depth order is viewview--independentindependent

What is A What is A ViewView--IndependentIndependent Depth Order?Depth Order?

A function A function ff over a scene S and a camera space Cover a scene S and a camera space C

C
S

p

q v

For example:  For example:  f = distance from separating planef = distance from separating plane

f

Such that  Such that  for all p and q in S, v in C for all p and q in S, v in C 

p occludes q from v   p occludes q from v   only ifonly if f(p) < f(q)f(p) < f(q)
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Panoramic Depth OrderingPanoramic Depth Ordering

•• Cameras oriented in many different directionsCameras oriented in many different directions

•• Planar depth ordering does not applyPlanar depth ordering does not apply

Panoramic Depth OrderingPanoramic Depth Ordering

Layers radiate outwards from camerasLayers radiate outwards from cameras
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Panoramic LayeringPanoramic Layering

Layers radiate outwards from camerasLayers radiate outwards from cameras

Panoramic LayeringPanoramic Layering

Layers radiate outwards from camerasLayers radiate outwards from cameras



10

Compatible Camera ConfigurationsCompatible Camera Configurations

DepthDepth--Order ConstraintOrder Constraint
•• Scene outside convex hull of camera centersScene outside convex hull of camera centers

OutwardOutward--LookingLooking
cameras inside scenecameras inside scene

InwardInward--LookingLooking
cameras above scenecameras above scene

Calibrated Image AcquisitionCalibrated Image Acquisition

Calibrated TurntableCalibrated Turntable
360° rotation (21 images)360° rotation (21 images)

Selected Dinosaur ImagesSelected Dinosaur Images

Selected Flower ImagesSelected Flower Images
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Voxel Coloring Results (Video)Voxel Coloring Results (Video)

Di nosaur ReconstructionDi nosaur Reconstruction
72 K  72 K  voxels coloredvoxels colored
7.6 M 7.6 M voxels testedvoxels tested
7 min. 7 min. to compute to compute 
on a 250MHz SGIon a 250MHz SGI

Flower ReconstructionFlower Reconstruction
70 K  70 K  voxels coloredvoxels colored
7.6 M 7.6 M voxels testedvoxels tested
7 min. 7 min. to compute to compute 
on a 250MHz SGIon a 250MHz SGI

Limitations of Depth OrderingLimitations of Depth Ordering

A viewA view--independent depth order may not existindependent depth order may not exist

p q

Need more powerful generalNeed more powerful general--case algorithmscase algorithms
•• Unconstrained camera positionsUnconstrained camera positions

•• Unconstrained scene geometry/topologyUnconstrained scene geometry/topology
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A More Difficult Problem:  WalkthroughA More Difficult Problem:  Walkthrough

Input:  calibrated images from arbitrary positionsInput:  calibrated images from arbitrary positions
Output:  3D model photoOutput:  3D model photo--consistent with all imagesconsistent with all images

tree

window

1.  C=2 (silhouettes)1.  C=2 (silhouettes)
•• Volume intersection [Martin 81, Volume intersection [Martin 81, SzeliskiSzeliski 93]93]

2.  C unconstrained, viewpoint constraints2.  C unconstrained, viewpoint constraints
•• Voxel coloring algorithm [Seitz & Dyer 97]Voxel coloring algorithm [Seitz & Dyer 97]

3.  General Case3.  General Case
•• Space carving [Kutulakos & Seitz 98]Space carving [Kutulakos & Seitz 98]

Voxel Coloring SolutionsVoxel Coloring Solutions
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Space Carving AlgorithmSpace Carving Algorithm

•• Step 1:Step 1: Initialize V to volume containing true sceneInitialize V to volume containing true scene

•• Step 2:Step 2: For every voxel on surface of VFor every voxel on surface of V
>> test test photophoto--consistencyconsistency of voxelof voxel

>> if voxel is inconsistent, carve itif voxel is inconsistent, carve it

•• Step 3:Step 3: Repeat Step 2 until all voxels consistentRepeat Step 2 until all voxels consistent

Convergence:  Convergence:  
•• AlwaysAlways converges to a photoconverges to a photo--consistent model consistent model 

(when all assumptions are met)(when all assumptions are met)

•• Good results on difficult realGood results on difficult real--world scenes world scenes 

Visibility PropertyVisibility Property

p p ∈∈∈∈ S  consistent   S  consistent   ⇒⇒⇒⇒ p p ∈∈∈∈ �� consistentconsistent

p p ∈∈∈∈ �� inconsistent   inconsistent   ⇒⇒⇒⇒ p p ∈∈∈∈ S  inconsistentS  inconsistent

This property ensures that carving convergesThis property ensures that carving converges

pS

C1 C2
C3

C4

pS

�

C1 C2
C3

C4
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Space Carving Convergence PropertiesSpace Carving Convergence Properties

PropertiesProperties
•• Guaranteed convergence to photoGuaranteed convergence to photo--consistent consistent 

reconstruction (M) called the reconstruction (M) called the photo hullphoto hull

>> M = M = ∪ℵ∪ℵ ------ union of all photounion of all photo--consistent scenesconsistent scenes

•• Tightest possible bound on true sceneTightest possible bound on true scene

•• Worst case #Worst case # consistency checks:  consistency checks:  (# cameras)2(# voxels)

True SceneTrue Scene

S M

ReconstructionReconstruction

MultiMulti--Pass Plane SweepPass Plane Sweep

•• Sweep plane in each of 6 principle directionsSweep plane in each of 6 principle directions

•• Consider cameras on only one side of planeConsider cameras on only one side of plane

•• Repeat until convergenceRepeat until convergence

True Scene Reconstruction
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MultiMulti--Pass Plane SweepPass Plane Sweep

•• Sweep plane in each of 6 principle directionsSweep plane in each of 6 principle directions

•• Consider cameras on only one side of planeConsider cameras on only one side of plane

•• Repeat until convergenceRepeat until convergence

MultiMulti--Pass Plane SweepPass Plane Sweep

•• Sweep plane in each of 6 principle directionsSweep plane in each of 6 principle directions

•• Consider cameras on only one side of planeConsider cameras on only one side of plane

•• Repeat until convergenceRepeat until convergence
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MultiMulti--Pass Plane SweepPass Plane Sweep

•• Sweep plane in each of 6 principle directionsSweep plane in each of 6 principle directions

•• Consider cameras on only one side of planeConsider cameras on only one side of plane

•• Repeat until convergenceRepeat until convergence

MultiMulti--Pass Plane SweepPass Plane Sweep

•• Sweep plane in each of 6 principle directionsSweep plane in each of 6 principle directions

•• Consider cameras on only one side of planeConsider cameras on only one side of plane

•• Repeat until convergenceRepeat until convergence
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Space Carving AlgorithmSpace Carving Algorithm

Optimal algorithm is unwieldyOptimal algorithm is unwieldy
•• Complex visibility update procedureComplex visibility update procedure

Alternative:  multiAlternative:  multi--pass plane sweeppass plane sweep
•• Efficient, can use textureEfficient, can use texture--mapping hardwaremapping hardware

•• Converges quickly in practiceConverges quickly in practice

•• Easy to implementEasy to implement

Space Carving Results:  African VioletSpace Carving Results:  African Violet

Input Image (1 of 45) Input Image (1 of 45) ReconstructionReconstruction

ReconstructionReconstructionReconstructionReconstruction



18

Space Carving Results:  HandSpace Carving Results:  Hand

Input ImageInput Image
(1 of 100) (1 of 100) 

Views of ReconstructionViews of Reconstruction

House WalkthroughHouse Walkthrough

24 rendered input views from inside 24 rendered input views from inside andand outsideoutside
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Space Carving Results:  HouseSpace Carving Results:  House

Input Image Input Image 
(true scene)(true scene)

ReconstructionReconstruction
370,000 voxels370,000 voxels

Space Carving Results:  HouseSpace Carving Results:  House

Input Image Input Image 
(true scene)(true scene)

ReconstructionReconstruction
370,000 voxels370,000 voxels
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New View (true scene)New View (true scene)

Space Carving Results:  HouseSpace Carving Results:  House

ReconstructionReconstruction

New ViewNew View
(true scene)(true scene)

ReconstructionReconstruction ReconstructionReconstruction
(with new input view)(with new input view)

Other FeaturesOther Features

CoarseCoarse--toto--fine Reconstructionfine Reconstruction
•• Represent scene as Represent scene as octreeoctree

•• Reconstruct lowReconstruct low--resres model first, then refinemodel first, then refine

HardwareHardware--AccelerationAcceleration
•• Use textureUse texture--mapping to compute voxel projectionsmapping to compute voxel projections

•• Process voxels an entire plane at a timeProcess voxels an entire plane at a time

LimitationsLimitations
•• Need to acquire calibrated imagesNeed to acquire calibrated images

•• Restriction to simple radiance modelsRestriction to simple radiance models

•• Bias toward maximal (fat) reconstructionsBias toward maximal (fat) reconstructions

•• Transparency not supportedTransparency not supported
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Other ApproachesOther Approaches

LevelLevel--Set Methods  Set Methods  [[FaugerasFaugeras & & KerivenKeriven 1998]1998]
•• Evolve implicit function by solving Evolve implicit function by solving PDE’sPDE’s

Transparency and Matting  Transparency and Matting  [[Szeliski Szeliski & & GollandGolland 1998]1998]
•• Compute voxels with alphaCompute voxels with alpha--channelchannel

Max Flow/Min Cut   Max Flow/Min Cut   [Roy & Cox 1998][Roy & Cox 1998]
•• Graph theoretic formulationGraph theoretic formulation

MeshMesh--Based Stereo  Based Stereo  [[Fua Fua & & LeclercLeclerc 95]95]
•• MeshMesh--based but similar consistency formulationbased but similar consistency formulation

Virtualized Reality  Virtualized Reality  [[NarayanNarayan, , RanderRander, , Kanade Kanade 1998]1998]
•• Perform stereo 3 images at a time, merge resultsPerform stereo 3 images at a time, merge results

Advantages of VoxelsAdvantages of Voxels
•• NonNon--parametricparametric

>> can model arbitrary geometrycan model arbitrary geometry

>> can model arbitrary topologycan model arbitrary topology

•• Good reconstruction algorithmsGood reconstruction algorithms

•• Good rendering algorithms (Good rendering algorithms (splattingsplatting, LDI), LDI)

DisadvantagesDisadvantages
•• Expensive to process hiExpensive to process hi--resres voxel gridsvoxel grids

•• Large number of parametersLarge number of parameters
>> Simple scenes (e.g., planes) require lots of voxelsSimple scenes (e.g., planes) require lots of voxels

•• Meshes simplify betterMeshes simplify better

ConclusionsConclusions
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Abstract
A novel scene reconstruction technique is presented,

different from previous approaches in its ability to cope
with large changes in visibility and its modeling of in-
trinsic scene color and texture information. The method
avoids image correspondence problems by working in a
discretized scene space whose voxels are traversed in a
fixed visibility ordering. This strategy takes full account
of occlusions and allows the input cameras to be far apart
and widely distributed about the environment. The algo-
rithm identifies a special set of invariant voxels which to-
gether form a spatial and photometric reconstruction of the
scene, fully consistent with the input images. The approach
is evaluated with images from both inward- and outward-
facing cameras.

1 Introduction
We consider the problem of acquiring photorealistic 3D

models of real environments from widely distributed view-
points. This problem has sparked recent interest in the com-
puter vision community [1, 2, 3, 4, 5] as a result of new ap-
plications in telepresence, virtual walkthroughs, and other
graphics-oriented problems that require realistic textured
object models.

We use the term photorealism to describe 3D recon-
structions of real scenes whose reprojections contain suf-
ficient color and texture information to accurately repro-
duce images of the scene from a broad range of target view-
points. To ensure accurate reprojections, the input images
should be representative, i.e., sparsely distributed through-
out the target range of viewpoints. Accordingly, we pro-
pose two criteria that a photorealistic reconstruction tech-
nique should satisfy:

� Photo Integrity: The reprojected model should accu-
rately reproduce the input images, preserving color,

The support of DARPA and the National Science Foundation under Grant
No. IRI-9530985 is gratefully acknowledged.

texture and pixel resolution

� Broad Viewpoint Coverage: Reprojections should be
accurate over a large range of target viewpoints. This
requires that the input images are widely distributed
about the environment

The photorealistic scene reconstruction problem, as
presently formulated, raises a number of unique challenges
that push the limits of existing reconstruction techniques.
Photo integrity requires that the reconstruction be dense
and sufficiently accurate to reproduce the original images.
This criterion poses a problem for existing feature- and
contour-based techniques that do not provide dense shape
estimates. While these techniques can produce texture-
mapped models [1, 3, 4], accuracy is ensured only in places
where features have been detected. The second criterion
means that the input views may be far apart and contain sig-
nificant occlusions. While some stereo methods [6, 7] can
cope with limited occlusions, handling visibility changes of
greater magnitude appears to be beyond the state of the art.

Instead of approaching this problem as one of shape re-
construction, we instead formulate a color reconstruction
problem, in which the goal is an assignment of colors (ra-
diances) to points in an (unknown) approximately Lam-
bertian scene. As a solution, we present a voxel coloring
technique that traverses a discretized 3D space in “depth-
order” to identify voxels that have a unique coloring, con-
stant across all possible interpretations of the scene. This
approach has several advantages over existing stereo and
structure-from-motion approaches to scene reconstruction.
First, occlusions are explicitly modeled and accounted for.
Second, the cameras can be positioned far apart without de-
grading accuracy or run-time. Third, the technique inte-
grates numerous images to yield dense reconstructions that
are accurate over a wide range of target viewpoints.

The voxel coloring algorithm presented here works by
discretizing scene space into a set of voxels that is tra-
versed and colored in a special order. In this respect, the
method is similar to Collins’ Space-Sweep approach [8]
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which performs an analogous scene traversal. However,
the Space-Sweep algorithm does not provide a solution to
the occlusion problem, a primary contribution of this pa-
per. Katayama et al. [9] described a related method in
which images are matched by detecting lines through slices
of an epipolar volume, noting that occlusions could be ex-
plained by labeling lines in order of increasing slope. Our
voxel traversal strategy yields a similar scene-space or-
dering but is not restricted to linear camera paths. How-
ever, their algorithm used a reference image, thereby ig-
noring points that are occluded in the reference image but
visible elsewhere. Also related are recently developed
panoramic stereo [10, 11] algorithms which avoid field of
view problems by matching 360� panoramic images di-
rectly. Panoramic reconstructions can also be achieved us-
ing our approach, but without the need to build panoramic
images (see Figs. 1 (b) and 4).

The remainder of the paper is organized as follows: Sec-
tion 2 formulates and solves the voxel coloring problem,
and describes its relations to shape reconstruction. Sec-
tion 3 presents an efficient algorithm for computing the
voxel coloring from a set of images, discussing complex-
ity and related issues. Section 4 describes experiments on
real and synthetic image sequences.

2 Voxel Coloring
The voxel coloring problem is to assign colors (radi-

ances) to voxels (points) in a 3D volume so as to maximize
photo integrity with a set of input images. That is, render-
ing the colored voxels from each input viewpoint should re-
produce the original image as closely as possible. In order
to solve this coloring problem we must consider the follow-
ing two issues:

� Uniqueness: Multiple voxel colorings can be consis-
tent with a given set of images. How can the problem
be well-defined?

� Computation: How can a voxel coloring be computed
from a set of input images?

This section formalizes the voxel coloring problem and
explores geometrical constraints on camera placement that
enable an efficient solution. In order to address the unique-
ness and computation issues, we introduce a novel visibil-
ity constraint that greatly simplifies the analysis. This or-
dinal visibility constraint enables the identification of cer-
tain invariant voxels whose colorings are uniquely defined.
In addition, the constraint defines a depth-ordering of vox-
els by which the coloring can be computed in a single pass
through the scene volume.
2.1 Notation

We assume that both the scene and lighting are station-
ary and that surfaces are approximately Lambertian. Under

(a) (b)

Figure 1: Compatible Camera Configurations. Both of the
following camera configurations satisfy the ordinal visibil-
ity constraint: (a) a downward-facing camera moved 360
degrees around an object, and (b) a rig of outward-facing
cameras distributed around a sphere.

these conditions, the radiance at each point is isotropic and
can therefore be described by a scalar value which we call
color. We also use the term color to refer to the irradiance
of an image pixel. The term’s meaning should be clear by
context.

A 3D scene S is represented as a finite1 set of opaque
voxels (volume elements), each of which occupies a finite
homogeneous scene volume and has a fixed color. We de-
note the set of all voxels with the symbol V . An image is
specified by the set I of all its pixels. For now, assume that
pixels are infinitesimally small.

Given an image pixel p and scene S, we refer to the
voxel V 2 S that is visible and projects to p by V = S(p).
The color of an image pixel p 2 I is given by color(p; I)
and of a voxel V by color(V;S). A scene S is said to be
complete with respect to a set of images if, for every image
I and every pixel p 2 I, there exists a voxel V 2 S such
that V = S(p). A complete scene is said to be consistent
with a set of images if, for every image I and every pixel
p 2 I,

color(p; I) = color(S(p);S) (1)

2.2 The Ordinal Visibility Constraint
For concreteness, a pinhole

perspective projection model is assumed. To simplify the
analysis, we introduce a constraint on the positions of the
cameras relative to the scene. This constraint simplifies the
task of resolving visibility relationships by establishing a
fixed depth-order enumeration of points in the scene.

Let P and Q be scene points and I be an image from
a camera centered at C. We say P occludes Q if P lies on
the line segmentCQ. We require that the input cameras are
positioned so as to satisfy the following constraint:

1It is assumed that the visible scene is spatially bounded.
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(a) (b) (c) (d) (e)

Figure 2: Ambiguity in Scene Reconstruction. All five scenes are indistinguishable from these two viewpoints. Shape am-
biguity: scenes (a) and (b) have no points in common—no hard points exist. Color ambiguity: (c) and (d) share a point that
has a different color assignment in the two scenes. Color invariants: each point in (e) has the same color in every consistent
scene in which it is contained. These six points constitute the voxel coloring for these two views.

Ordinal visibility constraint: There exists a
norm k � k such that for all scene points P and
Q, and input images I, P occludes Q in I only
if kPk < kQk.

We call such a norm occlusion-compatible. For some
camera configurations, it is not possible to define an
occlusion-compatible norm. However, a norm does ex-
ist for a broad range of practical configurations. For in-
stance, suppose the cameras are distributed on a plane and
the scene is entirely below that plane, as shown in Fig. 1(a).
For every such viewpoint, the relative visibility of any two
scene points depends entirely on which point is closer to the
plane, so we may define k � k to be distance to the plane.
More generally, the ordinal visibility constraint is satisfied
whenever no scene point is contained within the convex
hull C of the camera centers. Here we use the occlusion-
compatible norm kPk

C
, defined to be the Euclidean dis-

tance from P to C. For convenience, C is referred to as
the camera volume. Fig. 1 shows two useful camera con-
figurations that satisfy this constraint. Fig. 1(a) depicts an
inward-facing overhead camera rotating 360� around an
object. Ordinal visibility is satisfied provided the camera is
positioned slightly above the object. The constraint also en-
ables panoramic reconstructions from outward-facing cam-
eras, as in Fig. 1(b).

2.3 Color Invariance
The ordinal visibility constraint provides a depth-

ordering of points in the scene. We now describe how this
ordering can be used in scene reconstruction. Scene recon-
struction is complicated by the fact that a set of images can
be consistent with more than one rigid scene. Determining
a scene’s spatial occupancy is therefore an ill-posed task be-
cause a voxel contained in one consistent scene may not be
contained in another. (see Fig. 2(a),(b)). Alternatively, a
voxel may be part of two consistent scenes, but have dif-
ferent colors in each (Fig. 2(c),(d)).

Given a multiplicity of solutions to the color reconstruc-
tion problem, the only way to recover intrinsic scene in-
formation is through invariants— properties that are satis-
fied by every consistent scene. For instance, consider the
set of voxels that are contained in every consistent scene.
Laurentini [12] described how these invariants, called hard
points, could be recovered by volume intersection from bi-
nary images. Hard points are useful in that they provide
absolute information about the true scene. However, such
points are relatively rare; some images may yield none (see,
for example, Fig. 2). In this section we describe a more fre-
quently occurring type of invariant relating to color rather
than shape.

A voxel V is a color invariant with respect to a
set of images if, for every pair of scenes S and S 0

consistent with the images, V 2 S \ S 0 implies
color(V;S) = color(V;S 0)

Unlike shape invariance, color invariance does not re-
quire that a point be contained in every consistent scene.
As a result, color invariants are more prevalent than hard
points. In particular, any set of images satisfying the or-
dinal visibility constraint yields enough color invariants to
form a complete scene reconstruction, as will be shown.

Let I1; : : : ; Im be a set of images. For a given
image point p 2 Ij define Vp to be the voxel in
fS(p) j S consistentg that is closest to the camera volume.
We claim that Vp is a color invariant. To establish this, ob-
serve that Vp 2 S implies Vp = S(p), for if Vp 6= S(p),
S(p) must be closer to the camera volume, which is impos-
sible by the definition of Vp. It follows from Eq. (1) that Vp
has the same color in every consistent scene; Vp is a color
invariant.

The voxel coloring of an image set I1; : : : ; Im is
defined to be:
S = fVp j p 2 Ii; 1 � i � mg
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Fig. 2(e) shows the voxel coloring for the pair of images
in Fig. 2. These six points have a unique color interpreta-
tion, constant in every consistent scene. They also com-
prise the closest consistent scene to the cameras in the fol-
lowing sense—every point in each consistent scene is ei-
ther contained in the voxel coloring or is occluded by points
in the voxel coloring. An interesting consequence of this
closeness bias is that neighboring image pixels of the same
color produce cusps in the voxel coloring, i.e., protrusions
toward the camera volume. This phenomenon is clearly
shown in Fig. 2(e), where the white and black points form
two separate cusps. Also, observe that the voxel coloring
is not a minimal reconstruction; removing the two closest
points in Fig. 2(e) still leaves a consistent scene.

2.4 Computing the Voxel Coloring
In this section we describe how to compute the voxel

coloring from a set of images that satisfy the ordinal vis-
ibility constraint. In addition it will be shown that the set
of voxels contained in the voxel coloring form a complete
scene reconstruction that is consistent with the input im-
ages.

The voxel coloring is computed one voxel at a time in an
order that ensures agreement with the images at each step,
guaranteeing that all reconstructed voxels satisfy Eq. (1).
To demonstrate that voxel colorings form consistent scenes,
we also have to show that they are complete, i.e., they ac-
count for every image pixel as defined in Section 2.1.

In order to make sure that the construction is incremen-
tally consistent, i.e., agrees with the images at each step, we
need to introduce a weaker form of consistency that applies
to incomplete voxel sets. Accordingly, we say that a set
of voxels with color assignments is voxel-consistent if its
projection agrees fully with the subset of every input im-
age that it overlaps. More formally, a set S is said to be
voxel-consistent with images I1; : : : ; Im if for every voxel
V 2 S and image pixels p 2 Ii and q 2 Ij , V = S(p) =
S(q) implies color(p; Ii) = color(q; Ij) = color(V;S).
For notational convenience, define SV to be the set of all
voxels in S that are closer than V to the camera volume.
Scene consistency and voxel consistency are related by the
following properties:

1. If S is a consistent scene then fV g [ SV is a voxel-
consistent set for every V 2 S.

2. SupposeS is complete and, for each point V 2 S, V [
SV is voxel-consistent. Then S is a consistent scene.

A consistent scene may be created using the second
property by incrementally moving farther from the camera
volume and adding voxels to the current set that maintain
voxel-consistency. To formalize this idea, we define the
following partition of 3D space into voxel layers of uniform

distance from the camera volume:

Vd
C = fV j kV k

C
= dg (2)

V =

r[

i=1

Vdi
C

(3)

where d1; : : : ; dr is an increasing sequence of numbers.
The voxel coloring is computed inductively as follows:

SP1 = fV j V 2 Vd1 ; fV g voxel-consistentg

SPk = fV j V 2 Vdk ; fV g [ SPk�1 voxel-consistentg

SP = fV j V = SPr(p) for some pixel pg

We claim SP = S . To prove this, first define
Si = fV j V 2 S ; kV k

C
� dig. S1 � SP1

by the first consistency property. Inductively, assume that
Sk�1 � SPk�1 and let V 2 Sk. By the first consistency
property, fV g [ Sk�1 is voxel-consistent, implying that
fV g[SPk�1 is also voxel-consistent, because the second
set includes the first and SPk�1 is itself voxel-consistent.
It follows that S � SPr. Note also that SPr is complete,
since one of its subsets is complete, and hence consistent by
the second consistency property. SP contains all the vox-
els in SPr that are visible in any image, and is therefore
consistent as well. Therefore SP is a consistent scene such
that for each pixel p, SP(p) is at least as close to C as S(p).
Hence SP = S . 2

In summary, the following properties of voxel colorings
have been shown:

� S is a consistent scene

� Every voxel in S is a color invariant

� S is computable from any set of images satisfying the
ordinal visibility constraint

3 Reconstruction by Voxel Coloring
In this section we present a voxel coloring algorithm

for reconstructing a scene from a set of calibrated images.
The algorithm closely follows the voxel coloring construc-
tion outlined in Section 2.4, adapted to account for im-
age discretization and noise. As before, it is assumed that
3D space has been partitioned into a series of voxel lay-
ers Vd1

C
; : : : ;Vdr

C
increasing in distance from the camera

volume. The images I1; : : : ; Im are assumed to be dis-
cretized into finite non-overlapping pixels. The cameras
are assumed to satisfy the ordinal visibility constraint, i.e.,
no scene point lies within the camera volume.

If a voxel V is not fully occluded in image Ij , its pro-
jection will overlap a nonempty set of image pixels, �j .
Without noise or quantization effects, a consistent voxel
should project to a set of pixels with equal color values. In
the presence of these effects, we evaluate the correlation of
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the pixel colors to measure the likelihood of voxel consis-
tency. Let s be the standard deviation and n the cardinal-

ity of
m[

j=1

�j . Suppose the sensor error (accuracy of irradi-

ance measurement) is approximately normally distributed
with standard deviation �0. If �0 is unknown, it can be es-
timated by imaging a homogeneous surface and comput-
ing the standard deviation of image pixels. The consistency
of a voxel can be estimated using the likelihood ratio test:

�V = (n�1)s2

�2
0

, distributed as �2 [13].

3.1 Voxel Coloring Algorithm
The algorithm is as follows:

S = ;

for i = 1; : : : ; r do

for every V 2 Vdi
C

do

project to I1; : : : ; Im, compute �V

if �V < thresh then S = S [ fV g

The threshold, thresh, corresponds to the maximum al-
lowable correlation error. An overly conservative (small)
value of thresh results in an accurate but incomplete re-
construction. On the other hand, a large threshold yields a
more complete reconstruction, but one that includes some
erroneous voxels. In practice, thresh should be chosen ac-
cording to the desired characteristics of the reconstructed
model, in terms of accuracy vs. completeness.

Much of the work of the algorithm lies in the computa-
tion of �V . The set of overlapping pixels depends both on
the shape of V ’s projection and the set S of possibly oc-
cluding voxels. To simplify the computation, our imple-
mentation used a square mask to approximate the projected
voxel shape. The problem of detecting occlusions is solved
by the scene traversal ordering used in the algorithm; the
order is such that if V occludes V 0 then V is visited be-
fore V 0. Therefore, occlusions can be detected by using a
one-bit mask for each image pixel. The mask is initialized
to 0. When a voxel V is processed, �i is the set of pixels
that overlap V ’s projection in Ii and have mask values of 0.
These pixels are marked with masks of 1 if �V < thresh.

Voxel traversal can be made more efficient by employ-
ing alternative occlusion-compatible norms. For instance,
using the axis-aligned bounding box of the camera volume
instead of C, andL1 instead ofL2, gives rise to a sequence
of axis-aligned cube-shaped layers.
3.2 Discussion

The algorithm
visits each voxel exactly once and projects it into every im-
age. Therefore, the time complexity of voxel coloring is:
O(voxels � images). To determine the space complexity,
observe that evaluating one voxel does not require access

to or comparison with other voxels. Consequently, voxels
need not be stored in main memory during the algorithm;
the voxels making up the voxel coloring will simply be out-
put one at a time. Only the images and one-bit masks need
to be allocated. The fact that the space and time complexi-
ties of voxel coloring are linear in the number of images is
essential in that large numbers of images can be processed
at once.

The algorithm differs from stereo and optical-flow tech-
niques in that it does not perform window-based image cor-
relation in the reconstruction process. Correspondences are
found during the course of scene traversal by voxel pro-
jection. A disadvantage of this searchless strategy is that
it requires very precise camera calibration to achieve the
triangulation accuracy of stereo methods. Accuracy and
run-time also depend on the voxel resolution, a parameter
that can be set by the user or determined automatically to
match the pixel resolution, calibration accuracy, and com-
putational resources.

Importantly, the approach reconstructs only one of the
potentially numerous scenes consistent with the input im-
ages. Consequently, it is susceptible to aperture problems
caused by image regions of near-uniform color. These re-
gions cause cusps in the reconstruction (see Fig. 2(e)), since
voxel coloring yields the reconstruction closest to the cam-
era volume. This is a bias, just like smoothness is a bias in
stereo methods, but one that guarantees a consistent recon-
struction even with severe occlusions.

4 Experimental Results
The first experiment involved 3D reconstruction from

twenty-one views spanning a 360� object rotation. Our
strategy for calibrating the views was similar to that in [14].
Instead of a turntable, we placed the objects on a software-
controlled pan-tilt head, viewed from above by a fixed cam-
era (see Fig. 1(a)). Tsai’s method [15] was used to calibrate
the camera with respect to the head, by rotating a known
object and manually selecting image features for three pan
positions. The calibration error was approximately 3%.

Fig. 3 shows the voxel colorings computed from a com-
plete revolution of a dinosaur toy and a rose. To facili-
tate reconstruction, we used a black background and elim-
inated most of the background points by thresholding the
images. While background subtraction is not strictly nec-
essary, leaving this step out results in background-colored
voxels scattered around the edges of the scene volume. The
threshold may be chosen conservatively since removing
most of the background pixels is sufficient to eliminate this
background scattering effect. The middle column in Fig. 3
shows the reconstructions from a viewpoint corresponding
to one of the input images (shown at left), to demonstrate
photo integrity. Note that even fine details such as the wind-
up rod on the dinosaur and the leaves of the rose were re-

5



Figure 3: Voxel Coloring of Dinosaur Toy and Rose. The objects were rotated 360� below a camera. At left is one of 21
input images of each object. The other images show different views rendered from the reconstructions.

(a) (b) (c) (d)

Figure 4: Reconstruction of Synthetic Room Scene. The input images were all taken from cameras located inside the room.
(a) shows the voxel coloring and (b) the original model from a new interior viewpoint. (c) and (d) show the reconstruction
and original model, respectively, from a new viewpoint outside of the room.
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constructed.
We experimented with different voxel resolutions to de-

termine the effects of voxel sampling on reconstruction
quality. Increasing the sampling rate improved the recon-
struction quality, up to the limits of image quantization and
calibration accuracy, at the cost of increased run-time. A
low-resolution model can be built very quickly; a recon-
struction (not shown) containing 980 voxels took less than a
second to compute on a 250 MHz SGI Indigo2. In contrast,
the 72,497-voxel dinosaur reconstruction shown in Fig. 3
required evaluating a volume of 7 million voxels and took
roughly three minutes to compute.

The next experiment involved reconstructing a synthetic
room from cameras inside the room. The room interior was
highly concave, making reconstruction by volume intersec-
tion or other contour-based methods impractical. The room
consisted of three texture-mapped walls and two shaded
models. The models, a bust of Beethoven and a human
figure, were illuminated diffusely from above. 24 cameras
were placed at different positions and orientations through-
out the room. The optical axes were parallel to the horizon-
tal (XZ) plane.

Fig. 4 compares the original and reconstructed models
from new viewpoints. The voxel coloring reproduced im-
ages from the room interior quite accurately (as shown in
(a)), although some fine details were lost due to quantiza-
tion effects. The overhead view (c) more clearly shows
some discrepancies between the original and reconstructed
shapes. For instance, the reconstructed walls are not per-
fectly planar, as some points lie just off the surface. This
point drift effect is most noticeable in regions where the tex-
ture is locally homogeneous, indicating that texture infor-
mation is important for accurate reconstruction. Not sur-
prisingly, the quality of image (c) is worse than that of (a),
since the former view was much farther from the input cam-
eras. On the whole, Fig. 4 shows that the overall shape of
the scene was captured quite well in the reconstruction. The
recovered model contained 52,670 voxels and took 95 sec-
onds to compute.

5 Conclusions
This paper presented a new scene reconstruction tech-

nique that incorporates intrinsic color and texture informa-
tion for the acquisition of photorealistic scene models. Un-
like existing stereo and structure-from-motion techniques,
the method guarantees that a consistent reconstruction is
found, even under large visibility differences across the in-
put images. The method relies on a constraint on the input
camera configuration that enables a simple solution for de-
termining voxel visibility. A second contribution was the
constructive proof of the existence of a set of color invari-
ants. These points are useful in two ways: first, they pro-
vide information that is intrinsic, i.e., constant across all

possible consistent scenes. Second, together they consti-
tute a spatial and photometric reconstruction of the scene
whose projections reproduce the input images.
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Abstract. In this paper we consider the problem of computing the 3D shape of an

unknown, arbitrarily-shaped scene from multiple photographs taken at known but

arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes

that reproduce the input photographs, we prove the existence of a special member

of this class, the photo hull, that (1) can be computed directly from photographs

of the scene, and (2) subsumes all other members of this class. We then give a

provably-correct algorithm, called Space Carving, for computing this shape and

present experimental results on complex real-world scenes. The approach is designed

to (1) capture photorealistic shapes that accurately model scene appearance from

a wide range of viewpoints, and (2) account for the complex interactions between

occlusion, parallax, shading, and their view-dependent e�ects on scene-appearance.

Keywords: scene modeling, photorealistic reconstruction, multi-view stereo, space

carving, voxel coloring, shape-from-silhouettes, visual hull, volumetric shape repre-

sentations, metameric shapes, 3D photography

1. Introduction

A fundamental problem in computer vision is reconstructing the shape

of a complex 3D scene from multiple photographs. While current tech-

niques work well under controlled conditions (e.g., small stereo base-

lines (Okutomi and Kanade, 1993), active viewpoint control (Kutu-

lakos and Dyer, 1994), spatial and temporal smoothness (Poggio et al.,

1985; Bolles et al., 1987; Katayama et al., 1995), or scenes containing

curved lines (Bascle and Deriche, 1993), planes (Pritchett and Zisser-

man, 1998), or texture-less surfaces (Cipolla and Blake, 1992; Vail-

lant and Faugeras, 1992; Laurentini, 1994; Szeliski and Weiss, 1994;

Kutulakos and Dyer, 1995)), very little is known about scene recon-

struction under general conditions. In particular, in the absence of

a priori geometric information, what can we infer about the struc-

ture of an unknown scene from N arbitrarily positioned cameras at

known viewpoints? Answering this question has many implications for

reconstructing real objects and environments, which tend to be non-

smooth, exhibit signi�cant occlusions, and may contain both textured

and texture-less surface regions (Figure 1).

c
 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Kutulakos and Seitz

In this paper, we develop a theory for reconstructing 3D scenes from

photographs by formulating shape recovery as a constraint satisfaction

problem. We show that any set of photographs of a rigid scene de�nes a

collection of picture constraints that are satis�ed by every scene project-

ing to those photographs. Furthermore, we characterize the set of all 3D

shapes that satisfy these constraints and use the underlying theory to

design a practical reconstruction algorithm, called Space Carving, that

applies to fully-general shapes and camera con�gurations. In particular,

we address three questions:

� Given N input photographs, can we characterize the set of all

photo-consistent shapes, i.e., shapes that reproduce the input pho-

tographs?

� Is it possible to compute a shape from this set and if so, what is

the algorithm?

� What is the relationship of the computed shape to all other photo-

consistent shapes?

Our goal is to study the N -view shape recovery problem in the

general case where no constraints are placed upon the scene's shape

or the viewpoints of the input photographs. In particular, we address

the above questions for the case when (1) no constraints are imposed

on scene geometry or topology, (2) no constraints are imposed on the

positions of the input cameras, (3) no information is available about

the existence of speci�c image features in the input photographs (e.g.,

edges, points, lines, contours, texture, or color), and (4) no a priori

correspondence information is available. Unfortunately, even though

several algorithms have been proposed for recovering shape from mul-

tiple views that work under some of these conditions (e.g., work on

stereo (Belhumeur, 1996; Cox et al., 1996; Stewart, 1995)), very little

is currently known about how to answer the above questions, and even

less so about how to answer them in this general case.

At the heart of our work is the observation that these questions

become tractable when scene radiance belongs to a general class of radi-

ance functions we call locally computable. This class characterizes scenes

for which global illumination e�ects such as shadows, transparency and

inter-re
ections can be ignored, and is su�ciently general to include

scenes with parameterized radiance models (e.g., Lambertian, Phong

(Foley et al., 1990), Torrance-Sparrow (Torrance and Sparrow, 1967)).

Using this observation as a starting point, we show how to compute,

from N photographs of an unknown scene, a maximal shape called the

photo hull that encloses the set of all photo-consistent reconstructions.

The only requirements are that (1) the viewpoint of each photograph is
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known in a common 3D world reference frame (Euclidean, a�ne (Koen-

derink and van Doorn, 1991), or projective (Mundy and Zisserman,

1992)), and (2) scene radiance follows a known, locally-computable ra-

diance function. Experimental results demonstrating our method's per-

formance are given for both real and simulated geometrically-complex

scenes.

Central to our analysis is the realization that parallax, occlusion,

and scene radiance all contribute to a photograph's dependence on

viewpoint. Since our notion of photo-consistency implicitly ensures

that all of these 3D shape cues are taken into account in the recov-

ery process, our approach is related to work on stereo (Okutomi and

Kanade, 1993; Cox et al., 1996; Ho� and Ahuja, 1989), shape-from-

contour (Cipolla and Blake, 1992; Vaillant and Faugeras, 1992; Szeliski,

1993), as well as shape-from-shading (Epstein et al., 1996; Belhumeur

and Kriegman, 1996; Woodham et al., 1991). These approaches rely

on studying a single 3D shape cue under the assumptions that other

sources of variability can be safely ignored, and that the input pho-

tographs contain features relevant to that cue (Bolles and Cain, 1982).1

Unfortunately, these approaches cannot be easily generalized to attack

the N -view reconstruction problem for arbitrary 3D scenes because

neither assumption holds true in general. Implicit in this previous work

is the view that untangling parallax, self-occlusion and shading e�ects

in N arbitrary photographs of a scene leads to a problem that is either

under-constrained or intractable. Here we challenge this view by show-

ing that shape recovery from N arbitrary photographs of an unknown

scene is not only a tractable problem but has a simple solution as well.

To our knowledge, no previous theoretical work has studied the

equivalence class of solutions to the general N -view reconstruction

problem or provably-correct algorithms for computing them. The Space

Carving Algorithm that results from our analysis, however, is related

to other 3D scene-space stereo algorithms that have been recently

proposed (Fua and Leclerc, 1995; Collins, 1996; Seitz and Dyer, 1999;

Seitz and Kutulakos, 1998; Zitnick and Webb, 1996; Narayanan et al.,

1998; Szeliski and Golland, 1998; Roy and Cox, 1998). Of these, most

closely related are mesh-based (Fua and Leclerc, 1995) and level-set

(Faugeras and Keriven, 1998) algorithms, as well as methods that sweep

a plane or other manifold through a discretized scene space (Collins,

1996; Seitz and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and

Golland, 1998; Langer and Zucker, 1994). While the algorithms in

(Faugeras and Keriven, 1998; Fua and Leclerc, 1995) generate high-

quality reconstructions and perform well in the presence of occlusions,

their use of regularization techniques penalizes complex surfaces and

shapes. Even more importantly, no formal study has been undertaken
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4 Kutulakos and Seitz

to establish their validity for recovering arbitrarily-shaped scenes from

unconstrained camera con�gurations (e.g., the one shown in Figure

1a). In contrast, our Space Carving Algorithm is provably correct and

has no regularization biases. Even though space-sweep approaches have

many attractive properties, existing algorithms (Collins, 1996; Seitz

and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and Golland, 1998)

are not fully general i.e., they rely on the presence of speci�c image

features such as edges and hence generate only sparse reconstructions

(Collins, 1996), or they place strong constraints on the input view-

points relative to the scene (Seitz and Dyer, 1999; Seitz and Kutulakos,

1998). Unlike all previous methods, Space Carving guarantees complete

reconstruction in the general case.

Our approach o�ers six main contributions over the existing state

of the art:

1. It introduces an algorithm-independent analysis of the shape re-

covery problem from N arbitrary photographs, making explicit the

assumptions required for solving it as well as the ambiguities intrin-

sic to the problem. This analysis not only extends previous work on

reconstruction but also puts forth a concise geometrical framework

for analyzing the general properties of recently-proposed scene-

space stereo techniques (Fua and Leclerc, 1995; Collins, 1996; Seitz

and Dyer, 1999; Seitz and Kutulakos, 1998; Zitnick and Webb,

1996; Narayanan et al., 1998; Szeliski and Golland, 1998; Roy and

Cox, 1998). In this respect, our analysis has goals similar to those

of theoretical approaches to structure-from-motion (Faugeras and

Maybank, 1990), although the di�erent assumptions employed (i.e.,

unknown vs. known correspondences, known vs. unknown cam-

era motion), make the geometry, solution space, and underlying

techniques completely di�erent.

2. Our analysis provides a volume which is the tightest possible bound

on the shape of the true scene that can be inferred from N pho-

tographs. This bound is important because it tells us precisely what

shape information we can hope to extract from N photographs,

in the absence of a priori geometric and point correspondence

information, regardless of the speci�c algorithm being employed.

3. The Space Carving Algorithm presented in this paper is the only

provably-correct method, to our knowledge, that enables scene re-

construction from input cameras at arbitrary positions. As such, the

algorithm enables reconstruction of complex scenes from viewpoints

distributed throughout an unknown 3D environment|an extreme

example is shown in Fig. 11a where the interior and exterior of a
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house are reconstructed simultaneously from cameras distributed

throughout the inside and outside of the house.

4. Because no constraints on the camera viewpoints are imposed, our

approach leads naturally to global reconstruction algorithms (Ku-

tulakos and Dyer, 1995; Seitz and Dyer, 1995) that recover 3D shape

information from all photographs in a single step. This eliminates

the need for complex partial reconstruction and merging operations

(Curless and Levoy, 1996; Turk and Levoy, 1994) in which partial

3D shape information is extracted from subsets of the photographs

(Narayanan et al., 1998; Kanade et al., 1995; Zhao and Mohr,

1996; Seales and Faugeras, 1995), and where global consistency

with the entire set of photographs is not guaranteed for the �nal

shape.

5. We describe an e�cient multi-sweep implementation of the Space

Carving Algorithm that enables recovery of photo-realistic 3D mod-

els from multiple photographs of real scenes, and exploits graphics

hardware acceleration commonly available on desktop PC's.

6. Because the shape recovered via Space Carving is guaranteed to

be photo-consistent, its reprojections will closely resemble pho-

tographs of the true scene. This property is especially signi�cant in

computer graphics, virtual reality, and tele-presence applications

(Tomasi and Kanade, 1992; Kanade et al., 1995; Moezzi et al.,

1996; Zhang, 1998; Kang and Szeliski, 1996; Sato et al., 1997)

where the photo-realism of constructed 3D models is of primary

importance.

1.1. Least-Commitment Shape Recovery

A key consequence of our photo-consistency analysis is that there are

3D scenes for which no �nite set of input photographs can uniquely

determine their shape: in general, there exists an uncountably-in�nite

equivalence class of shapes each of which reproduces all of the input

photographs exactly. This result is yet another manifestation of the

well-known fact that 3D shape recovery from a set of images is generally

ill-posed (Poggio et al., 1985), i.e., there may be multiple shapes that

are consistent with the same set of images.2 Reconstruction methods

must therefore choose a particular scene to reconstruct from the space

of all consistent shapes. Traditionally, the most common way of dealing

with this ambiguity has been to apply smoothness heuristics and reg-

ularization techniques (Poggio et al., 1985; Aloimonos, 1988) to obtain

reconstructions that are as smooth as possible. A drawback of this
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6 Kutulakos and Seitz

type of approach is that it typically penalizes discontinuities and sharp

edges, features that are very common in real scenes.

The notion of the photo hull introduced in this paper and the

Space Carving Algorithm that computes it lead to an alternative, least

commitment principle (Marr, 1982) for choosing among all of the photo-

consistent shapes: rather than making an arbitrary choice, we choose

the only photo-consistent reconstruction that is guaranteed to subsume

(i.e., contain within its volume) all other photo-consistent reconstruc-

tions of the scene. By doing so we not only avoid the need to impose

ad hoc smoothness constraints, which lead to reconstructions whose

relationship to the true shape are di�cult to quantify, we also ensure

that the recovered 3D shape can serve as a description for the entire

equivalence class of photo-consistent shapes.

While our work shows how to obtain a consistent scene reconstruc-

tion without imposing smoothness constraints or other geometric heuris-

tics, there are many cases where it may be advantageous to impose a

priori constraints, especially when the scene is known to have a cer-

tain structure (Debevec et al., 1996; Kakadiaris and Metaxas, 1995).

Least-commitment reconstruction suggests a new way of incorporating

such constraints: rather than imposing them as early as possible in the

reconstruction process, we can impose them after �rst recovering the

photo hull. This allows us to delay the application of a priori constraints

until a later stage in the reconstruction process, when tight bounds on

scene structure are available and where these constraints are used only

to choose among shapes within the class of photo-consistent reconstruc-

tions. This approach is similar in spirit to \strati�cation" approaches

of shape recovery (Faugeras, 1995; Koenderink and van Doorn, 1991),

where 3D shape is �rst recovered modulo an equivalence class of recon-

structions and is then re�ned within that class at subsequent stages of

processing.

The remainder of this paper is structured as follows. Section 2 ana-

lyzes the constraints that a set of photographs place on scene structure

given a known, locally-computable model of scene radiance. Using these

constraints, a theory of photo-consistency is developed that provides

a basis for characterizing the space of all reconstructions of a scene.

Sections 3 and 4 then use this theory to present the two central re-

sults of the paper, namely the existence of the photo hull and the

development of a provably-correct algorithm called Space Carving that

computes it. Section 5 then presents a discrete implementation of the

Space Carving Algorithm that iteratively \carves" out the scene from

an initial set of voxels. This algorithm can be seen as a generalization

of silhouette-based techniques like volume intersection (Martin and

Aggarwal, 1983; Szeliski, 1993; Kutulakos, 1997; Moezzi et al., 1996)
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(a) (b)

Figure 1. Viewing geometry. The scene volume and camera distribution covered

by our analysis are both completely unconstrained. Examples include (a) a 3D

environment viewed from a collection of cameras that are arbitrarily dispersed in

free space, and (b) a 3D object viewed by a single camera moving around it.

to the case of gray-scale and full-color images, and generalizes voxel

coloring (Seitz and Dyer, 1999) and plenoptic decomposition (Seitz and

Kutulakos, 1998) to the case of arbitrary camera geometries.3 Section

6 concludes with experimental results on real and synthetic images.

2. Picture Constraints

Let V be a shape de�ned by a closed and opaque set of points that

occupy a volume in space.4 We assume that V is viewed under perspec-

tive projection from N known positions c1; : : : ; cN in IR3
� V (Figure

1b). The radiance of a point p on the shape's surface, Surf(V) is a

function radp(�) that maps every oriented ray � through the point to the

color of light re
ected from p along �. We use the term shape-radiance

scene description to denote the shape V together with an assignment

of a radiance function to every point on its surface. This description

contains all the information needed to reproduce a photograph of the

scene for any camera position.5

Every photograph of a 3D scene taken from a known location parti-

tions the set of all possible shape-radiance scene descriptions into two

families, those that reproduce the photograph and those that do not.

We characterize this constraint for a given shape and a given radiance

assignment by the notion of photo-consistency:6

De�nition 1 (Point Photo-Consistency) Let S be an arbitrary sub-

set of IR3
. A point p 2 S that is visible from c is photo-consistent with
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8 Kutulakos and Seitz

the photograph at c if (1) p does not project to a background pixel, and

(2) the color at p's projection is equal to radp(~pc). If p is not visible

from c, it is trivially photo-consistent with the photograph at c.

De�nition 2 (Shape-Radiance Photo-Consistency) A shape-radiance

scene description is photo-consistent with the photograph at c if all

points visible from c are photo-consistent and every non-background

pixel is the projection of a point in V.

De�nition 3 (Shape Photo-Consistency) A shape V is photo-consistent

with a set of photographs if there is an assignment of radiance func-

tions to the visible points of V that makes the resulting shape-radiance

description photo-consistent with all photographs.

Our goal is to provide a concrete characterization of the family of all

scenes that are photo-consistent with N input photographs. We achieve

this by making explicit the two ways in which photo-consistency with

N photographs can constrain a scene's shape.

2.1. Background Constraints

Photo-consistency requires that no point of V projects to a background

pixel. If a photograph taken at position c contains identi�able back-

ground pixels, this constraint restricts V to a cone de�ned by c and the

photograph's non-background pixels. Given N such photographs, the

scene is restricted to the visual hull, which is the volume of intersection

of their corresponding cones (Laurentini, 1994).

When no a priori information is available about the scene's ra-

diance, the visual hull de�nes all the shape constraints in the input

photographs. This is because there is always an assignment of radiance

functions to the points on the surface of the visual hull that makes

the resulting shape-radiance description photo-consistent with the N

input photographs.7 The visual hull can therefore be thought of as a

\least commitment reconstruction" of the scene|any further re�ne-

ment of this volume must rely on assumptions about the scene's shape

or radiance.

While visual hull reconstruction has often been used as a method

for recovering 3D shape from photographs (Szeliski, 1993; Kutulakos,

1997), the picture constraints captured by the visual hull only exploit

information from the background pixels in these photographs. Unfor-

tunately, these constraints become useless when photographs contain

no background pixels (i.e., the visual hull degenerates to IR3) or when

background identi�cation (Smith and Blinn, 1996) cannot be performed

accurately. Below we study picture constraints from non-background
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A Theory of Shape by Space Carving 9

pixels when the scene's radiance is restricted to a special class of radi-

ance models. The resulting constraints lead to photo-consistent scene

reconstructions that are subsets of the visual hull, and unlike the visual

hull, can contain concavities.

2.2. Radiance Constraints

Surfaces that are not transparent or mirror-like re
ect light in a coher-

ent manner, i.e., the color of light re
ected from a single point along

di�erent directions is not arbitrary. This coherence provides additional

picture constraints beyond what can be obtained from background in-

formation. In order to take advantage of these constraints, we focus on

scenes whose radiance satis�es the following criteria:

Consistency Check Criteria:

1. An algorithm consistK() is available that takes as input at

least K � N colors col1; : : : ; colK , K vectors �1; : : : ; �K , and

the light source positions (non-Lambertian case), and decides

whether it is possible for a single surface point to re
ect light

of color coli in direction �i simultaneously for all i = 1; : : : ;K.

2. consistK() is assumed to be monotonic, i.e.,

consistK(col1; : : : ; colj; �1; : : : ; �j) implies that

consistK(col1; : : : ; colj�1; �1; : : : ; �j�1) for every permutation

of 1; : : : ; j.

Given a shape V, the Consistency Check Criteria give us a way to

establish the photo-consistency of every point on V's surface. These

criteria de�ne a general class of radiance models, that we call locally

computable, that are characterized by a locality property: the radiance

at any point is independent of the radiance of all other points in

the scene. The class of locally-computable radiance models therefore

restricts our analysis to scenes where global illumination e�ects such

as transparency (Szeliski and Golland, 1998), inter-re
ection (Forsyth

and Zisserman, 1991), and shadows can be ignored. For example, inter-

re
ection and shadows in Lambertian scenes viewed under �xed illumi-

nation are correctly accounted for because scene radiance is isotropic

even when such e�ects are present. As a result, the class of locally-

computable radiance models subsumes the Lambertian (K = 2) and

other parameterized models of scene radiance.8

Given an a priori locally computable radiance model for the scene,

we can determine whether or not a given shape V is photo-consistent

with a collection of photographs. Even more importantly, when the

scene's radiance is described by such a model, the non-photo-consistency
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10 Kutulakos and Seitz

Figure 2. Illustration of the Visibility and Non-Photo-Consistency Lemmas. If p is

non-photo-consistent with the photographs at c1; c2; c3, it is non-photo-consistent

with the entire set VisV0(p), which also includes c4.

of a shape V tells us a great deal about the shape of the underlying

scene. We use the following two lemmas to make explicit the structure

of the family of photo-consistent shapes. These lemmas provide the

analytical tools needed to describe how the non-photo-consistency of a

shape V a�ects the photo-consistency of its subsets (Figure 2):

Lemma 1 (Visibility Lemma) Let p be a point on V's surface, Surf(V),

and let Vis
V
(p) be the collection of input photographs in which V does

not occlude p. If V
0

� V is a shape that also has p on its surface,

Vis
V
(p) � Vis

V
0(p).

Proof. Since V 0 is a subset of V, no point of V 0 can lie between p and

the cameras corresponding to Vis
V
(p). QED

Lemma 2 (Non-Photo-Consistency Lemma) If p 2 Surf(V) is not

photo-consistent with a subset of Vis
V
(p), it is not photo-consistent with

Vis
V
(p).

Intuitively, Lemmas 1 and 2 suggest that both visibility and non-

photo-consistency exhibit a form of \monotonicity:" the Visibility Lemma

tells us that the collection of photographs from which a surface point

p 2 Surf(V) is visible strictly expands as V gets smaller (Figure 2).

Analogously, the Non-Photo-Consistency Lemma, which follows as a

direct consequence of the de�nition of photo-consistency, tells us that

each new photograph can be thought of as an additional constraint

on the photo-consistency of surface points|the more photographs are

available, the more di�cult it is for those points to achieve photo-

consistency. Furthermore, once a surface point fails to be photo-consistent

no new photograph of that point can re-establish photo-consistency.

The key consequence of Lemmas 1 and 2 is given by the following

theorem which shows that non-photo-consistency at a point rules out

the photo-consistency of an entire family of shapes:
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Theorem 1 (Subset Theorem) If p 2 Surf(V) is not photo-consistent,

no photo-consistent subset of V contains p.

Proof. Let V 0 � V be a shape that contains p. Since p lies on the

surface of V, it must also lie on the surface of V 0. From the Visibility

Lemma it follows that Vis
V
(p) � Vis

V
0(p). The theorem now follows

by applying the Non-Photo-Consistency Lemma to V 0 and using the

locality property of locally computable radiance models. QED

We explore the rami�cations of the Subset Theorem in the next

section.

3. The Photo Hull

The family of all shapes that are photo-consistent with N photographs

de�nes the ambiguity inherent in the problem of recovering 3D shape

from those photographs. When there is more than one photo-consistent

shape it is impossible to decide, based on those photographs alone,

which photo-consistent shape corresponds to the true scene. This am-

biguity raises two important questions regarding the feasibility of scene

reconstruction from photographs:

� Is it possible to compute a shape that is photo-consistent with N

photographs and, if so, what is the algorithm?

� If a photo-consistent shape can be computed, how can we relate

that shape to all other photo-consistent 3D interpretations of the

scene?

Before providing a general answer to these questions we observe that

when the number of input photographs is �nite, the �rst question can

be answered with a trivial shape (Figure 3a). In general, trivial shape

solutions such as this one can be eliminated with the incorporation

of free space constraints, i.e., regions of space that are known not to

contain scene points. Our analysis enables the (optional) inclusion of

such constraints by specifying an arbitrary set V within which a photo-

consistent shape is known to lie.9

In particular, our answers to both questions rest on the following

theorem. Theorem 2 shows that for any shape V there is a unique

photo-consistent shape that subsumes, i.e., contains within its volume,

all other photo-consistent shapes in V (Figure 3b):

Theorem 2 (Photo Hull Theorem) Let V be an arbitrary subset of

IR3
. If V

�

is the union of all photo-consistent shapes in V, every point

on the surface of V
�

is photo-consistent. We call V
�

the photo hull.10
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12 Kutulakos and Seitz

(a) (b)

Figure 3. Photo-consistent shapes for a two-dimensional scene viewed by four cam-

eras. The scene consists of a black square whose sides are painted di�use red, blue,

orange, and green. (a) Trivial shape solutions in the absence of free-space constraints.

Carving out a small circle around each camera and projecting the image onto the

interior of that circle yields a trivial photo-consistent shape, shown in gray. (b)

Illustration of the Photo Hull Theorem. The gray-shaded region corresponds to an

arbitrary shape V containing the square in (a). V� is a polygonal region that extends

beyond the true scene and whose boundary is de�ned by the polygonal segments

�; �; 
, and �. When these segments are colored as shown, V�'s projections are

indistinguishable from that of the true object and no photo-consistent shape in the

gray-shaded region can contain points outside V�.

Proof. (By contradiction) Suppose that p is a surface point on V
�

that is not photo-consistent. Since p 2 V�, there exists a photo-consistent

shape, V 0 � V
�, that also has p on its surface. It follows from the Subset

Theorem that V 0 is not photo-consistent. QED

Corollary 1 If V
�

is closed, it is a photo-consistent shape.

Theorem 2 provides an explicit relation between the photo hull and

all other possible 3D interpretations of the scene: the theorem guaran-

tees that every such interpretation is a subset of the photo hull. The

photo hull therefore represents a least-commitment reconstruction of

the scene.

While every point on the photo hull is photo-consistent, the hull

itself is not guaranteed to be closed, i.e., it may not satisfy our de�nition

of a shape. Speci�c cases of interest where V� is closed include (1)

discretized scene volumes, i.e., scenes that are composed of a �nite

number of volume elements, and (2) instances where the number of

photo-consistent shapes in a volume is �nite. We describe a volumetric

algorithm for computing discretized photo hulls in the next section.
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The general case, where the photo hull is an in�nite union of shapes,

is considered in the Appendix.

4. Reconstruction by Space Carving

An important feature of the photo hull is that it can be computed

using a simple, discrete algorithm that \carves" space in a well-de�ned

manner. Given an initial volume V that contains the scene, the algo-

rithm proceeds by iteratively removing (i.e. \carving") portions of that

volume until it converges to the photo hull, V�. The algorithm can

therefore be fully speci�ed by answering four questions: (1) how do we

select the initial volume V, (2) how should we represent that volume to

facilitate carving, (3) how do we carve at each iteration to guarantee

convergence to the photo hull, and (4) when do we terminate carving?

The choice of the initial volume has a considerable impact on the

outcome of the reconstruction process (Figure 3). Nevertheless, selec-

tion of this volume is beyond the scope of this paper; it will depend on

the speci�c 3D shape recovery application and on information about

the manner in which the input photographs were acquired.11 Below

we consider a general algorithm that, given N photographs and any

initial volume that contains the scene, is guaranteed to �nd the (unique)

photo hull contained in that volume.

In particular, let V be an arbitrary �nite volume that contains the

scene as an unknown sub-volume. Also, assume that the surface of the

true scene conforms to a radiance model de�ned by a consistency check

algorithm consistK(). We represent V as a �nite collection of voxels

v1; : : : ; vM . Using this representation, each carving iteration removes a

single voxel from V.

The Subset Theorem leads directly to a method for selecting a voxel

to carve away from V at each iteration. Speci�cally, the theorem tells

us that if a voxel v on the surface of V is not photo-consistent, the

volume V = V � fvg must still contain the photo hull. Hence, if only

non-photo-consistent voxels are removed at each iteration, the carved

volume is guaranteed to converge to the photo hull. The order in which

non-photo-consistent voxels are examined and removed is not impor-

tant for guaranteeing correctness. Convergence to this shape occurs

when no non-photo-consistent voxel can be found on the surface of the

carved volume. These considerations lead to the following algorithm for

computing the photo hull:12

Space Carving Algorithm

Step 1: Initialize V to a volume containing the true scene.
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14 Kutulakos and Seitz

Step 2: Repeat the following steps for voxels v 2 Surf(V) until a non-

photo-consistent voxel is found:

a. Project v to all photographs in Vis
V
(v). Let col1; : : : ; colj be

the pixel colors to which v projects and let �1; : : : ; �j be the

optical rays connecting v to the corresponding optical centers.

b. Determine the photo-consistency of v using

consistK(col1; : : : ; colj; �1; : : : ; �j).

Step 3: If no non-photo-consistent voxel is found, set V� = V and

terminate. Otherwise, set V = V � fvg and repeat Step 2.

The key step in the algorithm is the search and voxel consistency

checking of Step 2. The following proposition gives an upper bound on

the number of voxel photo-consistency checks:

Proposition 1 The total number of required photo-consistency checks

is bounded by N �M where N is the number of input photographs and

M is the number of voxels in the initial (i.e., uncarved) volume.

Proof. Since (1) the photo-consistency of a voxel v that remains on

V's surface for several carving iterations can change only when Vis
V
(v)

changes due to V's carving, and (2) Vis
V
(v) expands monotonically as

V is carved (Visibility Lemma), the photo-consistency of v must be

checked at most N times. QED

5. A Multi-Sweep Implementation of Space Carving

Despite being relatively simple to describe, the Space Carving Algo-

rithm as described in Section 4 requires a di�cult update procedure

because of the need to keep track of scene visibility from all of the input

cameras. In particular, every time a voxel is carved a new set of voxels

becomes newly visible and must be re-evaluated for photo-consistency.

Keeping track of such changes necessitates computationally-expensive

ray-tracing techniques or memory-intensive spatial data structures (Cul-

bertson et al., 1999). To overcome these problems, we instead de-

scribe a multi-sweep implementation of the Space Carving Algorithm

that enables e�cient visibility computations with minimal memory

requirements.

paper.tex; 24/03/2000; 18:30; p.14



A Theory of Shape by Space Carving 15

p q

C1 C2

Figure 4. A Visibility Cycle. Voxel p occludes q from c1, whereas q occludes p from

c2. Hence, no visibility order exists that is the same for both cameras.

5.1. Multi-view Visibility Ordering

A convenient method of keeping track of voxel visibility is to evaluate

voxels in order of visibility, i.e., visit occluders before the voxels that

they occlude. The key advantage of this approach is that backtracking

is avoided|carving a voxel a�ects only voxels encountered later in the

sequence. For a single camera, visibility ordering amounts to visiting

voxels in a front-to-back order and may be accomplished by depth-

sorting (Newell et al., 1972; Fuchs et al., 1980). The problem of de�ning

visibility orders that apply simultaneously to multiple cameras is more

di�cult, however, because it requires that voxels occlude each other

in the same order from di�erent viewpoints. More precisely, voxel p is

evaluated before q only if q does not occlude p from any one of the

input viewpoints.

It is known that multi-view visibility orders exist for cameras that

lie on one side of a plane (Langer and Zucker, 1994). Recently, Seitz

and Dyer (Seitz and Dyer, 1999) generalized this case to a range of

interesting camera con�gurations by showing that multi-view visibility

orders always exist when the scene lies outside the convex hull of the

camera centers. When this constraint is satis�ed, evaluating voxels in

order of increasing distance to this camera hull yields a multi-view

visibility order that may be used to reconstruct the scene. The convex

hull constraint is a signi�cant limitation, however, because it strongly

restricts the types of scenes and range of views that are reconstructible.

In fact, it can be readily shown that no multi-view visibility constraint

exists in general (Fig. 4). Therefore, di�erent techniques are needed

in order to reconstruct scenes like Fig. 4 that violate the convex hull

constraint.

5.2. Plane-Sweep Visibility

While multi-view visibility orders do not exist in the general case, it is

possible to de�ne visibility orders that apply to a subset of the input

cameras. In particular, consider visiting voxels in order of increasing X

coordinate and, for each voxel p = (Xp; Yp; Zp), consider only cameras

whose X coordinates are less than Xp. If p occludes q from a camera
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(a) (b)

Figure 5. Plane-Sweep Visibility. The plane-sweep algorithm ensures that voxels are

visited in order of visibility with respect to all active cameras. The current plane and

active set of cameras is shown in orange. (b) The shape evolves and new cameras

become active as the plane moves through the scene volume.

at c, it follows that p is on the line segment cq and therefore Xp < Xq.

Consequently, p is evaluated before q, i.e., occluders are visited before

the voxels that they occlude.

Given this ordering strategy, the Space Carving Algorithm can be

implemented as a multi-sweep volumetric algorithm in which a solid

block of voxels is iteratively carved away by sweeping a single plane

through the scene along a set of pre-de�ned sweep directions (Fig. 5).

For each position of the plane, voxels on the plane are evaluated by

considering their projections into input images from viewpoints on one

side of the plane. In the above example, a plane parallel to the Y-Z

axis is swept in the increasing X direction.

Plane Sweep Algorithm

Step 1: Given an initial volume V, initialize the sweep plane � such

that V lies below � (i.e., � is swept towards V).

Step 2: Intersect � with the current shape V.

Step 3: For each surface voxel v on �:

a. let c1; : : : ; cj be the cameras above � for which v projects to

an unmarked pixel;

b. determine the photo-consistency of v using

consistK(col1; : : : ; colj; �1; : : : ; �j);

c. if v is inconsistent then set V = V � fvg, otherwise mark the

pixels to which v projects.

Step 4: Move � downward one voxel width and repeat Step 2 until V

lies above �.
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The dominant costs of this algorithm are (1) projecting a plane of

voxels intoN images, and (2) correlating pixels using consistK(col1; : : : ; colj ; �1; : : : ; �j).

Our implementation exploits texture-mapping graphics hardware (the

kind found on standard PC graphics cards) to project an entire plane

of voxels at a time onto each image. We have found that when this

optimization is used, the pixel correlation step dominates the compu-

tation.

5.3. Multi-Sweep Space Carving

The Plane Sweep Algorithm considers only a subset of the input cam-

eras for each voxel, i.e., the cameras on one side of the sweep plane.

Consequently, it may fail to carve voxels that are inconsistent with the

entire set of input images but are consistent with a proper subset of

these images. To ensure that all cameras are considered, we repeat-

edly perform six sweeps through the volume, corresponding to the six

principle directions (increasing and decreasing X, Y, and Z directions).

Furthermore, to guarantee that all cameras visible to a voxel are taken

into account, we perform an additional round of voxel consistency

checks that incorporate the voxel visibility information collected from

individual sweeps. The complete algorithm is as follows:

Multi-Sweep Space Carving Algorithm

Step 1: Initialize V to be a superset of the true scene.

Step 2: Apply the Plane Sweep Algorithm in each of the six principle

directions and update V accordingly.

Step 3: For every voxel in V whose consistency was evaluated in more

than one plane sweep:

a. let c1; : : : ; cj be the cameras that participated in the consistency

check of v in some plane sweep during Step 2;

b. determine the photo-consistency of v using

consistK(col1; : : : ; colj; �1; : : : ; �j).

Step 4: If no voxels were removed from V in Steps 2 and 3, set V� = V

and terminate; otherwise, repeat Step 2.

5.4. Lambertian Scenes

We give special attention to case of Lambertian scenes, in which the

Consistency Check Criteria can be de�ned using the standard deviation
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of colors, col1; : : : ; colK , at a voxel's projection. To account for errors

in the image formation process due to quantization, calibration, or

other e�ects, we call a voxel photo-consistent if � is below a given

threshold. This threshold is chosen by considering � to be a statistical

measure of voxel photo-consistency. In particular, suppose the sensor

error (accuracy of irradiance measurement) is normally distributed13

with standard deviation �0. The photo-consistency of a voxel v can be

estimated using the likelihood ratio test, distributed as �2 with K � 1

degrees of freedom (Freund, 1992):

�v =
(K � 1)�2

�20
: (1)

This formulation of the Consistency Check Criterion allows us to

incorporate two additional optimizations to the Multi-Sweep Carving

Algorithm. First, we maintain su�cient per-voxel color statistics be-

tween sweeps to integrate information from all input images, therefore

eliminating the need for Step 3 of the multi-sweep algorithm. This

is because the standard deviation of K monochrome pixel values of

intensity coli, can be computed using the following recursive formula:

�2 =
1

K

 
KX
i=1

col2i �

KX
i=1

coli

!
: (2)

It is therefore su�cient to maintain three numbers per voxel, namelyPK
i=1 coli,

PK
i=1 col

2
i , and K (i.e., seven numbers for three-component

color pixels). Second, to ensure that no camera is considered more

than once per voxel in the six sweeps, we further restrict the cameras

considered in each sweep to a pyramidal beam de�ned by the voxel

center and one of its faces, as shown in Fig. 6. This strategy partitions

the cameras into six non-overlapping sets to be processed in the six

respective sweeps, thereby ensuring that each camera is considered

exactly once per voxel during the six sweeps.

6. 3D Photography by Space Carving

6.1. Image Acquisition

In the Space Carving Algorithm, every input photograph can be thought

of as a shape constraint that forces the reconstructed scene volume to

contain only voxels consistent with the photograph. To ensure that

the algorithm's output closely resembles the shape and appearance of
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voxel

sweep plane

sweep direction

Figure 6. To ensure that a camera is processed at most once per voxel during the six

plane sweeps, the set of cameras considered in each sweep is clipped to a pyramidal

beam de�ned by the center of the voxel and one of its faces.

a complicated 3D scene it is therefore important to acquire enough

photographs of the scene itself. In a typical image acquisition session,

we take between 10 and 100 calibrated images around the scene of

interest using a Pulnix TMC-9700 color CCD camera (Fig. 7).

A unique property of the Space Carving Algorithm is that it can be

forced to automatically segment a 3D object of interest from a larger

scene using two complementary methods. The �rst method, illustrated

in the sequence of Fig. 7, involves slightly modifying the image acquisi-

tion process|before we take a photograph of the object of interest

from a new viewpoint, we manually alter the object's background.

This process enabled segmentation and complete reconstruction of the

gargoyle sculpture; the Space Carving Algorithm e�ectively removed

all background pixels in all input photographs because the varying

backgrounds ensured that photo-consistency could not be enforced for

points projecting to non-object pixels. Note that image subtraction

or traditional matting techniques (Smith and Blinn, 1996) cannot be

applied to this image sequence to segment the sculpture since every

photograph was taken from a di�erent position in space and therefore

the background is di�erent in each image. The second method, illus-

trated in Fig. 9, involves de�ning an initial volume V (e.g., a bounding

box) that is \tight enough" to ensure reconstruction of only the object

of interest. This process enabled segmentation of the hand because the

initial volume did not intersect distant objects such as the TV monitor.
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6.2. Reconstruction Results

In this section we present results from applying our Multi-Sweep im-

plementation of the Space Carving Algorithm to a variety of image

sequences. In all examples, a Lambertian model was used for the Con-

sistency Check Criterion, i.e., it was assumed that a voxel projects to

pixels of the same color in every image. The standard deviation of these

pixels was therefore used to determine whether or not a voxel should

be carved, as described in Section 5.

We �rst ran the Space Carving Algorithm on 16 images of a gar-

goyle sculpture (Fig. 7). The sub-pixel calibration error in this sequence

enabled using a small threshold of 6% for the RGB component error.

This threshold, along with the voxel size and the 3D coordinates of a

bounding box containing the object were the only parameters given as

input to our implementation. Fig. 8 shows selected input images and

new views of the reconstruction. This reconstruction consisted of 215

thousand surface voxels that were carved out of an initial volume of

approximately 51 million voxels. It took 250 minutes to compute on an

SGI O2 R10000/175MHz workstation. Some errors are still present in

the reconstruction, notably holes that occur as a result of shadows and

other illumination changes due to the object's rotation inside a static,

mostly di�use illumination environment. These e�ects were not mod-

eled by the Lambertian model and therefore caused voxels on shadowed

surfaces to be carved. The �nite voxel size, calibration error, and image

discretization e�ects resulted in a loss of some �ne surface detail. Voxel

size could be further reduced with better calibration, but only up to the

point where image discretization e�ects (i.e., �nite pixel size) become

a signi�cant source of error.

Results from a sequence of one hundred images of a hand are shown

in Figs. 9 and 10. Note that the near-perfect segmentation of the hand

from the rest of the scene was performed not in image-space, but in

3D object space|the background lay outside the initial block of voxels

and was therefore not reconstructed. This method of 3D background

segmentation has signi�cant advantages over image subtraction and

chroma-keying methods because it (1) does not require the background

to be known and (2) will never falsely eliminate foreground pixels, as

these former techniques are prone to do (Smith and Blinn, 1996).

Two kinds of artifacts exist in the resulting reconstructions. First,

voxels that are not visible from any input viewpoint do not have a

well-de�ned color assignment and are given a default color. These arti-

facts can be eliminated by acquiring additional photographs to provide

adequate coverage of the scene's surfaces. Second, stray voxels may be

reconstructed in unoccupied regions of space due to accidental agree-
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Figure 7. Nine of sixteen 486x720 RGB images of a gargoyle stone sculpture. The

sequence corresponds to a complete circumnavigation of the object, performed in

approximately 22:5 degree increments.

ments between the input images. Such artifacts can be easily avoided

by re-applying the Space Carving Algorithm on an initial volume that

does not contain those regions or by post-�ltering the reconstructed

voxel model.

In a �nal experiment, we applied our algorithm to images of a

synthetic building scene rendered from both its interior and exterior

(Figure 11). This placement of cameras yields an extremely di�cult

stereo problem, due to the drastic changes in visibility between interior

and exterior cameras.14 Figure 11 compares the original model and the

reconstruction from di�erent viewpoints. The model's appearance is

very good near the input viewpoints, as demonstrated in Figs. 11b-c.

Note that the reconstruction tends to \bulge" out and that the walls are

not perfectly planar (Figure 11e). This behavior is exactly as predicted

by Theorem 2|the algorithm converges to the largest possible shape

that is consistent with the input images. In low-contrast regions where
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(a) (b)

(c) (d)

Figure 8. Reconstruction of a gargoyle sculpture. One of 16 input images is shown

(a), along with views of the reconstruction from the same (b) and new (c-d)

viewpoints.
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Figure 9. Six out of one hundred photographs of a hand sequence.

shape is visually ambiguous, this causes signi�cant deviations between

the computed photo hull and the true scene. While these deviations do

not adversely a�ect scene appearance near the input viewpoints, they

can result in noticeable artifacts for far-away views. These deviations

and the visual artifacts they cause are easily remedied by including

images from a wider range of camera viewpoints to further constrain

the scene's shape, as shown in Figure 11f.

Our experiments highlight a number of advantages of our approach

over previous techniques. Existing multi-baseline stereo techniques (Oku-

tomi and Kanade, 1993) work best for densely textured scenes and

su�er in the presence of large occlusions. In contrast, the hand sequence

contains many low-textured regions and dramatic changes in visibility.

The low-texture and occlusion properties of such scenes cause problems

for feature-based structure-from-motion methods (Tomasi and Kanade,

1992; Seitz and Dyer, 1995; Beardsley et al., 1996; Pollefeys et al.,

1998), due to the di�culty of locating and tracking a su�cient number

of features throughout the sequence. While contour-based techniques

like volume intersection (Martin and Aggarwal, 1983; Szeliski, 1993)

often work well for similar scenes, they require detecting silhouettes

or occluding contours. For the gargoyle sequence, the background was

unknown and heterogeneous, making the contour detection problem

extremely di�cult. Note also that Seitz and Dyer's voxel coloring tech-

nique (Seitz and Dyer, 1999) would not work for any of the above

sequences because of the constraints it imposes on camera placement.

Our approach succeeds because it integrates both texture and con-

tour information as appropriate, without the need to explicitly detect

features or contours, or constrain viewpoints. Our results indicate the

approach is highly e�ective for both densely textured and untextured

objects and scenes.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Reconstruction of a hand. An input image is shown in (a) along with

views of the reconstruction from the same (b) and other (d-f) viewpoints. The

reconstructed model was computed using an RGB component error threshold of

6%. The model has 112 thousand voxels and took 53 seconds to compute. The blue

line in (b) indicates the z-axis of the world coordinate system.
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7. Concluding Remarks

This paper introduced photo-consistency theory as a new, general math-

ematical framework for analyzing the 3D shape recovery problem from

multiple images. We have shown that this theory leads to a \least

commitment" approach for shape recovery and a practical algorithm

called Space Carving that together overcome several limitations in the

current state of the art. First, the approach allows us to analyze and

characterize the set of all possible reconstructions of a scene, without

placing constraints on geometry, topology, or camera con�guration.

Second, this is the only provably-correct method, to our knowledge,

capable of reconstructing non-smooth, free-form shapes from cameras

positioned and oriented in a completely arbitrary way. Third, the per-

formance of the Space Carving Algorithm was demonstrated on real and

synthetic image sequences of geometrically-complex objects, including

a large building scene photographed from both interior and exterior

viewpoints. Fourth, the use of photo-consistency as a criterion for 3D

shape recovery enables the development of reconstruction algorithms

that allow faithful image reprojections and resolve the complex in-

teractions between occlusion, parallax, and shading e�ects in shape

analysis.

While the Space Carving Algorithm's e�ectiveness was demonstrated

in the presence of low image noise, the photo-consistency theory itself is

based on an idealized model of image formation. Extending the theory

to explicitly model image noise, quantization and calibration errors, and

their e�ects on the photo hull is an open research problem (Kutulakos,

2000). Extending the formulation to handle non-locally computable ra-

diance models (e.g., shadows and inter-re
ections) is another important

topic of future work. Other research directions include (1) developing

space carving algorithms for images with signi�cant pixel noise, (2) in-

vestigating the use of surface-based rather than voxel-based techniques

for �nding the photo hull, (3) incorporating a priori shape constraints

(e.g., smoothness), and (4) analyzing the topological structure of the

set of photo-consistent shapes. Finally, an on-line implementation of

the Space Carving Algorithm, that performs image capture and scene

reconstruction simultaneously, would be extremely useful both to facil-

itate the image acquisition process and to eliminate the need to store

long video sequences.
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Virtual View

(a)

(b) (c)

(d) (e) (f)

Figure 11. Reconstruction of a synthetic building scene. (a) 24 Cameras were placed

in both the interior and exterior of a building to enable simultaneous, complete re-

construction of its exterior and interior surfaces. The reconstruction contains 370,000

voxels, carved out of a 200 � 170 � 200 voxel block. (b) A rendered image of the

building for a viewpoint near the input cameras (shown as \virtual view" in (a)) is

compared to the view of the reconstruction (c). (d-f) Views of the reconstruction

from far away camera viewpoints. (d) shows a rendered top view of the original

building, (e) the same view of the reconstruction, and (f) a new reconstruction

resulting from adding image (d) to the set of input views. Note that adding just a

single top view dramatically improves the quality of the reconstruction.
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Appendix

In general, the photo hull, V�, of a set V is the union of a potentially

in�nite collection of shapes in V. Such unions do not always correspond

to a closed subset of IR3 (Armstrong, 1983). As a result, even though

all points of the photo hull are photo-consistent, the photo hull itself

may not satisfy the de�nition of a 3D shape given in Section 2. In

this Appendix we investigate the properties of the closure, V�, of V�

which is always a valid shape.15 In particular, we show that V� satis�es

a slightly weaker form of photo-consistency called directional �-photo-

consistency, de�ned below. This property leads to a generalization of

Theorem 2:

Theorem 3 (Closed Photo Hull Theorem) Let V be an arbitrary

shape in IR3
and let V� be the closure of the union of all photo-consistent

shapes in V. The shape V
� is directionally �-photo-consistent and is

called the closed photo hull.

A.1. The Strong Visibility Condition

Because we impose no constraints on the structure of the photo-consistent

shapes in V that are considered in our analysis (e.g., smoothness), it is

possible to de�ne degenerate shapes that defy one's \intuitive" notions

of visibility and occlusion. More speci�cally, the standard de�nition of

visibility of a surface point p from a camera c requires that the open line

segment pc does not intersect the shape itself; otherwise, p is de�ned

to be occluded. When V is arbitrary, however, it is possible to de�ne

shapes whose surface gets in�nitesimally close to this line segment at

one or more points other than p. Intuitively, surface points that have

this property are not occluded under the above de�nition but are not
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\fully visible" either. We therefore re�ne the notion of visibility in a

way that excludes such degeneracies. In particular, let B(p; �) � IR3 be

the open 3-ball of radius � that is centered at p:

De�nition 4 (Strong Visibility Condition) A point p on the sur-

face of a shape V is strongly visible to a set of cameras if it is visible

from those cameras and if, for every � > 0, there exists a closed set N

and an �0 < e such that the following two properties are satis�ed:

1. N contains all its occluders, i.e., for every camera c and point

p 2 N , if q occludes p from c then q 2 N , and

2. B(p; �0) � N � B(p; �).

Intuitively, the strong visibility condition is equivalent to the stan-

dard de�nition of point visibility for shapes that are \well-behaved"|it

di�ers from this de�nition only in cases where the ray from point p to a

camera comes arbitrarily close to the shape outside p's neighborhood.

An illustration of a strong visibility neighborhood N is given in Fig.

12b.

A.2. Directional �-Photo-Consistency

When V� and V� are not equal, the closed photo hull will contain limit

points that do not belong to any photo-consistent subset of V. These

limit points are not always photo-consistent (Fig. 12a). Fortunately,

even though the photo-consistency of these points cannot be guaran-

teed, these points (as well as the rest of V�) do satisfy the directional

�-photo-consistency property:

De�nition 5 (Strongly Visible Camera Set) If p 2 V, �p is a

plane through p, and C is the set of cameras in Vis
V
(p) that are strictly

above �p, de�ne

SVis
V
(�p) =

(
C if p is strongly visible to C;

; otherwise:
(3)

De�nition 6 (Directional Point Photo-Consistency) A point p in

V is directionally photo-consistent if for every oriented plane �p through

p, the point p is photo-consistent with all cameras in SVis
V
(�p).

De�nition 7 (Directional �-photo-consistency) A point p in V is

directionally �-photo-consistent if for every � > 0 and every oriented

plane �p through p, there exists a point q 2 B(p; e) that is photo-

consistent with all cameras in SVis
V
(�p).
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N
p

c

V*
N

p
q

c

P

c

V*

(a) (b) (c)

Figure 12. (a) Non-photo-consistent points on the closed photo hull. The 2D scene

is composed of a closed thick line segment ab that is painted gray, white, and black.

The points d1; d2, corresponding to color transitions, are painted white. When V is

de�ned by the triangle abc, the closed photo hull, V�, is de�ned by the region shown

in light gray. Note that even though p 2 V� is directionally �-photo-consistent, it

is not photo-consistent: p projects to a white pixel in the left camera and a gray

pixel in the right one. (b)-(c) Proof of Theorem 3. (b) A point p is strongly visible

to three cameras by means of neighborhood N . (c) The closest point q 2 N \ P to

�c is visible to all cameras on or above �c.

Compared to the de�nition of point photo-consistency (De�nition 1),

directional photo-consistency relaxes the requirement that p's radiance

assignment must agree with all visible cameras. Instead, it requires

the ability to �nd radiance assignment(s) that force agreement only

with visible cameras within the same half-space. Directional �-photo-

consistency goes a step further, lifting the requirement that every sur-

face point p must have a directionally consistent radiance assignment.

The only requirement is that p is in�nitesimally close to a point for

which directional consistency can be established with respect to the

cameras from which p is strongly visible.

Despite their di�erences, photo-consistency and directional �-photo-

consistency share a common characteristic: we can determine whether

or not these properties hold for a given shape V without having any

information about the photo-consistent shapes contained in V. This

is especially important when attempting to characterize V� because it

establishes a direct link between V
� and the image observations that

does not depend on explicit knowledge of the family of photo-consistent

shapes.

A.3. Proof of Theorem 3

Since points that are not strongly visible are always directionally �-

photo-consistent, it is su�cient to consider only strongly visible points

p 2 V
�. More speci�cally, it su�ces to show that every open ball,

B(p; �), contains a point q on some photo-consistent shape P such that
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the set Vis
P
(q) contains all cameras in SVis

V
�(�p). For if q is photo-

consistent with Vis
P
(q), it follows that q is photo-consistent with any

of its subsets.

We proceed by �rst choosing a photo-consistent shape P and then

constructing the point q (Figs. 12b,c). In particular, let c be a camera

in SVis
V
�(�p) that is closest to �p, and let �c be the plane through c

that is parallel to �p. Fix � such that 0 < � < k, where k is the distance

from c to �p.

Let N � B(p; �) be a set that establishes p's strong visibility accord-

ing to De�nition 4. According to the de�nition,N contains an open ball

B(p; �0) for some �0 < �. By the de�nition of the photo hull, there exists

a photo-consistent shape P that intersects B(p; �0).

We now construct point q and consider the set of cameras from

which q is visible. Let q be a point in the set P \ N that minimizes

perpendicular distance to �c.
16 By construction, no point in N \ P

occludes q from the cameras in SVis
V
�(�p). Moreover, since q 2 N ,

De�nition 4 tells us that no point in P � N can occlude q from the

cameras in SVis
V
�(�p). It follows that VisP(q) � SVis

V
�(�p). QED

Notes

1 Examples include the use of the small baseline assumption in stereo to simplify

correspondence-�nding and maximize joint visibility of scene points (Kanade et al.,

1996), the availability of easily-detectable image contours in shape-from-contour

reconstruction (Vaillant and Faugeras, 1992), and the assumption that all views are

taken from the same viewpoint in photometric stereo (Woodham et al., 1991).
2 Faugeras (Faugeras, 1998) has recently proposed the termmetameric to describe

such shapes, in analogy with the term's use in the color perception (Alfvin and

Fairchild, 1997) and structure-from-motion literature (van Veen and Werkhoven,

1996).
3 Note that both of these generalizations represent signi�cant improvements in

the state of the art. For instance, silhouette-based algorithms require identi�cation

of silhouettes, fail at surface concavities, and treat only the case of binary images.

While (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998) also used a volumetric

algorithm, their method worked only when the scene was outside the convex hull of

the cameras. This restriction strongly limits the kinds of environments that can be

reconstructed, as discussed in Section 6.
4 More formally, we use the term shape to refer to any closed set V � IR3 for

which every point p 2 V is in�nitesimally close to an open 3-ball inside V. That is,

for every � > 0 there is an open 3-ball, B(p; �), that contains an open 3-ball lying

inside V. Similarly, we de�ne the surface of V to be the set of points in V that are

in�nitesimally close to a point outside V.
5 Note that even points on a radiance discontinuity must have a unique radiance

function assigned to them. For example, in the scene of Fig. 3, the point of transition

between red and blue surface points must be assigned either a red or a blue color.

paper.tex; 24/03/2000; 18:30; p.30



A Theory of Shape by Space Carving 31

6 In the following, we make the simplifying assumption that pixel values in the

image measure scene radiance directly.
7 For example, set radp(~pc) equal to the color at p's projection.
8 Strictly speaking, locally-computable radiance models cannot completely ac-

count for surface normals and other neighborhood-dependent quantities. However,

it is possible to estimate surface normals based purely on radiance information and

thereby approximately model cases where the light source changes (Seitz and Ku-

tulakos, 1998) or when re
ectance is normal-dependent (Sato et al., 1997). Speci�c

examples include (1) using a mobile camera mounted with a light source to capture

photographs of a scene whose re
ectance can be expressed in closed form (e.g., using

the Torrance-Sparrow model (Torrance and Sparrow, 1967; Sato et al., 1997)), and

(2) using multiple cameras to capture photographs of an approximately Lambertian

scene under arbitrary unknown illumination (Figure 1).
9 Note that if V = IR3, the problem reduces to the case when no constraints on

free space are available.
10 Our use of the term photo hull to denote the \maximal" photo-consistent shape

de�ned by a collection of photographs is due to a suggestion by Leonard McMillan.
11 Examples include de�ning V to be equal to the visual hull or, in the case of a

camera moving through an environment , IR3 minus a tube along the camera's path.
12 Convergence to this shape is provably guaranteed only for scenes representable

by a discrete set of voxels.
13 Here we make the simplifying assumption that �0 does not vary as a function

of wavelength.
14 For example, the algorithms in (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998)

fail catastrophically for this scene because the distribution of the input views and the

resulting occlusion relationships violate the assumptions used by those algorithms.
15 To see this, note that V� is, by de�nition, a closed subset of IR3. Now observe

that every point p 2 V� is in�nitesimally close to a point on some photo-consistent

shape V 0. It follows that p is in�nitesimally close to an open 3-ball inside V 0 � V�.

The closed photo hull therefore satis�es our de�nition of a shape.
16 Note that such a point does exist since P \ N is a closed and bounded subset

of IR3 and hence it is compact (Armstrong, 1983).
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http://www.cs.berkeley.edu/˜debevec/Thesis

1 Introduction

The creation of three-dimensional models of existing architectural scenes with the aid of the computer has
been commonplace for some time, and the resulting models have been both entertaining virtual environments
as well as valuable visualization tools. Large-scale efforts have pushed the campuses of Iowa State University,
California State University – Chico, and swaths of downtown Los Angeles [23] through the graphics pipeline.
Unfortunately, the modeling methods employed in such projects are very labor-intensive. They typically in-
volve surveying the site, locating and digitizingarchitectural plans (if available), and converting existing CAD
data (if available). Moreover, the renderings of such models are noticeably computer-generated; even those
that employ large number of texture-maps generally fail to resemble real photographs.

Already, efforts to build computer models of architectural scenes have produced many interesting appli-
cations in computer graphics; a few such projects are shown in Fig. 1. Unfortunately, the traditional methods
of constructing models (Fig. 2a) of existing architecture, in which a modeling program is used to manually
position the elements of the scene, have several drawbacks. First, the process is extremely labor-intensive,
typically involving surveying the site, locating and digitizing architectural plans (if available), or converting
existing CAD data (again, if available). Second, it is difficult to verify whether the resulting model is accurate.
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Figure 1: Three ambitious projects to model architecture with computers, each presented with a rendering of
the computer model and a photograph of the actual architecture. Top: Soda Hall Walkthru Project [47, 19],
University of California at Berkeley. Middle: Giza Plateau Modeling Project, University of Chicago. Bottom:
Virtual Amiens Cathedral, Columbia University. Using traditional modeling techniques (Fig. 2a), each of
these models required many person-months of effort to build, and although each project yielded enjoyable
and useful renderings, the results are qualitatively different from actual photographs of the architecture.
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Most disappointing, though, is that the renderings of the resulting models are noticeably computer-generated;
even those that employ liberal texture-mapping generally fail to resemble real photographs. As a result, it is
easy to distinguish the computer renderings from the real photographs in Fig. 1.

Recently, creating models directly from digital images has received increased interest in both computer
vision and in computer graphics under the title of image-based modeling and rendering. Since real images are
used as input, such an image-based system (Fig. 2c) has an advantage in producing photorealistic renderings
as output. Some of these promising systems (e.g. [26, 32, 31, 44, 39], see also Figs. 3 and 4) employ the com-
puter vision technique of computational stereopsis to automatically determine the structure of the scene from
the multiple photographs available. As a consequence, however, these systems are only as strong as the under-
lying stereo algorithms. This has caused problems because state-of-the-art stereo algorithms have a number
of significant weaknesses; in particular, the photographs need to have similar viewpoints for reliable results
to be obtained. Because of this, current image-based techniques must use many closely spaced images, and
in some cases employ significant amounts of user input for each image pair to supervise the stereo algorithm.
In this framework, capturing the data for a realistically renderable model would require an impractical num-
ber of closely spaced photographs, and deriving the depth from the photographs could require an impractical
amount of user input. These concessions to the weakness of stereo algorithms would seem to bode poorly for
creating large-scale, freely navigable virtual environments from photographs.

The techniques presented in these notes aim to make the process of obtaining basic models of architectural
scenes more convenient, more accurate, and more photorealistic than the methods currently available. The ap-
proach developed draws on the strengths of both geometry-based and image-based methods, as illustrated in
Fig. 2b. The result is that our approach to modeling and rendering architecture requires only a sparse set of
photographs and can produce realistic renderings from arbitrary viewpoints. In our approach, a basic geomet-
ric model of the architecture is recovered semi-automatically with an easy-to-use photogrammetric modeling
system (explained in the following reprinted paper [12]), novel views are created using view-dependent tex-
ture mapping [12, 13], and additional geometric detail can be recovered through model-based stereo corre-
spondence [12, 10]. The final images can be rendered with current image-based rendering techniques or with
traditional texture-mapping hardware. Because only photographs are required, our approach to modeling ar-
chitecture is neither invasive nor does it require architectural plans, CAD models, or specialized instrumenta-
tion such as surveying equipment, GPS sensors or laser range scanners.

2 Work Related to Photogrammetric Modeling

The process of recovering 3D structure from 2D images has been a central endeavor within computer vision,
and the process of rendering such recovered structures is an emerging topic in computer graphics. Although
no general technique exists to derive models from images, several areas of research have provided results
that are applicable to the problem of modeling and rendering architectural scenes. The particularly relevant
areas reviewed here are: Camera Calibration, Structure from Motion, Shape from Silhouette Contours, Stereo
Correspondence, and Image-Based Rendering.

2.1 Camera calibration

Recovering 3D structure from images becomes a simpler problem when the images are taken with calibrated
cameras. For our purposes, a camera is said to be calibrated if the mapping between image coordinates and
directions relative to the camera center are known. However, the position of the camera in space (i.e. its
translation and rotation with respect to world coordinates) is not necessarily known. An excellent presentation
of the algebraic and matrix representations of perspective cameras may be found in [17].

Considerable work has been done in both photogrammetry and computer vision to calibrate cameras and
lenses for both their perspective intrinsic parameters and their distortion patterns. Some successful methods
include [49], [16], and [15]. While there has been recent progress in the use of uncalibrated views for 3D
reconstruction [18], this method does not consider non-perspective camera distortion which prevents high-
precision results for images taken with real cameras. We have found camera calibration to be a straightforward
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Figure 2: Schematic of how our hybrid approach combines geometry-based and image-based approaches to
modeling and rendering architecture from photographs. The geometry-based approach illustrated places the
majority of the modeling task on the user, whereas the image-based approach places the majority of the task
on the computer. Our method divides the modeling task into two stages, one that is interactive, and one that
is automated. The dividing point we have chosen capitalizes on the strengths of both the user and the com-
puter to produce the best possible models and renderings using the fewest number of photographs. The dashed
line in the geometry-based schematic indicates that images may optionally be used in a modeling program as
texture-maps. The dashed line in the image-based schematic indicates that in some systems user input is used
to initialize the stereo correspondence algorithm. The dashed line in the hybrid schematic indicates that view-
dependent texture-mapping (discussed later in these notes and in [10, 13, 36]) can be used without performing
stereo correspondence.
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Figure 3: The Immersion ’94 [32] stereo image sequence capture rig, being operated by Michael Naimark of
Interval Research Corporation. Immersion ’94 was one project that attempted to create navigable, photoreal-
istic virtual environments from photographic data. The stroller supports two identical 16mm movie cameras,
and has an encoder on one wheel to measure the forward motion of the rig. The cameras are motor-driven
and can be programmed to take pictures in synchrony at any distance interval as the camera rolls forward. For
much of the work done for the Immersion project, the forward motion distance between acquired stereo pairs
was one meter.

process that considerably simplifies the problem of 3D reconstruction, although the methods presented here
can also solve for focal lengths and other intrinsic parameters if necessary. [10], Chapter 4 provides a more
detailed overview of the issues involved in camera calibration and discusses the camera calibration process
used in this work.

2.2 Structure from motion

Given the 2D projection of a point in the world, its position in 3D space could be anywhere on a ray extending
out in a particular direction from the camera’s optical center. However, when the projections of a sufficient
number of points in the world are observed in multiple images from different positions, it is mathematically
possible to deduce the 3D locations of the points as well as the positions of the original cameras, up to an
unknown factor of scale.

This problem has been studied in the area of photogrammetry for the principal purpose of producing topo-
graphic maps. In 1913, Kruppa [25] proved the fundamental result that given two views of five distinct points,
one could recover the rotation and translation between the two camera positions as well as the 3D locations
of the points (up to a scale factor). Since then, the problem’s mathematical and algorithmic aspects have been
explored starting from the fundamental work of Ullman [51] and Longuet-Higgins [29], in the early 1980s.
Faugeras’s book [17] overviews the state of the art as of 1992. So far, a key realization has been that the recov-
ery of structure is very sensitive to noise in image measurements when the translation between the available
camera positions is small.

Attention has turned to using more than two views with image stream methods such as [48] or recursive
approaches [1]. Tomasi and Kanade [48] (see Fig. 5) showed excellent results for the case of orthographic
cameras, but direct solutions for the perspective case remain elusive. In general, linear algorithms for the
problem fail to make use of all available information while nonlinear optimization methods are prone to diffi-
culties arising from local minima in the parameter space. An alternative formulation of the problem by Taylor
and Kriegman [46] (see Fig. 6) uses lines rather than points as image measurements, but the previously stated
concerns were shown to remain largely valid. For purposes of computer graphics, there is yet another problem:
the models recovered by these algorithms consist of sparse point fields or individual line segments, which are
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Figure 4: The Immersion ’94 [32] image-based modeling and rendering (see Fig. 2c) project. The top two
photos are a stereo pair (reversed for cross-eyed stereo viewing) taken with the apparatus in Fig. 3 in Canada’s
Banff National Forest. The film frame was overscanned to assist in image registration. The middle left photo is
a stereo disparity map produced by a parallel implementation of the Zabih-Woodfill stereo algorithm [55]. To
its right the map has been processed using a left-right consistency check to invalidate regions where running
stereo based on the left image and stereo based on the right image did not produce consistent results. Below
are two virtual views generated by casting each pixel out into space based on its computed depth estimate,
and reimaging the pixels into novel camera positions. On the left is the result of virtually moving one meter
forward, on the right is the result of virtually moving one meter backward. Note the dark de-occluded areas
produced by these virtual camera moves; these areas were not seen in the original stereo pair. In the Immersion
’94 animations, these regions were automatically filled in from neighboring stereo pairs.
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Figure 5: Images from the 1992 Tomasi-Kanade structure from motion paper [48]. In this paper, feature points
were automatically tracked in an image sequence of a model house rotating. By assuming the camera was or-
thographic (which was approximated by using a telephoto lens), they were able to solve for the 3D structure
of the points using a linear factorization method. The above left picture shows a picture from the original se-
quence, the above right picture shows a second image of the model from above (not in the original sequence),
and the plot below shows the 3D recovered points from the same camera angle as the above right picture. Al-
though an elegant and fundamental result, this approach is not directly applicable to real-world scenes because
real camera lenses (especially those typically used for architecture) are too wide-angle to be approximated as
orthographic.
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Figure 6: Images from the 1995 Taylor-Kriegman structure from motion paper [46]. In this work, structure
from motion is recast in terms of line segments rather than points. A principal benefit of this is that line fea-
tures are often more easily located in architectural scenes than point features. Above are two of eight images
of a block scene; edge correspondences among the images were provided to the algorithm by the user. The
algorithm then employed a nonlinear optimization technique to solve for the 3D positions of the line segments
as well as the original camera positions, show below. This work used calibrated cameras, but allowed a full
perspective model to be used in contrast to Tomasi and Kanade [48]. However, the optimization technique
was prone to getting caught in local minima unless good initial estimates of the camera orientations were pro-
vided. This work was extended to become the basis of the photogrammetric modeling method presented in
this section of these notes.
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not directly renderable as solid 3D models.

In our approach, we exploit the fact that we are trying to recover geometric models of architectural scenes,
not arbitrary three-dimensional point sets. This enables us to include additional constraints not typically avail-
able to structure from motion algorithms and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in an interactive system for building architectural models
from photographs, described in the following paper.

2.3 Shape from silhouette contours

Some work has been done in both computer vision and computer graphics to recover the shape of objects
from their silhouette contours in multiple images. If the camera geometry is known for each image, then each
contour defines an infinite, cone-shaped region of space within which the object must lie. An estimate for
the geometry of the object can thus be obtained by intersecting multiple such regions from different images.
As a greater variety of views of the object are used, this technique can eventually recover the ray hull1 of the
object. A simple version of the basic technique was demonstrated in [8], shown in Fig. 7. In this project, three
nearly orthographic photographs of a car were used to carve out its shape, and the images were mapped onto
this geometry to produce renderings. Although just three views were used, the recovered shape is close to the
actual shape because the views were chosen to align with the mostly boxy geometry of the object. A project in
which a continuous stream of views was used to reconstruct object geometry is presented in [45, 44]; see also
Fig. 8. A similar silhouette-based technique was used to provide an approximate estimate of object geometry
to improve renderings in the Lumigraph image-based modeling and rendering system [20].

In modeling from silhouettes, qualitatively better results can be obtained for curved objects by assuming
that the object surface normal is perpendicular to the viewing direction at every point of the contour. Using
this constraint, [43] developed a surface fitting technique to recover curved models from images.

In general, silhouette contours can be used effectively to recover approximate geometry of individual ob-
jects, and the process can be automated if there is known camera geometry and the objects can be automatically
segmented out of the images. Silhouette contours can also be used very effectively to recover the precise ge-
ometry of surfaces of revolution in images. However, for the general shape of an arbitrary building that has
many sharp corners and concavities, silhouette contours alone can not provide adequately accurate model ge-
ometry.

Although not adequate for general building shapes, silhouette contours could be useful in recovering the
approximate shapes of trees, bushes, and topiary in architectural scenes. Techniques such as those presented in
[35] could then be used to synthesize detailed plant geometry to conform to the shape and type of the original
flora. This technique would seem to hold considerably more promise for practically recovering plant structure
than trying to reconstruct the position and coloration of each individual leaf and branch of every tree in the
scene.

2.4 Stereo correspondence

The geometrical theory of structure from motion assumes that one is able to solve the correspondence prob-
lem, which is to identify the points in two or more images that are projections of the same point in the world.
In humans, corresponding points in the two slightly differing images on the retinas are determined by the vi-
sual cortex in the process called binocular stereopsis. Two terms used in reference to stereo are baseline and
disparity. The baseline of a stereo pair is the distance between the camera locations of the two images. Dis-
parity refers to the difference in image location between corresponding features in the two images, which is
projectively related to the depth of the feature in the scene.

Years of research (e.g. [2, 14, 21, 24, 30, 33, 34]) have shown that determining stereo correspondences by
computer is difficult problem. In general, current methods are successful only when the images are similar in
appearance, as in the case of human vision, which is usually obtained by using cameras that are closely spaced

1The ray hull of an object is the complement of the union of all rays in space which do not intersect the object. The ray hull can capture
some forms of object concavities, but not, in general, complicated concave structure.
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Figure 7: Images from the 1991 Chevette Modelingproject [8]. The top three images show pictures of the 1980
Chevette photographed with a 210mm lens from the top, side, and front. The Chevette was semi-automatically
segmented from each image, and these images were then registered with each other approximating the projec-
tion as orthographic. The registered photographs are shown placed in proper relation to each other on the faces
of a rectangular box in the center of the figure. The shape of the car is then carved out from the box volume
by perpendicularly sweeping each of the three silhouettes like a cookie-cutter through the box volume. The
recovered volume (shown inside the box) is then textured-mapped by projecting the original photographs onto
it. The bottom of the figure shows a sampling of frames from a synthetic animation of the car flying across
the screen. Although (and perhaps because) the final model has flaws resulting from specularities, missing
concavities, and imperfect image registration, it unequivocally evokes an uncanny sense of the actual vehicle.
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Figure 8: Images from a silhouette modeling project by Rick Szeliski [45, 44]. The cup was videotaped on
a rotating platform (left), and the extracted contours from this image sequence were used to automatically
recover the shape of the cup (right).

relative to the objects in the scene. As the distance between the cameras (often called the baseline) increases,
surfaces in the images exhibit different degrees of foreshortening, different patterns of occlusion, and large
disparities in their locations in the two images, all of which makes it much more difficult for the computer to
determine correct stereo correspondences. To be more specific, the major sources of difficulty include:

1. Foreshortening. Surfaces in the scene viewed from different positions will be foreshortened differ-
ently in the images, causing the image neighborhoodsof corresponding pixels to appear dissimilar. Such
dissimilarity can confound stereo algorithms that use local similarity metrics to determine correspon-
dences.

2. Occlusions. Depth discontinuities in the world can create half-occluded regions in an image pair, which
also poses problems for local similarity metrics.

3. Lack of Texture. Where there is an absence of image intensity features it is difficult for a stereo algo-
rithm to correctly find the correct match for a particular point, since many point neighborhoods will be
similar in appearance.

Unfortunately, the alternative of improving stereo correspondence by using images taken from nearby lo-
cations has the disadvantage that computing depth becomes very sensitive to noise in image measurements.
Since depth is computed by taking the inverse of disparity, image pairs with small disparities tend to give rise
to noisy depth estimates. Geometrically, depth is computed by triangulating the position of a matched point
from its imaged position in the two cameras. When the cameras are placed close together, this triangle be-
comes very narrow, and the distance to its apex becomes very sensitive to the angles at its base. Noisy depth
estimates mean that novel views will become visually unconvincing very quickly as the virtual camera moves
away from the original viewpoint2.

Thus, computing scene structure from stereo leaves us with a conundrum: image pairs with narrow base-
lines (relative to the distance of objects in the scene) are similar in appearance and make it possible to auto-

2The error present in a synthetic view as a function of stereo correspondenceaccuracy can be described as the re-rendering equation.
If the novel view is at the same position as the original view, then no amount of depth estimation error can effect the appearance of the
re-rendered view; it will always be the same as the original view up to rotation. However, if the novel view is displaced up to one baseline
away from the original view, then a stereo correspondence error of n pixels will cause up to n pixels of error in the reprojected position
of the mis-corresponded pixel. For a displacement up to k baselines away from the original viewpoint, the reprojection error will be up
to kn pixels in the reprojected view, with this bound realized if the camera motion is parallel to the baseline between the cameras. Thus,
it is advisable to limit novel viewpoints to be within a few baselines of the original views, lest correspondence errors distort the images
very noticeably.
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matically compute stereo correspondences, but give noisy depth estimates. Image pairs with wide baselines
can give very accurate depth localization for matched points, but the images usually exhibit large disparities,
significant regions of occlusion, and different forms of foreshortening which makes it very difficult to auto-
matically determine correspondences.

In these notes, we help address this problem by showing that having an approximate model of the pho-
tographed scene can be used to robustly determine stereo correspondences from images taken from widely
varying viewpoints. Specifically, the model enables us to warp the images to eliminate unequal foreshortening
and to predict major instances of occlusion before trying to find correspondences. This technique is a gener-
alization of the plane-plus-parallax parameterization [38] which we call model-based stereo; it is presented in
the following paper and in [10], Chapter 7.

2.5 Range scanning

Instead of the approach of using multiple images to reconstruct scene structure, an alternative technique is to
use range imaging sensors (e.g. [4]) to directly measure depth to various points in the scene. Range imaging
sensors determine depth either by triangulating the position of a projected laser stripe, or by measuring the
time of flight of a directional laser pulse. While existing versions of these sensors are generally slow, cumber-
some and expensive, active development of this technology is making it of practical use for more and more
applications. Indeed, the improved practicality of these devices combined with their amazing resolution and
range precision will advocate their use in more and more modeling projects. In particular, the Digital Michae-
langelo project [27] being directed by Professor Marc Levoy of Stanford University will undoubtedly serve
as a watershed event in the practical use of laser range devices and digital photography for creating realistic
models of both objects and environments for computer graphics applications.

Algorithms for combining multiple range images from different viewpoints have been developed both in
computer vision [53, 42, 41] and in computer graphics [22, 50, 6]; see also Fig. 9. In many ways, range image
based techniques and photographic techniques are complementary and each have advantages and disadvan-
tages. Some advantages of modeling from photographic images are that (a) still cameras are inexpensive and
widely available, (b) for some architecture that no longer exists (historic buildings, disassembled film sets) all
that is available are photographs, and (c) photogrammetry works at arbitrary distances, and is always eye-safe.
Of course, geometry alone is insufficient for producing realistic renderings of a scene; photometric informa-
tion from photographs is also necessary. In general, any image-based rendering technique that can work with
geometry acquired from photogrammetry or stereo can work equally well or better with geometry acquired
from range scanning.

2.6 Image-based modeling and rendering

In traditional image-based rendering systems, the model consists of a set of images of a scene and their corre-
sponding depth maps. When the depth of every point in an image is known, the image can be re-rendered from
any nearby point of view by projecting the pixels of the image to their proper 3D locations and reprojecting
them onto a new image plane. Thus, a new image of the scene is created by warping the images according to
their depth maps. A principal attraction of image-based rendering is that it offers a method of rendering ar-
bitrarily complex scenes with a constant amount of computation required per pixel. Using this property, [52]
demonstrated how regularly spaced synthetic images (with their computed depth maps) could be warped and
composited in real time to produce a virtual environment.

In the Immersion ’94 project [32], (Fig. 4) stereo photographs with a baseline of eight inches were taken
every meter along a trail in a forest. Depth was extracted from each stereo pair using a census stereo algorithm
[55]. Novel views were produced by supersampled z-buffered forward pixel splatting based on the stereo
depth estimate of each pixel. ([26] describes a different rendering approach that implicitly triangulated the
depth maps.) By manually determining relative camera pose between successive stereo pairs, it was possible
to optically combine re-renderings from neighboring stereo pairs to fill in missing texture information. The
project was able to produce very realistic synthetic views looking forward along the trail from any position
within a meter of the original camera path, which was adequate for producing a realistic virtual experience of
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(a) (b)

(c) (d)

Figure 9: Several models constructed from triangulation-based laser range scanning techniques. (a) A model
of a person’s head scanned using a commercially available Cyberware laser range scanner, using a cylindrical
scan. (b) A texture-mapped version of this model, using imagery acquired by the same video camera used to
detect the laser stripe. (c) A more complex geometry assembled by zippering together several triangle meshes
obtained from separate linear range scans of a small object from [50]. (d) An even more complex geometry
acquired from approximately sixty range scans using the volumetric recovery method in [6].
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walking down the trail. Thus, for mostly linear environments such as a forest trail, this method of capture and
rendering seems promising.

[31] presented a real-time image-based rendering system that used panoramic photographs with depth
computed, in part, from stereo correspondence. One observation of the paper was that extracting reliable
depth estimates from stereo is very difficult. The method was nonetheless able to obtain acceptable results
for nearby views using user input to aid the stereo depth recovery: the correspondence map for each image
pair was seeded with 100 to 500 user-supplied point correspondences and also post-processed. Even with user
assistance, the images used still had to be closely spaced; the largest baseline described in the paper was five
feet.

The requirement that samples be close together is a serious limitation to generating a freely navigable
virtual environment. Covering the size of just one city block could require thousands of panoramic images
spaced five feet apart. Clearly, acquiring so many photographs is impractical. Moreover, even a dense lattice
of ground-based photographs would only allow renderings to be generated from within a few feet of the orig-
inal camera level, precluding any virtual fly-bys of the scene. Extending the dense lattice of photographs into
three dimensions would clearly make the acquisition process even more difficult.

The modeling and rendering approach described in these notes takes advantage of the structure in archi-
tectural scenes so that only a sparse set of photographs can be used to recover both the geometry and the ap-
pearance of an architectural scene. As an example, the approach was able to create a virtual fly-around of the
UC Berkeley bell tower and the surrounding campus from just twenty photographs (see the following slides
and the web site http://www.cs.berkeley.edu/˜debevec/Campanile).

Some research done concurrently with the work presented here [3] also shows that taking advantage of
architectural constraints can simplify image-based scene modeling. This work specifically explored the con-
straints associated with the cases of parallel and coplanar edge segments.

An interesting aspect of image-based modeling and rendering is that the accuracy of the geometry can
traded off with the number of images acquired and the freedom of movement attainable. [40] for example, uses
no explicit geometry but rather a set of correspondences between two views of a scene to generate arbitrary
views intermediate to the two original ones. And [20, 28] blend between a very large array images of an object
or scene in a view-dependent manner to create the appearance of a 3D object, when the actual geometry being
used can be as simple as a single plane passing through the object.

3 Conclusion

The philosophy of the work presented here is that geometry is a good thing to have, and that it should be
acquired as accurately as possible. The particular techniques presented here make it possible to acquire the
basic geometry for many sorts of architectural scenes, using just a set of still photographs and some effort by a
trained user of the system. With the geometry recovered, the full realism of the scene can be rendered by pro-
jecting the original photographs onto the geometry, preferably combining them with a form of view-dependent
texture mapping. Note that this technique can only render the scene in the original lighting conditions, and
that it will not be able to convincingly render particularly shiny surfaces, which change in appearance too
much with angle to be captured adequately in a sparse set of views. Addressing these problems requires ob-
taining estimates of the lighting conditions and material properties of the scene, which is the subject of work
in image-based lighting [11, 9], BRDF recovery [7, 37], and Inverse Global Illumination [54].

More extensive information on Image-Based Modeling, Rendering, and Lighting and how it relates to
3D Photography may be found in the SIGGRAPH 99 Course notes for Course #39, “Image-Based Modeling,
Rendering, and Lighting”.
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Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach

Paul E. Debevec Camillo J. Taylor Jitendra Malik

University of California at Berkeley1

ABSTRACT
We present a new approach for modeling and rendering existing ar-
chitectural scenes from a sparse set of still photographs. Our mod-
eling approach, which combines both geometry-based and image-
based techniques, has two components. The first component is a
photogrammetricmodeling method which facilitates the recovery of
the basic geometry of the photographed scene. Our photogrammet-
ric modeling approach is effective, convenient, and robust because
it exploits the constraints that are characteristic of architectural
scenes. The second component is a model-based stereo algorithm,
which recovers how the real scene deviates from the basic model.
By making use of the model, our stereo technique robustly recovers
accurate depth from widely-spaced image pairs. Consequently, our
approach can model large architectural environments with far fewer
photographs than current image-based modeling approaches. For
producing renderings, we present view-dependent texture mapping,
a method of compositing multiple views of a scene that better sim-
ulates geometric detail on basic models. Our approach can be used
to recover models for use in either geometry-based or image-based
rendering systems. We present results that demonstrate our ap-
proach’s ability to create realistic renderings of architectural scenes
from viewpoints far from the original photographs.

CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Modeling and recovery of physical at-
tributes; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism - Color, shading, shadowing, and texture I.4.8 [Im-
age Processing]: Scene Analysis - Stereo; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD).

1 INTRODUCTION
Efforts to model the appearance and dynamics of the real world
have produced some of the most compelling imagery in computer
graphics. In particular, efforts to model architectural scenes, from
the Amiens Cathedral to the Giza Pyramids to Berkeley’s Soda
Hall, have produced impressive walk-throughs and inspiring fly-
bys. Clearly, it is an attractive application to be able to explore the
world’s architecture unencumbered by fences, gravity, customs, or
jetlag.

1Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720-1776. fdebevec,camillo,malikg@cs.berkeley.edu. See
also http://www.cs.berkeley.edu/˜debevec/Research

Unfortunately, current geometry-based methods (Fig. 1a) of
modeling existing architecture, in which a modeling program is
used to manually position the elements of the scene, have several
drawbacks. First, the process is extremely labor-intensive, typically
involving surveying the site, locating and digitizing architectural
plans (if available), or converting existing CAD data (again, if avail-
able). Second, it is difficult to verify whether the resulting model is
accurate. Most disappointing, though, is that the renderings of the
resulting models are noticeably computer-generated; even those that
employ liberal texture-mapping generally fail to resemble real pho-
tographs.

Modeling
Program

model

Rendering
Algorithm

renderings

user input texture maps

(a) Geometry−Based

Model−Based
Stereo

depth maps

Image 
Warping

renderings

user inputimages

basic model

Photogrammetric 
Modeling Program

(b) Hybrid Approach

Stereo 
Correspondence

Image 
Warping

renderings

(user input)

(c) Image−Based

depth maps

images

Figure 1: Schematic of how our hybrid approach combines
geometry-based and image-based approaches to modeling and ren-
dering architecture from photographs.

Recently, creating models directly from photographs has re-
ceived increased interest in computer graphics. Since real images
are used as input, such an image-based system (Fig. 1c) has an ad-
vantage in producing photorealistic renderings as output. Some of
the most promising of these systems [16, 13] rely on the computer
vision technique of computational stereopsis to automatically deter-
mine the structure of the scene from the multiple photographs avail-
able. As a consequence, however, these systems are only as strong
as the underlying stereo algorithms. This has caused problems be-
cause state-of-the-art stereo algorithms have a number of signifi-
cant weaknesses; in particular, the photographs need to appear very
similar for reliable results to be obtained. Because of this, current
image-based techniques must use many closely spaced images, and
in some cases employ significant amounts of user input for each im-
age pair to supervise the stereo algorithm. In this framework, cap-
turing the data for a realistically renderable model would require an
impractical number of closely spaced photographs, and deriving the
depth from the photographs could require an impractical amount of
user input. These concessions to the weakness of stereo algorithms
bode poorly for creating large-scale, freely navigable virtual envi-
ronments from photographs.

Our research aims to make the process of modeling architectural



To appear in the SIGGRAPH conference proceedings

scenes more convenient, more accurate, and more photorealistic
than the methods currently available. To do this, we have developed
a new approach that draws on the strengths of both geometry-based
and image-basedmethods, as illustrated in Fig. 1b. The result is that
our approach to modeling and rendering architecture requires only a
sparse set of photographs and can produce realistic renderings from
arbitrary viewpoints. In our approach, a basic geometric model of
the architecture is recovered interactively with an easy-to-use pho-
togrammetric modeling system, novel views are created using view-
dependent texture mapping, and additional geometric detail can be
recovered automatically through stereo correspondence. The final
images can be rendered with current image-based rendering tech-
niques. Because only photographs are required, our approach to
modeling architecture is neither invasive nor does it require archi-
tectural plans, CAD models, or specialized instrumentation such as
surveying equipment, GPS sensors or range scanners.

1.1 Background and Related Work
The process of recovering 3D structure from 2D images has been
a central endeavor within computer vision, and the process of ren-
dering such recovered structures is a subject receiving increased
interest in computer graphics. Although no general technique ex-
ists to derive models from images, four particular areas of research
have provided results that are applicable to the problem of modeling
and rendering architectural scenes. They are: Camera Calibration,
Structure from Motion, Stereo Correspondence, and Image-Based
Rendering.

1.1.1 Camera Calibration

Recovering 3D structure from images becomes a simpler problem
when the cameras used are calibrated, that is, the mapping between
image coordinates and directions relative to each camera is known.
This mapping is determined by, among other parameters, the cam-
era’s focal length and its pattern of radial distortion. Camera cali-
bration is a well-studied problem both in photogrammetry and com-
puter vision; some successful methods include [20] and [5]. While
there has been recent progress in the use of uncalibrated views for
3D reconstruction [7], we have found camera calibration to be a
straightforward process that considerably simplifies the problem.

1.1.2 Structure from Motion

Given the 2D projection of a point in the world, its position in 3D
space could be anywhere on a ray extending out in a particular di-
rection from the camera’s optical center. However, when the pro-
jections of a sufficient number of points in the world are observed
in multiple images from different positions, it is theoretically possi-
ble to deduce the 3D locations of the points as well as the positions
of the original cameras, up to an unknown factor of scale.

This problem has been studied in the area of photogrammetry
for the principal purpose of producing topographic maps. In 1913,
Kruppa [10] proved the fundamental result that given two views of
five distinct points, one could recover the rotation and translation
between the two camera positions as well as the 3D locations of the
points (up to a scale factor). Since then, the problem’s mathematical
and algorithmic aspects have been explored starting from the funda-
mental work of Ullman [21] and Longuet-Higgins [11], in the early
1980s. Faugeras’s book [6] overviews the state of the art as of 1992.
So far, a key realization has been that the recovery of structure is
very sensitive to noise in image measurements when the translation
between the available camera positions is small.

Attention has turned to using more than two views with image
stream methods such as [19] or recursive approaches (e.g. [1]). [19]
shows excellent results for the case of orthographic cameras, but di-
rect solutions for the perspective case remain elusive. In general,
linear algorithms for the problem fail to make use of all available

information while nonlinear minimization methods are prone to dif-
ficulties arising from local minima in the parameter space. An alter-
native formulation of the problem [17] uses lines rather than points
as image measurements, but the previously stated concerns were
shown to remain largely valid. For purposes of computer graph-
ics, there is yet another problem: the models recovered by these al-
gorithms consist of sparse point fields or individual line segments,
which are not directly renderable as solid 3D models.

In our approach, we exploit the fact that we are trying to re-
cover geometric models of architectural scenes, not arbitrary three-
dimensional point sets. This enables us to include additional con-
straints not typically available to structure from motion algorithms
and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in a useful interac-
tive system for building architectural models from photographs.

1.1.3 Stereo Correspondence

The geometrical theory of structure from motion assumes that one
is able to solve the correspondenceproblem, which is to identify the
points in two or more images that are projections of the same point
in the world. In humans, corresponding points in the two slightly
differing images on the retinas are determined by the visual cortex
in the process called binocular stereopsis.

Years of research (e.g. [2, 4, 8, 9, 12, 15]) have shown that de-
termining stereo correspondences by computer is difficult problem.
In general, current methods are successfulonly when the images are
similar in appearance, as in the case of human vision, which is usu-
ally obtained by using cameras that are closely spaced relative to the
objects in the scene. When the distance between the cameras (often
called the baseline) becomes large, surfaces in the images exhibit
different degrees of foreshortening, different patterns of occlusion,
and large disparities in their locations in the two images, all of which
makes it much more difficult for the computer to determine correct
stereo correspondences. Unfortunately, the alternative of improving
stereo correspondenceby using images taken from nearby locations
has the disadvantage that computing depth becomes very sensitive
to noise in image measurements.

In this paper, we show that having an approximate model of the
photographed scene makes it possible to robustly determine stereo
correspondences from images taken from widely varying view-
points. Specifically, the model enables us to warp the images to
eliminate unequal foreshortening and to predict major instances of
occlusion before trying to find correspondences.

1.1.4 Image-Based Rendering

In an image-based rendering system, the model consists of a set of
images of a scene and their corresponding depth maps. When the
depth of every point in an image is known, the image can be re-
rendered from any nearby point of view by projecting the pixels of
the image to their proper 3D locations and reprojecting them onto
a new image plane. Thus, a new image of the scene is created by
warping the images according to their depth maps. A principal at-
traction of image-based rendering is that it offers a method of ren-
dering arbitrarily complex scenes with a constant amount of com-
putation required per pixel. Using this property, [23] demonstrated
how regularly spaced synthetic images (with their computed depth
maps) could be warped and composited in real time to produce a vir-
tual environment.

More recently, [13] presented a real-time image-based rendering
system that used panoramic photographs with depth computed, in
part, from stereo correspondence. One finding of the paper was that
extracting reliable depth estimates from stereo is “very difficult”.
The method was nonetheless able to obtain acceptable results for
nearby views using user input to aid the stereo depth recovery: the
correspondencemap for each image pair was seeded with 100 to 500
user-supplied point correspondences and also post-processed. Even

2
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with user assistance, the images used still had to be closely spaced;
the largest baseline described in the paper was five feet.

The requirement that samples be close together is a serious lim-
itation to generating a freely navigable virtual environment. Cov-
ering the size of just one city block would require thousands of
panoramic images spaced five feet apart. Clearly, acquiring so
many photographs is impractical. Moreover, even a dense lattice of
ground-basedphotographswould only allow renderings to be gener-
ated from within a few feet of the original camera level, precluding
any virtual fly-bys of the scene. Extending the dense lattice of pho-
tographs into three dimensions would clearly make the acquisition
process even more difficult. The approach described in this paper
takes advantage of the structure in architectural scenes so that it re-
quires only a sparse set of photographs. For example, our approach
has yielded a virtual fly-around of a building from just twelve stan-
dard photographs.

1.2 Overview
In this paper we present three new modeling and rendering tech-
niques: photogrammetric modeling, view-dependent texture map-
ping, and model-based stereo. We show how these techniques can
be used in conjunction to yield a convenient, accurate, and photo-
realistic method of modeling and rendering architecture from pho-
tographs. In our approach, the photogrammetric modeling program
is used to create a basic volumetric model of the scene, which is then
used to constrain stereo matching. Our rendering method compos-
ites information from multiple images with view-dependenttexture-
mapping. Our approach is successful because it splits the task of
modeling from images into tasks which are easily accomplished by
a person (but not a computer algorithm), and tasks which are easily
performed by a computer algorithm (but not a person).

In Section 2, we present our photogrammetric modeling
method. In essence, we have recast the structure from motion prob-
lem not as the recovery of individual point coordinates, but as the
recovery of the parameters of a constrained hierarchy of parametric
primitives. The result is that accurate architectural models can be
recovered robustly from just a few photographs and with a minimal
number of user-supplied correspondences.

In Section 3, we present view-dependent texture mapping, and
show how it can be used to realistically render the recovered model.
Unlike traditional texture-mapping, in which a single static image
is used to color in each face of the model, view-dependent tex-
ture mapping interpolates between the available photographs of the
scene depending on the user’s point of view. This results in more
lifelike animations that better capture surface specularities and un-
modeled geometric detail.

Lastly, in Section 4, we present model-based stereo, which is
used to automatically refine a basic model of a photographed scene.
This technique can be used to recover the structure of architectural
ornamentation that would be difficult to recover with photogram-
metric modeling. In particular, we show that projecting pairs of im-
ages onto an initial approximate model allows conventional stereo
techniques to robustly recover very accurate depth measurements
from images with widely varying viewpoints.

2 Photogrammetric Modeling
In this section we present our method for photogrammetric model-
ing, in which the computer determines the parameters of a hierar-
chical model of parametric polyhedral primitives to reconstruct the
architectural scene. We have implemented this method in Façade,
an easy-to-use interactive modeling program that allows the user to
construct a geometric model of a scene from digitized photographs.
We first overview Façade from the point of view of the user, then we
describe our model representation, and then we explain our recon-
struction algorithm. Lastly, we present results from using Façade to
reconstruct several architectural scenes.

2.1 The User’s View
Constructing a geometric model of an architectural scene using
Façade is an incremental and straightforward process. Typically, the
user selects a small number of photographs to begin with, and mod-
els the scene one piece at a time. The user may refine the model and
include more images in the project until the model meets the desired
level of detail.

Fig. 2(a) and (b) shows the two types of windows used in Façade:
image viewers and model viewers. The user instantiates the com-
ponents of the model, marks edges in the images, and corresponds
the edges in the images to the edges in the model. When instructed,
Façade computes the sizes and relative positions of the model com-
ponents that best fit the edges marked in the photographs.

Components of the model, called blocks, are parameterized ge-
ometric primitives such as boxes, prisms, and surfaces of revolu-
tion. A box, for example, is parameterized by its length, width, and
height. The user models the scene as a collection of such blocks,
creating new block classes as desired. Of course, the user does not
need to specify numerical values for the blocks’ parameters, since
these are recovered by the program.

The user may choose to constrain the sizes and positions of any
of the blocks. In Fig. 2(b), most of the blocks have been constrained
to have equal length and width. Additionally, the four pinnacles
have been constrained to have the same shape. Blocks may also be
placed in constrained relations to one other. For example, many of
the blocks in Fig. 2(b) have been constrained to sit centered and on
top of the block below. Such constraints are specified using a graph-
ical 3D interface. When such constraints are provided, they are used
to simplify the reconstruction problem.

The user marks edge features in the images using a point-and-
click interface; a gradient-based technique as in [14] can be used to
align the edges with sub-pixel accuracy. We use edge rather than
point features since they are easier to localize and less likely to
be completely obscured. Only a section of each edge needs to be
marked, making it possible to use partially visible edges. For each
marked edge, the user also indicates the corresponding edge in the
model. Generally, accurate reconstructions are obtained if there are
as many correspondences in the images as there are free camera
and model parameters. Thus, Façade reconstructs scenes accurately
even when just a portion of the visible edges and marked in the im-
ages, and when just a portion of the model edges are given corre-
spondences.

At any time, the user may instruct the computer to reconstruct the
scene. The computer then solves for the parameters of the model
that cause it to align with the marked features in the images. Dur-
ing the reconstruction, the computer computes and displays the lo-
cations from which the photographs were taken. For simple models
consisting of just a few blocks, a full reconstruction takes only a few
seconds; for more complex models, it can take a few minutes. For
this reason, the user can instruct the computer to employ faster but
less precise reconstruction algorithms (see Sec. 2.4) during the in-
termediate stages of modeling.

To verify the the accuracy of the recovered model and camera po-
sitions, Façade can project the model into the original photographs.
Typically, the projected model deviates from the photographs by
less than a pixel. Fig. 2(c) shows the results of projecting the edges
of the model in Fig. 2(b) into the original photograph.

Lastly, the user may generate novel views of the model by posi-
tioning a virtual camera at any desired location. Façade will then use
the view-dependent texture-mapping method of Section 3 to render
a novel view of the scene from the desired location. Fig. 2(d) shows
an aerial rendering of the tower model.

2.2 Model Representation
The purposeof our choice of model representation is to represent the
scene as a surface model with as few parameters as possible: when

3
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(a) (b) (c) (d)
Figure 2: (a) A photograph of the Campanile, Berkeley’s clock tower, with marked edges shown in green. (b) The model recovered by our
photogrammetricmodeling method. Although only the left pinnacle was marked, the remaining three (including one not visible) wererecovered
from symmetrical constraints in the model. Our method allows any number of images to be used, but in this case constraints of symmetry
made it possible to recover an accurate 3D model from a single photograph. (c) The accuracy of the model is verified by reprojecting it into
the original photograph through the recovered camera position. (d) A synthetic view of the Campanile generated using the view-dependent
texture-mapping method described in Section 3. A real photograph from this position would be difficult to take since the camera position is
250 feet above the ground.

the model has fewer parameters, the user needs to specify fewer cor-
respondences, and the computer can reconstruct the model more ef-
ficiently. In Façade, the scene is represented as a constrained hier-
archical model of parametric polyhedral primitives, called blocks.
Each block has a small set of parameters which serve to define
its size and shape. Each coordinate of each vertex of the block is
then expressed as linear combination of the block’s parameters, rel-
ative to an internal coordinate frame. For example, for the wedge
block in Fig. 3, the coordinates of the vertex Po are written in
terms of the block parameters width, height, and length as Po =
(�width;�height; length)T . Each block is also given an associ-
ated bounding box.
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Figure 3: A wedge block with its parameters and bounding box.
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Figure 4: (a) A geometric model of a simple building. (b) The
model’s hierarchical representation. The nodes in the tree repre-
sent parametric primitives (called blocks) while the links contain
the spatial relationships between the blocks.

The blocks in Façade are organized in a hierarchical tree structure

as shown in Fig. 4(b). Each node of the tree represents an individual
block, while the links in the tree contain the spatial relationships be-
tween blocks, called relations. Such hierarchical structures are also
used in traditional modeling systems.

The relation between a block and its parent is most generally rep-
resented as a rotation matrix R and a translation vector t. This rep-
resentation requires six parameters: three each forR and t. In archi-
tectural scenes, however, the relationship between two blocks usu-
ally has a simple form that can be represented with fewer parame-
ters, and Façade allows the user to build such constraints on R and
t into the model. The rotation R between a block and its parent can
be specified in one of three ways: first, as an unconstrained rotation,
requiring three parameters; second, as a rotation about a particular
coordinate axis, requiring just one parameter; or third, as a fixed or
null rotation, requiring no parameters.

Likewise, Façade allows for constraints to be placed on each
component of the translation vector t. Specifically, the user can
constrain the bounding boxes of two blocks to align themselves in
some manner along each dimension. For example, in order to en-
sure that the roof block in Fig. 4 lies on top of the first story block,
the user can require that the maximum y extent of the first story
block be equal to the minimum y extent of the roof block. With
this constraint, the translation along the y axis is computed (ty =
(first storyMAX

y � roofMIN
y )) rather than represented as a pa-

rameter of the model.
Each parameter of each instantiated block is actually a reference

to a named symbolic variable, as illustrated in Fig. 5. As a result,
two parameters of different blocks (or of the same block) can be
equated by having each parameter reference the same symbol. This
facility allows the user to equate two or more of the dimensions in
a model, which makes modeling symmetrical blocks and repeated
structure more convenient. Importantly, these constraints reduce the
number of degrees of freedom in the model, which, as we will show,
simplifies the structure recovery problem.

Once the blocks and their relations have been parameterized, it
is straightforward to derive expressions for the world coordinates
of the block vertices. Consider the set of edges which link a spe-
cific block in the model to the ground plane as shown in Fig. 4.

4
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Figure 5: Representation of block parameters as symbol references.
A single variable can be referenced by the model in multiple places,
allowing constraints of symmetry to be embedded in the model.

Let g1(X); :::; gn(X) represent the rigid transformations associated
with each of these links, where X represents the vector of all the
model parameters. The world coordinates Pw(X) of a particular
block vertex P (X) is then:

Pw(X) = g1(X):::gn(X)P (X) (1)

Similarly, the world orientation vw(X) of a particular line seg-
ment v(X) is:

vw(X) = g1(X):::gn(X)v(X) (2)

In these equations, the point vectorsP andPw and the orientation
vectors v and vw are represented in homogeneous coordinates.

Modeling the scene with polyhedral blocks, as opposed to points,
line segments, surface patches, or polygons, is advantageous for a
number of reasons:

� Most architectural scenes are well modeled by an arrangement
of geometric primitives.

� Blocks implicitly contain common architectural elements such
as parallel lines and right angles.

� Manipulating block primitives is convenient since they are at
a suitably high level of abstraction; individual features such as
points and lines are less manageable.

� A surface model of the scene is readily obtained from the
blocks, so there is no need to infer surfaces from discrete fea-
tures.

� Modeling in terms of blocks and relationships greatly reduces
the number of parameters that the reconstruction algorithm
needs to recover.

The last point is crucial to the robustness of our reconstruction al-
gorithm and the viability of our modeling system, and is illustrated
best with an example. The model in Fig. 2 is parameterized by just
33 variables (the unknown camera position adds six more). If each
block in the scene were unconstrained (in its dimensions and posi-
tion), the model would have 240 parameters; if each line segment in
the scene were treated independently, the model would have 2,896
parameters. This reduction in the number of parameters greatly en-
hances the robustness and efficiency of the method as compared to
traditional structure from motion algorithms. Lastly, since the num-
ber of correspondences needed to suitably overconstrain the mini-
mization is roughly proportional to the number of parameters in the
model, this reduction means that the number of correspondences re-
quired of the user is manageable.

2.3 Reconstruction Algorithm
Our reconstruction algorithm works by minimizing an objective
function O that sums the disparity between the projected edges of
the model and the edges marked in the images, i.e. O =

P
Err i

where Err i represents the disparity computed for edge feature i.

Thus, the unknown model parameters and camera positions are
computed by minimizingO with respect to these variables. Our sys-
tem uses the the error function Err i from [17], described below.
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Figure 6: (a) Projection of a straight line onto a camera’s image
plane. (b) The error function used in the reconstruction algorithm.
The heavy line represents the observededge segment (marked by the
user) and the lighter line represents the model edge predicted by the
current camera and model parameters.

Fig. 6(a) shows how a straight line in the model projects onto
the image plane of a camera. The straight line can be defined by
a pair of vectors hv; di where v represents the direction of the line
and d represents a point on the line. These vectors can be computed
from equations 2 and 1 respectively. The position of the camera with
respect to world coordinates is given in terms of a rotation matrixRj

and a translation vector tj . The normal vector denoted bym in the
figure is computed from the following expression:

m = Rj(v � (d� tj)) (3)

The projection of the line onto the image plane is simply the in-
tersection of the plane defined bymwith the image plane, located at
z = �f where f is the focal length of the camera. Thus, the image
edge is defined by the equation mxx+myy�mzf = 0.

Fig. 6(b) shows how the error between the observed image edge
f(x1; y1); (x2; y2)g and the predicted image line is calculated for
each correspondence. Points on the observed edge segment can be
parameterized by a single scalar variable s 2 [0; l] where l is the
length of the edge. We leth(s) be the function that returns the short-
est distance from a point on the segment,p(s), to the predicted edge.

With these definitions, the total error between the observed edge
segment and the predicted edge is calculated as:

Erri =

Z l

0

h
2(s)ds =

l

3
(h21+h1h2+h

2

2) = m
T (AT

BA)m

(4)
where:

m = (mx;my;mz)
T

A =

�
x1 y1 1
x2 y2 1

�

B =
l

3(m2
x +m2

y)

�
1 0:5
0:5 1

�

The final objective functionO is the sum of the error terms result-
ing from each correspondence. We minimize O using a variant of
the Newton-Raphson method, which involves calculating the gradi-
ent and Hessian of O with respect to the parameters of the camera
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and the model. As we have shown, it is simple to construct sym-
bolic expressions form in terms of the unknown model parameters.
The minimization algorithm differentiates these expressions sym-
bolically to evaluate the gradient and Hessian after each iteration.
The procedure is inexpensive since the expressions for d and v in
Equations 2 and 1 have a particularly simple form.

2.4 Computing an Initial Estimate
The objective function described in Section 2.3 section is non-linear
with respect to the model and camera parameters and consequently
can have local minima. If the algorithm begins at a random loca-
tion in the parameter space, it stands little chance of converging to
the correct solution. To overcome this problem we have developed
a method to directly compute a good initial estimate for the model
parameters and camera positions that is near the correct solution. In
practice, our initial estimate method consistently enables the non-
linear minimization algorithm to converge to the correct solution.

Our initial estimate method consists of two procedures performed
in sequence. The first procedure estimates the camera rotations
while the second estimates the camera translations and the parame-
ters of the model. Both initial estimate procedures are based upon an
examination of Equation 3. From this equation the following con-
straints can be deduced:

m
T
Rjv = 0 (5)

m
T
Rj(d� tj) = 0 (6)

Given an observed edgeuij the measured normalm0 to the plane
passing through the camera center is:

m
0 =

 
x1
y1
�f

!
�

 
x2
y2
�f

!
(7)

From these equations, we see that any model edges of known ori-
entation constrain the possible values for Rj . Since most architec-
tural models contain many such edges (e.g. horizontal and vertical
lines), each camera rotation can be usually be estimated from the
model independent of the model parameters and independent of the
camera’s location in space. Our method does this by minimizing the
following objective function O1 that sums the extents to which the
rotations Rj violate the constraints arising from Equation 5:

O1 =
X
i

(mT
Rjvi)

2
; vi 2 fx̂; ŷ; ẑg (8)

Once initial estimates for the camera rotations are computed,
Equation 6 is used to obtain initial estimates of the model param-
eters and camera locations. Equation 6 reflects the constraint that
all of the points on the line defined by the tuple hv;di should lie on
the plane with normal vectorm passing through the camera center.
This constraint is expressed in the following objective function O2

wherePi(X) andQi(X) are expressions for the vertices of an edge
of the model.

O2 =
X
i

(mT
Rj(Pi(X)� tj))

2 +(mT
Rj(Qi(X)� tj))

2 (9)

In the special case where all of the block relations in the model
have a known rotation, this objective function becomes a simple
quadratic form which is easily minimized by solving a set of linear
equations.

Once the initial estimate is obtained, the non-linear minimization
over the entire parameter space is applied to produce the best possi-
ble reconstruction. Typically, the minimization requires fewer than
ten iterations and adjusts the parameters of the model by at most a
few percent from the initial estimates. The edges of the recovered
models typically conform to the original photographs to within a
pixel.

Figure 7: Three of twelve photographsused to reconstructthe entire
exterior of University High School in Urbana, Illinois. The super-
imposed lines indicate the edges the user has marked.

(a) (b)

(c)
Figure 8: The high school model, reconstructed from twelve pho-
tographs. (a) Overhead view. (b) Rear view. (c) Aerial view show-
ing the recoveredcamera positions. Two nearly coincident cameras
can be observed in front of the building; their photographs were
taken from the second story of a building across the street.

Figure 9: A synthetic view of University High School. This is a
frame from an animation of flying around the entire building.

6
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(a) (b) (c)
Figure 10: Reconstructionof Hoover Tower, Stanford, CA (a) Origi-
nal photograph, with marked edges indicated. (b) Model recovered
from the single photograph shown in (a). (c) Texture-mappedaerial
view from the virtual camera position indicated in (b). Regions not
seen in (a) are indicated in blue.

2.5 Results
Fig. 2 showed the results of using Façade to reconstruct a clock
tower from a single image. Figs. 7 and 8 show the results of us-
ing Façade to reconstruct a high school building from twelve pho-
tographs. (The model was originally constructed from just five im-
ages; the remaining images were added to the project for purposesof
generating renderings using the techniques of Section 3.) The pho-
tographs were taken with a calibrated 35mm still camera with a stan-
dard 50mm lens and digitized with the PhotoCD process. Images at
the 1536� 1024 pixel resolution were processed to correct for lens
distortion, then filtered down to 768�512 pixels for use in the mod-
eling system. Fig. 8 shows some views of the recovered model and
camera positions, and Fig. 9 shows a synthetic view of the building
generated by the technique in Sec. 3.

Fig. 10 shows the reconstruction of another tower from a sin-
gle photograph. The dome was modeled specially since the recon-
struction algorithm does not recover curved surfaces. The user con-
strained a two-parameter hemisphere block to sit centered on top of
the tower, and manually adjusted its height and width to align with
the photograph. Each of the models presented took approximately
four hours to create.

3 View-Dependent Texture-Mapping
In this section we present view-dependent texture-mapping, an ef-
fective method of rendering the scene that involves projecting the
original photographs onto the model. This form of texture-mapping
is most effective when the model conforms closely to the actual
structure of the scene, and when the original photographs show the
scene in similar lighting conditions. In Section 4 we will show how
view-dependent texture-mapping can be used in conjunction with
model-based stereo to produce realistic renderings when the recov-
ered model only approximately models the structure of the scene.

Since the camera positions of the original photographs are re-
covered during the modeling phase, projecting the images onto the
model is straightforward. In this section we first describe how we
project a single image onto the model, and then how we merge sev-
eral image projections to render the entire model. Unlike tradi-
tional texture-mapping, our method projects different images onto
the model depending on the user’s viewpoint. As a result, our view-
dependent texture mapping can give a better illusion of additional
geometric detail in the model.

3.1 Projecting a Single Image
The process of texture-mapping a single image onto the model can
be thought of as replacing each camera with a slide projector that
projects the original image onto the model. When the model is not

convex, it is possible that some parts of the model will shadow oth-
ers with respect to the camera. While such shadowed regions could
be determined using an object-space visible surface algorithm, or an
image-space ray casting algorithm, we use an image-space shadow
map algorithm based on [22] since it is efficiently implemented us-
ing z-buffer hardware.

Fig. 11, upper left, shows the results of mapping a single image
onto the high school building model. The recovered camera posi-
tion for the projected image is indicated in the lower left corner of
the image. Because of self-shadowing, not every point on the model
within the camera’s viewing frustum is mapped.

3.2 Compositing Multiple Images
In general, each photograph will view only a piece of the model.
Thus, it is usually necessary to use multiple images in order to ren-
der the entire model from a novel point of view. The top images of
Fig. 11 show two different images mapped onto the model and ren-
dered from a novel viewpoint. Some pixels are colored in just one of
the renderings, while some are colored in both. These two render-
ings can be merged into a composite rendering by considering the
corresponding pixels in the rendered views. If a pixel is mapped in
only one rendering, its value from that rendering is used in the com-
posite. If it is mapped in more than one rendering, the renderer has
to decide which image (or combination of images) to use.

It would be convenient, of course, if the projected images would
agree perfectly where they overlap. However, the images will not
necessarily agree if there is unmodeled geometric detail in the build-
ing, or if the surfaces of the building exhibit non-Lambertian reflec-
tion. In this case, the best image to use is clearly the one with the
viewing angle closest to that of the rendered view. However, using
the image closest in angle at every pixel means that neighboring ren-
dered pixels may be sampled from different original images. When
this happens, specularity and unmodeled geometric detail can cause
visible seams in the rendering. To avoid this problem, we smooth
these transitions through weighted averaging as in Fig. 12.

Figure 11: The process of assembling projected images to form a
composite rendering. The top two pictures show two images pro-
jected onto the model from their respective recovered camera posi-
tions. The lower left picture shows the results of compositing these
two renderings using our view-dependent weighting function. The
lower right picture shows the results of compositing renderings of
all twelve original images. Some pixels near the front edge of the
roof not seen in any image have been filled in with the hole-filling
algorithm from [23].

Even with this weighting, neighboring pixels can still be sam-
pled from different views at the boundary of a projected image, since
the contribution of an image must be zero outside its boundary. To
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a2

a1

virtual view

view 1

view 2

model

Figure 12: The weighting function used in view-dependent texture
mapping. The pixel in the virtual view corresponding to the point
on the model is assigned a weighted average of the corresponding
pixels in actual views 1 and 2. The weightsw1 andw2 are inversely
inversely proportional to the magnitude of angles a1 and a2. Al-
ternately, more sophisticated weighting functions based on expected
foreshortening and image resampling can be used.

address this, the pixel weights are ramped down near the boundary
of the projected images. Although this method does not guarantee
smooth transitions in all cases, we have found that it eliminates most
artifacts in renderings and animations arising from such seams.

If an original photograph features an unwanted car, tourist, or
other object in front of the architecture of interest, the unwanted ob-
ject will be projected onto the surface of the model. To prevent this
from happening, the user may mask out the object by painting over
the obstruction with a reserved color. The rendering algorithm will
then set the weights for any pixels corresponding to the masked re-
gions to zero, and decrease the weights of the pixels near the bound-
ary as before to minimize seams. Any regions in the composite im-
age which are occluded in every projected image are filled in using
the hole-filling method from [23].

In the discussion so far, projected image weights are computed at
every pixel of every projected rendering. Since the weighting func-
tion is smooth (though not constant) across flat surfaces, it is not
generally not necessary to compute it for every pixel of every face
of the model. For example, using a single weight for each face of
the model, computed at the face’s center, produces acceptable re-
sults. By coarsely subdividing large faces, the results are visually
indistinguishable from the case where a unique weight is computed
for every pixel. Importantly, this technique suggests a real-time im-
plementation of view-dependent texture mapping using a texture-
mapping graphics pipeline to render the projected views, and �-
channel blending to composite them.

For complex models where most images are entirely occluded for
the typical view, it can be very inefficient to project every original
photograph to the novel viewpoint. Some efficient techniques to de-
termine such visibility a priori in architectural scenes through spa-
tial partitioning are presented in [18].

4 Model-Based Stereopsis
The modeling system described in Section 2 allows the user to cre-
ate a basic model of a scene, but in general the scene will have ad-
ditional geometric detail (such as friezes and cornices) not captured
in the model. In this section we present a new method of recov-
ering such additional geometric detail automatically through stereo
correspondence, which we call model-based stereo. Model-based
stereo differs from traditional stereo in that it measures how the ac-
tual scene deviates from the approximate model, rather than trying
to measure the structure of the scene without any prior information.
The model serves to place the images into a common frame of ref-
erence that makes the stereo correspondence possible even for im-

(a) (b)

(c) (d)
Figure 13: View-dependent texture mapping. (a) A detail view of the
high school model. (b) A renderingof the model from the same posi-
tion using view-dependent texture mapping. Note that although the
model does not capture the slightly recessed windows, the windows
appear properly recessed because the texture map is sampled pri-
marily from a photograph which viewed the windows from approx-
imately the same direction. (c) The same piece of the model viewed
from a different angle, using the same texture map as in (b). Since
the texture is not selected from an image that viewed the model from
approximately the same angle, the recessed windows appear unnat-
ural. (d) A more natural result obtained by using view-dependent
texture mapping. Since the angle of view in (d) is different than in
(b), a different composition of original images is used to texture-map
the model.

ages taken from relatively far apart. The stereo correspondence in-
formation can then be used to render novel views of the scene using
image-based rendering techniques.

As in traditional stereo, given two images (which we call the
key and offset), model-based stereo computes the associated depth
map for the key image by determining corresponding points in the
key and offset images. Like many stereo algorithms, our method is
correlation-based, in that it attempts to determine the corresponding
point in the offset image by comparing small pixel neighborhoods
around the points. As such, correlation-based stereo algorithms gen-
erally require the neighborhood of each point in the key image to
resemble the neighborhood of its corresponding point in the offset
image.

The problem we face is that when the key and offset images
are taken from relatively far apart, as is the case for our modeling
method, corresponding pixel neighborhoods can be foreshortened
very differently. In Figs. 14(a) and (c), pixel neighborhoods toward
the right of the key image are foreshortened horizontally by nearly
a factor of four in the offset image.

The key observation in model-based stereo is that even though
two images of the same scene may appear very different, they ap-
pear similar after being projected onto an approximate model of the
scene. In particular, projecting the offset image onto the model and
viewing it from the position of the key image produces what we call
the warped offset image, which appears very similar to the key im-
age. The geometrically detailed scene in Fig. 14 was modeled as
two flat surfaces with our modeling program, which also determined
the relative camera positions. As expected, the warped offset image
(Fig. 14(b)) exhibits the same pattern of foreshortening as the key
image.

In model-based stereo, pixel neighborhoods are compared be-
tween the key and warped offset images rather than the key and off-
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(a) Key Image (b) Warped Offset Image (c) Offset Image (d) Computed Disparity Map
Figure 14: (a) and (c) Two images of the entrance to Peterhouse chapel in Cambridge, UK. The Façade program was used to model the
façade and ground as a flat surfaces and to recover the relative camera positions. (b) The warped offset image, produced by projecting the
offset image onto the approximate model and viewing it from the position of the key camera. This projection eliminates most of the disparity
and foreshortening with respect to the key image, greatly simplifying stereo correspondence. (d) An unedited disparity map produced by our
model-based stereo algorithm.

set images. When a correspondence is found, it is simple to convert
its disparity to the corresponding disparity between the key and off-
set images, from which the point’s depth is easily calculated. Fig.
14(d) shows a disparity map computed for the key image in (a).

The reduction of differences in foreshortening is just one of sev-
eral ways that the warped offset image simplifies stereo correspon-
dence. Some other desirable properties of the warped offset image
are:

� Any point in the scene which lies on the approximate model
will have zero disparity between the key image and the warped
offset image.

� Disparities between the key and warped offset images are eas-
ily converted to a depth map for the key image.

� Depth estimates are far less sensitive to noise in image mea-
surements since images taken from relatively far apart can be
compared.

� Places where the model occludes itself relative to the key im-
age can be detected and indicated in the warped offset image.

� A linear epipolar geometry (Sec. 4.1) exists between the key
and warped offset images, despite the warping. In fact, the
epipolar lines of the warped offset image coincide with the
epipolar lines of the key image.

4.1 Model-Based Epipolar Geometry
In traditional stereo, the epipolar constraint (see [6]) is often used
to constrain the search for corresponding points in the offset im-
age to searching along an epipolar line. This constraint simplifies
stereo not only by reducing the search for each correspondence to
one dimension, but also by reducing the chance of selecting a false
matches. In this section we show that taking advantage of the epipo-
lar constraint is no more difficult in model-basedstereo case, despite
the fact that the offset image is non-uniformly warped.

Fig. 15 shows the epipolar geometry for model-based stereo. If
we consider a pointP in the scene, there is a unique epipolar plane
which passes through P and the centers of the key and offset cam-
eras. This epipolar plane intersects the key and offset image planes
in epipolar lines ek and eo . If we consider the projection pk of P
onto the key image plane, the epipolar constraint states that the cor-
responding point in the offset image must lie somewhere along the
offset image’s epipolar line.

In model-based stereo, neighborhoods in the key image are com-
pared to the warped offset image rather than the offset image. Thus,
to make use of the epipolar constraint, it is necessary to determine
where the pixels on the offset image’s epipolar line project to in the
warped offset image. The warped offset image is formed by project-
ing the offset image onto the model, and then reprojecting the model
onto the image plane of the key camera. Thus, the projection po of
P in the offset image projects onto the model at Q, and then repro-
jects to qk in the warped offset image. Since each of these projec-
tions occurs within the epipolar plane, any possible correspondence

P

Q

q
k

p
k

po

Key
Camera

Offset
Camera

approximate
model

ek

actual
structure

offset
image

key /
warped offset

image

epipolar plane

eo

epipolar lines

Figure 15: Epipolar geometry for model-based stereo.

for pk in the key image must lie on the key image’s epipolar line in
the warped offset image. In the case where the actual structure and
the model coincide at P , po is projected to P and then reprojected
to pk , yielding a correspondence with zero disparity.

The fact that the epipolar geometry remains linear after the warp-
ing step also facilitates the use of the ordering constraint [2, 6]
through a dynamic programming technique.

4.2 Stereo Results and Rerendering
While the warping step makes it dramatically easier to determine
stereo correspondences, a stereo algorithm is still necessary to ac-
tually determine them. The algorithm we developed to produce the
images in this paper is described in [3].

Once a depth map has been computed for a particular image, we
can rerender the scene from novel viewpoints using the methods
described in [23, 16, 13]. Furthermore, when several images and
their corresponding depth maps are available, we can use the view-
dependent texture-mapping method of Section 3 to composite the
multiple renderings. The novel views of the chapel façade in Fig.
16 were produced through such compositing of four images.

5 Conclusion and Future Work
To conclude, we have presented a new, photograph-based approach
to modeling and rendering architectural scenes. Our modeling
approach, which combines both geometry-based and image-based
modeling techniques, is built from two components that we have
developed. The first component is an easy-to-use photogrammet-
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Figure 16: Novel views of the scene generated from four original photographs. These are frames from an animated movie in which the façade
rotates continuously. The depth is computed from model-based stereo and the frames are made by compositing image-based renderings with
view-dependent texture-mapping.

ric modeling system which facilitates the recovery of a basic geo-
metric model of the photographed scene. The second component is
a model-based stereo algorithm, which recovers precisely how the
real scene differs from the basic model. For rendering, we have pre-
sented view-dependenttexture-mapping, which produces images by
warping and compositing multiple views of the scene. Through ju-
dicious use of images, models, and human assistance, our approach
is more convenient, more accurate, and more photorealistic than
current geometry-based or image-based approaches for modeling
and rendering real-world architectural scenes.

There are several improvements and extensions that can be made
to our approach. First, surfaces of revolution represent an important
component of architecture (e.g. domes, columns, and minarets) that
are not recovered in our photogrammetric modeling approach. (As
noted, the dome in Fig. 10 was manually sized by the user.) Fortu-
nately, there has been much work (e.g. [24]) that presents methods
of recovering such structures from image contours. Curved model
geometry is also entirely consistent with our approach to recovering
additional detail with model-based stereo.

Second, our techniques should be extended to recognize and
model the photometric properties of the materials in the scene. The
system should be able to make better use of photographs taken in
varying lighting conditions, and it should be able to render images
of the scene as it would appear at any time of day, in any weather,
and with any configuration of artificial light. Already, the recovered
model can be used to predict shadowing in the scene with respect to
an arbitrary light source. However, a full treatment of the problem
will require estimating the photometric properties (i.e. the bidirec-
tional reflectance distribution functions) of the surfaces in the scene.

Third, it is clear that further investigation should be made into the
problem of selecting which original images to use when rendering
a novel view of the scene. This problem is especially difficult when
the available images are taken at arbitrary locations. Our current so-
lution to this problem, the weighting function presented in Section
3, still allows seams to appear in renderings and does not consider
issues arising from image resampling. Another form of view selec-
tion is required to choose which pairs of images should be matched
to recover depth in the model-based stereo algorithm.

Lastly, it will clearly be an attractive application to integrate
the models created with the techniques presented in this paper into
forthcoming real-time image-based rendering systems.
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Recovering Arches in Facade
using

Ray - Plane intersections in 3-D

G. D. Borshukov and P. Debevec
Department of Electrical Engineering and Computer Science,
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1 Assumptions

1. Focal length f and image plane center (u0;v0) in pixels are known.

2. Camera locations RC
;TC in the world coordinate system are previously reconstructed

by the minimization algorithm.

3. The arch is initially created as a box which parent and relation are specified. Then, its
widht, depth, and height are reconstructed by the minimization algorithm.

4. We know image points like (xi;yi) that lie on the arch contour in the image plane.

2 Derivation

First the image measurement (xi;yi) is converted into camera coordinates pi = [ x y �1 ]T

where

x =( xi�u0)
1
f

y =( yi� v0)
1
f

(1)

Now µpi is a ray from the camera’s COP passing through (xi;yi). This ray intersects the
face of the arch box where the arch begins at point µ0pi .

To find this intersection, i.e. the value of µ0, we use a point Pc on the face (the middle of
the bottom edge) with world coordinates pW

c and camera coordinates pC
c = RC(pW

c �TC),
and the face normal n. The point µ0pi lies on the face, therefore, its distance from the face:

[µ0pi�pC
c ]T(RCn) = 0 (2)

which gives:

µ0 =
[pC

c ]T(RCn)
pT

i (R
Cn)

(3)
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We need to rotate the vector (µ0pi�pC
c ) back into world coordinates to obtain the de-

sired vector r:
r = [RC]�1(µ0pi�pC

c ) (4)

The algorithm uses the projections r and h of this vector onto the bottom edge and the
middle axis of the face to automatically generate the arch surface.
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1.2.3 Results

Fig. 1.3 shows the results of reconstructing a 3-D model of the Arc de Triomphe

using the new arch recovery tools.

(a) (b)

(c) (d)

Figure 1.3: Model of the Arc de Triomphe demonstrating the new arch recovery capabilities
of Fa�cade. (a) One of three photographs used to reconstruct the Arc de Triomphe, with
marked features indicated. (b) Reconstructed model edges projected into the original pho-
tograph. (c) Recovered model of the Arc de Triomphe. (d) Another view of the recovered
3-D model.



Recovering the Radius and Offset
of a Cross-Section in SORs using

Minimum Distance between Two Rays in 3-D

G. D. Borshukov and P. Debevec
Department of Electrical Engineering and Computer Science,

University of California, Berkeley, CA 94720

1 Assumptions

1. Focal length f and image plane center (u0;v0) in pixels are known.

2. Camera locations RC
;TC in the world coordinate system are previously reconstructed

by the minimization algorithm. The camera coordinate system is aligned with the
world coordinate system. From now on all vectors will be in world coordinates.

3. The SOR central axis is known, i.e. we know a point on the axis pb (usually the base
point) and the axis direction m (usually [ 0 1 0 ]T ).

4. We know image points like (xi;yi) that lie on the occluding contour in the image plane.

2 Derivation

First the image measurement (xi;yi) is converted into camera coordinates pi = [ x y �1 ]T

where

x =( xi�u0)
1
f

y =( yi� v0)
1
f

(1)

We want find the minimum distance between the rays pb+λm and µpi. Exploiting the fact
that the minimum distance vector

d0 = (µ0pi�pb�λ0m) (2)

must be perpendicular to each ray, conveniently, our task boils down to solving the following
simultaneous equationswith respect to λ0 and µ0.

µ0pi
Td0 = 0 (3)

λ0mTd0 = 0 (4)

Excluding the trivial solutions λ0 = 0 and µ0 = 0 and substituting (1) into (2) and (3) we
get
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Aµ0�Cλ0 = B (5)

Cµ0�Eλ0 = D (6)

where

A = pi
Tpi (7)

B = pi
Tpb (8)

C = pi
Tm (9)

D = mT pb (10)

E = mT m (11)

Further using (4) we obtain

µ0 =
B+Cλ0

A
(12)

which could be substituted in (5) to yield

λ0 =
BC�AD
AE�C2 (13)
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Now knowing λ0 and µ0, the radius R of a circular cross section offset by H = λ0m from
pb(usually on the base plane) can be expressed by

R =

q
d0

T d0 (14)

The algorithm uses the quantities H and R to automatically generate the surface of rev-
olution.
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(a) (b)

(c) (d)

Figure 1.5: Model of the majestic Taj Mahal created with the new surface of revolution
and arch reconstruction tools. (a) A single low-resolution photograph of the Taj Mahal
obtained from the Internet, with marked features shown. (b) Reconstructed model edges
projected onto the original photograph. (c) 3-D model of the Taj Mahal, complete with
domes and minarets, recovered from the single photograph in less than an hour of modeling
time. (d) Another view of the recovered 3-D model.
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Overview

Introduction
Active vision techniques

•Imaging radar
•Triangulation
•Moire
•Active Stereo
•Active depth-from-defocus

Capturing appearance
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A taxonomy

Shape acquisition

Non-contactContact
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Structure of the data

Quality measures

Resolution
Smallest change in depth that sensor can report?
Quantization? Spacing of samples?

Accuracy
Statistical variations among repeated measurements
of known value.

Repeatability 
Do the measurements drift?

Environmental sensitivity
Does temperature or wind speed influence measurements?

Speed
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Optical range acquisition

Strengths
• Non-contact

• Safe
• Inexpensive (?)

• Fast

Limitations
• Can only acquire visible portions of the surface

• Sensitivity to surface properties
> transparency, shininess, rapid color variations, 

darkness (no reflected light), subsurface scatter

• Confused by interreflections

Illumination

Why are lasers a good idea?
• Compact

• Low power
• Single wavelength is easy to isolate

• No chromatic aberration

• Tight focus over long distances
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Illumination

Illumination
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Illumination

Illumination
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Illumination

Limitations of lasers
• Eye safety concerns

• Laser speckle adds noise
> Narrowing the aperture increases the noise

Imaging radar: time of flight

A pulse of light is emitted, and the time of the 
reflected pulse is recorded:

c t  = 2 r = roundtrip distance
Typical scanning configuration:
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Imaging radar: Amplitude Modulation

The current to a laser diode is driven at frequency:

π
πϕλϕλ

π
ϕλϕ

2
)2(

2
1

)(
2

)(2
n

rnr AMAMAM

+∆=∆⇒∆+=∆

The phase difference between incoming and 
outgoing signals gives the range:

AM
AM

c
f

λ
=

)LJXUH�IURP�>%HVO��@ϕ∆

Imaging radar: Amplitude Modulation

Note the ambiguity due to the + 2 Q.  This 
translates into range ambiguity:

2
AM

ambig

n
r

λ=

The ambiguity can be overcome with sweeps of 
increasingly finer wavelengths.
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Optical triangulation

A beam of light strikes the surface, and some of 
the light bounces toward an off-axis sensor.

The center of the imaged reflection is triangulated 
against the laser line of sight.

Optical triangulation

Lenses map planes to planes.  If the object plane 
is tilted, then so should the image plane.

The image plane tilt is described by the 
Scheimpflug condition:

where M is the on-axis magnification. 

M

θα tan
tan =
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Triangulation angle

When designing an optical triangulation, we want:
• Small triangulation angle

• Uniform resolution

These requirements are at odds with each other.

Triangulation scanning configurations

A scene can be scanned by sweeping the 
illuminant.  Problems:

• Loss of resolution due to defocus

• Large variation in field of view

• Large variation in resolution
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Triangulation scanning configurations

Can instead move the laser and camera together, 
e.g., by translating or rotating a scanning unit.

Triangulation scanning configurations

A novel design was created and patented at the 
NRC of Canada [Rioux’87].
Basic idea: sweep the laser and sensor 
simultaneously.
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Triangulation scanning configurations

Extension to 3D achievable as:
• flying spot

• sweeping light stripe
• hand-held light stripe on jointed arm

Errors in optical triangulation

Finding the center of the imaged pulse is tricky.

If the surface exhibits variations in reflectance or 
shape, then laser width limits accuracy.
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Errors in optical triangulation

Spacetime analysis

A solution to this problem is spacetime analysis 
[Curless 95]:
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Spacetime analysis

Spacetime analysis
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Spacetime analysis

Spacetime analysis
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Spacetime analysis

Spacetime analysis



17

Spacetime analysis: results

Multi-spot and multi-stripe triangulation

For faster acquisition, some scanners use multiple 
spots or stripes.
Trade off depth-of-field for speed.  
Problem: ambiguity.



18

Binary coded illumination

Alternative: resolve visibility hierarchically (logN).

Moire

Moire methods extract shape from interference 
patterns:

• Illuminate a surface with a periodic grating.

• Capture image as seen at an angle through another 
grating.

=> interference pattern, phase encodes shape

• Low pass filter the image to extract the phase signal.

Requires that the shape varies slowly so that 
phase is low frequency, much lower than grating 
frequency.
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Example: shadow moire

Shadow moire:
• Place a grating (e.g., stripes on a transparency) near 

the surface.

• Illuminate with a lamp.
• Instant moire!

Shadow moire                                     Filtered image

Active stereo

Passive stereo methods match features observed 
by two cameras and triangulate.
Active stereo simplifies feature finding with 
structured light.  Problem: ambiguity.
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Active multi-baseline stereo

Using multiple cameras reduces likelihood of false 
matches.

Active depth from defocus

Depth of field for large apertures will cause the 
image of a point to blur.
The amount of blur indicates distance to the point.



21

Active depth from defocus

Depth ambiguity can be resolved with two sensor 
planes.

Amount of defocus depends on presence of 
texture.  Solution: project structured lighting onto 
surface.

[Nayar’95] demonstrates a real-time system 
utilizing telecentric optics.

Active depth from defocus
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Capturing appearance

“Appearance” refers to the way an object reflects 
light to a viewer.

We can think of appearance under:
• fixed lighting

• variable lighting

Appearance under fixed lighting

Under fixed lighting, a static radiance field forms.
Each point on the object reflects a 2D (directional) 
radiance function. 

We can acquire samples of these radiance 
functions with photographs registered to the 
geometry.
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Appearance under variable lighting

To re-render the surface under novel lighting, we 
must capture the BRDF -- the bi-directional 
reflectance distribution function.

In the general case, this problem is hard:
• The BRDF is a 4D function -- may need many samples.

• Interreflections imply the need to perform difficult 
inverse rendering calculations.

Here, we mention ways of capturing the data 
needed to estimate the BRDF.

BRDF capture

To capture the BRDF, we must acquire images of 
the surface under known lighting conditions.

[Sato’97] captures color images with point source 
illumination.  The camera and light are calibrated, 
and pose is determined by a robot arm.

[Baribeau’92] uses a white laser that is also used 
for optical triangulation.  Reflectance samples are 
registered to range samples.
Key advantage: minimizes interreflection.
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Abstract

The standard methods for extracting range data from optical trian-
gulation scanners are accurate only for planar objects of uniform
reflectance illuminated by an incoherent source. Using these meth-
ods, curved surfaces, discontinuous surfaces, and surfaces of vary-
ing reflectance cause systematic distortions of the range data. Co-
herent light sources such as lasers introduce speckle artifacts that
further degrade the data. We present a new ranging method based
on analyzing the time evolution of the structured light reflections.
Using our spacetime analysis, we can correct for each of these arti-
facts, thereby attaining significantly higher accuracy using existing
technology. We present results that demonstrate the validity of our
method using a commercial laser stripe triangulation scanner.

1 Introduction

Active optical triangulation is one of the most common methods
for acquiring range data. Although this technology has been in use
for over twenty years, its speed and accuracy has increased dramat-
ically in recent years with the development of geometrically sta-
ble imaging sensors such as CCD's and lateral effect photodiodes.
The range acquisition literature contains many descriptions of op-
tical triangulation range scanners, of which we list a handful [2]
[8] [10] [12] [14] [17] . The variety of methods differ primarily in
the structure of the illuminant (typically point, stripe, multi-point,
or multi-stripe), the dimensionality of the sensor (linear array or
CCD grid), and the scanning method (move the object or move the
scanner hardware).

Figure 1 shows a typical system configuration in two dimen-
sions. The location of the center of the reflected light pulse imaged
on the sensor corresponds to a line of sight that intersects the illu-
minant in exactly one point, yielding a depth value. The shape of
the object is acquired by translating or rotating the object through
the beam or by scanning the beam across the object.

The accuracy of optical triangulation methods hinges on the
ability to locate the “center” of the imaged pulse at each time step.
For optical triangulation systems that extract range from single im-
aged pulses at a time, variations in surface reflectance and shape
result in systematic range errors. Several researchers have observed
one or both of these accuracy limitations [4] [12] [16]. For the
case of coherent illumination, the images of reflections from rough
surfaces are also subject to laser speckle noise, introducing noise
into the range data. Researchers have studied the effect of speckle
on range determination and have indicated that it is a fundamental
limit to the accuracy of laser range triangulation, though its effects
can be reduced with well-known speckle reduction techniques [1]
[5]. Mundy and Porter [12] attempt to correct for variations in sur-
face reflectance by noting that two imaged pulses, differing in posi-

α

θ

Surface

Sensor

Imaging lens

Illuminant

Range
 point

Figure 1: Optical triangulation geometry. The angle� is the trian-
gulation angle while� is the tilt of the sensor plane needed to keep
the laser plane in focus.

tion or wavelength are sufficient to overcome the reflectance errors,
though some restrictive assumptions are necessary for the case of
differing wavelengths. Kanade, et al, [11] describe a rangefinder
that finds peaks in time for a stationary sensor with pixels that view
fixed points on an object. This method of peak detection is very
similar to the one presented in this paper for solving some of the
problems of optical triangulation; however, the authors in [11] do
not indicate that their design solves or even addresses these prob-
lems. Further, we show that the principle generalizes to other scan-
ning geometries.

In the following sections, we first show how range errors arise
with traditional triangulation techniques. In section 3, we show that
by analyzing the time evolution of structured light reflections, a
process we call spacetime analysis, we can overcome the accuracy
limitations caused by shape and reflectance variations. Experimen-
tal evidence also indicates that laser speckle behaves in a manner
that allows us to reduce its distorting effect as well.

In sections 4 and 5, we describe our hardware and software im-
plementation of the spacetime analysis using a commercial scanner
and a video digitizer, and we demonstrate a significant improve-
ment in range accuracy. Finally, in section 6, we conclude and de-
scribe future directions.

2 Error in triangulation systems

For optical triangulation systems, the accuracy of the range data
depends on proper interpretation of imaged light reflections. The
most common approach is to reduce the problem to one of finding
the “center” of a one dimensional pulse, where the “center” refers
to the position on the sensor which hopefully maps to the center of
the illuminant. Typically, researchers have opted for a statistic such
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Figure 2: Range errors using traditional triangulation methods. (a) Reflectance discontinuity. (b) Corner. (c) Shape discontinuity with respect
to the illumination. (d) Sensor occlusion.

as mean, median or peak of the imaged light as representative of
the center. These statistics give the correct answer when the surface
is perfectly planar, but they are generally inaccurate whenever the
surface perturbs the shape of the illuminant.

2.1 Geometric intuition

Perturbations of the shape of the imaged illuminant occur when-
ever:

� The surface reflectance varies.

� The surface geometry deviates from planarity.

� The light paths to the sensor are partially occluded.

� The surface is sufficiently rough to cause laser speckle.

In Figure 2, we give examples of how the first three circumstances
result in range errors even for an ideal triangulation system with
infinite sensor resolution and perfect calibration. For purposes of
illustration, we omit the imaging optics of Figure 1 and treat the
sensor as a one dimensional orthographic sensor. Further, we as-
sume an illuminant of Gaussian cross-section, and we use the mean
for determining the center of an imaged pulse. Figure 2a shows
how a step reflectance discontinuity results in range points that do
not lie on the surface. Figure 2b and 2c provide two examples of
shape variations resulting in range errors. Note that in Figure 2c,
the center of the illuminant is not even striking a surface. In this
case, a measure of the center of the pulse results in a range value,
when in fact the correct answer is to return no range value what-
ever. Finally, Figure 2d shows the effect of occluding the line of
sight between the illuminated surface and the sensor. This range
error is very similar to the error encountered in Figure 2c.

The fourth source of range error is laser speckle, which arises
when coherent laser illumination bounces off of a surface that is
rough compared to a wavelength [7]. The surface roughness intro-
duces random variations in optical path lengths, causing a random
interference pattern throughout space and at the sensor. The result
is an imaged pulse with a noise component that affects the mean
pulse detection, causing range errors even from a planar target.

2.2 Quantifying the error

To quantify the errors inherent in using mean pulse analysis, we
have computed the errors introduced by reflectance and shape vari-
ations for an ideal triangulation system with a single Gaussian il-
luminant. We take the beam width,w, to be the distance between

the beam center and thee�2 point of the irradiance profile, a con-
vention common to the optics literature. We present the range er-
rors in a scale invariant form by dividing all distances by the beam
width. Figure 3 illustrates the maximum deviation from planarity
introduced by scanning reflectance discontinuities of varying step
magnitudes for varying triangulation angles. As the size of the step
increases, the error increases correspondingly. In addition, smaller
triangulation angles, which are desirable for reducing the likelihood
of missing data due to sensor occlusions, actually result in larger
range errors. This result is not surprising, as sensor mean posi-
tions are converted to depths through a division bysin�, where� is
the triangulation angle, so that errors in mean detection translate to
larger range errors for smaller triangulation angles.

Figure 4 shows the effects of a corner on range error, where
the error is taken to be the shortest distance between the computed
range data and the exact corner point. The corner is oriented so that
the illumination direction bisects the corner's angle as shown in Fig-
ure 2b. As we might expect, a sharper corner results in greater com-
pression of the left side of the imaged Gaussian relative to the right
side, pushing the mean further to the right on the sensor and push-
ing the triangulated point further behind the corner. In this case, the
triangulation angle has little effect as the division bysin� is offset
almost exactly by the smaller observed left/right pulse compression
imbalance.

One possible strategy for reducing these errors would be to de-
crease the width of the beam and increase the resolution of the sen-
sor. However, diffraction limits prevent us from focusing the beam
to an arbitrary width. The limits on focusing a Gaussian beam with
spherical lenses are well known [15]. In recent years, Bickel, et
al, [3] have explored the use of axicons (e.g., glass cones and other
surfaces of revolution) to attain tighter focus of a Gaussian beam.
The refracted beam, however, has a zeroth order Bessel function
cross-section; i.e., it has numerous side-lobes of non-negligible ir-
radiance. The influence of these side-lobes is not well-documented
and would seem to complicate triangulation.

3 A New Method: Spacetime Analysis

The previous section clearly demonstrates that analyzing each im-
aged pulse using a low order statistic leads to systematic range er-
rors. We have found that these errors can be reduced or eliminated
by analyzing the time evolution of the pulses.

3.1 Geometric intuition

Figure 5 illustrates the principle of spacetime analysis for a laser tri-
angulation scanner with Gaussian illuminant and orthographic sen-
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Figure 4: Plot of errors due to corners.

sor as it translates across the edge of an object. As the scanner steps
to the right, the sensor images a smaller and smaller portion of the
laser cross-section. By timet3, the sensor no longer images the cen-
ter of the illuminant, and conventional methods of range estimation
fail. However, if we look along the lines of sight from the corner to
the laser and from the corner to the sensor, we see that the profile
of the laser is being imagedover timeonto the sensor (indicated by
the dotted Gaussian envelope). Thus, we can find the coordinates
of the corner point(xc; zc) by searching for the mean of a Gaus-
sian along a constant line of sight through the sensor images. We
can express the coordinates of this mean as a time and a position on
the sensor, where the time is in general between sensor frames and
the position is between sensor pixels. The position on the sensor
indicates a depth, and the time indicates the lateral position of the
center of the illuminant. In the example of Figure 5, we find that the
spacetime Gaussian corresponding to the exact corner has its mean
at positionsc on the sensor at a timetc betweent2 andt3 during
the scan. We extract the corner's depth by triangulating the center
of the illuminant with the line of sight corresponding to the sensor
coordinatesc, while the corner's horizontal position is proportional
to the timetc.

3.2 A complete derivation

For a more rigorous analysis, we consider the time evolution of
the irradiance from a translating differential surface element,�O,
as recorded at the sensor. We refer the reader to Figure 6 for a de-
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Figure 5: Spacetime mapping of a Gaussian illuminant. As the light
sweeps across the corner point, the sensor images the shape of the
illuminant over time.
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Figure 6: Triangulation scanner coordinate system. A depiction of
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ential element.

scription of coordinate systems; note that in contrast to the previous
section, the surface element is translating instead of the illuminant-
sensor assembly. The element has a normaln̂ and an initial position
~po and is translating with velocity~v, so that:

~p(t) = ~po + t~v (1)

Our objective is to compute the coordinates~po = (xo; zo) given
the temporal irradiance variations on the sensor. For simplicity, we
assume that~v = (�v; 0). The illuminant we consider is a laser
with a unidirectional Gaussian radiance profile. We can describe
the total radiance reflected from the element to the sensor as:

L(~p(t); !̂S) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2 (2)

where fr is the bidirectional reflection distribution function
(BRDF) of the point~po, jn̂ � !̂Lj is the cosine of the angle between
the surface and illumination. The remaining terms describe a point
moving in thex-direction under the Gaussian illuminant of width
w and powerIL.

Projecting the point~p(t) onto the sensor, we find:

s = (xo � vt)cos�� zosin� (3)

wheres is the position on the sensor and� is the angle between the
sensor and laser directions. We combine Equations 2-3 to give us
an equation for the irradiance observed at the sensor as a function
of time and position on the sensor:

ES(t; s) = fr(!̂L; !̂S)jn̂ � !̂LjILe
�2(xo�vt)

2

w2



�(s� (xo � vt)cos� � zosin�) (4)

To simplify this expression, we condense the light reflection terms
into one measure:

� � fr(!̂L; !̂S)jn̂ � !̂Lj (5)

which we will refer to as the reflectance coefficient of point~p for the
given illumination and viewing directions. We also note thatx = vt
is a measure of the relativex-displacement of the point during a
scan, andz = s=sin� is the relation between sensor coordinates
and depth values along the center of the illuminant. Making these
substitutions we have:

ES(x; z) = �ILe
�2(x�xo)

2

w2

�((x� xo)cos� + (z � zo)sin�) (6)

This equation describes a Gaussian running along atilted line
through the spacetime sensor plane or “spacetime image”. We de-
fine the “spacetime image” to be the image whose columns are filled
with sensor scanlines that evolve over time. Through the substi-
tutions above, position within a column of this image represents
displacement in depth, and position within a row represents time
or displacement in lateral position. Figure 7 shows the theoretical
spacetime image of a single point based on the derivation above,
while Figures 8a and 8b shows the spacetime image generated dur-
ing a real scan. From Figure 7, we see that the tilt angle is�� with
respect to thez-axis, and the width of the Gaussian along the line
is:

w0 = w=cos� (7)

The peak value of the Gaussian is�IL, and its mean along the line
is located at(xo; zo), the exact location of the range point. Note
that the angle of the line and the width of the Gaussian are solely
determined by the fixed parameters of the scanner,not the position,
orientation, or BRDF of the surface element.

Thus, extraction of range points should proceed by computing
low order statistics along tilted lines through the sensor spacetime
image, rather than along columns (scanlines) as in the conventional
method. As a result, we can determine the position of the surface
element independently of the orientation and BRDF of the element
and independently of any other nearby surface elements. In the-
ory, the decoupling of range determination from local shape and
reflectance is complete. In practice, optical systems and sensors
have filtering and sampling properties that limit the ability to re-
solve neighboring points. In Figure 8d, for instance, the extracted
edges extend slightly beyond their actual bounds. We attribute this
artifact to filtering which blurs the exact cutoffs of the edges into
neighboring pixels in the spacetime image, causing us to find addi-
tional range values.

As a side effect of the spacetime analysis, the peak of the Gaus-
sian yields the irradiance at the sensor due to the point. Thus, we
automatically obtain an intensity image precisely registered to the
range image.

3.3 Generalizing the geometry

We can easily generalize the previous results to other scanner ge-
ometries under the following conditions:

� The illuminant direction is constant over the path of each
range point.

� The sensor is orthographic.

� The motion is purely translational.
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Figure 7: Spacetime image of a point passing through a Gaussian
illuminant.

These conditions ensure that the reflectance coefficient,� =
fr(!̂L; !̂S)jn̂ � !̂Lj, is constant. Note that the illumination need
only be directional; coherent or incoherent light of any pattern is ac-
ceptable. Further, the translational motion need not be of constant
speed, only constant direction; we can correct for known variations
in speed by applying a suitable warp to the spacetime image.

We can weaken each of these restrictions if� does not vary ap-
preciably for each point as it passes through the illuminant. A per-
spective sensor is suitable if the changes in viewing directions are
relatively small for neighboring points inside the illuminant. This
assumption of “local orthography” has yielded excellent results in
practice. In addition, we can tolerate a rotational component to the
motion as long as the radius of curvature of the point path is large
relative to the beam width, again minimizing the effects on�.

3.4 Correcting laser speckle

The discussion in sections 3.1-3.3 show how we can go about ex-
tracting accurate range data in the presence of shape and reflectance
variations, as well as occlusions. But what about laser speckle?
Empirical observation of the time evolution of the speckle pattern
with our optical triangulation scanner strongly suggests that the im-
age of laser speckle moves as the surface moves. The streaks in
the spacetime image of Figure 8b correspond to speckle noise, for
the object has uniform reflectance and should result in a spacetime
image with uniform peak amplitudes. These streaks are tilted pre-
cisely along the direction of the spacetime analysis, indicating that
the speckle noise adheres to the surface of the object and behaves
as a noisy reflectance variation. Other researchers have observed
a “stationary speckle” phenomenon as well [1]. Proper analysis
of this problem is an open question, likely to be resolved with
the study of the governing equations of scalar diffraction theory
for imaging of a rough translating surface under coherent Gaussian
beam illumination [6].

4 Implementation

We have implemented the spacetime analysis presented in the pre-
vious section using a commercial laser triangulation scanner and a
real-time digital video recorder.

4.1 Hardware

The optical triangulation system we use is a Cyberware MS plat-
form scanner. This scanner collects range data by casting a laser
stripe on the object and by observing reflections with a CCD cam-
era positioned at an angle of30o with respect to the plane of the
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(b) (c) (d)

TA SA

Illuminant

Sensor

Figure 8: From geometry to spacetime image to range data. (a) The original geometry. (b) The resulting spacetime image. TA indicates the
direction of traditional analysis, while SA is the direction of the spacetime analysis. The dotted line corresponds to the scanline generated at
the instant shown in (a). (c) Range data after traditional mean analysis. (d) Range data after spacetime analysis.

laser. The platform can either translate or rotate an object through
the field of view of the triangulation optics. The laser width varies
from 0.8 mm to 1.0 mm over the field of view which is approxi-
mately 30 cm in depth and 30 cm in height. Each CCD pixel images
a portion of the laser plane roughly 0.5 mm by 0.5 mm. Although
the Cyberware scanner performs a form of peak detection in real
time, we require the actual video frames of the camera for our anal-
ysis. We capture these frames with an Abekas A20 video digitizer
and an Abekas A60 digital video disk, a system that can acquire 486
by 720 size frames at 30 Hz. These captured frames have approxi-
mately the same resolution as the Cyberware range camera, though
they represent a resampling of the reconstructed CCD output.

4.2 Algorithms

Using the principles of section 3, we can devise a procedure for
extracting range data from spacetime images:

1. Perform the range scan and capture the spacetime images.

2. Rotate the spacetime images by��.

3. Find the statistics of the Gaussians in the rotated coordinates.

4. Rotate the means back to the original coordinates.

In order to implement step 1 of this algorithm, we require a se-
quence of CCD images. Most commercial optical triangulation sys-
tems discard each CCD image after using it (e.g. to compute a stripe
of the range map). As described in section 4.1, we have assembled
the necessary hardware to record the CCD frames. In section 3,
we discussed a one dimensional sensor scenario and indicated that
perspective imaging could be treated as locally orthographic. For
a two dimensional sensor, we can imagine the horizontal scanlines
as separate one dimensional sensors with varying vertical (y) off-
sets. Each scanline generates a spacetime image, and by stacking
the spacetime images one atop another, we define a spacetimevol-
ume. In general, we must perform our analysis along the paths of
points, paths which may cross scanlines within the spacetime vol-
ume. However, we have observed for our system that the illuminant
is sufficiently narrow and the perspective of the range camera suf-
ficiently weak, that these paths essentially remain within scanlines.
This observation allows us to perform our analysis on each space-
time image separately.

In step 2, we rotate the spacetime images so that Gaussians are
vertically aligned. In a practical system with different sampling
rates inx andz, the correct rotation angle can be computed as:

tan� =
�z
�x

tan�T (8)

where� is the new rotation angle,�x and�z are the sample spacing
in x andz respectively, and�T is the triangulation angle. In order to
determine the rotation angle,�, for a given scanning rate and region
of the field of view of our Cyberware scanner, we first determined
the local triangulation angle and the sample spacings in depth (z)
and lateral position (x). Equation 8 then yields the desired angle.

In step 3, we compute the statistics of the Gaussians along each
rotated spacetime image raster. Our method of choice for comput-
ing these statistics is a least squares fit of a parabola to the log of
the data. We have experimented with fitting the data directly to
Gaussians using the Levenberg-Marquardt non-linear least squares
algorithm [13], but the results have been substantially the same as
the log-parabola fits. The Gaussian statistics consist of a mean,
which corresponds to a range point, as well as a width and a peak
amplitude, both of which indicate the reliability of the data. Widths
that are far from the expected width and peak amplitudes near the
noise floor of the sensor imply unreliable data which may be down-
weighted or discarded during later processing (e.g., when combin-
ing multiple range meshes [18]). For the purposes of this paper, we
discard unreliable data.

Finally, in step 4, we rotate the range points back into the global
coordinate system.

Traditionally, researchers have extracted range data at sampling
rates corresponding to one range point per sensor scanline per unit
time. Interpolation of shape between range points has consisted of
fitting primitives (e.g., linear interpolants like triangles) to the range
points. Instead, we can regard the spacetime volume as the primary
source of information we have about an object. After performing a
real scan, we have a sampled representation of the spacetime vol-
ume, which we can then reconstruct to generate a continuous func-
tion. This function then acts as our range oracle, which we can
query for range data at a sampling rate of our choosing. In practice,
we can magnify the sampled spacetime volume prior to applying
the range imaging steps described above. The result is a range grid
with a higher sampling density based directly on the imaged light
reflections.

5 Results

5.1 Reflectance correction

To evaluate the tolerance of the spacetime method to changes in
reflectance, we performed two experiments, one quantitative and
the other qualitative. For the first experiment, we generated pla-
nar cards with step reflectance changes varying from about 1:1 to
10:1 and scanned them at an angle of30o (roughly facing the sen-
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Figure 9: Measured error due to varying reflectance steps.

(a)

(b)

(c)

Figure 10: Reflectance card. (a) Photograph of a planar card with
the word “Reflectance” printed on it, and shaded renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.

sor). Figure 9 shows a plot of maximum deviations from planarity
when using traditional per scanline mean analysis and our space-
time analysis. The spacetime method has clearly improved over the
old method, yielding up to 85% reductions in range errors.

For qualitative comparison, we produced a planar sheet with the
word “Reflectance” printed on it. Figure 10 shows the results. The
old method yields a surface with the characters well-embossed into
the geometry, whereas the spacetime method yields a much more
planar surface indicating successful decoupling of geometry and
reflectance.

5.2 Shape correction

We conducted several experiments to evaluate the effects of shape
variation on range acquisition. In the first experiment, we generated
corners of varying angles by abutting sharp edges of machined alu-
minum wedges which are painted white. Figure 11 shows the range
errors that result for traditional and spacetime methods. Again, we
see an increase in accuracy, though not as great as in the reflectance
case.

We also scanned two 4 mm strips of paper at an angle of30o

(roughly facing the sensor) to examine the effects of depth con-
tinuity. Figure 12b shows the “edge curl” observed with the old
method, while the spacetime method in Figure 12c shows a signif-
icant reduction of this artifact under spacetime analysis. We have
found that the spacetime method reduces the length of the edge curl
from an average of 1.1 mm to an average of approximately 0.35
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Figure 11: Measured error due to corners of varying angles.

(a) (b) (c)

Figure 12: Depth discontinuities and edge curl. (a) Photograph of
two strips of paper, and shaded renderings of the range data gen-
erated by (b) mean pulse analysis and (c) spacetime analysis. The
“edge curl” indicated by the hash-marks in (b) is 1.1mm.

mm.

Finally, we impressed the word “shape” onto a plastic ribbon us-
ing a commonly available label maker. In Figure 10, we wanted the
word “Reflectance” to disappear because it represented changes in
reflectance rather than in geometry. In Figure 13, we want the word
“Shape” to stay because it represents real geometry. Furthermore,
we wish to resolve it as highly as possible. Figure 13 shows the
result. Using the scanline mean method, the word is barely visible.
Using the new spacetime analysis, the word becomes legible.

(a)

(b)

(c)

Figure 13: Shape ribbon. (a) Photograph of a surface with raised
lettering (letters are approx. 0.3 mm high), and renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.



5.3 Speckle reduction

We performed range scans on the planar surfaces and generated
range points using the traditional and spacetime methods. After fit-
ting planes to range points, we found a 30-60% reduction in average
deviation from planarity when using the spacetime analysis.

5.4 A complex object

Figure 14 shows the results of scanning a model tractor. Figure 14b
is a rendering of the data generated by the Cyberware scanner hard-
ware and is particularly noisy. This added noisiness results from
the method of pulse analysis performed by the hardware, a method
similar to peak detection. Peak detection is especially susceptible
to speckle noise, because it extracts a range point based on a single
value or small neighborhood of values on a noisy curve. Mean anal-
ysis tends to average out the speckle noise, resulting in smoother
range data as shown in Figure 14c. Figure 14d shows our space-
time results and Figure 14e shows the spacetime results with 3X
interpolation and resampling of the spacetime volume as described
in section 4.2. Note the sharper definition of features on the body of
the tractor and less jagged edges in regions of depth discontinuity.

5.5 Remaining sources of error

The results we presented in this section clearly show that the space-
time analysis yields more accurate range data, but the results are
imperfect due to system limitations. These limitations include:

� CCD noise

� Finite sensor resolution

� Optical blurring and electronic filtering

� Quantization errors

� Calibration errors

� Surface-surface inter-reflections

In addition, we observed some electronic artifacts in our Cyber-
ware scanner that influenced our results. We expect, however, that
any measures taken to reduce the effects of the limiting factors de-
scribed above will lead to higher accuracy. By contrast, if one uses
traditional methods of range extraction, then increasing sensor res-
olution and reducing the effects of filtering alone willnot signif-
icantly increase tolerance to reflectance and shape changes when
applying the traditional methods of range extraction.

6 Conclusion

We have described several of the systematic limitations in tradi-
tional methods of range acquisition with optical triangulation range
scanners, including intolerance to reflectance and shape changes
and speckle noise. By analyzing the time evolution of the reflected
light imaged onto the sensor, we have shown that distortions in-
duced by shape and reflectance changes can be corrected, while
the influence of laser speckle can be reduced. In practice, we
have demonstrated that we can significantly reduce range distor-
tions with existing hardware. Although the spacetime method does
not completely eliminate range artifacts in practice, it has proven to
reduce the artifacts in all experiments we have conducted.

In future work, we plan to incorporate the improved range data
with algorithms that integrate partial triangulation scans into com-
plete, unified meshes. We expect this improved data to ease the

process of estimating topology, especially in areas of high curva-
ture which are prone to edge curl artifacts. We will also investigate
methods for increasing the resolution of the existing hardware by
registering and deblurring multiple spacetime images [9]. Finally,
we hope to apply the results of scalar diffraction theory to put the
achievement of speckle reduction on sound theoretical footing.
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State of the art

• Accurate

• Bulky

• Complicated 

• Cost: >10k$

Weak structured lighting system
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Camera calibration

• Position of the desk plane

• Internal parameters of the camera

[Tsai’87, Abdel-Aziz and Karara’71]
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Angel experiment

Accuracy: 0.1mm over 10cm ~ 0.1% error

Skull experiment

Accuracy: 0.1mm over 10cm

~ 0.1% error
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Textured objects

Other objects
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Pot-pourri scan

Accuracy: 0.5mm over 50cm ~ 0.1% error

Scanning with the sun

Accuracy: 1mm over 50cm

~ 0.5% error
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Scanning with the sun

Accuracy: 1cm over 2m

~ 0.5% error
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Real-time implementation

• Performance: 30Hz, 320x240, Pentium II 300MHz

• Single shadow pass: 20 - 30 seconds (600-900 frames)

• Refined scanning: 1 - 2 minutes

Conclusions

Low cost and simple technique for dense 
3D shape acquisition

Does not work with specular or dark objects
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What’s next?

• Registration of multiple scans
complete models [Turk’94, Curless’96]

VRML gallery

MetaStream® gallery



13

References (1)

• B. Curless and M. Levoy, “Better optical triangulation through spacetime
analysis”, ICCV95, pages 987-993, June 1995

• T. Kanade, A. Gruss and L. Carley, “A very fast VLSI rangefinder”, IEEE 
International Conference on Robotics and Automation, volume 39, pages 
1322-1329, April 1991

Space-time analysis:

Camera calibration:
• R. Y. Tsai, “A versatile camera calibration technique for high accuracy 3D 

machine vision metrology using off-the-shelf TV cameras and lenses”, 
IEEE J. Robotics Automat., RA-3(4):323-344, 1987

• D.C. Brown, Calibration of close range cameras, Proc. 12th Congress Int. 
Soc. Photogrammetry, Ottawa, Canada

• Y. I. Abdel-Aziz and H. M. Karara, “Direct linear transformation into object 
space coordinates in close-range photogrammetry”, Proc. ASP Symposium 
on Close-Range Photogrammetry, Urbana, Illinois, pages 1-18, 1971

• J.-Y. Bouguet and P. Perona, Camera calibration tutorial and Matlab code
available at: http://www.vision.caltech.edu/bouguetj/calib_doc/

References (2)

• J.-Y. Bouguet and P. Perona, “3D Photography Using Shadows in Dual-
Space Geometry”, Int. Journal of Computer Vision 35(2), 129-149, 1999
available at: http://www.vision.caltech.edu/bouguetj/ICCV98/

• J.-Y. Bouguet and P. Perona, “3D Photography on your desk”, ICCV’98, 
pages 43-50, January 1998
available at: http://www.vision.caltech.edu/bouguetj/ICCV98/

• J.-Y. Bouguet, “Visual methods for three-dimensional modeling”, Ph.D. 
thesis, California Institute of Technology, June 1999
available at: http://www.vision.caltech.edu/bouguetj/thesis/thesis.html

Shadow scanning:

• G. Turk and M. Levoy, “Zippered polygon meshes from range images”, 
SIGGRAPH’94, pages 311-318, July 1994

• B. Curless and M. Levoy, “A volumetric method for building complex 
models from range images”, SIGGRAPH’96, 1996

Multiple view registration:



14

References (3)

Related work on shape from shadows:

• D. J. Kriegman and P. N. Belhumeur, “What Shadows Reveal About Object 
Structure”, ECCV’98, pages 399-414, June 1998

• J. J. Clark, and L. Wang ,” Trajectories for Optimal Temporal Integration in 
Active Vision Systems”, Proceedings of the International Conference on 
Robotics and Automation, Albuquerque, April, 1997, pages 431-436

• M. Daum and G. Dudek, “On 3-D Surface Reconstruction Using Shape 
from Shadows”, CVPR’98, pages 461-468, June 1998

• J.-Y. Bouguet, M. Weber and P. Perona, “What do planar shadows tell us 
about scene geometry?”, CVPR’99, June 1999

Patent pending. Exclusive rights to commercialize the shadow scanning technology have been acquired by Geometrix, Inc.  

For commercial inquiries, please visit http://www.geometrixinc.com, or email to info@geometrixinc.com

For more information, visit Geometrix at SIGGRAPH 2000, booth# 2436



1998 IEEE. Reprinted, with permission, from Proc. International Conference on Computer Vision

Bombay, India - January 1998 - pp. 43-50

3D photography on your desk

Jean-Yves Bouguety and Pietro Peronayz

y California Institute of Technology, 136-93, Pasadena, CA 91125, USA

z Universit�a di Padova, Italy

fbouguetj,peronag@vision.caltech.edu

Abstract
A simple and inexpensive approach for extracting the three-

dimensional shape of objects is presented. It is based on `weak
structured lighting'; it di�ers from other conventional struc-
tured lighting approaches in that it requires very little hard-
ware besides the camera: a desk-lamp, a pencil and a checker-
board. The camera faces the object, which is illuminated by the
desk-lamp. The user moves a pencil in front of the light source
casting a moving shadow on the object. The 3D shape of the
object is extracted from the spatial and temporal location of the
observed shadow. Experimental results are presented on three
di�erent scenes demonstrating that the error in reconstructing
the surface is less than 1%.

1 Introduction and Motivation
One of the most valuable functions of our visual sys-

tem is informing us about the shape of the objects that
surround us. Manipulation, recognition, and naviga-
tion are amongst the tasks that we can better accom-
plish by seeing shape. Ever-faster computers, progress
in computer graphics, and the widespread expansion
of the Internet have recently generated much inter-
est in systems that may be used for imaging both the
geometry and surface texture of object. The applica-
tions are numerous. Perhaps the most important ones
are animation and entertainment, industrial design,
archiving, virtual visits to museums and commercial
on-line catalogues.

In designing a system for recovering shape, di�er-
ent engineering tradeo�s are proposed by each appli-
cation. The main parameters to be considered are:
cost, accuracy, ease of use and speed of acquisition. So
far, the commercial 3D scanners (e.g. the Cyberware
scanner) have emphasized accuracy over the other pa-
rameters. These systems use motorized transport of
the object, and active (laser, LCD projector) lighting
of the scene, which makes them very accurate, but
expensive and bulky [1, 15, 16, 12, 2].

An interesting challenge for computer vision re-
searchers is to take the opposite point of view: em-
phasize cost and simplicity, perhaps sacri�cing some
amount of accuracy, and design 3D scanners that de-
mand little more hardware than a PC and a video
camera, by now almost standard equipment both in
oÆces and at home, by making better use of the data
that is available in the images.

Figure 1: The general setup of the proposed method:

The camera is facing the scene illuminated by a halogen desk
lamp (left). The scene consists of objects on a plane (the desk).
When an operator freely moves a stick in front of the lamp (over
the desk), a shadow is cast on the scene. The camera acquires
a sequence of images I(x; y; t) as the operator moves the stick
so that the shadow scans the entire scene. This constitutes
the input data to the 3D reconstruction system. The variables
x and y are the pixel coordinates (also referred to as spatial
coordinates), and t the time (or frame number). The three
dimensional shape of the scene is reconstructed using the spatial
and temporal properties of the shadow boundary throughout
the input sequence. The right-hand �gure shows the necessary
equipment besides the camera: a desk lamp, a calibration grid
and a pencil for calibration, and a stick for the shadow. One
could use the pencil instead of the stick.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities amongst them. At the
current state of vision research stereoscopic dispar-
ity is the single passive cue that gives reasonable ac-
curacy. Unfortunately it has two major drawbacks:
(a) it requires two cameras thus increasing complexity
and cost, (b) it cannot be used on untextured surfaces
(which are common for industrially manufactured ob-
jects).

We propose a method for capturing 3D surfaces
that is based on `weak structured lighting'. It yields
good accuracy and requires minimal equipment be-
sides a computer and a camera: a pencil (two uses), a
checkerboard and a desk-lamp { all readily available in
most homes; some intervention by a human operator,
acting as a low precision motor, is also required.

1



We start with a description of the method in Sec. 2,
followed in Sec. 3 by a noise sensitivity analysis, and
in Sec. 4 by a number of experiments that assess the
convenience and accuracy of the system. We end with
a discussion and conclusions in Sec. 5.
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Figure 2: Geometrical principle of the method: Approx-
imate the light source with a point S, and denote by �d the
desk plane. Assume that the positions of the light source S and
the plane �d in the camera reference frame are known from cal-
ibration. The goal is to estimate the 3D location of the point
P in space corresponding to every pixel xc in the image. Call
t the time at which a given pixel xc `sees' the shadow bound-
ary (later referred to as the shadow time). Denote by �(t) the
corresponding shadow plane at that time t. Assume that two
portions of the shadow projected on the desk plane are visi-
ble on two given rows of the image (top and bottom rows in
the �gure). After extracting the shadow boundary along those
rows xtop(t) and xbot(t), we �nd two points on the shadow
plane A(t) and B(t) by intersecting �d with the optical rays
(Oc; xtop(t)) and (Oc; xbot(t)) respectively. The shadow plane
�(t) is then inferred from the three points in space S, A(t) and
B(t). Finally, the point P corresponding to xc is retrieved by
intersecting �(t) with the optical ray (Oc; xc). This �nal stage
is called triangulation. Notice that the key steps in the whole
scheme are: (a) estimate the shadow time ts(xc) at every pixel
xc (temporal processing), and (b) locate the reference points
xtop(t) and xbot(t) at every time instant t (spatial processing).
These two are discussed in detail in section 2.2.

2 Description of the method
The general principle consists of casting a shadow

onto the scene with a pencil or another stick, and us-
ing the image of the deformed shadow to estimate the
three dimensional shape of the scene. Figure 1 shows
the required hardware and the setup of the system.
The objective is to extract scene depth at every pixel

in the image. Figure 2 gives a geometrical description
of the method that we propose to achieve that goal.

2.1 Calibration

The goal of calibration is to recover the geometry
of the setup (that is, the location of the desk plane
�d and that of the light source S) as well as the in-

trinsic parameters of the camera (focal length, optical
center and radial distortion factor). We decompose
the procedure into two successive stages: �rst camera
calibration and then lamp calibration.

Camera calibration: Estimate the intrinsic cam-
era parameters and the location of the desk plane �d

(tabletop) with respect to the camera. The procedure
consists of �rst placing a planar checkerboard pattern
(see �gure 1) on the desk in the location of the objects
to scan. From the image captured by the camera, we
infer the intrinsic and extrinsic (rigid motion between
camera and desk reference frame) parameters of the
camera, by matching the projections onto the image
plane of the known grid corners with the expected pro-
jection directly measured on the image (extracted cor-
ners of the grid). This method is very much inspired
by the algorithm proposed by Tsai [13]. Note that
since our calibration rig is planar, the optical center
cannot be recovered through that process, and there-
fore is assumed to be �xed at the center of the image.
A description of the whole procedure can be found in
[3]. The reader can also refer to Faugeras [6] for fur-
ther insights on camera calibration. Notice that the
extrinsic parameters directly lead to the position of
the tabletop �d in the camera reference frame.

Lamp calibration: After camera calibration, esti-
mate the 3D location of the point light source S.
Figure 3 gives a description of our method.

2.2 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detection
of the line of intersection of the shadow plane �(t)
with the desktop �d; a simple approach may be used
if we make sure that the top and bottom edges of the
image are free from objects. Then the two tasks to ac-
complish are: (a) Localize the edge of the shadow that
is directly projected on the tabletop (xtop(t); xbot(t))
at every time instant t (every frame), leading to the
set of all shadow planes �(t), (b) Estimate the time
ts(xc) (shadow time) where the edge of the shadow
passes through any given pixel xc = (xc; yc) in the im-
age. Curless and Levoy demonstrated in [4] that such
a spatio-temporal approach is appropriate to preserve
sharp discontinuities in the scene. Details of our im-
plementation are given in �gure 4. Notice that the
shadow was scanned from the left to the right side of
the scene. This explains why the right edge of the
shadow corresponds to the front edge of the temporal
pro�le in �gure 4.
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Figure 3: Lamp calibration: The operator places a pencil
on the desk plane �d, orthogonal to it (top-left). The camera
observes the shadow of the pencil projected on the tabletop.
The acquired image is shown on the top-right. From the two
points b and ts on this image, one can infer the positions in
space of K and Ts, respectively the base of the pencil, and the
tip of the pencil shadow (see bottom �gure). This is done by
intersecting the optical rays (Oc; b) and (Oc; ts) with �d (known
from camera calibration). In addition, given that the height of
the pencil h is known, the coordinates of its tip T can be directly
inferred from K. Then, the light source point S has to lie on
the line � = (T; Ts) in space. This yields one linear constraint
on the light source position. By taking a second view, with the
pencil at a di�erent location on the desk, one can retrieve a
second independent constraint with another line �0. A closed
form solution for the 3D coordinate of S is then derived by
intersecting the two lines � and �0 (in the least squares sense).
Notice that since the problem is linear, one can easily integrate
the information from more than 2 views and then make the
estimation more accurate. If N > 2 images are used, one can
obtain a closed form solution for the best intersection point ~S
of the N inferred lines (in the least squares sense). We also
estimate the uncertainty on that estimate from the distance of
~S from each one of the � lines. That indicates how consistently
the lines intersect a single point in space. Refer to [3] for the
complete derivations.
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Figure 4: Spatial and temporal shadow location: The
�rst step consists of localizing spatially the shadow edge
(xtop(t0); xbot(t0)) at every integer time t0 (i.e. every frame).
The top and bottom rows are ytop = 10 and ybot = 230
on the top �gure. This leads to an estimate of the shadow
plane �(t0) at every frame. The second processing step con-
sists of extracting at every pixel xc, the time ts(xc) of passage
of the shadow edge. For any given pixel xc = (x; y), de�ne
Imin(x; y)

:
= mint (I(x; y; t)) and Imax(x; y)

:
= maxt (I(x; y; t))

as its minimum and maximum brightness throughout the entire
sequence. We then de�ne the shadow edge to be the locations
(in space-time) where the image I(x; y; t) intersects with the
threshold image Ishadow(x; y)

:
= (Imin(x; y) + Imax(x; y)) =2.

This may be also regarded as the zero crossings of the dif-
ference image �I(x; y; t)

:
= I(x; y; t) � Ishadow(x; y). The two

bottom plots illustrate the shadow edge detection in the spa-
tial domain (to �nd xtop and xbot) and in the temporal do-
main (to �nd ts(xc)). The bottom-left �gure shows the pro-
�le of �I(x; y; t) along the top reference row y = ytop = 10
at time t = t0 = 134 versus the column pixel coordinate x.
The second zero crossing of that pro�le corresponds to the
top reference point xtop(t0) = (118:42; 10) (computed at sub-
pixel accuracy). Identical processing is applied on the bottom
row to obtain xbot(t0) = (130:6; 230). Similarly, the bottom-
right �gure shows the temporal pro�le �I(xc; yc; t) at the pixel
xc = (xc; yc) = (104; 128) versus time t (or frame number).
The shadow time at that pixel is de�ned as the �rst zero cross-
ing location of that pro�le: ts(104; 128) = 133:27 (computed at
sub-frame accuracy).

Notice that the pixels corresponding to regions in
the scene that are not illuminated by the lamp (shad-
ows due to occlusions) do not provide any relevant
depth information. For this reason we can restrict the
processing to pixels that have suÆcient swing between
maximum and minimum brightness. Therefore, we
only process pixels with contrast value Icontrast(x; y)

:
=

Imax(x; y)�Imin(x; y) larger than a pre-de�ned thresh-
old Ithresh. This threshold was 70 in all experiments
reported in this paper (recall that the intensity values
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are encoded from 0 for black to 255 for white).
We do not apply any spatial �ltering on the im-

ages; that would generate undesired blending in the
�nal depth estimates, especially noticeable at depth
discontinuities (at occlusions for example). However,
it would be acceptable to low-pass �lter the brightness
pro�les of the top and bottom rows (there is no depth
discontinuity on the tabletop) and low-pass �lter the
temporal brightness pro�les at every pixel. These op-
erations would preserve sharp spatial discontinuities,
and might decrease the e�ect of local processing noise
by accounting for smoothness in the motion of the
stick.

Experimentally, we found that this thresholding ap-
proach for shadow edge detection allow for some inter-
nal re
ections in the scene [9, 8, 14]. However, if the
light source is not close to an ideal point source, the
mean value between maximum and minimum bright-
ness may not always constitute the optimal value for
the threshold image Ishadow. Indeed, the shadow edge
pro�le becomes shallower as the distance between the
stick and the surface increases. In addition, it deforms
asymmetrically as the surface normal changes. These
e�ects could make the task of detecting the shadow
boundary points challenging. In the future, we in-
tend to develop a geometrical model of extended light
sources and incorporate it in the system.

Although Imin and Imax are needed to compute
Ishadow, there exists an implementation of that al-
gorithm that does not require storage of the com-
plete image sequence in memory and therefore leads
itself to real-time implementations. All that one needs
to do is update at each frame �ve di�erent arrays
Imax(x; y), Imin(x; y), Icontrast(x; y), Ishadow(x; y) and
the shadow time ts(x; y), as the images I(x; y; t) are
acquired. For a given pixel (x; y), the maximum
brightness Imax(x; y) is collected at the very begin-
ning of the sequence (the �rst frame), and then, as
time goes, the incoming images are used to update
the minimum brightness Imin(x; y) and the contrast
Icontrast(x; y). Once Icontrast(x; y) crosses Ithresh, the
adaptive threshold Ishadow(x; y) starts being computed
and updated at every frame (and activated). This pro-
cess goes on until the pixel brightness I(x; y; t) crosses
Ishadow(x; y) for the �rst time (in the upwards direc-
tion). That time instant is registered as the shadow
time ts(x; y). In that form of implementation, the left
edge of the shadow is tracked instead of the right one,
however the principle remains the same.

2.3 Triangulation

Once the shadow time ts(xc) is estimated at a given
pixel xc, one can identify the corresponding shadow
plane �(ts(xc)). Then, the 3D point P associated to
xc is retrieved by intersecting �(ts(xc)) with the opti-
cal ray (Oc; xc) (see �gure 2). Notice that the shadow
time ts(xc) acts as an index to the shadow plane list

�(t). Since ts(xc) is estimated at sub-frame accuracy,
the �nal plane �(ts(xc)) actually results from linear
interpolation between the two planes �(t0 � 1) and
�(t0) if t0 � 1 < ts(xc) < t0 and t0 integer. Once the
range data are recovered, a mesh may be generated by
connecting neighboring points in triangles. Rendered
views of three reconstructed surface structures can be
seen in �gures 6, 7 and 8.

3 Noise Sensitivity

The overall scheme is based on �rst extracting from
every frame (i.e. every time instants t) the x coordi-
nates of the two reference points xtop(t) and xbot(t),
and second estimating the shadow time ts(xc) at ev-
ery pixel xc. Those input data are used to estimate
the depth Zc at every pixel. The purpose of the noise
sensitivity analysis is to quantify the e�ect of the noise
in the measurement data fxtop(t); xbot(t); ts(xc))g on
the �nal reconstructed scene depth map. One key step
in the analysis is to transfer the noise a�ecting the
shadow time ts(xc) into a scalar noise a�ecting the
x coordinate of xc after scaling by the local shadow
speed on the image at that pixel. Let V be the vol-
ume of the parallelepiped formed by the three vectors
OcA, OcB and OcS, originating at Oc (see �gure 2):

V = X
T

S
:
�
(XB �XS)� (XA �XS)

	

where XS = [XS YS ZS ]
T , XA = [XA YA ZA]

T and

XB = [XB YB ZB ]
T are the coordinate vectors of

S, A and B in the camera reference frame (� is the
standard outer product operator). Notice that V is
computed at the triangulation stage, and therefore is
always available (see [3]). De�ne Xc = [Xc Yc Zc]

T

as the coordinate vector in the camera reference frame
of the point in space corresponding to xc. Assume
that the x coordinates of the top and bottom reference
points (after normalization) are a�ected by additive
white Gaussian noise with zero mean and variances
�2t and �2

b
respectively. Assume in addition that the

variance on the x coordinate of xc is �
2
xc

(di�erent at
every pixel). The following expression for the variance
�2
Zc

of the induced noise on the depth estimate Zc was
derived by taking �rst order derivatives of Zc with
respect to the `new' noisy input variables xtop, xbot
and xc (notice that the time variable does not appear
any longer in the analysis):

�2
Zc

=
Z2
c

V 2

n
W 2h2

S
Z2
c
�2
xc

+ (�1 + �1Yc + 
1Zc)
2
�2t+

(�2 + �2Yc + 
2Zc)
2
�2b

o
(1)
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where W , hS , �1, �1, 
1, �2, �2 and 
2 are constants
depending only on the geometry (see �gure 5):

�1 = ZA (ZB YS � YB ZS)

�1 = �ZA (ZB � ZS)


1 = ZA (YB � YS)

�2 = ZB (YA ZS � ZA YS)

�2 = ZB (ZA � ZS)


2 = �ZB (YA � YS)

The �rst term in equation 1 comes from the tempo-
ral noise (on ts(xc) transferred to xc); the second and
third terms from the spatial noise (on xtop and xbot).
Let �I be the standard deviation of the image bright-
ness noise. Given that we use linear interpolation of
the temporal brightness pro�le to calculate the shadow
time ts(xc), we can write �xc as a function of the
horizontal spatial image gradient Ix(xc) at xc at time
t = ts(xc):

�xc =
�I

jIx(xc)j
(2)

Since �xc in inversely proportional to the image gra-
dient, the accuracy improves with shadow edge sharp-
ness. This justi�es the improvement in experiment
3 after removing the lamp re
ector (thereby signif-
icantly increasing sharpness). In addition, observe
that �xc does not depend on the local shadow speed.
Therefore, decreasing the scanning speed would not
increase accuracy. However, for the analysis leading
to equation 2 to remain valid, the temporal pixel pro-
�le must be suÆciently sampled within the transition
area of the shadow edge (the penumbra). Therefore,
if the shadow edge were sharper, the scanning should
also be slower so that the temporal pro�le at every
pixel would be properly sampled. Decreasing further
the scanning speed would bene�t the accuracy only if
the temporal pro�le were appropriately low-pass �l-
tered before extraction of ts(xc). This is an issue for
future research.

Notice that �Zc , aside from quantifying the uncer-
tainties on the depth estimate Zc at every pixel xc, it
also constitutes a good indicator of the overall accu-
racies in reconstruction, since most of the errors are
located along the Z direction of the camera frame.
In addition, we found numerically that most of the
variations in the variance �2

Zc
are due to the varia-

tion of volume V within a single scan. This explains
why the reconstruction noise is systematically larger
in portions of the scene further away from the lamp
(see �gures 6, 7 and 8). Indeed, it can be shown that,
as the shadow moves into the opposite direction of the
lamp (e.g. to the right if the lamp is on the left of the
camera), the absolute value of the volume jV j strictly
decreases, making �2

Zc
larger (see [3] for details).
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Figure 5: Geometric setup: The camera is positioned at a
distance dd away from the desk plane �d and tilted down to-
wards it at an angle �. The light source is located at a height
hS, with its direction de�ned by the azimuth and elevation an-
gles � and �. Notice the sign of cos � directly relates to which
side of the camera the lamp is standing: positive on the right,
and negative on the left. The bottom �gure is a side view of
the system (in the (Oc; Yc; Zc) plane). The points A and B are
the reference points on the desk plane (see �gure 2).

In order to obtain a uniformly accurate reconstruc-
tion of the entire scene, one may take two scans of the
same scene with the lamp at two di�erent locations
(on the left (L) and on the right (R) of the camera),
and merge them together using at each pixel the esti-
mated reliability of the two measurements. Assume
that the camera position, as well as the height hS
of the lamp, are kept identical for both scans. Sup-
pose in addition that the scanning speeds were ap-
proximately the same. Then, at every pixel xc in the
image, the two scan data sets provide two estimates
ZLc and ZRc of the same depth Zc with respective relia-
bilities �2

ZL
and �2

ZR
given by equation 1. In addition,

if we call VL and VR the two respective volumes, then
the relative uncertainty between ZL

c
and ZR

c
reduces

to a function of the volumes: �2
ZR
=�2

ZL
= (VL=VR)

2.
Notice that calculating that relative uncertainty does
not require any extra computation, since VL and VR
are available from the two triangulations. The �nal
depth is computed by weighted average of ZLc and
ZR
c
: Zc

:
= !LZ

L
c
+ !R Z

R
c
. If ZR

c
and ZL

c
were Gaus-
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sian distributed, and independent, they would be op-
timally averaged using the inverse of the variances as
weights [10]: !L = �2

ZR
=(�2

ZL
+ �2

ZR
) = �2=(1 + �2)

and !R = �2
ZL
=(�2

ZL
+ �2

ZR
) = 1=(1 + �2), where

� = VL=VR. Experimentally, we found that this
choice does not yield very good merged surfaces. It
makes the noisy areas of one view interact too sig-
ni�cantly with the clean corresponding areas in the
other view, degrading the overall �nal reconstruc-
tion. This happens possibly because the random vari-
ables ZLc and ZRc are not Gaussian. A heuristic solu-
tion to that problem is to use sigmoid functions to

calculate the weights: !L = (1 + exp f���V g)
�1
,

and !R = (1 + exp f��V g)
�1

with �V = (V 2
L
�

V 2
R
)=(V 2

L
+ V 2

R
) = (�2 � 1)=(�2 + 1). The positive

coeÆcient � controls the amount of di�usion between
the left and the right regions, and should be deter-
mined experimentally. In the limit, as � tends to in-
�nity, merging reduces to a hard decision: Zc = ZLc if
VL > VR, and Zc = ZRc otherwise. Our merging tech-
nique presents two advantages: (a) obtaining more
coverage of the scene and (b) reducing the estimation
noise. Moreover, since we do not move the camera be-
tween scans, we do not have to solve for the diÆcult
problem of view alignment [11, 7, 5]. One merging
example is presented in experiment 3.

Independently from local variations in accuracy
within one scan, one would also wish to maximize
the global (or average) accuracy of reconstruction
throughout the entire scene. In this paper, scanning is
vertical (shadow parallel to the y axis of the image).
Therefore, the average relative depth error j�Zc=Zcj
is inversely proportional to j cos �j (see [3]). The two
best values for the azimuth angle are then � = 0 and
� = � corresponding to the lamp standing either to
the right (� = 0) or to the left (� = �) of the camera
(see �gure 5-top).

4 Experimental Results

4.1 Calibration accuracies

Camera calibration. For a given setup, we ac-
quired 10 images of the checkerboard (see �gure 1),
and performed independent calibrations on them. The
checkerboard consisted of approximately 90 visible
corners on a 8�9 grid. Then, we computed both mean
values and standard deviations of all the parameters
independently: the focal length fc, radial distortion
factor kc and desk plane position �d. Regarding the
desk plane position, it is convenient to look at the
height dd and the surface normal vector nd of �d ex-
pressed in the camera reference frame. An additional
geometrical quantity related to nd is the tilt angle �
(see �gure 5). The following table summarizes the cal-
ibration results (notice that the relative error on the
angle � is computed referring to 360 degrees):

Parameters Estimates Relative
errors

fc (pixels) 857:3� 1:3 0:2%

kc �0:199� 0:002 1%

dd (cm) 16:69� 0:02 0:1%

nd

0
@

�0:0427� 0:0003
0:7515 � 0:0003
0:6594 � 0:0004

1
A 0:06%

� (degrees) 41:27� 0:02 0:006%

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like �gure 3-top-right) and per-
formed calibration of the light source on them. See
section 2.1. Notice that the points b and ts were man-
ually extracted from the images. De�ne Sc as the co-
ordinate vector of the light source in the camera frame.
The following table summarizes the calibration results
(refer to �gure 5 for notation):

Parameters Estimates Relative
errors

Sc (cm)

0
@

�13:7� 0:1
�17:2� 0:3
�2:9� 0:1

1
A � 2%

hS (cm) 34:04� 0:15 0:5%

� (degrees) 146:0� 0:8 0:2%

� (degrees) 64:6� 0:2 0:06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34� 0:5 cm.

Our method yields an accuracy of approximately
3 mm (in standard deviation) in localizing the light
source. This accuracy is suÆcient for �nal shape re-
covery without signi�cant deformation, as we discuss
in the next section.

4.2 Scene reconstructions
On the �rst scene (�gure 6), we evaluated the accu-

racy of reconstruction based on the sizes and shapes
of the plane at the bottom left corner and the corner
object on the top of the scene (see �gure 4-top).
Planarity of the plane: We �t a plane across the
points lying on the planar patch and estimated the
standard deviation of the set of residual distances
of the points to the plane to 0:23 mm. This cor-
responds to the granularity (or roughness) noise on
the planar surface. The �t was done over a sur-
face patch of approximate size 4 cm � 6 cm. This
leads to a relative non planarity of approximately
0:23mm=5cm = 0:4%. To check for possible global
deformations due to errors in calibration, we also �t
a quadratic patch across those points. We noticed
a decrease of approximately 6% in residual standard
deviation after quadratic warping. This leads us to
believe that global geometric deformations are negli-
gible compared to local surface noise. In other words,
one may assume that the errors of calibration do not
induce signi�cant global deformations on the �nal re-
construction.
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Figure 6: Experiment 1 - The plane/ball/corner scene:

Two views of the mesh generated from the cloud of points ob-
tained after triangulation. The original sequence was 270 frames
long, the images being 320� 240 pixels each. At 60 Hz acquisi-
tion frequency, the entire scanning take 5 seconds. The camera
was positioned at distance dd = 16:7 cm from the desk plane,
tilted down by � = 41:3 degrees. The light source was at height
hS = 37:7 cm, on the left of the camera at angles � = 157:1
degrees and � = 64:8 degrees. From the right-hand �gure we
notice that the right-hand side of the reconstructed scene is
more noisy than the left-hand side. This was expected since the
lamp was standing on the left of the camera (refer to section 3
for details).

Geometry of the corner: We �t 2 planes to the
corner structure, one corresponding to the top surface
(the horizontal plane) and the other one to the frontal
surface (vertical plane). We estimated the surface
noise of the top surface to 0:125 mm, and that of the
frontal face to 0:8 mm (almost 7 times larger). This
noise di�erence between the two planes can be ob-
served on �gure 6. Once again, after �tting quadratic
patches to the two planar portions, we did not no-
tice any signi�cant global geometric distortion in the
scene (from planar to quadratic warping, the residual
noise decreased by only 5% in standard deviation).
From the reconstruction, we estimated the height H
and width D of the right angle structure, as well as
the angle  between the two reconstructed planes, and
compared them to their true values:

Parameters Estimates True
values

Relative
errors

H (cm) 2:57� 0:02 2:65� 0:02 3%

D (cm) 3:06� 0:02 3:02� 0:02 1:3%

 (degrees) 86:21 90 1%

The overall reconstructed structure does not have
any major noticeable global deformation (it seems that
the calibration process gives good enough estimates).
The most noticeable source of errors is the surface
noise due to local image processing. A �gure of merit
to keep in mind is a surface noise between 0:1 mm (for
planes roughly parallel to the desk) and 0:8 mm (for
frontal plane in the right corner). In most portions
of the scene, the errors are of the order of 0:3 mm,
i.e. less than 1%. Notice that these �gures may very
well vary from experiment to experiment, especially
depending on how fast the scanning is performed. In
all the presented experiments, we kept the speed of
the shadow approximately uniform.

Figure 7: Experiment 2 - The cup/plane/ball scene: The
scanned objects were a cup, the plane and the ball. The ini-
tial image of the scene is shown on the left, and the �nal re-
constructed mesh on the right. We found agreement between
the estimated height of the cup from the 3D reconstruction,
11:04 � 0:09 cm, and the measured height (obtained using a
ruler), 10:95 � 0:05 cm. Once again the right portion on the
reconstructed scene is noisier than the left portion. This was
expected since the light source was, once again, standing to the
left of the camera. Geometrical parameters: dd = 22:6 cm,
� = 38:2 degrees, hS = 43:2 cm, � = 155:9 degrees, and � = 69
degrees.

Figures 7 and 8 report the reconstruction results
achieved on two other scenes.

5 Conclusion and future work

We have presented a simple, low cost system for
extracting surface shape of objects. The method re-
quires very little processing and image storage so that
it can be implemented in real time. The accuracies
we obtained on the �nal reconstructions are reason-
able (at most 1% or 0:5 mm noise error) considering
the little hardware requirement. In addition, the �nal
outcome is a dense coverage of the surface (one point
in space for each pixel in the image) allowing for direct
texture mapping.

An error analysis was presented together with the
description of a simple technique for merging multi-
ple 3D scans together in order to (a) obtain a better
coverage of the scene, and (b) reduce the estimation
noise. The overall calibration procedure, even in the
case of multiple scans, is very intuitive, simple, and
suÆciently accurate.

Another advantage of our approach is that it easily
scales to larger scenarios indoors { using more power-
ful lamps like photo-
oods { and outdoors where the
sun may be used as a calibrated light source (given
latitude, longitude, and time of day). These are ex-
periments that we wish to carry out in the future.

Other extensions of this work relate to multiple
view integration. We wish to extend the alignment
technique to a method allowing the user to move freely
the object in front of the camera and the lamp between
scans in order to achieve a full coverage. That is nec-
essary to construct complete 3D models.

It is also part of future work to incorporate a geo-
metrical model of extended light source to the shadow
edge detection process, in addition to developing an
uncalibrated (or projective) version of the method.
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Figure 8: Experiment 3 - The angel scene: We took two
scans of the angel with the lamp �rst on the left side (top-left)
and then on the right side (top-right) of the camera. The two
resulting meshes are shown on the second row, left and right.
As expected, the portions further away from the light source are
noisier. The two meshes were then merged together following
the technique described in section 3, with di�usion coeÆcient
� = 15. Four di�erent views of the �nal mesh (47076 triangles)
are presented. Notice the small surface noise: we estimated it
to 0:09 mm throughout the entire reconstructed surface. Over
a depth variation of approximately 10 cm, this means a relative
error of 0:1%. The few white holes correspond to the occluded
portions of the scene (not observed from the camera or not
illuminated). Most of the geometrical constants in the setup
were kept roughly identical in both scans: dd = 22 cm, � = 40
degrees, hS = 62 cm, � � 70 degrees; we only changed the
azimuth angle � from � (lamp on the left) to 0 (lamp on the
right). In this experiment we took the lamp re
ector o�, leaving
the bulb naked. Consequently, we noticed a signi�cant improve-
ment in the sharpness of the projected shadow compared to the
two �rst experiments. We believe that this operation was the
main reason for the noticeable improvement in reconstruction
quality. Once again, there was no signi�cant global deformation
in the �nal structured surface: we �t a quadratic model through
the reconstructed set of points on the desk plane and noticed
from planar to quadratic warping a decrease of only 2% on the
standard deviation of surface noise.

Acknowledgments
This work is supported in part by the California Institute

of Technology; an NSF National Young Investigator Award to
P.P.; the Center for Neuromorphic Systems Engineering funded
by the National Science Foundation at the California Institute
of Technology; and by the California Trade and Commerce
Agency, OÆce of Strategic Technology. We wish to thank all
the colleagues that helped us throughout this work, especially
Luis Goncalves, George Barbastathis, Mario Munich, and Ar-
rigo Benedetti for very useful discussions. Comments from the
anonymous reviewers were very helpful in improving a previous
version of the paper.

References

[1] Paul Besl, Advances in Machine Vision, chapter 1 - Active
optical range imaging sensors, pages 1{63, Springer-Verlag,
1989.

[2] P.J. Besl and N.D. McKay, \A method for registration of
3-d shapes", IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2):239{256, 1992.

[3] Jean-Yves Bouguet and Pietro Perona, \3D Pho-
tography on your Desk", Technical report, Cal-
ifornia Institute of Technology, 1997, available at:
http://www.vision.caltech.edu/bouguetj/ICCV98.

[4] Brian Curless and Marc Levoy, \Better optical triangu-
lation through spacetime analysis", Proc. 5th Int. Conf.

Computer Vision, Boston, USA, pages 987{993, 1995.

[5] Brian Curless and Marc Levoy, \A volumetric method
for building complex models from range images", SIG-

GRAPH96, Computer Graphics Proceedings, 1996.

[6] O.D. Faugeras, Three dimensional vision, a geometric

viewpoint, MIT Press, 1993.

[7] Berthold K.P. Horn, \Closed-form solution of absolute ori-
entation using unit quaternions", J. Opt. Soc. Am. A,
4(4):629{642, 1987.

[8] Jurgen R. Meyer-Arendt, \Radiometry and photometry:
Units and conversion factors", Applied Optics, 7(10):2081{
2084, October 1968.

[9] Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade,
\Shape from interre
ections", Int. J. of Computer Vision,
6(3):173{195, 1991.

[10] Athanasios Papoulis, Probability, Random Variables and

Stochastic Processes, Mac Graw Hill, 1991, Third Edition,
page 187.

[11] A.J. Stoddart and A. Hilton, \Registration of multiple
point sets", Proceedings of the 13th Int. Conf. of Pattern

Recognition, 1996.

[12] Marjan Trobina, \Error model of a coded-light range
sensor", Technical Report BIWI-TR-164, ETH-Zentrum,
1995.

[13] R.Y. Tsai, \A versatile camera calibration technique for
high accuracy 3d machine vision metrology using o�-the-
shelf tv cameras and lenses", IEEE J. Robotics Automat.,
RA-3(4):323{344, 1987.

[14] John W. T. Walsh, Photometry, Dover, NY, 1965.

[15] Y.F. Wang, \Characterizing three-dimensional surface
structures from visual images", IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(1):52{60,
1991.

[16] Z. Yang and Y.F. Wang, \Error analysis of 3D shape con-
struction from structured lighting", Pattern Recognition,
29(2):189{206, 1996.

8



1999 Reprinted with permission of Kluwer Academic Publishers,

from the International Journal of Computer Vision - Vol. 35, No. 2, Nov./Dec. 1999 - pp. 129-149

3D photography using shadows in dual-space geometry

Jean-Yves Bouguety and Pietro Peronayz

y California Institute of Technology, 136-93, Pasadena, CA 91125, USA

z Universit�a di Padova, Italy

fbouguetj,peronag@vision.caltech.edu

Abstract
A simple and inexpensive approach for extracting the three-

dimensional shape of objects is presented. It is based on `weak
structured lighting'. It requires very little hardware besides the
camera: a light source (a desk-lamp or the sun), a stick and
a checkerboard. The object, illuminated by the light source, is
placed on a stage composed of a ground plane and a back plane;
the camera faces the object. The user moves the stick in front
of the light source, casting a moving shadow on the scene. The
3D shape of the object is extracted from the spatial and tempo-
ral location of the observed shadow. Experimental results are
presented on �ve di�erent scenes (indoor with a desk lamp and
outdoor with the sun) demonstrating that the error in recon-
structing the surface is less than 0:5% of the size of the object.
A mathematical formalism is proposed that simpli�es the nota-
tion and keep the algebra compact. A real-time implementation
of the system is also presented.

1 Introduction and motivation
One of the most valuable functions of our visual

system is informing us about the shape of the ob-
jects that surround us. Manipulation, recognition, and
navigation are amongst the tasks that we can better
accomplish by seeing shape. Ever-faster computers,
progress in computer graphics, and the widespread ex-
pansion of the Internet have recently generated inter-
est in imaging both the geometry and surface texture
of objects. The applications are numerous. Perhaps
the most important ones are animation and entertain-
ment, industrial design, archiving, virtual visits to mu-
seums, and commercial on-line catalogues.

In designing a system for recovering shape, di�er-
ent engineering tradeo�s are proposed by each appli-
cation. The main parameters to be considered are
cost, accuracy, ease of use and speed of acquisition.
So far the commercial 3D scanners (e.g. the Cy-
berware scanner) have emphasized accuracy over the
other parameters. Active illumination systems are
popular in industrial applications where a �xed in-
stallation with controlled lighting is possible. These
systems use motorized transport of the object and ac-
tive (laser, LCD projector) lighting of the scene which
makes them very accurate, but unfortunately expen-
sive [2, 23, 26, 38, 43]. Furthermore most active sys-
tems fail under bright outdoor scenes except those
based upon synchronized scanning. One such system
has been presented by Riou in [33].

An interesting challenge for vision scientists is to
take the opposite point of view: emphasize low cost

Figure 1: The general setup of the proposed method: The
camera is facing the scene illuminated by the light source (top-
left). The �gure illustrates an indoor scenario when a desk lamp
(without re
ector) is used as light source. In outdoor the lamp
is substituted by the sun. The objects to scan are positioned
on the ground 
oor (horizontal plane), in front of a background
plane. When an operator freely moves a stick in front of the
light, a shadow is cast on the scene. The camera acquires a
sequence of images I(x; y; t) as the operator moves the stick so
that the shadow scans the entire scene. A sample image is shown
on the top right �gure. This constitutes the input data to the
3D reconstruction system. The three dimensional shape of the
scene is reconstructed using the spatial and temporal properties
of the shadow boundary throughout the input sequence.

and simplicity and design 3D scanners that demand
little more hardware than a PC and a video camera
by making better use of the data that is available in
the images.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities. At the current state of
vision research stereoscopic disparity is the single pas-
sive cue that reliably gives reasonable accuracy. Un-
fortunately it has two major drawbacks: it requires
two cameras thus increasing complexity and cost, and
it cannot be used on untextured surfaces, which are
common for industrially manufactured objects.

We propose a method for capturing 3D surfaces
that is based on what we call `weak structured light-
ing.' It yields good accuracy and requires minimal
equipment besides a computer and a camera: a stick,
a checkerboard, and a point light source. The light
source may be a desk lamp for indoor scenes, and the
sun for outdoor scenes. A human operator, acting as
a low precision motor, is also required.
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Figure 2: Geometrical principle of the method

We start with the description of the scanning
method in Sec. 2, followed in Sec. 3 by a number
of experiments that assess the convenience and accu-
racy of the system in indoor as well as outdoor sce-
narios. We end with a discussion and conclusions in
Sec. 4. In addition, we show that expressing the prob-
lem in dual-space geometry [12] enables to explore and
compute geometrical properties of three dimensional
scenes with simple and compact notation. This for-
malism is discussed in the appendix together with a
complete error analysis of the method.

2 Description of the method

The general principle consists of casting a moving
shadow with a stick onto the scene, and estimating the
three dimensional shape of the scene from the sequence
of images of the deformed shadow. Figure 1 shows a
typical setup. The objective is to extract scene depth
at every pixel in the image. The point light source and
the leading edge of the stick de�ne, at every time in-
stant, a plane; therefore, the boundary of the shadow
that is cast by the stick on the scene is the intersec-
tion of this plane with the surface of the object. We
exploit this geometrical insight for reconstructing the
3D shape of the object. Figure 2 illustrates the ge-
ometrical principle of the method. Approximate the
light source with a point S, and denote by �h the
horizontal plane (ground) and �v a vertical plane or-
thogonal to �h. Assume that the position of the plane
�h in the camera reference frame is known from cal-
ibration (sec. 2.1). We infer the location of �v from
the projection �i (visible in the image) of the inter-
section line �i between �h and �v (sec. 2.2). The

goal is to estimate the 3D location of the point P in
space corresponding to every pixel p (of coordinates
xc) in the image. Call t the time when the shadow
boundary passes by a given pixel xc (later referred to
as the shadow time). Denote by �(t) the correspond-
ing shadow plane at that time t. Assume that two
portions of the shadow projected on the two planes
�h and �v are visible on the image: �h(t) and �v(t).
After extracting these two lines, we deduce the lo-
cation in space of the two corresponding lines �h(t)
and �v(t) by intersecting the planes (Oc; �h(t)) and
(Oc; �v(t)) with �h and �v respectively. The shadow
plane �(t) is then the plane de�ned by the two non-
collinear lines �h(t) and �v(t) (sec. 2.5). Finally, the
point P corresponding to xc is retrieved by intersect-
ing �(t) with the optical ray (Oc; p). This �nal stage
is called triangulation (sec. 2.6). Notice that the key
steps are: (a) estimate the shadow time ts(xc) at ev-
ery pixel xc (temporal processing), (b) locate the two
reference lines �h(t) and �v(t) at every time instant
t (spatial processing), (c) calculate the shadow plane,
and (d) triangulate and calculate depth. These tasks
are described in sections 2.4, 2.5 and 2.6.

Goshtasby et al. [22] also designed a range scanner
using a shadow generated by a �ne wire in order to
reconstruct the shape of dental casts. In their system,
the wire was motorized and its position calibrated.

Notice that if the light source is at a known location
in space, then the shadow plane �(t) may be directly
inferred from the point S and the line �h(t). Conse-
quently, in such cases, the additional plane �v(t) is
not required. We describe here two versions of the
setup: one containing two calibrated planes and an
uncalibrated (possibly moving) light source; the sec-
ond containing one calibrated plane and a calibrated
light source.

2.1 Camera calibration

The goal of calibration is to recover the location of
the ground plane �h and the intrinsic camera parame-
ters (focal length, principal point and radial distortion
factor). The procedure consists of �rst placing a pla-
nar checkerboard pattern on the ground in the location
of the objects to scan (see �gure 3-left). From the im-
age captured by the camera (�gure 3-right), we infer
the intrinsic and extrinsic parameters of the camera,
by matching the projections onto the image plane of
the known grid corners with the expected projection
directly measured on the image (extracted corners of
the grid); the method is proposed by Tsai in [39]. We
use a �rst order symmetric radial distortion model for
the lens, as proposed in [11, 39, 25]. When using a
single image of a planar calibration rig, the principal
point (i.e. the intersection of the optical axis with the
image plane) cannot be recovered [25, 37]. In that
case it is assumed to be identical to the image cen-
ter. In order to �t a full camera model (principal
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point included), we propose to extend that approach
by integrating multiple images of the planar grid po-
sitioned at di�erent locations in space (with di�erent
orientations). This method has been suggested, stud-
ied and demonstrated by Sturm and Maybank in [37].
Theoretically, a minimum of two images is required to
recover two focals (along x and y), the principal point
coordinates, and the lens distortion factor. We recom-
mend to use that method with three or four images for
best accuracies on the intrinsic parameters [37]. In our
experience, in order to achieve good 3D reconstruction
accuracies, it is suÆcient to use the simple approach
with a single calibration image without estimating the
camera principal point. In other words, the quality of
reconstruction is quite insensitive to errors on the prin-
cipal point position. A whole body of work supporting
that observation may be found in the literature. We
especially advise the reader most interested in issues
on sensitivity of 3D Euclidean reconstruction results
with respect to intrinsic calibration errors, to refer to
recent publications on self-calibration, such as Boug-
noux [5] or Pollefeys et al. [28, 31, 32].

For more general insights on calibration techniques,
we refer the reader to the work of Faugeras [19] and
others [10, 11, 14, 18, 36, 42]. A 3D rig should be
used for achieving maximum accuracy.

Figure 3: Camera calibration

2.2 Vertical plane localization �
v

Call !h and !v respectively the coordinate vectors
of �h and �v (refer to �gure 2 and Appendix A for
notation). After calibration, !h is known. The two
planes �h and �v intersect along the line �i observed
on the image plane at �i. Therefore, according to
proposition 1 in Appendix A, !h�!v is parallel to �i,
coordinate vector of �i, or equivalently, there exists a
scalar � such that !v = !h+��i. Since the two planes
�h and �v are by construction orthogonal, we have
h!h; !vi = 0. That leads to the closed-form expression
for calculating !v :

!v = !h �
h!h; !hi

�i; !h

��i:
Notice that in every realistic scenario, the two planes
�h and �v do not contain the camera center Oc. Their
coordinate vectors !h and !v in dual-space are there-
fore always well de�ned (see Appendix A and sections
2.6 and 2.7 for further discussions).
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2.3 Light source calibration

When using a single reference plane for scanning
(for example �h without �v), it is required to know
the location of the light source in order to infer the
shadow plane location �(t) (see section 2.5 for de-
tails). Figure 4 illustrates a simple technique for cal-
ibrating the light source that requires minimal extra
equipment: a pencil of known length. The operator
stands a pencil on the reference plane �h (see �g.
4-top-left). The camera observes the shadow of the
pencil projected on the ground plane. The acquired
image is shown on �gure 4-top-right. From the two
points b and ts on this image, one can infer the po-
sitions in space of B and Ts, respectively the base of
the pencil, and the tip of the pencil shadow (see bot-
tom �gure). This is done by intersecting the optical

rays (Oc; b) and (Oc; ts) with �h (known from cam-
era calibration). In addition, given that the height of
the pencil h is known, the coordinates of its tip T can
be directly inferred from B. The point light source
S has to lie on the line � = (T; Ts) in space. This
yields one linear constraint on the light source posi-
tion. By taking a second view, with the pencil at a
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di�erent location on the plane, one retrieves a second
independent constraint with another line �0. A closed
form solution for the 3D coordinate of S is then de-
rived by intersecting the two lines � and �0 (in the
least squares sense). Notice that since the problem is
linear, one can integrate the information from more
than 2 views and make the estimation more accurate.
If N > 2 images are used, one can obtain a closed form

solution for the closest point ~S to the N inferred lines
(in the least squares sense). We also estimate the un-

certainty on that estimate from the distance of ~S to
each one of the � lines. That indicates how consis-
tently the lines intersect a single point in space. Refer
to [7, 8, 6] for the complete derivations.

2.4 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detec-
tion of the lines of intersection of the shadow plane
�(t) with the two planes �h and �v; a simple ap-

proach to extract �h(t) and �v(t) may be used if we
make sure that a number of pixel rows at the top and
bottom of the image are free from objects. Then the
two tasks to accomplish are: (a) Localize the edges
of the shadow that are directly projected on the two
orthogonal planes �h(t) and �v(t) at every discrete
time t (every frame), leading to the set of all shadow
planes �(t) (see sec. 2.5), (b) Estimate the time ts(xc)
(shadow time) where the edge of the shadow passes
through any given pixel xc = (xc; yc) in the image
(see �gure 5). Curless and Levoy [16] demonstrated
that such a spatio-temporal approach is appropriate
for preserving sharp discontinuities in the scene as well
as reducing range distortions. A similar temporal pro-
cessing for range sensing was used by Gruss, Tada and
Kanade in [23, 27].

Both processing tasks correspond to �nding the
edge of the shadow, but the search domains are dif-
ferent: one operates on the spatial coordinates (image
coordinates) and the other one on the temporal coor-
dinate. Although independent in appearance, the two
search procedures need to be compatible: if at time t0
the shadow edge passes through pixel xc = (xc; yc),
the two searches should �nd the exact same point
(xc; yc; t0) (in space/time). One could observe that
this property does not hold for all techniques. One
example is the image gradient approach for edge de-
tection (e.g. Canny edge detector [13]). Indeed, the
maximum spatial gradient point does not necessar-
ily match with the maximum temporal gradient point
(which is function of the scanning speed). In addition,
the spatial gradient is a function both of changes in
illumination due to the shadow and changes in albedo
and changes in surface orientation. Furthermore, it
is preferable to avoid any spatial �ltering on the im-
ages (e.g. smoothing) which would produce blending
in the �nal depth estimates, especially noticeable at
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Figure 5: Spatial and temporal shadow localization

occlusions and surface discontinuities (corners for ex-
ample). These observations were also addressed by
Curless and Levoy in [16].

It is therefore necessary to use a unique criterion
that would equally describe shadow edges in space
(image coordinates) and time and is insensitive to
changes in surface albedo and surface orientation.
The simple technique we propose here that satis�es
that property is spatio-temporal thresholding. This
is based on the following observation: as the shadow
is scanned across the scene, each pixel (x; y) sees its
brightness intensity going from an initial maximum
value Imax(x; y) (when there is no shadow yet) down to
a minimum value Imin(x; y) (when the pixel is within
the shadow) and then back up to its initial value as the
shadow goes away. This pro�le is characteristic even
when there is a fair amount of internal re
ections in
the scene [29, 41].

For any given pixel xc = (x; y), de�ne Imin(x; y) and
Imax(x; y) as its minimum and maximum brightness
throughout the entire sequence:(

Imin(x; y)
:
= min

t
fI(x; y; t)g

Imax(x; y)
:
= max

t
fI(x; y; t)g

(1)

We de�ne the shadow edge to be the locations (in
space-time) where the image I(x; y; t) intersects with
the threshold image Ishadow(x; y) de�ned as the mean
value between Imax(x; y) and Imin(x; y):

Ishadow(x; y)
:
=

1

2
(Imax(x; y) + Imin(x; y)) (2)
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This may be also regarded as the zero crossings of the
di�erence image �I(x; y; t) de�ned as follows:

�I(x; y; t)
:
= I(x; y; t)� Ishadow(x; y) (3)

The two bottom plots of �g. 5 illustrate shadow
edge detection in the spatial domain (to calculate
�h(t) and �v(t)) and in the temporal domain (to calcu-
late ts(xc)). The bottom-left plot shows the pro�le of
�I(x; y; t) along row y = 209 at time t = t0 = 288
versus the column pixel coordinate x. The second
zero crossing of that pro�le corresponds to one point
xedge(t0) = (114:51; 209) belonging to �h(t0), the right
edge of the shadow (computed at subpixel accuracy by
linear interpolation). Identical processing is applied
on 39 other rows for �h(t0) and 70 rows for �v(t0) in
order to retrieve the two edges (by least square line �t-
ting across the two sets of points on the image). Simi-
larly, the bottom-right �gure shows the temporal pro-
�le �I(xc; yc; t) at the pixel xc = (xc; yc) = (133; 120)
versus time t (or frame number). The shadow time
at that pixel is de�ned as the �rst zero crossing loca-
tion of that pro�le: ts(133; 120) = 287:95 (computed
at sub-frame accuracy by linear interpolation). Notice
that the right edge of the shadow corresponds to the
front edge of the temporal pro�le, because the shadow
was scanned from left to right in all experiments. Intu-
itively, pixels corresponding to occluded regions in the
scene do not provide any relevant depth information.
Therefore, we only process pixels with contrast value
Icontrast(x; y)

:
= Imax(x; y) � Imin(x; y) larger than a

pre-de�ned threshold Ithresh. This threshold was 30
in all experiments reported in this paper (recall that
the intensity values are encoded from 0 for black to
255 for white). This threshold should be proportional
to the level of noise in the image.

Due to the limited dynamic range of the camera, it
is clear that one should avoid saturating the sensor,
and that one would expect poor accuracy in areas of
the scene that re
ect little light towards the camera
due to their orientation with respect to the light source
and/or low albedo. Our experiments were designed to
test the extent of this problem.

2.5 Shadow plane estimation �(t)

Denote by !(t), �h(t) and �v(t) the coordinate vec-
tors of the shadow plane �(t) and of the shadow edges
�h(t) and �v(t) at time t. Since �h(t) is the pro-
jection of the line of intersection �h(t) between �(t)
and �h, then !(t) lies on the line passing through !h
with direction �h(t) in dual-space (from Appendix A).

That line, denoted �̂h(t), is the dual image of �h(t) in
dual-space (see Appendix A). Similarly, !(t) lies on

the line �̂v(t) passing through !v with direction �v(t)
(dual image of �v(t)). Therefore, in dual-space, the
coordinate vector of the shadow plane !(t) is at the

intersection between the two known lines �̂h(t) and

Λh(t)Dual image of

(t)Λv
Λh(t)

ωv

ωh
zω

yω

xω
O

λv(t)
λh(t)

ω(t)

Image of the shadow
edge projected on the

horizontal plane

coordinate vector
Shadow plane

at time t

Image of the shadow
edge projected on the

vertical plane

Dual image of Λv(t)

(Ω)

Horizontal plane

Vertical plane

Figure 6: Shadow plane estimation using two planes: The
coordinate vector of the shadow plane !(t) is the intersection

point of the two dual lines �̂h(t) and �̂v(t) in dual-space (
).
In presence of noise, the two lines do not intersect. The vector
!(t) is then the best intersection point between the two lines
(in the least squares sense).

�̂v(t). In the presence of noise these two lines will not
exactly intersect (equivalently, the 3 lines �i, �h(t)
and �v(t) do not necessarily intersect at one point on

the image plane, or their coordinate vectors �i, �h(t)

and �v(t) are not coplanar). However, one may still
identify !(t) with the point that is the closest to the
lines in the least-squares sense. The solution to that
problem reduces to:

!(t) =
1

2
(!1(t) + !2(t)) ; (4)

with

!1(t)
:
= !h + �h�h(t)

!2(t)
:
= !v + �v�v(t)

(5)

if [�h �v]
T = A�1b, where A and b are de�ned as

follows (for clarity, the variable t is omitted):

A
:
=

� 

�h; �h

�
�



�h; �v

�
�



�h; �v

� 

�v; �v

� � ; b
:
=

� 

�h; !v � !h

�

�v; !h � !v

� �

Note that the two vectors !1(t) and !2(t) are the
orthogonal projections, in dual-space, of !(t) onto

�̂h(t) and �̂v(t) respectively. The norm of the dif-
ference between these two vectors may be used as an
estimate of the error in recovering �(t). If the two
edges �h(t) and �v(t) are estimated with di�erent re-
liabilities, a weighted least squares method may still
be used.

Figure 6 illustrates the principle of shadow plane es-
timation in dual-space when using the two edges �h(t)
and �v(t). This reconstruction method was used in
experiments 1, 4 and 5.

Notice that the additional vertical plane �v en-
ables us to extract the shadow plane location without
requiring the knowledge of the light source position.
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(Ω)

Dual image of S

Figure 7: Shadow plane estimation using one plane and

the light source position: In dual-space, the coordinate vec-
tor of the shadow plane !(t) is the intersection point of the line

�̂h(t) and the plane Ŝ, dual image of the point light source S.
This method requires the knowledge of the light source position.
A light source calibration method is presented in section 2.3.

Consequently, the light source is allowed to move dur-
ing the scan (this may be the case of the sun, for
example).

When the light source is of �xed and known location
in space, the plane �v is not required. Then, one may
directly infer the shadow plane position from the line
�h(t) and from the light source position S:

!(t) = !h + �h�h(t) (6)

where

S 2 �(t) ,



!(t); XS

�
= 1 , �h =

1�


!h; XS

�


�h(t); XS

�
where XS = [XS YS YS ]

T is the coordinate vector
of the light source S in the camera reference frame.
In dual-space geometry, this corresponds to intersect-

ing the line �̂h(t) with the plane Ŝ, dual image of
the source point S. This process is illustrated in
�gure 7. Notice that



�h(t); XS

�
= 0 corresponds to

the case where the shadow plane contains the camera
center of projection Oc. This is singular con�gura-
tion that makes the triangulation fail (k!(t)k ! 1).
This approach requires an additional step of estimat-
ing the position of S. Section 2.3 describes a simple
method for light source calibration. This reconstruc-
tion method was used in experiments 2 and 3.

It is shown in Appendix B that 1 �


!h; XS

�
=

hS=dh where hS and dh are the orthogonal distances
of the light source S and the camera center Oc to the
plane �h (see �gure 8). Then, the constant �h may
be written as:

�h =
hS=dh


�h(t); XS

� = 1=dh

�h(t); XS=hS

� (7)

This expression highlights the fact that the algebra
naturally generalizes to cases where the light source is
located at in�nity (and calibrated). Indeed, in those

cases, the ratio XS=hS reduces to dS= sin� where dS
is the normalized light source direction vector (in the
camera reference frame) and � the elevation angle of
the light source with respect to the plane �h (de�ned
on �gure 8). In dual-space, the construction of the
shadow plane vector !(t) remains the same: it is still

at the intersection of �̂h(t) with Ŝ. The only di�erence

is that the dual image Ŝ is a plane crossing the origin
in dual-space. The surface normal of that plane is
simply the vector dS .

2.6 Triangulation

Once the shadow time ts(xc) is estimated at a given
pixel xc = [xc yc 1]T (in homogeneous coordinates),
one can identify the corresponding shadow plane
�(ts(xc)) (with coordinate vector !c

:
= !(ts(xc))).

Then, the point P in space associated to xc is retrieved
by intersecting �(ts(xc)) with the optical ray (Oc; xc)
(see �gure 2):

Zc =
1

h!c; xci
=) Xc = Zc xc =

xc

h!c; xci
; (8)

if Xc = [Xc Yc Zc]
T is de�ned as the coordinate

vector of P in the camera reference frame.
Notice that the shadow time ts(xc) acts as an index

to the shadow plane list �(t). Since ts(xc) is estimated
at sub-frame accuracy, the plane �(ts(xc)) (actually
its coordinate vector !c) results from linear interpo-
lation between the two planes �(t0 � 1) and �(t0) if
t0 � 1 < ts(xc) < t0 and t0 integer:

!c = �t !(t0 � 1) + (1��t)!(t0);

where �t = t0 � ts(xc), 0 � �t < 1 (see �gure 17).
Once the range data are recovered, a mesh is gen-

erated by connecting neighboring points in triangles.
The connectivity is directly given by the image: two
vertices are neighbors if their corresponding pixels are
neighbors in the image. In addition, since every vertex
corresponds to a unique pixel, texture mapping is also
a straightforward task. Figures 9, 11, 12, 13 and 14
show experimental results.

Similarly to stereoscopic vision, when the baseline
becomes shorter, as the shadow plane moves closer
to the camera center triangulation becomes more and
more sensitive to noise. In the limit, if the plane
crosses the origin (or equivalently k!ck ! 1) triangu-
lation becomes impossible. This is why it is not a big
loss that we cannot represent planes going through
the origin with our parameterization. This observa-
tion will appear again in the next section on error
analysis.
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2.7 Design Issues - Error analysis

When designing the scanning system, it is impor-
tant to choose a spatial con�guration of the camera
and the light source that maximizes the overall qual-
ity of reconstruction of the scene.

The analysis conducted in Appendix C leads to an
expression for the variance �2Zc

of the error of the
depth estimate Zc of a point P belonging to the scene
(equation 18):

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (9)

where xc is the coordinate vector of the projection p
of P on the image plane, !c = [!x !y !z]

T is the

shadow plane vector at time t = ts(xc), rI(xc) =

[Ix(xc) Iy(xc)]
T = krI(xc)k [cos' sin']T is the

spatial gradient vector of the image brightness at the
shadow edge at xc at time t = ts(xc) (in units of
brightness per pixel), �I is the standard deviation of
the image brightness noise (in units of brightness), and
fc is the camera focal length (in pixels).

Three observations may be drawn from equation 9.
First, since �2Zc

is inversely proportional to krI(xc)k
2,

the reconstruction accuracy increases with the sharp-
ness of the shadow boundary. This behavior has been
observed in past experiments, and discussed in [8].
This might explain why scans obtained using the sun
(experiments 4 and 5) are more noisy that those with a
desk lamp (as the penumbra is larger with the sun by a
factor of approximately 5). Second, notice that �2Zc

is

proportional to k!ck
2 (through the terms !2

x and !
2
y),

or, equivalently, inversely proportional to the square of
the distance of the shadow plane to the camera center
Oc. Therefore, as the shadow plane moves closer to the
camera, triangulation becomes more and more sensi-
tive to noise (see discussion in section 2.6). The third
observation is less intuitive: one may notice that �Zc

does not explicitly depend on the local shadow speed
at xc, at time t = ts(xc). Therefore, decreasing the
scanning speed would not increase accuracy. However,
for the analysis leading to equation 9 to remain valid
(see Appendix C), the temporal pixel pro�le must be
suÆciently sampled within the transition area of the
shadow edge (the penumbra). Therefore, if the shadow
edge were sharper, the scanning should also be slower
so that the temporal pro�le at every pixel would be
properly sampled. Decreasing further the scanning
speed would bene�t the accuracy only if the temporal
pro�le were appropriately low-pass �ltered or other-
wise interpolated before extraction of ts(xc). This is
an issue for future research.

An experimental validation of the variance expres-
sion (9) is reported in section 3 (�gure 10).

In the case where the light source position is known,
it is possible to write the \average" depth variance as

hS

Xc

Oc

Πh

dh

cZ
Yc

S

φ
θ

C

Lξ

Camera
Light source

Figure 8: Geometric setup: The camera is positioned at a
distance dh away from the plane �h and tilted down towards it
at an angle �. The light source is located at a height hS, with
its direction de�ned by the azimuth and elevation angles � and
� in the reference frame attached to the plane �h. Notice that
the sign of cos � directly relates to which side of the camera the
lamp is standing: positive on the right, and negative on the left.

a direct function of the variables de�ning the geometry
of the system (Appendix C, equation 22):

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(10)

where the quantities dh, �, � and � characterize
the spatial con�guration of the camera and the light
source with respect to the reference plane �h (�gure
8). Notice that this quantity may even be computed
prior to scanning right after calibration.

In order to maximize the overall reconstruction
quality, the position of the light source needs then to
be chosen so that the norm of the ratio tan�= cos �
is minimized. Therefore, the two optimal values for
the azimuth angle are � = 0 and � = � corresponding
to positioning the lamp either to the right (� = 0) or
to the left (� = �) of the camera (see �gure 8). Re-
garding the elevation angle �, it would be bene�cial
to make tan� as small as possible. However, making
� arbitrarily small is not practically possible. Indeed,
setting � = 0 would constrain the light source to lie on
the plane �h which would then drastically reduce the
e�ective coverage of the scene due to large amount of
self-shadows cast on the scenery. A reasonable trade-
o� for � is roughly between 60 and 70 degrees. Regard-
ing the camera position, it would also be bene�cial to
make sin � as large as possible (ideally equal to one).
However, it is very often not practical to make � ar-
bitrarily close to �=2. Indeed, having � = �=2 brings
the reference plane �h parallel to the image plane.
Then, standard visual camera calibration algorithms
are known to fail (due to lack of depth perspective in
the image). In most experiments, we set � to roughly
�=4.

Once again, for validation purposes, we may use
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equation 10 to estimate the reconstruction error of the
scans performed in experiment 3 (�gure 12). From a
set of 10 images, we �rst estimate the average image
brightness noise (�I = 2), and the shadow edge sharp-

ness (krIk � 50). After camera and light source
calibration, the following set of parameters is recov-
ered: fc = 428 pixels, dh = 22 cm, � = 39:60 degrees,
hS = 53:53 cm, � = �4:91 degrees and � = 78:39
degrees. Equation 10 returns then an estimate of the
reconstruction error (�Zc

� 0:2 mm) very close to the
actual error experimentally measured on the �nal re-
constructed surface (between 0:1 mm and 0:2 mm).
The �rst expression given in equation 9 may also be
used for obtaining a more accurate estimate of �Zc

speci�c to every point in the scene.

2.8 Merging scans

The range data can only be retrieved at pixels cor-
responding to regions in the scene illuminated by the
light source and seen by the camera. In order to ob-
tain better coverage of the scene, one may take multi-
ple scans of the same scene having the light source at
di�erent locations each time, while keeping the cam-
era position �xed. Consider the case of two scans with
the lamp �rst on the right, and then on the left of the
camera (see �gure 9). Assume that at a given pixel xc
on the image, two shadow planes are available from
the two scans: �L

c and �R
c . Denote by !Lc and !Rc

their respective coordinate vectors. Then, two esti-
mates ZL

c and ZR
c of the corresponding depth at xc

are available (from equation 8):

�
ZL
c = 1=



!Lc ; xc

�
ZR
c = 1=



!Rc ; xc

� (11)

One may then calculate the depth estimate at xc
by taking a weighted average of ZL

c and ZR
c :

Zc
:
= �L Z

L
c + �R Z

R
c (12)

where the weights �L and �R are computed based on
the respective reliabilities of the two depth estimates.
Assuming that ZL

c and ZR
c are random variables with

independent noise terms, they are optimally averaged
(in the minimum variance sense) using the inverse of
the variances as weights [30]:

�L

�R
=

�2R
�2L

=)

�
�L = �2R=(�

2
R + �2L)

�R = �2L=(�
2
R + �2L)

(13)

where �2L and �2R are the variances of the error at-

tached to ZL
c and ZR

c respectively.
A sensitivity analysis of the method described in

Appendix C provides expressions for those variances
(given in equation 9). This technique was used in ex-
periment 1 for merging two scans (see �gure 9).

2.9 Real-time implementation
We implemented a real-time version of our 3D scan-

ning algorithm in collaboration with Silvio Savarese of
the university of Naples, Italy. In that implementation
the process is divided into two main steps. In the �rst
step, the minimum and maximum images Imin(x; y)
and Imax(x; y) (eq. 1) are computed through a �rst
fast shadow sweep over the scene (with no shadow
edge detection). That step allows to pre-compute the
threshold image Ishadow(x; y) (eq. 2) which is useful to
compute in real-time the di�erence image �I(x; y; t)
(eq. 3) during the next stage: the scanning proce-
dure itself. During scanning, temporal and spatial
shadow edge detections are performed as described
in section 2.4: As a new image I(x; y; t0) is acquired
at time t = t0, the corresponding di�erence image
�I(x; y; t0) is �rst computed. Then, a given pixel
(xc; yc) is selected as a pixel lying on the edge of
the shadow if �I(xc; yc; t) crosses zero between times
t = t0 � 1 and t = t0. In order to make that deci-
sion, and then compute its corresponding sub-frame
shadow time ts(xc; yc), only the previous image dif-
ference �I(x; y; t0 � 1) needs to be stored in memory.
Once a pixel (xc; yc) is activated and its sub-frame
shadow time ts(xc; yc) computed, one may directly
identify its corresponding shadow plane � by linear
interpolation between the current shadow plane �(t0)
and the previous one �(t0 � 1) (see sec. 2.5). There-
fore, the 3D coordinates of the point may be directly
computed by triangulation (see sec. 2.6). As a re-
sult, in that implementation, neither the shadow times
ts(x; y), nor the entire list of shadow planes �(t) need
to be stored in memory, only the previous di�erence
image �I(x; y; t0 � 1) and the previous shadow plane
�(t0 � 1). In addition, scene depth map (or range
data) is computed in real-time. The �nal implemen-
tation that we designed also takes advantage of pos-
sible multiple passes of the shadow edge over a given
pixel in the image by integrating all the successive
depth measurements together based on their relative
reliabilities (equations 11, 12 and 13 in section 2.8).
Details of the implementation may be found in [34].

The real-time program was developed under Visual
C++ and works at 30 frames a second on images of
size 320 � 240 on a Pentium 300MHz machine: it
takes approximately 30 seconds to scan a scene with
a single shadow pass (i.e. 30� 30 = 900 frames), and
between one and two minutes for a re�ned scan using
multiple shadow passes. The system uses the PCI
frame grabber PXC200 from Imagenation, a NTSC
black and white SONY XC-73/L camera (1/3 inch
CCD) with a 6mm COSMICAR lens (leading to a 45o

horizontal �eld of view). Source code (matlab for cal-
ibration and C for scanning) and complete hardware
references and speci�cations are available online at
http://www.vision.caltech.edu/bouguetj/ICCV98.
At the same location, a short demonstration movie of
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the working system is also available.

3 Experimental Results
3.1 Calibration accuracy
Camera calibration. For a given setup, we ac-
quired 5 images of the checkerboard pattern (see �gure
3-right), and performed independent calibrations on
them. The checkerboard, placed at di�erent posi-
tions in each image, consisted of 187 visible corners
on a 16 � 10 grid. We computed both mean values
and standard deviations of all the parameters inde-
pendently: the focal length fc, radial distortion fac-
tor kc and ground plane position �h. Regarding the
ground plane position, it is convenient to look at its
distance dh to the camera originOc and its normal vec-
tor nh expressed in the camera reference frame (recall:
!h = nh=dh). The following table summarizes the cal-
ibration results:

Parameters Estimates Relative
errors

fc (pixels) 426:8 � 0:8 0:2%

kc �0:233 � 0:002 1%

dh (cm) 112:1 � 0:1 0:1%

nh

0
@

�0:0529 � 0:0003
0:7322 � 0:0003
0:6790 � 0:0003

1
A 0:05%

!h (m�1)

0
@

�0:0472 � 0:0003
0:653 � 0:006
0:606 � 0:006

1
A 0:1%

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like �gure 4-top-right) and per-
formed calibration of the light source on them. See
section 2.3. Notice that the points b and ts were
manually extracted from the images. De�ne XS as
the coordinate vector of the light source in the cam-
era reference frame. The following table summarizes
the calibration results obtained for the setup shown in
�gure 4 (refer to �gure 8 for notation):

Parameters Estimates Relative
errors

XS (cm)

0
@

�13:7� 0:1
�17:2� 0:3
�2:9� 0:1

1
A � 2%

hS (cm) 34:04 � 0:15 0:5%

� (degrees) 146:0 � 0:8 0:2%

� (degrees) 64:6� 0:2 0:06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34� 0:5 cm.

This accuracy is suÆcient for not inducing any
signi�cant global distortion onto the �nal recovered
shape, as we discuss in the next section.

3.2 Scene reconstructions
Experiment 1 - Indoor scene: We took two scans
of the same scene with the desk lamp �rst on the right
side and then on the left side of the camera. The two
resulting meshes are shown on the top row on �gure

Figure 9: Experiment 1 - Indoor scene

9. The meshes were then merged together following
the technique described in section 2.8. The bottom
�gure shows the resulting mesh composed of 66; 579
triangles. We estimated the surface error (�Zc

) to ap-
proximately :7 mm in standard deviation over 50 cm
large objects, leading to a relative reconstruction error
of 0:15%. The white holes in the mesh images corre-
spond to either occluded regions (not observed from
the camera, or not illuminated) or very low albedo ar-
eas (such as the black squares on the horizontal plane).
There was no signi�cant global deformation in the �-
nal structured surface: after �tting a quadratic model
through sets of points on the two planes, we only no-
ticed a decrease of approximately 5% in standard devi-
ation of the surface error. One may therefore conclude
that the calibration procedure returns suÆciently ac-
curate estimates. The original input sequences were
respectively 665 and 501 frames long, each image be-
ing 320� 240 pixels large, captured with a grayscale
camera.

Figure 10 reports a comparison test between the
theoretical depth variances obtained from expression
(9) and that computed from the reconstructed surface.
This test was done on the �rst scan of the scene shown
on �gure 9-top-left. In that test, we experimentally
compute the standard deviation �Zc

of the error on
the depth estimate Zc at 13 points p = (A;B; : : : ;M)
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D
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12:0
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Figure 10: Comparison of measured and predicted re-

construction error �Zc : The standard deviation �Zc of the
depth estimate error are experimentally calculated at 13 points
p = (A;B; : : : ;M) picked randomly on the horizontal plane �h

and computed theoretically using equation 9. The experimental
estimates are reported in the last column of the table (in mm)
and the second last column reports the corresponding theoreti-
cal estimates. The terms involved in equation 9 are also given:
rI (in units of brightness per pixel), [!x !y]T (in m�1) and
Zc (in mm). The image noise was experimentally estimated to
�I = 2 brightness values, and the focal value used was fc = 426
pixels. The top-left �gure shows a plot is the theoretical stan-
dard deviations versus the experimental ones. Observe that the
theoretical error model captures quite faithfully the actual vari-
ations in accuracy of reconstruction within the entire scene: as
the point of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and a smaller
shadow plane vector !c; in addition, deeper areas in the scene
are more noisy mainly because of larger absolute depths Zc and
shallower shadow edges (smaller krIk). We conclude from that
experiment that equation 9 returns an accurate estimate for
�Zc .

picked randomly on the horizontal plane �h of the
scan data shown on �gure 9-top-left. Figure 10-top-
right shows the positions of those points in the scene.
The standard deviation �Zc

at a given point p in the
image is experimentally calculated by �rst taking the
9� 9 pixel neighborhood around p resulting into a set
of 81 points in space that should lie on �h. We then
�t a plane across those 81 points (in the least squares
sense) and set �Zc

as the standard deviation of the
residual algebraic distances of the entire set of points
to this best �t plane. The experimental estimates for
�Zc

are reported in the last column of the table (in
mm). The second last column reports the correspond-
ing theoretical estimates of �Zc

(in mm) computed
using equation 9. The terms involved in that equation
are also given: rI (in units of brightness per pixel),
[!x !y]

T (in m�1) and Zc (in mm). The image noise
was experimentally estimated to �I = 2 brightness val-
ues (calculation based on 100 acquired images of the
same scene), and the focal value used was fc = 426
pixels. See sec. 2.7 for a complete description of those
quantities. The top-left �gure shows a plot of the the-
oretical standard deviations versus the experimental
ones. Observe that the theoretical error model cap-
tures quite faithfully the actual variations in accuracy
of reconstruction within the entire scene: as the point
of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and
a smaller shadow plane vector !c; in addition, deeper
areas in the scene are more noisy mainly because of
larger absolute depths Zc and shallower shadow edges
(smaller krIk). We conclude from that experiment
that equation 9 returns a valid estimate for �Zc

.

Experiment 2 - Scanning of a textured skull:
We took one scan of a small painted skull, using a
single reference plane �h, with known light source po-
sition (pre-calibrated). Two images of the sequence
are shown on the top row of �gure 11. The recovered
shape is presented on the second row (33,533 trian-
gles), and the last row shows three views of the mesh
textured by the top left image. Notice that the tex-
tured regions of the object are nicely reconstructed (al-
though these regions have smaller contrast Icontrast).
Small artifacts observable at some places on the top
of the skull are due to the saturation of the pixel val-
ues to zero during shadow passage. This e�ect in-
duces a positive bias on the threshold Ishadow (since
Imin is not as small as it should be). Consequently,
those pixels take on slightly too small shadow times
ts and are triangulated with shadow planes that are
shifted to the left. In e�ect, their �nal 3D location
is slightly o� the surface of the object. One possible
solution to that problem consists of taking multiple
scans of the object with di�erent camera apertures,
and retain each time the range results for the pix-
els that do not su�er from saturation. The overall
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reconstruction error was estimated to approximately
0.1 mm over a 10 cm large object leading to a rela-
tive error of approximately 0:1%. In order to check
for global distortion, we measured the distances be-
tween three characteristic points on the object: the
tip of the two horns, and the top medium corner of the
mouth. The values obtained from physical measure-
ments on the object and the ones from the retrieved
model agreed within the error of measurement (on the
order of 0.5mm over distances of approximately 12 to
13cm). The sequence of images was 670 frames long,
each image being 320�240 pixels large (acquired with
a grayscale camera).

Experiment 3 - Textured and colored fruits:
Figure 12 shows the reconstruction results on two tex-
tured and colored fruits. The second row shows the
reconstructed shapes. The two meshes with the pixel
images textured on them are shown on the third row.
Similar reconstruction errors to the previous exper-
iment (Experiment 2) were estimated on that data
set. Notice that both textured and colored regions of
the objects were well reconstructed: the local surface
errors was estimated between 0:1 mm and 0:2 mm,
leading to relative errors of approximately 0:1%.

Experiment 4 - Outdoor scene: In this experi-
ment, the sun was the light source. See �gure 13. The
�nal mesh is shown on the bottom �gure (106; 982 tri-
angles). The reconstruction error was estimated to
1mm in standard deviation, leading to a relative error
of approximately 0:2%. The larger reconstruction er-
ror is possibly due to the fact that the sun is not well
approximated by a point light source (as discussed in
Appendix C). Once again, there was no noticeable
global deformation induced by calibration. After �t-
ting a quadratic model to sets of points on the planes,
we only witnessed a decrease of approximately 5% on
the standard deviation of the residual error. The orig-
inal sequence was 790 images long acquired with a
consumer electronics color camcorder (at 30 Hz). Af-
ter digitization, and de-interlacing, each image was
640�240 pixel large. The di�erent digitalization tech-
nique may also explain the larger reconstruction error.

Experiment 5 - Outdoor scanning of a car:
Figure 14 shows the reconstruction results on scan-
ning a car with the sun. The two planes (ground 
oor
and back wall) approach was used to infer the shadow
plane (without requiring the sun position). The initial
sequence was 636 frames long acquired with a con-
sumer electronics color video-camera (approximately
20 seconds long). Similarly to Experiment 4, the se-
quence was digitized resulting to 640� 240 pixel large
non-interlaced images. Two images of the sequence
are presented on the top row, as well as two views of
the reconstructed 3D mesh after scanning. The re-
construction errors were estimated to approximately
1 cm, or 0:5% of the size of the car (approximately 3

meters).

4 Conclusion and future work
We have presented a simple, low cost system for 3D

scanning. The system requires very little equipment (a
light source, and a straight edge to cast the shadow)
and is very simple and intuitive to use and to cali-
brate. This technique scales well to large objects and
may be used in brightly lit scenes where most active
lighting methods are impractical (expect synchronized
scanning systems [33]). In outdoor scenarios, the sun
is used as light source and is allowed to move during a
scan. The method requires very little processing and
image storage and has been implemented in real time
(30 Hz) on a Pentium 300MHz machine. The accu-
racies that we obtained on the �nal reconstructions
are reasonable (error at most 0:5% of the size of the
scene). In addition, the �nal outcome is a dense and
conveniently organized coverage of the surface (one
point in space for each pixel in the image), allowing di-
rect triangular meshing and texture mapping. We also
showed that using dual-space geometry enables us to
keep the mathematical formalism simple and compact
throughout the successive steps of the method. An er-
ror analysis was presented together with a description
of a simple technique for merging multiple 3D scans
in order to obtain a better coverage of the scene, and
reduce the estimation error. The overall calibration
procedure, even in the case of multiple scans, is intu-
itive, simple, and accurate.

Our method may be used to construct complete 3D
object models. One may take multiple scans of the
object at di�erent locations in space, and then align
the sets of range images. For that purpose, a number
of algorithms have been explored and shown to yield
excellent results [3, 21, 40]. The �nal step consists of
constructing the �nal object surface from the aligned
views [1, 17, 40].

It is part of future work to incorporate a geometri-
cal model of extended light source to the shadow edge
detection process, in addition to developing an uncal-
ibrated (projective) version of the method. One step
towards an uncalibrated system may be found in [9].
In this paper, we study the case of 3D reconstruction
from a set of planar shadows when there is no cali-
brated background plane in the scene.

A Dual-space formalism

Let (E) = IR3 be the 3D Euclidean space. A plane
� in (E) is uniquely represented by the 3-vector ! =
[!x !y !z]

T such that any point P of coordinate

vector Xc = [Xc Yc Zc]
T (expressed in the camera

reference frame) lies on � if and only if


!;Xc

�
= 1

(h:; :i is the standard scalar product operator). Notice
that !

:
= n=d where n is the unitary normal vector

of the plane and d 6= 0 the plane's distance to the
origin. Let (
) = IR3. Since every point ! 2 (
)
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Figure 11: Experiment 2 - Scanning of a textured skull

Figure 12: Experiment 3 - Textured and colored fruits

Figure 13: Experiment 4 - Outdoor scanning of an object

Figure 14: Experiment 5 - Outdoor scanning of a car
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Figure 15: Proposition 1: The direction of the line connecting
two planes vectors !a and !b in dual-space (
) is precisely �,
the coordinate vector of the perspective projection � of the line
of intersection � between the two planes �a and �b in Euclidean
space (E).

corresponds to a unique plane � in (E), we refer to
(
) as the `dual-space'. Conversely, every plane �
that does not contain the origin has a valid coordinate
vector ! in (
). Notice that the set of plane crossing
the origin cannot be parameterized in (
) space, since
the ! diverges to in�nity as d gets closer to zero.

Similarly, a line � on the image plane is represented
by the 3-vector � (up to scale) such that any point p
of coordinates xc = [xc yc 1]T lies on this line if and

only if


�; xc

�
= 0. See [20, 24, 35].

Originally, the dual-space of a given vector space
(E) is de�ned as the set of linear forms on (E) (lin-
ear functions of (E) into the reals IR). See [4]. In
the case where (E) is the three dimensional Euclidean
space, each linear form may be interpreted as a plane
� in space that is typically parameterized by a homo-
geneous 4-vector � = [�1 �2 �3 �4]

T . A point P

of homogeneous coordinates X = [X Y Z 1]T lies
on a generic plane � of coordinates � if and only if

�;X

�
= 0 (see [12]). Our !�parameterization dif-

fers from the conventional parameterization in that it
does not allow to represent planes crossing the origin
(the correspondence between the two parameteriza-
tions is ! = �[�1 �2 �3]

T =�4, therefore �4 6= 0).
However, that does not constitute a limitation in our
application since none of the planes we need to param-
eterize are allowed to cross the origin (as discussed in
sections 2.2 and 2.6). Furthermore, this new repre-
sentation exhibits useful properties allowing to natu-
rally relate objects in 3D (planes, lines and points) to
their perspective projections on the image plane (lines
and points) in addition to providing very compact an-
alytical results in error sensitivity analysis.

The following proposition constitutes the major
property associated to our choice of parameterization:

Proposition 1: Consider two planes �a and �b in
space, with respective coordinate vectors !a and !b
(!a 6= !b), and let � = �a\�b be the line of intersec-

tion between them. Let � be the perspective projec-
tion of � on the image plane, and � its representative
vector. Then � is parallel to !a � !b (see �gure 15).
In other words, !a�!b is a valid coordinate vector of
the line �.

Proof: Let P 2 � and let p be the projection of
P on the image plane. Call X = [X Y Z]T and

x = 1
Z
X the respective coordinates of P and p. We

successively have:

P 2 � ()

�
P 2 �a

P 2 �b

()

� 

!a; X

�
= 1


!b; X
�

= 1
=) h!a � !b; xi = 0:

Therefore (!a�!b) is a representative vector of � and

must be parallel to �. �
Consequently, the coordinate vector ! of any plane

� containing the line � will lie on the line connecting
!a and !b in dual-space (
). We denote that line

by �̂ and call it the dual image of �. The following
de�nition generalizes that concept of dual image:

De�nition: Let A be a submanifold of (E) (e.g. a
point, line, plane, surface or curve). The dual image

Â of A is de�ned as the set coordinates vectors !
in dual-space (
) representing the tangent planes to
A. Following that standard de�nition (see [12]), the
dual images of points, lines and planes in (E) may be
shown to be respectively planes, lines and points in
dual-space (
), as illustrated in �gure 16. Further
properties regarding non-linear sub-manifolds may be
observed, such as for quadric surfaces in [15].

B Proof of h
S
=d

h
= 1�



!
h
; X

S

�

Since !h is the coordinate vector of the plane �h,
the vector nh = dh !h is the normal vector of the plane
�h in the camera reference frame (see �gure 8). Let P
be a point in Euclidean space (E) of coordinate vector

X. The quantity dh �


nh; X

�
is then the (algebraic)

orthogonal distance of P to �h (positive quantity if the
P is on the side of the camera, negative otherwise).

In particular, if P lies on �h, then


nh; X

�
= dh,

which is equivalent to


!h; X

�
= 1. The orthogonal

distance of the light source S to �h is denoted hS on
�gure 8. Therefore hS = dh�



nh; X

�
, or equivalently

1�


!h; XS

�
= hS=dh. �

C Sensitivity Analysis
This appendix presents a complete error analysis

for the whole reconstruction scheme. As �rst men-
tioned in section 2, the method proposes to associate
to every pixel xc the time instant ts(xc) at which the
shadow crosses that particular pixel. That given time
corresponds to the shadow plane �(ts(xc)) in space (of
coordinate vector !c), used at the triangulation step
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to retrieve the coordinates of the point P in space
(see �gure 2). In addition, at every time instant t, a
shadow plane �(t) is estimated based on two line seg-
ments �h(t) and �v(t) extracted from the image plane
(see section 2.4).

Therefore, one clearly identi�es two possible
sources of error a�ecting the overall reconstruction:
errors in localizing the two edges �h(t) and �v(t) lead-
ing to error in estimating the shadow plane �(t) (or
error on the vector !(t)), and errors in �nding the
shadow time ts(xc) (at every pixel xc) leading to an
error in shadow plane assignment.

Experimentally, we found that the error coming
from spatial processing (shadow plane localization)
was much smaller than the one coming from tempo-
ral processing (shadow time computation). In other
words, in all the experiments we carried out, the
shadow planes were localized to such a degree of accu-
racy that the errors induced by the noise on !c were
negligible compared to the errors induced by the noise
on ts(xc). This experimental observation is reasonable
because the shadow edges �h(t) and �v(t) are recov-
ered by �tting lines through many points on the image
plane (an order of 50 points per line) while shadow
time ts(xc) is estimated on a basis of a single pixel.
Notice that this is experiment dependent, and may
very well not be true if fewer points were used to ex-
tract the shadow edges, or if the image were more
noisy, or more distorted. In those cases, both error
terms should be retained. In the present analysis, we

propose to derive an expression of the variance of the
error in depth estimation �2Zc

assuming that the main
source of noise comes from temporal processing. In the
experimental section, we verify that the �nal variance
expression agrees numerically with accuracies achieved
on real scan data.

C.1 Derivation of the depth variance �
2
Zc

Every pixel xc on the image sees the shadow pass-
ing at time a ts(xc), called the shadow time, that is
estimated through temporal processing (see section
2.4). This estimation is naturally subject to errors,
leading to inaccuracies in the �nal 3D reconstruction.
The purpose of that analysis is to study how damag-
ing those errors truly are on the �nal structure, and
quantify them. Assume that for a given pixel xc, an
additive temporal error Æts(xc) is made on its shadow
time estimate: ~ts(xc) = ts(xc) + Æts(xc). This typ-
ically leads the algorithm to assign to the pixel xc
the \wrong" shadow plane �(ts(xc) + Æts(xc)) for the
geometrical triangulation step. Equivalently, one can
think that the plane �(ts(xc) + Æts) has been associ-
ated with the \wrong" pixel xc in the image. Although
it does not change anything to the problem, that way
of centering the reasoning onto the shadow plane in-
stead of the pixel actually signi�cantly simpli�es the
whole analysis. Indeed, as we will show in the follow-
ing, if we assign the noise to the pixel location itself,
the time variable can then be omitted.

To be more precise, let us �rst de�ne v(xc) =
[vx(xc) vy(xc)]

T to be the velocity vector of the
shadow at the pixel xc that is orthogonal to the
shadow edge. Then, the closest point to xc that has
truly been lit by the shadow plane �(ts(xc)+ Æts(xc))
is xc + Æts(xc) v(xc). Therefore, by picking xc in-
stead, we introduce an additive pixel error Æxc

:
=

�Æts(xc) v(xc). This is the equivalent noise that can
be attributed to the pixel location xc before triangu-
lation.

One can then see that this equivalent image coor-
dinate noise is naturally related to the speed of the
shadow. Indeed, even if we assume that the time esti-
mation error Æts is identical for every pixel in the im-
age, the corresponding pixel error Æxc is generally not
uniform, neither in direction, nor in magnitude. Typ-
ically, fast moving shadow regions will be subject to
larger errors than slow moving shadow regions. Vari-
ations in apparent shadow speed can be caused by a
change in the actual speed at which the stick is moved,
a change in local surface orientation of the scene, or
both.

Before triangulation, the pixel coordinates have to
be normalized by the intrinsic parameters of the cam-
era. Let us assume, for simplicity in the notation,
that xc = [xc yc 1]T is directly the normalized, ho-
mogeneous coordinate vector associated to the pixel.
The two coordinates xc and yc are a�ected by the
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Figure 17: Estimation error on the shadow time: The
shadow time ts(xc) is estimated by linearly interpolating the
di�erence temporal brightness function �I(xc; yc; t) between
times t0 � 1 and t0. The pixel noise (of standard deviation
�I ) on I0

:

= �I(xc; yc; t0 � 1) and I1

:

= �I(xc; yc; t0) induces
errors on the estimation of �t, or equivalently ts(xc). This error
has variance �2t .

error vector Æxc whose variance-covariance matrix is
denoted �xc (a 2 � 2 matrix). Let us derive an ex-
pression for that matrix as a function of the image
brightness noise.

Lemma: Let �I be the standard deviation of the
image brightness noise (estimated experimentally).
We can write �xc as a function of the image gradi-

ent rI(xc) at pixel xc at time t = ts(xc):

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�
(14)

where fc is the focal length of the camera (in pixels),

rI(xc) is the gradient vector of the image brightness
at the shadow, and ' the orientation angle of that
vector (orientation of the shadow edge at pixel xc):

rI(xc) =

�
Ix(xc)
Iy(xc)

�
= krI(xc)k

�
cos'
sin'

�

where:

Ix(xc)
:
=

@I(x; t)

@x

����
x=xc;t=ts(xc)

Iy(xc)
:
=

@I(x; t)

@y

����
x=xc;t=ts(xc)

Proof of lemma (eq. 14): Figure 17 shows the
principle of computing the shadow time ts(xc) from
the di�erence image �I (refer to section 2.5). For
clarity in the notation, de�ne I0

:
= �I(xc; yc; t0 � 1)

and I1
:
= �I(xc; yc; t0). Then, the shadow time ts(xc)

is given by:

ts(xc) = t0 ��t

where:

�t
:
=

I1

I1 � I0

Let �2t be the variance of the error Æts(xc) attached
to the shadow time ts(xc). In normal sampling condi-
tions (if the temporal brightness is suÆciently sampled
within the shadow transition area), the same error is
on the variable �t, and therefore �t may be directly
expressed as a function of �I , the variance of pixel
noise on I0 and I1:

�2t =

 �
@�t

@I0

�2

+

�
@�t

@I1

�2
!
�2I

�2t =
I20 + I21
ÆI4

�2I (15)

where ÆI
:
= I1 � I0 is the temporal brightness varia-

tion at the zero crossing (or equivalently at the shadow
time). One may notice from equation 15 that, as the
brightness di�erence ÆI increases, the error in shadow
time decreases. That is a very intuitive behavior given
that higher shadow contrasts should give rise to bet-
ter accuracies. Notice however that the variance �2t
is not only a function of ÆI but also of the absolute
brightness values I0 and I1. One may then consider
the maximum value of �2t for a �xed ÆI over all I0 and
I1, subject to the constraint I1 = I0 + ÆI :

�2t = max
0<I0<�ÆI

�
2 I20 + 2 I0 ÆI + ÆI2

ÆI4

�
�2I

leading to the following simpli�ed expression for �2t :

�2t =
�2I
ÆI2

(16)

To motivate that simpli�cation, one may notice that
the minimum and maximum values of �2t over all val-
ues I0 and I1 are quite similar anyway: �2I=(2 ÆI

2)
(minimum) and �2I=ÆI

2 (maximum). The maximum
may be thought as an upper bound on the error. No-
tice that ÆI is nothing but the �rst temporal derivative
of the image brightness at the pixel xc, at the shadow
time:

ÆI =
@I(x; t)

@t

����
x=xc;t=ts(xc)

This temporal derivative may also be expressed as
a function of the image gradient vector rI(xc) =
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[Ix(xc) Iy(xc)]
T and the shadow edge velocity vec-

tor v(xc) = [vx(xc) vy(xc)]
T :

ÆI = �rI(xc)
T v(xc) = �Ix(xc) vx(xc)� Iy(xc) vy(xc)

By de�nition, the edge velocity vector v(xc) is or-
thogonal to the shadow edge. Therefore it may be
also written as a direct function of the gradient vector
rI(xc):

v(xc) = s kv(xc)k
rI(xc)

krI(xc)k
= s kv(xc)k

�
cos'
sin'

�

where s is either +1 or �1 depending on the direction
of motion of the edge. Therefore,

ÆI = (�s)
rI(xc)

T
rI(xc)

krI(xc)k
kv(xc)k

ÆI = (�s) krI(xc)k kv(xc)k (17)

Consequently, by substituting (17) into (16), we ob-
tain a new expression for the temporal variance �2t :

�2t =
�2I

krI(xc)k2 kv(xc)k2

Then, the error vector Æxc transfered on the image
plane is also related to the shadow edge velocity v(xc)
and the temporal error Æts(xc):

Æxc = �Æts(xc) v(xc)

Æxc = (�s) kv(xc)k Æts(xc)

�
cos'
sin'

�

Then, the variance-covariance matrix of the noise Æxc
is (recall that s2 = 1):

�xc = kv(xc)k
2 �2t

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

�xc =
�2I

krI(xc)k2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

Finally, note that this relation is valid if xc is expressed
in pixel coordinates. After normalization, this vari-
ance must be scaled by the square of the inverse of
focal length fc:

�xc =
�2I

f2c krI(xc)k
2

�
cos2 ' cos' sin'

cos' sin' sin2 '

�

which ends the proof of the lemma (eq. 14). �

Notice that if the shadow edge is roughly vertical
on the image, one may assume ' = 0, and therefore
simplify quite signi�cantly the variance expression:

�xc =
�2I

f2c I
2
x(xc)

�
1 0
0 0

�

In that case, we reach the very intuitive result that
only the �rst coordinate of xc is a�ected by noise.

Since �xc in inversely proportional to the image
gradient, accuracy improves with shadow edge sharp-
ness. In addition, observe that �xc does not directly
depend upon the local shadow speed. Therefore, de-
creasing the scanning speed would not increase accu-
racy. However, for the analysis leading to equation
14 to remain valid, the temporal pixel pro�le must
be suÆciently sampled within the transition area of
the shadow edge (the penumbra). Therefore, if the
shadow edge were sharper, the scanning should also
be slower so that the temporal pro�le at every pixel
would be properly sampled. Further discussions may
be found in section 2.7. Another consequence of equa-
tion 14 is that one may experimentally compute the
variance �xc of the transfered error directly from the

original input sequence: rI(xc) is the image gradient
at the shadow edge and �I is the pixel noise on the
image. In addition, assuming that the sharpness of
the shadow is approximately uniform over the entire
image, then �xc may also be assumed to be uniform
to a �rst approximation. That constitutes an addi-
tional simpli�cation that does not have to be retained
in practice.

The �nal expression of the variance �2Zc

of the error
attached to the depth estimate Zc may be written as
follows:

�2Zc

=

�
@Zc

@xc

�
�xc

�
@Zc

@xc

�T

One may derive the expression for the Jacobian matrix�
@Zc

@xc

�
from the triangulation equation 8:

Zc =
1

h!c; xci
=)

@Zc

@xc
= Z2

c

�
!x !y

�
where !x and !y are the two �rst coordinates of the
shadow plane vector !c. This allows to expand the
expression of �2Zc

:

�2Zc

= Z4
c

�
!x cos'+ !y sin'

fc krI(xc)k

�2

�2I (18)

This expression is directly computable from the orig-
inal input sequence, and used for scan merging (refer
to section 2.8). Several observations regarding that
expression may be found in section 2.7.
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C.2 System Design Issues
Let us consider the scanning setup as it is presented

on �gure 8 where the scan is done roughly vertically.
In that case, ' � 0, and I2y (xc) � I2x(xc) (see �gure

10). Then, the depth variance expression (18) may be
further simpli�ed to:

�2Zc

�

Z4
c !

2
x

f2c I
2
x(xc)

�2I (19)

It appears then that the �rst coordinate !x of the
shadow plane vector !c carries most of the variations
in accuracy of reconstruction within a given scan.
When designing the scanning system, an important
issue is to choose the spatial con�gurations of the
camera and the light source that maximize the over-
all quality of reconstruction, or equivalently minimize
j!xj. In order to address this issue, it is necessary to
further expand the term !x, and study its dependence
upon the geometrical variables characterizing the sys-
tem. Since the light source position is of interest here,
let us consider the case where a single plane �h is
used for scanning. In that case, the shadow plane vec-
tor !c appears as a function of the light source posi-
tion vector XS , as stated by equation 6. Assume that
�h = [�x �y �z ]

T is normalized such that �x = 1. In
addition, assume that the (Oc; Xc) axis of the camera
is approximately parallel to the plane �h (as suggested
in �gure 8). This implies that the �rst coordinate of
!h is zero. Then, the �rst coordinate !x of !c reduces
to:

!x =
1�



!h; XS

�


�h; XS

� =
hS=dh

�h; XS

� (20)

where dh and hS are the respective orthogonal dis-
tances of the camera center Oc and the light source S
to the plane �h.

For simpli�cation purposes, let us assume that the
shadow edge �h appears vertically on the image plane,
and let x be its horizontal position (on the image). As
the shadow moves from left to right, x varies from
negative values to positive values, crossing zero when
the shadow is at the center of the image. In that
speci�c scenario, the shadow edge vector reduces to:
�h = [1 0 � x]T simplifying equation 20:

1

!x
=

dh

hS
(XS � xZS) (21)

The problem of maximizing the reconstruction qual-
ity corresponds then to maximizing j1=!xj. Since that
quantity is function of the shadow edge location x, we
may observe that the accuracy of reconstruction is not
uniform throughout the scene for a given scan (unless
the depth of the light source in the camera reference
frame is zero: ZS = 0). A better understanding of

that relation may be achieved by expressing the light
source coordinate vector XS as a function of the an-
gular coordinates �, �, and � de�ning the mutual po-
sitions of the camera and the light source with respect
to the plane �h (see �gure 8):

XS =

2
4 XS

YS
ZS

3
5 =

2
664

hS
cos �
tan�

� hS
sin � sin �
tan�

+ (dd � hS) cos �

hS
cos � sin �
tan�

+ (dd � hS) sin �

3
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Following this notation, the inverse of !x may be writ-
ten as follows:

1

!x
= dh

�
cos �

tan�
� x

�
cos � sin �

tan�
+
dh � hS

hS
sin �

��

Since during scanning, the shadow edge coordinate x
spans a range of values going from negative to positive
values, we may consider that taking x = 0 gives us an
indication of the \average" reconstruction quality:

1

!x

����
average

�

1

!x

����
x=0

= dh
cos �

tan�

Equation 19 may then be used to infer an expression
for the \average" depth variance:

�2Zc

��
average

�

Z4
c

d2h

tan2 �

cos2 �

�2I
f2c I

2
x(xc)

A next simpli�cation step may be applied, by observ-
ing that the average depth of the scene is approxi-
mately related to the height dh and the tilt angle � of
the camera through the following expression:

Zcjaverage �
dh

sin �

That relation leads us to a new expression for the \av-
erage" �Zc

:

�Zc
javerage � dh

tan�

sin2 � jcos �j

�I

fc jIx(xc)j
(22)

Notice that this quantity may be computed prior to
scanning knowing the geometrical con�guration of the
system. From that expression, it is also possible to
identify optimal con�gurations of the camera and the
light source that maximize the overall quality of the
reconstruction. See section 2.7.

Acknowledgments
This work is supported in part by the California Institute

of Technology; an NSF National Young Investigator Award to

17



P.P.; a STC fund; the Center for Neuromorphic Systems En-
gineering funded by the National Science Foundation at the
California Institute of Technology. We wish to thank all the
colleagues that helped us throughout this work, especially Peter
Schr�oder, Paul Debevec, Wolfgang St�urzlinger, Luis Goncalves,
George Barbastathis and Mario Munich for very useful discus-
sions. Very special thanks go to Silvio Savarese for his work on
the real-time implementation of our algorithm.

References

[1] C.L. Bajaj, F. Bernardini, and G. Xu Xu, \Automatic re-
construction of surfaces and scalar �elds from 3D scans",
In SIGGRAPH '95, Los Angeles, CA, pages 109{118, Au-
gust 1995.

[2] Paul Besl, Advances in Machine Vision, chapter 1 - Active
optical range imaging sensors, pages 1{63, Springer-Verlag,
1989.

[3] P.J. Besl and N.D. McKay, \A method for registration of
3-d shapes", IEEE Transactions on Pattern Analysis and

Machine Intelligence, 14(2):239{256, 1992.

[4] R.L. Bishop and S.I. Goldberg, Tensor analysis on mani-

fold, Dove Publications, 1980.

[5] Sylvain Bougnoux, \From projective to euclidean space un-
der any practical situation, a criticism of self-calibration",
Proc. 6th Int. Conf. Computer Vision, Bombay, India,
pages 790{796, January 1998.

[6] Jean-Yves Bouguet, Visual methods for three-

dimensional modeling, PhD thesis, Califor-
nia Institute of Technology, 1999. Available at:
http://www.vision.caltech.edu/bouguetj/thesis/thesis.html.

[7] Jean-Yves Bouguet and Pietro Perona, \3D Pho-
tography on your Desk", Technical report, Cal-
ifornia Institute of Technology, 1997, available at:
http://www.vision.caltech.edu/bouguetj/ICCV98.

[8] Jean-Yves Bouguet and Pietro Perona, \3D Photography
on your Desk", Proc. 6th Int. Conf. Computer Vision,

Bombay, India, pages 43{50, January 1998.

[9] Jean-Yves Bouguet, Markus Weber, and Pietro Perona,
\What do planar shadows tell us about scene geometry?",
Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pat-

tern Recogn., I:514{520, 1999.

[10] D. C. Brown, \Analytical calibration of close range cam-
eras", Proc. Symp. Close Range Photogrammetry, Mel-

bourne, FL, 1971.

[11] D. C. Brown, \Calibration of close range cameras",
Proc. 12th Congress Int. Soc. Photogrammetry, Ottawa,

Canada, 1972.

[12] J.W. Bruce, \Lines, surfaces and duality", Technical re-
port, Dept. of Pure Mathematics, University of Liverpool,
1992.

[13] J.F. Canny, \A computational approach to edge detec-
tion", IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 8(6):679{698, 1986.

[14] B. Caprile and V. Torre, \Using vanishing points for cam-
era calibration", IJCV, 4(2):127{140, March 1990.

[15] Geo�rey Cross and Andrew Zisserman, \Quadric Recon-
struction from Dual-Space Geometry", Proc. 6th Int.

Conf. Computer Vision, Bombay, India, pages 25{31,
1998.

[16] Brian Curless and Marc Levoy, \Better optical triangu-
lation through spacetime analysis", Proc. 5th Int. Conf.

Computer Vision, Boston, USA, pages 987{993, 1995.

[17] Brian Curless and Marc Levoy, \A volumetric method
for building complex models from range images", SIG-

GRAPH96, Computer Graphics Proceedings, 1996.

[18] K. Daniilidis and J. Ernst, \Active intrinsic calibration us-
ing vanishing points", PRL, 17(11):1179{1189, September
1996.

[19] O.D. Faugeras, Three dimensional vision, a geometric

viewpoint, MIT Press, 1993.

[20] Olivier Faugeras and Bernard Mourrain, \On the geometry
and algebra of the point and line correspondence between
n images", Proc. 5th Int. Conf. Computer Vision, Boston,

USA, pages 851{856, 1994.

[21] H. Gagnon, M. Soucy, R. Bergevin, and D. Laurendeau,
\Registration of multiple range views for automatic 3-D
model building", Proc. IEEE Comput. Soc. Conf. Comput.

Vision and Pattern Recogn., pages 581{586, June 1994.

[22] A.A. Goshtasby, S. Nambala, W.G. deRijk, and S.D.
Campbell, \A System for Digital Reconstruction of Gyp-
sum Dental Casts", IEEE Transactions on Medical Imag-

ing, 16(5):664{674, October 1987.

[23] A. Gruss, S. Tada, and T. Kanade, \A VLSI Smart Sensor
for Fast Range Imaging", In DARPA93, pages 977{986,
1993.

[24] Richard I. Hartley, \A linear method for reconstruction
from lines and points", Proc. 5th Int. Conf. Computer

Vision, Boston, USA, pages 882{887, 1994.

[25] Janne Heikkila and Olli Silven, \A four-step camera cal-
ibration procedure with implicit image correction", Proc.

IEEE Comput. Soc. Conf. Comput. Vision and Pattern

Recogn., pages 1106{1112, 1997.

[26] R. A. Jarvis, \A perspective on range-�nding techniques
for computer vision", IEEE Trans. Pattern Analysis

Mach. Intell., 5:122{139, March 1983.

[27] T. Kanade, A. Gruss, and L. Carley, \A Very Fast
VLSI Range�nder", In IEEE International Conference on

Robotics and Automation, volume 39, pages 1322{1329,
April 1991.

[28] Reinhard Koch, Marc Pollefeys, and Luc Van Gool, \Multi
viewpoint stereo from uncalibrated video sequence", Proc.
5th European Conf. Computer Vision, Freiburg, Germany,
pages 55{71, June 1998.

[29] Jurgen R. Meyer-Arendt, \Radiometry and photometry:
Units and conversion factors", Applied Optics, 7(10):2081{
2084, October 1968.

[30] Athanasios Papoulis, Probability, Random Variables and

Stochastic Processes, Mac Graw Hill, 1991, Third Edition,
page 187.

[31] Marc Pollefeys, Reinhard Koch, and Luc Van Gol, \Self-
calibration and metric reconstruction in spite of varying
and unknown internal camera parameters", Proc. 6th Int.

Conf. Computer Vision, Bombay, India, pages 90{95, Jan-
uary 1998.

[32] Marc Pollefeys and Luc Van Gool, \A strati�ed approach
to metric self-calibration", Proc. IEEE Comput. Soc.

Conf. Comput. Vision and Pattern Recogn., pages 407{
412, 1997.

[33] Riou, \High resolution digital 3-d imaging of large struc-
tures", SPIE Proceedings, 3-D Image Capture, San Jose,
3023:109{118, February 1997.

18



[34] Silvio Savarese, \Scansione tridimensionale con metodi a
luce debolmente strutturata", Tesi di Laurea, Universita

degli Studi di Napoli Federico II, 1998.

[35] A. Shashua and M.Werman, \Trilinearity of three perspec-
tive views and its associated tensor", Proc. 5th Int. Conf.

Computer Vision, Boston, USA, pages 920{925, 1995.

[36] G.P. Stein, \Accurate Internal Camera Calibration Using
Rotation, with Analysis of Sources of Error", In Proc. 5th

Int. Conf. Computer Vision, Boston, USA, pages 230{236,
1995.

[37] Peter F. Sturm and Stephen J. Maybank, \On plane-based
camera calibration: A general algorithm, singularities, ap-
plications", Proc. IEEE Comput. Soc. Conf. Comput. Vi-

sion and Pattern Recogn., I:432{437, 1999.

[38] Marjan Trobina, \Error model of a coded-light range
sensor", Technical Report BIWI-TR-164, ETH-Zentrum,
1995.

[39] R.Y. Tsai, \A versatile camera calibration technique for
high accuracy 3d machine vision metrology using o�-the-
shelf tv cameras and lenses", IEEE J. Robotics Automat.,
RA-3(4):323{344, 1987.

[40] G. Turk and M. Levoy, \Zippered polygon meshes from
range images", In SIGGRAPH '94, pages 311{318, July
1994.

[41] John W. T. Walsh, Photometry, Dover, NY, 1965.

[42] L.L. Wang and W.H. Tsai, \Computing camera param-
eters using vanishing-line information from a rectangular
parallelepiped", MVA, 3(3):129{141, 1990.

[43] Y.F. Wang, \Characterizing three-dimensional surface
structures from visual images", IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(1):52{60,
1991.

19



1

Shape and Appearance
from Images and Range Data

Brian Curless
University of Washington

SIGGRAPH 2000 Course on
3D Photography

Overview

Range images vs. point clouds
Registration
Reconstruction from point clouds
Reconstruction from range images
Modeling appearance



2

Range images

For many structured light scanners, the range data 
forms a highly regular pattern known as a range 
image.

The sampling pattern is determined by the specific 
scanner.

Examples of sampling patterns
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Range images and range surfaces

Given a range image, we can perform a preliminary 
reconstruction known as a range surface.

Tessellation threshold

To avoid “prematurely aggressive” reconstruction, 
a tessellation threshold is employed:
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Point clouds vs. range images

We can view the entire set of range data as a point 
cloud or as a group of overlapping range surfaces.

Registration

Any surface reconstruction algorithm strives to 
use all of the detail in the range data.

To preserve this detail, the range data must be 
precisely registered.

Accurate registration may require:
• Calibrated scanner positioning
• Software optimization

• Both
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Registration as optimization 

Given two overlapping range scans, we wish to 
solve for the rigid transformation, T, that 
minimizes the distance between them.

Registration as optimization 

An approximation to the distance between range 
scans is:

∑ −=
PN

i
ii pTqE

2

Where the qi are samples from scan Q and the pi are 
the corresponding points of scan P.  These points 
may lay on the range surface derived from P.
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Registration as optimization

If the correspondences are known a priori, then 
there is a closed form solution for T.

However, the correspondences are not known in 
advance.

Registration as optimization

Iterative solutions such as [Besl92] proceed in 
steps:

• Identify nearest points

• Compute the optimal T

• Repeat until E is small
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Registration as optimization

This approach is troubled by slow convergence 
when surfaces need to slide along each other.

Chen and Medioni [Chen92] describe a method 
that does not penalize sliding motions.

The Chen and Medioni method was the method of 
choice for pairwise alignment on the Digital 
Michelangelo Project.

Global registration

Pairwise alignment leads to accumulation of errors 
when walking across the surface of an object.

The optimal solution minimizes distances between 
all range scans simultaneously.  This is sometimes 
called the global registration problem.

Finding efficient solution methods to the global 
registration problem is an active area of research.
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Surface reconstruction

Given a set of registered range points or images, 
we want to reconstruct a 2D manifold that closely 
approximates the surface of the original model.

Desirable properties

Desirable properties for surface reconstruction:
• No restriction on topological type

• Representation of range uncertainty

• Utilization of all range data

• Incremental and order independent updating
• Time and space efficiency

• Robustness

• Ability to fill holes in the reconstruction
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Reconstruction methods

Surface reconstruction from range data has been 
an active area of research for many years.

A number of methods reconstruct from 
unorganized points.  Such methods:

• are general

• typically do not use all available information

Parametric vs. implicit
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Reconstruction from unorganized points

Methods that construct triangle meshes directly:
• Alpha shapes [Edelsbrunner92]

• Local Delaunay triangulations [Boissonat94]
• Crust algorithm [Amenta98]

Methods that construct implicit functions:
• Voxel-based signed distance functions [Hoppe92]

• Bezier-Bernstein polynomials [Baja95]

Hoppe treats his reconstruction as a topologically 
correct approximation to be followed by mesh 
optimization [Hoppe93].

Reconstruction from unorganized points
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Reconstruction from range images

Methods that construct triangle meshes directly:
• Re-triangulation in projection plane [Soucy92]

• Zippering in 3D [Turk94]

Methods that construct implicit functions:
• Signed distances to nearest surface [Hilton96]
• Signed distances to sensor + space carving 

[Curless96]

We will focus on the two reconstruction algorithms 
of [Turk94] and [Curless96].

Zippering

A number of methods combine range surfaces by 
stitching polygon meshes together.

Zippering [Turk94] is one such method. 

Overview:
• Tessellate range images and assign weights to 

vertices

• Remove redundant triangles

• Zipper meshes together

• Extract a consensus geometry
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Weight assignment

Final surface will be weighted combination of 
range images.

Weights are assigned at each vertex to:
• Favor views with higher sampling rates

• Encourage smooth blends between range images

Weights for sampling rates

Sampling rate over the surface is highest when 
view direction is parallel to surface normal.
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Weights for smooth blends

To assure smooth blends, weights are forced to 
taper in the vicinity of boundaries:

Example

5DQJH�VXUIDFH &RQILGHQFH�UHQGHULQJ
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Redundancy removal and zippering

Example
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Consensus geometry

Example
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Volumetrically combining range images

Combining the meshes volumetrically can 
overcome difficulties of stitching polygon meshes.

Here we describe the method of [Curless96].

Overview:
• Convert range images to signed distance functions
• Combine signed distance functions

• Carve away empty space

• Extract hole-free isosurface

Signed distance function
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Combining signed distance functions

Merging surfaces in 2D
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Least squares solution

Least squares solution

Finding the f(x) that minimizes E yields the optimal 
surface.
This f(x) is exactly the zero-crossing of the 
combined signed distance functions.

Error per point

Error per range surface

E( f ) = di
2∫

i =1

N

∑ (x, f )dx
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Hole filling

We have presented an algorithm that reconstructs the 
observed surface.  Unseen portions appear as holes in 
the reconstruction.

A hole-free mesh is useful for:
• Fitting surfaces to meshes

• Manufacturing models (e.g., stereolithography)

• Aesthetic renderings

Hole filling

We can fill holes in the polygonal model directly, 

but such methods:

• are hard to make robust

• do not use all available information
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Space carving

Carving without a backdrop
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Carving with a backdrop

Merging 12 views of a drill bit
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Merging 12 views of a drill bit

Dragon model
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Dragon model

Happy Buddha
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Modeling appearance

When describing appearance capture, we 
distinguish fixed from variable lighting.

Fixed lighting yields samples of the radiance 
function over the surface.

This radiance function can be re-rendered using 
methods such as lumigraph rendering or view-
dependent texture mapping.

BRDF modeling

To re-render under new lighting conditions, we 
must model the BRDF.

Modeling the BRDF accurately is hard:
• BRDF is 4D in general.

• Interreflections require solving an inverse rendering 
problem.

Simplifications:
• Assume no interreflections

• Assume a reflectance model with few parameters
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BRDF modeling

[Sato97] assume no interreflections and a 
Torrance-Sparrow BRDF model.

Procedure:
• Extract diffuse term where there are no specular 

highlights

• Compute specular term at the specular highlights

• Interpolate specular term over the surface

BRDF modeling

Some researchers have modeled the impact of 
interreflections.  

[Nayar91] assumes diffuse reflectance and 
extracts shape and reflectance from photometric 
stereo.

More recently, [Yu99] has demonstrated a method 
that computes diffuse and specular terms given 
geometry, even in the presence of interreflections.
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Surface Reconstruction from Unorganized Points
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Abstract
We describe and demonstrate an algorithm that takes as input an
unorganized set of points fx1; : : : ;xng � IR3 on or near an un-
known manifold M, and produces as output a simplicial surface that
approximates M. Neither the topology, the presence of boundaries,
nor the geometry of M are assumed to be known in advance — all
are inferred automatically from the data. This problem naturally
arises in a variety of practical situations such as range scanning
an object from multiple view points, recovery of biological shapes
from two-dimensional slices, and interactive surface sketching.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis.

1 Introduction
Broadly speaking, the class of problems we are interested in can
be stated as follows: Given partial information of an unknown
surface, construct, to the extent possible, a compact representation
of the surface. Reconstruction problems of this sort occur in diverse
scientific and engineering application domains, including:

� Surfaces from range data: The data produced by laser range
scanning systems is typically a rectangular grid of distances
from the sensor to the object being scanned. If the sensor
and object are fixed, only objects that are “point viewable”
can be fully digitized. More sophisticated systems, such as
those produced by Cyberware Laboratory, Inc., are capable
of digitizing cylindrical objects by rotating either the sensor
or the object. However, the scanning of topologically more
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zDepartment of Statistics, GN-22
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complex objects, including those as simple as a coffee cup
with a handle (a surface of genus 1), or the object depicted
in Figure 1a (a surface of genus 3), cannot be accomplished
by either of these methods. To adequately scan these objects,
multiple view points must be used. Merging the data generated
from multiple view points to reconstruct a polyhedral surface
representation is a non-trivial task [11].

� Surfaces from contours: In many medical studies it is com-
mon to slice biological specimens into thin layers with a mi-
crotome. The outlines of the structures of interest are then
digitized to create a stack of contours. The problem is to
reconstruct the three-dimensional structures from the stacks
of two-dimensional contours. Although this problem has re-
ceived a good deal of attention, there remain severe limitations
with current methods. Perhaps foremost among these is the
difficulty of automatically dealing with branching structures
[3, 12].

� Interactive surface sketching: A number of researchers, in-
cluding Schneider [21] and Eisenman [6], have investigated
the creation of curves in IR2 by tracing the path of a stylus or
mouse as the user sketches the desired shape. Sachs et al. [19]
describe a system, called 3-Draw, that permits the creation of
free-form curves in IR3 by recording the motion of a stylus fitted
with a Polhemus sensor. This can be extended to the design of
free-form surfaces by ignoring the order in which positions are
recorded, allowing the user to move the stylus arbitrarily back
and forth over the surface. The problem is then to construct
a surface representation faithful to the unordered collection of
points.

Reconstruction algorithms addressing these problems have typi-
cally been crafted on a case by case basis to exploit partial structure
in the data. For instance, algorithms solving the surface from con-
tours problem make heavy use of the fact that data are organized into
contours (i.e., closed polygons), and that the contours lie in paral-
lel planes. Similarly, specialized algorithms to reconstruct surfaces
from multiple view point range data might exploit the adjacency
relationship of the data points within each view.

In contrast, our approach is to pose a unifying general problem
that does not assume any structure on the data points. This approach
has both theoretical and practical merit. On the theoretical side,
abstracting to a general problem often sheds light on the truly critical
aspects of the problem. On the practical side, a single algorithm
that solves the general problem can be used to solve any specific
problem instance.



1.1 Terminology

By a surface we mean a “compact, connected, orientable two-
dimensional manifold, possibly with boundary, embedded in IR3”
(cf. O’Neill [17]). A surface without boundary will be called a
closed surface. If we want to emphasize that a surface possesses a
non-empty boundary, we will call it a bordered surface. A piecewise
linear surface with triangular faces will be referred to as a simplicial
surface. We use kxk to denote the Euclidean length of a vector x,
and we use d(X; Y) to denote the Hausdorff distance between the
sets of points X and Y (the Hausdorff distance is simply the distance
between the two closest points of X and Y).

Let X = fx1; : : : ;xng be sampled data points on or near an
unknown surface M (see Figure 1b). To capture the error in most
sampling processes, we assume that each of the points xi 2 X is
of the form xi = yi + ei, where yi 2 M is a point on the unknown
surface and ei 2 IR3 is an error vector. We call such a sample X
�-noisy if keik � � for all i. A value for � can be estimated in most
applications (e.g., the accuracy of the laser scanner). Features of M
that are small compared to � will obviously not be recoverable.

It is also impossible to recover features of M in regions where
insufficient sampling has occurred. In particular, if M is a bordered
surface, such as a sphere with a disc removed, it is impossible to
distinguish holes in the sample from holes in the surface. To capture
the intuitive notion of sampling density we need to make another
definition: Let Y = fy1; : : : ;yng � M be a (noiseless) sample of a
surface M. The sample Y is said to be �-dense if any sphere with
radius � and center in M contains at least one sample point in Y . A
�-noisy sample fx1; : : : ;xng � IR3 of a surface M is said to be �-
dense if there exists a noiseless �-dense sample fy1; : : : ;yng � M
such that xi = yi + ei, keik � �, i = 1; : : : ; n.

1.2 Problem Statement

The goal of surface reconstruction is to determine a surface M0 (see
Figure 2f) that approximates an unknown surface M (Figure 1a),
using a sample X (Figure 1b) and information about the sampling
process, for example, bounds on the noise magnitude � and the
sampling density �.

We are currently working to develop conditions on the original
surface M and the sample X that are sufficient to allow M to be
reliably reconstructed. As that work is still preliminary, we are un-
able to give guarantees for the algorithm presented here. However,
the algorithm has worked well in practice where the results can be
compared to the original surface (see Section 4).

2 Related Work

2.1 Surface Reconstruction

Surface reconstruction methods can be classified according to the
way in which they represent the reconstructed surface.

Implicit reconstruction methods attempt to find a smooth func-
tion f : IR3 ! IR such that fx1; : : : ;xng is close to the zero set
Z(f ). They differ with respect to the form of f and the measure of
closeness. Pratt [18] and Taubin [25] minimize the sum of squared
Hausdorff distances from the data points to the zero set of a poly-
nomial in three variables. Muraki [15] takes f to be a linear combi-
nation of three-dimensional Gaussian kernels with different means
and spreads. His goodness-of-fit function measures how close the
values of f at the data points are to zero, and how well the unit
normals to the zero set of f match the normals estimated from the
data. Moore and Warren [13] fit a piecewise polynomial recursively
and then enforce continuity using a technique they call free form
blending.

In contrast to implicit reconstruction techniques, parametric re-
construction techniques represent the reconstructed surface as a
topological embedding f (�) of a 2-dimensional parameter domain
� into IR3. Previous work has concentrated on domain spaces with
simple topology, i.e. the plane and the sphere. Hastie and Stuet-
zle [9] and Vemuri [26, 27] discuss reconstruction of surfaces by a
topological embedding f (�) of a planar region � into IR3. Schudy
and Ballard [22, 23] and Brinkley [4] consider the reconstruction
of surfaces that are slightly deformed spheres, and thus choose �
to be a sphere. Sclaroff and Pentland [24] describe a hybrid im-
plicit/parametric method for fitting a deformed sphere to a set of
points using deformations of a superquadric.

Compared to the techniques mentioned above, our method has
several advantages:

� It requires only an unorganized collection of points on or near
the surface. No additional information is needed (such as
normal information used by Muraki’s method).

� Unlike the parametric methods mentioned above, it can recon-
struct surfaces of arbitrary topology.

� Unlike previously suggested implicit methods, it deals with
boundaries in a natural way, and it does not generate spurious
surface components not supported by the data.

2.2 Surface Reconstruction vs Function Recon-
struction

Terms like “surface fitting” appear in reference to two distinct
classes of problems: surface reconstruction and function recon-
struction. The goal of surface reconstruction was stated earlier. The
goal of function reconstruction may be stated as follows: Given a
surface M, a set fxi 2 Mg, and a set fyi 2 IRg, determine a function
f : M ! IR, such that f (xi) � yi.

The domain surface M is most commonly a plane embedded in
IR3, in which case the problem is a standard one considered in
approximation theory. The case where M is a sphere has also been
extensively treated (cf. [7]). Some recent work under the title
surfaces on surfaces addresses the case when M is a general curved
surface such as the skin of an airplane [16].

Function reconstruction methods can be used for surface recon-
struction in simple, special cases, where the surface to be recon-
structed is, roughly speaking, the graph of a function over a known
surface M. It is important to recognize just how limited these spe-
cial cases are — for example, not every surface homeomorphic to a
sphere is the graph of a function over the sphere. The point we want
to make is that function reconstruction must not be misconstrued to
solve the general surface reconstruction problem.

3 A Description of the Algorithm

3.1 Overview

Our surface reconstruction algorithm consists of two stages. In the
first stage we define a function f : D! IR, where D � IR3 is a region
near the data, such that f estimates the signed geometric distance to
the unknown surface M. The zero set Z(f ) is our estimate for M.
In the second stage we use a contouring algorithm to approximate
Z(f ) by a simplicial surface.

Although the unsigned distance function jf j would be easier to
estimate, zero is not a regular value of jf j. Zero is, however, a regular
value of f , and the implicit function theorem thus guarantees that
our approximation Z(f ) is a manifold.

The key ingredient to defining the signed distance function is to
associate an oriented plane with each of the data points. These



tangent planes serve as local linear approximations to the surface.
Although the construction of the tangent planes is relatively simple,
the selection of their orientations so as to define a globally consistent
orientation for the surface is one of the major obstacles facing the
algorithm. As indicated in Figure 2b, the tangent planes do not
directly define the surface, since their union may have a complicated
non-manifold structure. Rather, we use the tangent planes to define
the signed distance function to the surface. An example of the
simplicial surface obtained by contouring the zero set of the signed
distance function is shown in Figure 2e. The next several sections
develop in more detail the successive steps of the algorithm.

3.2 Tangent Plane Estimation

The first step toward defining a signed distance function is to com-
pute an oriented tangent plane for each data point. The tangent plane
Tp(xi) associated with the data point xi is represented as a point oi,
called the center, together with a unit normal vector n̂i. The signed
distance of an arbitrary point p 2 IR3 to Tp(xi) is defined to be
disti(p) = (p�oi) � n̂i. The center and normal for Tp(xi) are deter-
mined by gathering together the k points of X nearest to xi; this set
is denoted byNbhd (xi) and is called the k-neighborhood of xi. (We
currently assume k to be a user-specified parameter, although in Sec-
tion 5 we propose a method for determining k automatically.) The
center and unit normal are computed so that the plane fdisti(p) = 0g
is the least squares best fitting plane to Nbhd (xi). That is, the cen-
ter oi is taken to be the centroid of Nbhd (xi), and the normal n̂i

is determined using principal component analysis. To compute n̂i,
the covariance matrix of Nbhd (xi) is formed. This is the symmetric
3� 3 positive semi-definite matrix

CV =
X

y2Nbhd (xi)

(y� oi)
 (y� oi)

where 
 denotes the outer product vector operator1. If �1
i � �2

i �
�3

i denote the eigenvalues of CV associated with unit eigenvectors
v̂1

i ; v̂
2
i ; v̂

3
i , respectively, we choose n̂i to be either v̂3

i or �v̂3
i . The

selection determines the orientation of the tangent plane, and it must
be done so that nearby planes are “consistently oriented”.

3.3 Consistent Tangent Plane Orientation

Suppose two data points xi;xj 2 X are geometrically close. Ideally,
when the data is dense and the surface is smooth, the corresponding
tangent planes Tp(xi) = (oi; n̂i) and Tp(xj) = (oj; n̂j) are nearly
parallel, i.e. n̂i � n̂j � �1. If the planes are consistently oriented,
then n̂i � n̂j � +1; otherwise, either n̂i or n̂j should be flipped.
The difficulty in finding a consistent global orientation is that this
condition should hold between all pairs of “sufficiently close” data
points.

We can model the problem as graph optimization. The graph
contains one node Ni per tangent plane Tp(xi), with an edge (i; j)
between Ni and Nj if the tangent plane centers oi and oj are suf-
ficiently close (we will be more precise about what we mean by
sufficiently close shortly). The cost on edge (i; j) encodes the de-
gree to which Ni and Nj are consistently oriented and is taken to be
n̂i � n̂j. The problem is then to select orientations for the tangent
planes so as to maximize the total cost of the graph. Unfortunately,
this problem can be shown to be NP-hard via a reduction to MAX-
CUT [8]. To efficiently solve the orientation problem we must
therefore resort to an approximation algorithm.

Before describing the approximation algorithm we use, we must
decide when a pair of nodes are to be connected in the graph. Since

1If a and b have components ai and bj respectively, then the matrix
a
 b has aibj as its ij-th entry.

the surface is assumed to consist of a single connected component,
the graph should be connected. A simple connected graph for a set
of points that tends to connect neighbors is the Euclidean Minimum
Spanning Tree (EMST). However, the EMST over the tangent plane
centers fo1; : : : ;ong (Figure 1c) is not sufficiently dense in edges
to serve our purposes. We therefore enrich it by adding a number
of edges to it. Specifically, we add the edge (i; j) if either oi is
in the k-neighborhood of oj, or oj is in the k-neighborhood of oi

(where k-neighborhood is defined over fo1; : : : ;ong as it was for
X). The resulting graph (Figure 1d), called the Riemannian Graph,
is thus constructed to be a connected graph that encodes geometric
proximity of the tangent plane centers.

A relatively simple-minded algorithm to orient the planes would
be to arbitrarily choose an orientation for some plane, then “propa-
gate” the orientation to neighboring planes in the Riemannian Graph.
In practice, we found that the order in which the orientation is prop-
agated is important. Figure 3b shows what may result when prop-
agating orientation solely on the basis of geometric proximity; a
correct reconstruction is shown in Figure 3c. Intuitively, we would
like to choose an order of propagation that favors propagation from
Tp(xi) to Tp(xj) if the unoriented planes are nearly parallel. This
can be accomplished by assigning to each edge (i; j) in the Rieman-
nian Graph the cost 1� jn̂i � n̂jj. In addition to being non-negative,
this assignment has the property that a cost is small if the unoriented
tangent planes are nearly parallel. A favorable propagation order
can therefore be achieved by traversing the minimal spanning tree
(MST) of the resulting graph. This order is advantageous because it
tends to propagate orientation along directions of low curvature in
the data, thereby largely avoiding ambiguous situations encountered
when trying to propagate orientation across sharp edges (as at the tip
of the cat’s ears in Figure 3b). In the MST shown in Figure 2a, the
edges are colored according to their cost, with the brightly colored
edges corresponding to regions of high variation (where n̂i � n̂j is
somewhat less than 1).

To assign orientation to an initial plane, the unit normal of the
plane whose center has the largest z coordinate is forced to point
toward the +z axis. Then, rooting the tree at this initial node,
we traverse the tree in depth-first order, assigning each plane an
orientation that is consistent with that of its parent. That is, if
during traversal, the current plane Tp(xi) has been assigned the
orientation n̂i and Tp(xj) is the next plane to be visited, then n̂j is
replaced with�n̂j if n̂i � n̂j < 0.

This orientation algorithm has been used in all our examples
and has produced correct orientations in all the cases we have run.
The resulting oriented tangent planes are represented as shaded
rectangles in Figure 2b.

3.4 Signed Distance Function

The signed distance f (p) from an arbitrary point p 2 IR3 to a known
surface M is the distance between p and the closest point z 2 M,
multiplied by �1, depending on which side of the surface p lies.
In reality M is not known, but we can mimic this procedure using
the oriented tangent planes as follows. First, we find the tangent
plane Tp(xi) whose center oi is closest to p. This tangent plane is
a local linear approximation to M, so we take the signed distance
f (p) to M to be the signed distance between p and its projection z
onto Tp(xi); that is,

f (p) = disti(p) = (p� oi) � n̂i:

If M is known not to have boundaries, this simple rule works
well. However, the rule must be extended to accommodate surfaces
that might have boundaries. Recall that the set X = fx1; : : : ;xng
is assumed to be a �-dense, �-noisy sample of M. If there was no
noise, we could deduce that a point z with d(z;X) > � cannot be



a point of M since that would violate X being �-dense. Intuitively,
the sample points do not leave holes of radius larger than �. If
the sample is �-noisy, the radius of the holes may increase, but by
no more than �. We therefore conclude that a point z cannot be
a point of M if d(z;X) > � + �. If the projection z of p onto
the closest tangent plane has d(z;X) > � + �, we take f (p) to be
undefined. Undefined values are used by the contouring algorithm
of Section 3.5 to identify boundaries.

Stated procedurally, our signed distance function is defined as:

i index of tangent plane whose center is closest to p

f Compute z as the projection of p onto Tp(xi) g
z oi � ((p� oi) � n̂i) n̂i

if d(z; X) < � + � then
f (p) (p� oi) � n̂i f= �kp� zkg

else
f (p) undefined

endif

The simple approach outlined above creates a zero set Z(f ) that
is piecewise linear but contains discontinuities. The discontinuities
result from the implicit partitioning of space into regions within
which a single tangent plane is used to define the signed distance
function. (These regions are in fact the Voronoi regions associated
with the centersoi.) Fortunately, the discontinuities do not adversely
affect our algorithm. The contouring algorithm discussed in the
next section will discretely sample the function f over a portion
of a 3-dimensional grid near the data and reconstruct a continuous
piecewise linear approximation to Z(f ).

3.5 Contour Tracing

Contour tracing, the extraction of an isosurface from a scalar func-
tion, is a well-studied problem [1, 5, 28]. We chose to implement
a variation of the marching cubes algorithm (cf. [1]) that samples
the function at the vertices of a cubical lattice and finds the contour
intersections within tetrahedral decompositions of the cubical cells.

To accurately estimate boundaries, the cube size should be set so
that edges are of length less than � + �. In practice we have often
found it convenient to set the cube size somewhat larger than this
value, simply to increase the speed of execution and to reduce the
number of triangular facets generated.

The algorithm only visits cubes that intersect the zero set by push-
ing onto a queue only the appropriate neighboring cubes (Figure 2c).
In this way, the signed distance function f is evaluated only at points
close to the data. Figure 2d illustrates the signed distance function
by showing line segments between the query points p (at the cube
vertices) and their associated projected points z. As suggested in
Section 3.4, no intersection is reported within a cube if the signed
distance function is undefined at any vertex of the cube, thereby
giving rise to boundaries in the simplicial surface.

The resulting simplicial surface can contain triangles with ar-
bitrarily poor aspect ratio (Figure 2e). We alleviate this problem
using a post-processing procedure that collapses edges in the sur-
face using an aspect ratio criterion.2 The final result is shown in
Figure 2f. Alternatively, other contouring methods exist that can
guarantee bounds on the triangle aspect ratio [14].

2The edges are kept in a priority queue; the criterion to minimize is
the product of the edge length times the minimum inscribed radius of its
two adjacent faces. Tests are also performed to ensure that edge collapses
preserve the topological type of the surface.

4 Results
We have experimented with the reconstruction method on data sets
obtained from several different sources. In all cases, any structure
(including ordering) that might have been present in the point sets
was discarded.

Meshes : Points were randomly sampled from a number of existing
simplicial surfaces3. For instance, the mesh of Figure 3a was
randomly sampled to yield 1000 unorganized points, and these
in turn were used to reconstruct the surface in Figure 3c. This
particular case illustrates the behavior of the method on a bor-
dered surface (the cat has no base and is thus homeomorphic
to a disc). The reconstructed knot (original mesh from Rob
Scharein) of Figure 3d is an example of a surface with simple
topology yet complex geometrical embedding.

Ray Traced Points : To simulate laser range imaging from mul-
tiple view points, CSG models were ray traced from multiple
eye points. The ray tracer recorded the point of first intersec-
tion along each ray. Eight eye points (the vertices of a large
cube centered at the object) were used to generate the point set
of Figure 1b from the CSG object shown in Figure 1a. This
is the point set used in Section 3 to illustrate the steps of the
algorithm (Figures 1a-2f).

Range Images : The bust of Spock (Figure 3e) was reconstructed
from points taken from an actual cylindrical range image (gen-
erated by Cyberware Laboratory, Inc.). Only 25% of the orig-
inal points were used.

Contours : Points from 39 planar (horizontal) slices of the CT
scan of a femur were combined together to obtain the surface
of Figure 3f.

The algorithm’s parameters are shown in the next table for each
of the examples. The execution times were obtained on a 20 MIPS
workstation. The parameter � + � and the marching cube cell size
are both expressed as a fraction of the object’s size. The parameter
�+ � is set to infinity for those surfaces that are known to be closed.

Object n k � + � cell size time
(seconds)

cat 1000 15 .06 1=30 19
knot 10000 20 1 1=50 137
mechpart 4102 12 1 1=40 54
spock 21760 8 .08 1=80 514
femur 18224 40 .06 1=50 2135

5 Discussion

5.1 Tangent Plane Approximation

The neighborhood Nbhd (xi) of a data point xi is defined to consist
of its k nearest neighbors, where k is currently assumed to be an in-
put parameter. In the case where the data contains little or no noise,
k is not a critical parameter since the output has been empirically
observed to be stable over a wide range of settings. However, it
would be best if k could be selected automatically. Furthermore, al-
lowing k to adapt locally would make less stringent the requirement
that the data be uniformly distributed over the surface. To select
and adapt k, the algorithm could incrementally gather points while
monitoring the changing eigenvalues of the covariance matrix (see
Section 3.2). For small values of k, data noise tends to dominate,
the eigenvalues are similar, and the eigenvectors do not reveal the
surface’s true tangent plane. At the other extreme, as k becomes

3Discrete inverse transform sampling [10, page 469] on triangle area was
used to select face indices from the mesh, and uniform sampling was used
within the faces.



large, the k-neighborhoods become less localized and the surface
curvature tends to increase the “thickness” �3

i of the neighborhood.
Another possible criterion is to compare �3

i to some local or global
estimate of data noise. Although we have done some initial exper-
imentation in this direction, we have not yet fully examined these
options.

If the data is obtained from range images, there exists some
knowledge of surface orientation at each data point. Indeed, each
data point is known to be visible from a particular viewing direction,
so that, unless the surface incident angle is large, the point’s tangent
plane orientation can be inferred from that viewing direction. Our
method could exploit this additional information in the tangent plane
orientation step (Section 3.3) by augmenting the Riemannian Graph
with an additional pseudo-node and n additional edges.

5.2 Algorithm Complexity

A spatial partitioning Abstract Data Type greatly improves per-
formance of many of the subproblems discussed previously. The
critical subproblems are (with their standard time complexity):

� EMST graph (O(n2))

� k-nearest neighbors to a given point (O(n + k log n))

� nearest tangent plane origin to a given point (O(n))

Hierarchical spatial partitioning schemes such as octrees [20]
and k-D trees [2] can be used to solve these problems more ef-
ficiently. However, the uniform sampling density assumed in our
data allows simple spatial cubic partitioning to work efficiently. The
axis-aligned bounding box of the points is partitioned by a cubical
grid. Points are entered into sets corresponding to the cube to which
they belong, and these sets are accessed through a hash table in-
dexed by the cube indices. It is difficult to analyze the resulting
improvements analytically, but, empirically, the time complexity of
the above problems is effectively reduced by a factor of n, except
for the k-nearest neighbors problem which becomes O(k).

As a result of the spatial partitioning, the Riemannian Graph can
be constructed in O(nk) time. Because the Riemannian Graph has
O(n) edges (at most n+nk), the MST computation used in finding the
best path on which to propagate orientation requires only O(n log n)
time. Traversal of the MST is of course O(n).

The time complexity of the contouring algorithm depends only
on the number of cubes visited, since the evaluation of the signed
distance function f at a point p can be done in constant time (the
closest tangent plane origin oi to p and the closest data point xj to
the projected point z can both be found in constant time with spatial
partitioning).

6 Conclusions and Future Work
We have developed an algorithm to reconstruct a surface in three-
dimensional space with or without boundary from a set of unorga-
nized points scattered on or near the surface. The algorithm, based
on the idea of determining the zero set of an estimated signed dis-
tance function, was demonstrated on data gathered from a variety
of sources. It is capable of automatically inferring the topological
type of the surface, including the presence of boundary curves.

The algorithm can, in principle, be extended to reconstruct mani-
folds of co-dimension one in spaces of arbitrary dimension; that is,
to reconstruct d� 1 dimensional manifolds in d dimensional space.
Thus, essentially the same algorithm can be used to reconstruct
curves in the plane or volumes in four-dimensional space.

The output of our reconstruction method produced the correct
topology in all the examples. We are trying to develop formal
guarantees on the correctness of the reconstruction, given constraints

on the sample and the original surface. To further improve the
geometric accuracy of the fit, and to reduce the space required
to store the reconstruction, we envision using the output of our
algorithm as the starting point for a subsequent spline surface fitting
procedure. We are currently investigating such a method based on
a nonlinear least squares approach using triangular Bézier surfaces.
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(a) Traversal order of orientation propagation (b) Oriented tangent planes (Tp(xi))

(c) Cubes visited during contouring (d) Estimated signed distance (shown as p� z)

(e) Output of modified marching cubes (f) Final surface after edge collapses

Figure 2: Reconstruction of ray-traced CSG object (continued).



(a) Original mesh (b) Result of naive orientation propagation

(c) Reconstructed bordered surface (d) Reconstructed surface with complex geometry

(e) Reconstruction from cylindrical range data (f) Reconstruction from contour data

Figure 3: Reconstruction examples.
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Abstract
We present a method for solving the following problem: Given a set
of data points scattered in three dimensions and an initial triangular
mesh M0, produce a mesh M, of the same topological type as M0 , that
fits the data well and has a small number of vertices. Our approach is
to minimize an energy function that explicitly models the competing
desires of conciseness of representation and fidelity to the data. We
show that mesh optimization can be effectively used in at least two
applications: surface reconstruction from unorganized points, and
mesh simplification (the reduction of the number of vertices in an
initially dense mesh of triangles).

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis, Model
Simplification.

1 Introduction
The mesh optimization problem considered in this paper can be
roughly stated as follows: Given a collection of data points X inR3

and an initial triangular mesh M0 near the data, find a mesh M of the
same topological type as M0 that fits the data well and has a small
number of vertices.

As an example, Figure 7b shows a set of 4102 data points sampled
from the object shown in Figure 7a. The input to the mesh optimiza-
tion algorithm consists of the points together with the initial mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h.
Notice that the sharp edges and corners indicated by the data have
been faithfully recovered and that the number of vertices has been
significantly reduced (from 1572 to 163).
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To solve the mesh optimization problem we minimize an energy
function that captures the competing desires of tight geometric fit
and compact representation. The tradeoff between geometric fit and
compact representation is controlled via a user-selectable parameter
crep. A large value of crep indicates that a sparse representation is
to be strongly preferred over a dense one, usually at the expense of
degrading the fit.

We use the input mesh M0 as a starting point for a non-linear
optimization process. During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
give no guarantee of finding a global minimum, we have run the
method on a wide variety of data sets; the method has produced
good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface
reconstruction and mesh simplification.

The problem of surface reconstruction from sampled data occurs
in many scientific and engineering applications. In [2], we outlined
a two phase procedure for reconstructing a surface from a set of
unorganized data points. The goal of phase one is to determine
the topological type of the unknown surface and to obtain a crude
estimate of its geometry. An algorithm for phase one was described
in [5]. The goal of phase two is to improve the fit and reduce the
number of faces. Mesh optimization can be used for this purpose.

Although we were originally led to consider the mesh optimiza-
tion problem by our research on surface reconstruction, the algo-
rithm we have developed can also be applied to the problem of mesh
simplification. Mesh simplification, as considered by Turk [15] and
Schroeder et al. [10], refers to the problem of reducing the num-
ber of faces in a dense mesh while minimally perturbing the shape.
Mesh optimization can be used to solve this problem as follows:
sample data points X from the initial mesh and use the initial mesh
as the starting point M0 of the optimization procedure. For instance,
Figure 7q shows a triangular approximation of a minimal surface
with 2032 vertices. Application of our mesh optimization algorithm
to a sample of 6752 points (Figure 7r) from this mesh produces the
meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
The mesh of Figure 7s corresponds to a relatively small value of
crep, and therefore has more vertices than the mesh of Figure 7t
which corresponds to a somewhat larger value of crep.

The principal contributions of this paper are:

� It presents an algorithm for fitting a mesh of arbitrary topolog-
ical type to a set of data points (as opposed to volume data,
etc.). During the fitting process, the number and connectivity
of the vertices, as well as their positions, are allowed to vary.

� It casts mesh simplification as an optimization problem with
an energy function that directly measures deviation of the final
mesh from the original. As a consequence, the final mesh



Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes M0; the meshes in the bottom row are the
corresponding optimized meshes. The first 3 columns are reconstructions; the last 2 columns are simplifications.
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Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

� It demonstrates how the algorithm’s ability to recover sharp
edges and corners can be exploited to automatically segment
the final mesh into smooth connected components (see Fig-
ure 7i).

2 Mesh Representation
Intuitively, a mesh is a piecewise linear surface, consisting of tri-
angular faces pasted together along their edges. For our purposes
it is important to maintain the distinction between the connectivity
of the vertices and their geometric positions. Formally, a mesh M
is a pair (K;V), where: K is a simplicial complex representing the
connectivity of the vertices, edges, and faces, thus determining the
topological type of the mesh; V = fv1; : : : ;vmg, vi 2 R3 is a set of
vertex positions defining the shape of the mesh inR3 (its geometric
realization).

A simplicial complex K consists of a set of vertices f1; : : : ;mg,
together with a set of non-empty subsets of the vertices, called the

simplices of K, such that any set consisting of exactly one vertex
is a simplex in K, and every non-empty subset of a simplex in K is
again a simplex in K (cf. Spanier [14]). The 0-simplices fig 2 K
are called vertices, the 1-simplices fi; jg 2 K are called edges, and
the 2-simplices fi; j; kg 2 K are called faces.

A geometric realization of a mesh as a surface in R3 can be ob-
tained as follows. For a given simplicial complex K, form its topo-
logical realization jKj inRm by identifying the vertices f1; : : : ;mg
with the standard basis vectors fe1; : : : ; emg of Rm. For each sim-
plex s 2 K let jsj denote the convex hull of its vertices in Rm, and
let jKj = [s2K jsj. Let � : Rm ! R3 be the linear map that sends
the i-th standard basis vector ei 2 Rm to vi 2 R3 (see Figure 2).

The geometric realization of M is the image �V(jKj), where we
write the map as �V to emphasize that it is fully specified by the
set of vertex positions V = fv1; : : : ;vmg. The map �V is called
an embedding if it is 1-1, that is if �V(jKj) is not self-intersecting.
Only a restricted set of vertex positions V result in �V being an
embedding.

If �V is an embedding, any point p 2 �V(jKj) can be parameter-
ized by finding its unique pre-image on jKj. The vector b 2 jKj
with p = �V (b) is called the barycentric coordinate vector of p
(with respect to the simplicial complex K). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-
tors ei 2 Rm corresponding to the vertices of a face of K. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero entries if it lies on an edge of jKj, and only
one if it is a vertex.

3 Definition of the Energy Function
Recall that the goal of mesh optimization is to obtain a mesh that
provides a good fit to the point set X and has a small number
of vertices. We find a simplicial complex K and a set of vertex
positions V defining a mesh M = (K;V) that minimizes the energy
function

E(K;V) = Edist(K;V) + Erep(K) + Espring(K;V):

The first two terms correspond to the two stated goals; the third term
is motivated below.

The distance energy Edist is equal to the sum of squared distances



from the points X = fx1; : : : ;xng to the mesh,

Edist(K;V) =
nX

i=1

d2(xi; �V(jKj)):

The representation energy Erep penalizes meshes with a large
number of vertices. It is set to be proportional to the number of
vertices m of K:

Erep(K) = crepm:

The optimization allows vertices to be both added to and removed
from the mesh. When a vertex is added, the distance energy Edist

is likely to be reduced; the term Erep makes this operation incur a
penalty so that vertices are not added indefinitely. Similarly, one
wants to remove vertices from a dense mesh even if Edist increases
slightly; in this case Erep acts to encourage the vertex removal.
The user-specified parameter crep provides a controllable trade-off
between fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [8], that minimizing
Edist + Erep does not produce the desired results. As an illustration of
what can go wrong, Figure 7d shows the result of minimizing Edist

alone. The estimated surface has several spikes in regions where
there is no data. These spikes are a manifestation of the fundamental
problem that a minimum of Edist + Erep may not exist.

To guarantee the existence of a minimum [6], we add the third
term, the spring energy Espring. It places on each edge of the mesh a
spring of rest length zero and spring constant �:

Espring(K;V) =
X

fj;kg2K

�kvj � vkk2

It is worthwhile emphasizing that the spring energy is not a
smoothness penalty. Our intent is not to penalize sharp dihedral
angles in the mesh, since such features may be present in the un-
derlying surface and should be recovered. We view Espring as a
regularizing term that helps guide the optimization to a desirable
local minimum. As the optimization converges to the solution, the
magnitude of Espring can be gradually reduced. We return to this
issue in Section 4.4.

For some applications we want the procedure to be scale-
invariant, which is equivalent to defining a unitless energy function
E. To achieve invariance under Euclidean motion and uniform scal-
ing, the points X and the initial mesh M0 are pre-scaled uniformly
to fit in a unit cube. After optimization, a post-processing step can
undo this initial transformation.

4 Minimization of the Energy Function
Our goal is to minimize the energy function

E(K;V) = Edist(K;V) + Erep(K) + Espring(K;V)

over the set K of simplicial complexes K homeomorphic to the
initial simplicial complex K0, and the vertex positions V defining
the embedding. We now present an outline of our optimization
algorithm, a pseudo-code version of which appears in Figure 3. The
details are deferred to the next two subsections.

To minimize E(K;V) over both K and V , we partition the problem
into two nested subproblems: an inner minimization over V for fixed
simplicial complex K, and an outer minimization over K.

In Section 4.1 we describe an algorithm that solves the inner
minimization problem. It finds E(K) = minV E(K;V), the energy
of the best possible embedding of the fixed simplicial complex K,
and the corresponding vertex positions V , given an initial guess for

OptimizeMesh(K0,V0) f
K := K0

V := OptimizeVertexPositions(K0,V0)

– Solve the outer minimization problem.
repeat f

(K0,V 0) := GenerateLegalMove(K,V)
V 0 = OptimizeVertexPositions(K0,V 0)
if E(K0;V 0) < E(K;V) then

(K,V) := (K0,V 0)
endif

g until convergence
return (K,V)

g
– Solve the inner optimization problem
– E(K) = minV E(K;V)
– for fixed simplicial complex K.
OptimizeVertexPositions(K,V) f

repeat f
– Compute barycentric coordinates by projection.
B := ProjectPoints(K,V)
– Minimize E(K;V;B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)

g until convergence
return V

g
GenerateLegalMove(K,V) f

Select a legal move K ) K0.
Locally modify V to obtain V 0 appropriate for K0.
return (K0,V 0)

g

Figure 3: An idealized pseudo-code version of the minimization
algorithm.

V . This corresponds to the procedure OptimizeVertexPositions in
Figure 3.

Whereas the inner minimization is a continuous optimization
problem, the outer minimization of E(K) over the simplicial com-
plexes K 2 K (procedure OptimizeMesh) is a discrete optimization
problem. An algorithm for its solution is presented in Section 4.2.

The energy function E(K;V) depends on two parameters crep and
�. The parameter crep controls the tradeoff between conciseness and
fidelity to the data and should be set by the user. The parameter �,
on the other hand, is a regularizing parameter that, ideally, would
be chosen automatically. Our method of setting � is described in
Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex
positions V that minimizes the energy function E(K;V) for a given
simplicial complex K. As Erep(K) does not depend on V , this
amounts to minimizing Edist(K;V) + Espring(K;V).

To evaluate the distance energy Edist(K;V), it is necessary to
compute the distance of each data point xi to M = �V(jKj). Each of
these distances is itself the solution to the minimization problem

d2(xi; �V(jKj)) = min
bi2jKj

kxi � �V(bi)k2
;

in which the unknown is the barycentric coordinate vector bi 2
jKj � Rm of the projection of xi onto M. Thus, minimizing



E(K;V) for fixed K is equivalent to minimizing the new objective
function

E(K;V;B) =
nX

i=1

kxi � �V(bi)k2 + Espring(K;V)

=
nX

i=1

kxi � �V(bi)k2 +
X

fj;kg2K

�kvj � vkk2

over the vertex positions V = fv1; : : : ;vmg;vi 2 R3 and the
barycentric coordinates B = fb1; : : : ;bng;bi 2 jKj � Rm.

To solve this optimization problem (procedure OptimizeVertex-
Positions), our method alternates between two subproblems:

1. For fixed vertex positions V , find optimal barycentric coordi-
nate vectors B by projection (procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex
positions V by solving a linear least squares problem (proce-
dure ImproveVertexPositions).

Because we find optimal solutions to both of these subproblems,
E(K;V;B) can never increase, and since it is bounded from below,
it must converge. In principle, one could iterate until some formal
convergence criterion is met. Instead, as is common, we perform
a fixed number of iterations. As an example, Figure 7e shows the
result of optimizing the mesh of Figure 7c over the vertex positions
while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a
set V of vertices for which the mesh is self-intersecting, i.e. �V is not
an embedding. While it is possible to check a posteriori whether �V

is an embedding, constraining the optimization to always produce an
embedding appears to be difficult. This has not presented a problem
in the examples we have run.

4.1.1 Projection Subproblem
(Procedure ProjectPoints)

The problem of optimizing E(K;V;B) over the barycentric coordi-
nate vectors B = fb1; : : : ;bng, while holding the vertex positions
V = fv1; : : : ;vmg and the simplicial complex K constant, decom-
poses into n separate optimization problems:

bi = argmin
b2jKj

kxi � �V(b)k

In other words, bi is the barycentric coordinate vector corresponding
to the point p 2 �V(jKj) closest to xi.

A naive approach to computing bi is to project xi onto all of the
faces of M, and then find the projection with minimal distance. To
speed up the projection, we first enter the faces of the mesh into a
spatial partitioning data structure (similar to the one used in [16]).
Then for each point xi only a nearby subset of the faces needs to
be considered, and the projection step takes expected time O(n).
For additional speedup we exploit coherence between iterations.
Instead of projecting each point globally onto the mesh, we assume
that a point’s projection lies in a neighborhood of its projection in
the previous iteration. Specifically, we project the point onto all
faces that share a vertex with the previous face. Although this is a
heuristic that can fail, it has performed well in practice.

4.1.2 Linear Least Squares Subproblem
(Procedure ImproveVertexPositions)

Minimizing E(K;V;B) over the vertex positions V while holding B
and K fixed is a linear least squares problem. It decomposes into

three independent subproblems, one for each of the three coordinates
of the vertex positions. We will write down the problem for the first
coordinate.

Let e be the number of edges (1-simplices) in K; note that e
is O(m). Let v1 be the m-vector whose i-th element is the first
coordinate of vi. Let d1 be the (n + e)-vector whose first n elements
are the first coordinates of the data points xi, and whose last e
elements are zero. With these definitions we can express the least
squares problem for the first coordinate as minimizing kAv1�d1k2

over v1. The design matrix A is an (n + e) � m matrix of scalars.
The first n rows of A are the barycentric coordinate vectors bi. Each
of the trailing e rows contains 2 non-zero entries with values

p
�

and�p� in the columns corresponding to the indices of the edge’s
endpoints. The first n rows of the least squares problem correspond
to Edist(K;V), while the last e rows correspond to Espring(K;V). An
important feature of the matrix A is that it contains at most 3 non-zero
entries in each row, for a total of O(n + m) non-zero entries.

To solve the least squares problem, we use the conjugate gradient
method (cf. [3]). This is an iterative method guaranteed to find the
exact solution in as many iterations as there are distinct singular
values of A, i.e. in at most m iterations. Usually far fewer iterations
are required to get a result with acceptable precision. For example,
we find that for m as large as 104, as few as 200 iterations are
sufficient.

The two time-consuming operations in each iteration of the con-
jugate gradient algorithm are the multiplication of A by an (n + e)-
vector and the multiplication of AT by an m-vector. Because A is
sparse, these two operations can be executed in O(n + m) time. We
store A in a sparse form that requires only O(n + m) space. Thus,
an acceptable solution to the least squares problem is obtained in
O(n + m) time. In contrast, a typical noniterative method for solving
dense least squares problems, such as QR decomposition, would
require O((n + m)m2) time to find an exact solution.

4.2 Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K,
we define a set of three elementary transformations, edge collapse,
edge split, and edge swap, taking a simplicial complex K to another
simplicial complex K0 (see Figure 4).

We define a legal move to be the application of one of these ele-
mentary transformations to an edge of K that leaves the topological
type of K unchanged. The set of elementary transformations is com-
plete in the sense that any simplicial complex in K can be obtained
from K0 through a sequence of legal moves1.

Our goal then is to find such a sequence taking us from K0 to a
minimum of E(K). We do this using a variant of random descent:
we randomly select a legal move, K ) K0. If E(K0) < E(K), we
accept the move, otherwise we try again. If a large number of trials
fails to produce an acceptable move, we terminate the search.

More elaborate selection strategies, such as steepest descent or
simulated annealing, are possible. As we have obtained good re-
sults with the simple strategy of random descent, we have not yet
implemented the other strategies.

Identifying Legal Moves An edge split transformation is always
a legal move, as it can never change the topological type of K. The
other two transformations, on the other hand, can cause a change
of topological type, so tests must be performed to determine if they
are legal moves.

1In fact, we prove in [6] that edge collapse and edge split are sufficient; we
include edge swap to allow the optimization procedure to “tunnel” through
small hills in the energy function.
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Figure 4: Local simplicial complex transformations

We define an edge fi; jg 2 K to be a boundary edge if it is a subset
of only one face fi; j; kg 2 K, and a vertex fig to be a boundary
vertex if there exists a boundary edge fi; jg 2 K.

An edge collapse transformation K ) K0 that collapses the edge
fi; jg 2 K is a legal move if and only if the following conditions are
satisfied (proof in [6]):

� For all vertices fkg adjacent to both fig and fjg (fi; kg 2 K
and fj; kg 2 K), fi; j; kg is a face of K.

� If fig and fjg are both boundary vertices, fi; jg is a boundary
edge.

� K has more than 4 vertices if neither fig nor fjg are boundary
vertices, or K has more than 3 vertices if either fig or fjg are
boundary vertices.

An edge swap transformation K ) K0 that replaces the edge
fi; jg 2 K with fk; lg 2 K0 is a legal move if and only if fk; lg 62 K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of
practical use. In this section, we describe some heuristics which
dramatically reduce the running time. These heuristics capitalize
on the fact that a local change in the structure of the mesh leaves the
optimal positions of distant vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of
E(K0) = minV E(K0;V) for a simplicial complex K0 obtained from
K through a legal move. Ideally, we would use procedure Opti-
mizeVertexPositions of Section 4.1 for this purpose, as indicated in
Figure 3. In practice, however, this is too slow. Instead, we use fast
local heuristics to estimate the effect of a legal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the
neighborhood of the transformation, along with the subset of the data
points projecting onto the submesh. The change in overall energy is
estimated by only considering the contribution of the submesh and
the corresponding point set. This estimate is always pessimistic, as
full optimization would only further reduce the energy. Therefore,
the heuristics never suggest changes that will increase the true energy
of the mesh.

s star{s,K} t star{t,K}

Figure 5: Neighborhood subsets of K.
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Figure 6: Two local optimizations to evaluate edge swap

Definition of neighborhoods in a simplicial complex To refer to
neighborhoods in a simplicial complex, we need to introduce some
further notation. We write s0 � s to denote that simplex s0 is a
non-empty subset of simplex s. For simplex s 2 K, star(s; K) =
fs0 2 K : s � s0g (Figure 5).

Evaluation of Edge Collapse To evaluate a transformation K )
K0 collapsing an edge fi; jg into a single vertex fhg (Figure 4), we
take the submesh to be star(fig; K)[ star(fjg; K), and optimize over
the single vertex position vh while holding all other vertex positions
constant.

Because we perform only a small number of iterations (for reasons
of efficiency), the initial choice of vh greatly influences the accuracy
of the result. Therefore, we attempt three optimizations, with vh

starting at vi, vj, and 1
2 (vi + vj), and accept the best one.

The edge collapse should be allowed only if the new mesh does not
intersect itself. Checking for this would be costly; instead we settle
for a less expensive heuristic check. If, after the local optimization,
the maximum dihedral angle of the edges in star(fhg; K0) is greater
than some threshold, the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge
collapse, except that the submesh is defined to be star(fi; jg; K), and
the initial value of the new vertex vh is chosen to be 1

2 (vi + vj).

Evaluation of Edge Swap To evaluate an edge swap transforma-
tion K ) K0 that replaces an edge fi; jg 2 K with fk; lg 2 K0, we
consider two local optimizations, one with submesh star(fkg; K0),
varying vertex vk, and one with submesh star(flg; K0), varying ver-
tex vl (Figure 6). The change in energy is taken to best of these.
As is the case in evaluating an edge collapse, we reject the transfor-
mation if the maximum dihedral angle after the local optimization
exceeds a threshold.



4.3.2 Legal Move Selection Strategy
(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Sec-
tion 4.2 can be improved by exploiting locality. Instead of selecting
edges completely at random, edges are selected from a candidate set.
This candidate set consists of all edges that may lead to beneficial
moves, and initially contains all edges.

To generate a legal move, we randomly remove an edge from
the candidate set. We first consider collapsing the edge, accepting
the move if it is legal and reduces the total energy. If the edge
collapse is not accepted, we then consider edge swap and edge split
in that order. If one of the transformations is accepted, we update
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the
fraction of beneficial moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energy Espring as a regularizing term that helps
guide the optimization process to a good minimum. The spring
constant � determines the contribution of this term to the total
energy. We have obtained good results by making successive calls to
procedure OptimizeMesh, each with a different value of �, according
to a schedule that gradually decreases �.

As an example, to obtain the final mesh in Figure 7h starting from
the mesh in Figure 7c, we successively set � to 10�2; 10�3; 10�4,
and 10�8 (see Figures 7f–7h). This same schedule was used in all
the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 7a). Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

Figures 7i–7k,7m–7o show two examples of surface reconstruc-
tion from actual laser range data (courtesy of Technical Arts, Red-
mond, WA). Figures 7j and 7n show sets of points obtained by
sampling two physical objects (a distributor cap and a golf club
head) with a laser range finder. The outputs of phase one are shown
in Figures 7k and 7o. The holes present in the surface of Figure 7k
are artifacts of the data, as self-shadowing prevented some regions
of the surface from being scanned. Adaptive selection of scanning
paths preventing such shadowing is an interesting area of future
research. In this case, we manually filled the holes, leaving a sin-
gle boundary at the bottom. Figures 7l and 7p show the optimized
meshes obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly
from the original mesh using uniform random sampling over area.
Next, we add the vertices of the mesh to this point set. Finally,
to more faithfully preserve the boundaries of the mesh, we sample
additional points from boundary edges.

As an example of mesh simplification, we start with the mesh
containing 2032 vertices shown in Figure 7q. From it, we obtain
a sample of 6752 points shown in Figure 7r (4000 random points,
2032 vertex points, and 720 boundary points). Mesh optimization,
with crep = 10�5, reduces the mesh down to 487 vertices (Figure 7s).

Fig. #vert. #faces #data Parameters Resulting energies time
m n crep � Edist E (min.)

7c 1572 3152 4102 - - 8:57�10�2 - -
7e 1572 3152 4102 10�5 10�2 8:04�10�4 4:84�10�2 1:5
7f 508 1024 4102 10�5 10�2 6:84�10�4 3:62�10�2 (+3:0)
7g 270 548 4102 10�5 10�3 6:08�10�4 6:94�10�3 (+2:2)
7h 163 334 4102 10�5 varied 4:86�10�4 2:12�10�3 17:0
7k 9220 18272 12745 - - 6:41�10�2 - -
7l 690 1348 12745 10�5 varied 4:23�10�3 1:18�10�2 47:0
7o 4059 8073 16864 - - 2:20�10�2 - -
7p 262 515 16864 10�5 varied 2:19�10�3 4:95�10�3 44:5
7q 2032 3832 - - - - - -
7s 487 916 6752 10�5 varied 1:86�10�3 8:05�10�3 9:9
7t 239 432 6752 10�4 varied 9:19�10�3 4:39�10�2 10:2

Table 1: Performance statistics for meshes shown in Figure 7.

By setting crep = 10�4, we obtain a coarser mesh of 239 vertices
(Figure 7t).

As these examples illustrate, basing mesh simplification on a
measure of distance between the simplified mesh and the original
has a number of benefits:

� Vertices are dense in regions of high Gaussian curvature,
whereas a few large faces span the flat regions.

� Long edges are aligned in directions of low curvature, and the
aspect ratios of the triangles adjust to local curvature.

� Edges and vertices of the simplified mesh are placed near sharp
features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to detect sharp features in the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components. To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are adja-
cent and their dihedral angle is smaller than a given threshold. The
connected components of this graph identify the desired smooth
segments. As an example, Figure 7i shows the segmentation of the
optimized mesh into 11 components. After segmentation, vertex
normals can be estimated from neighboring faces within each com-
ponent, and a smoothly shaded surface can be created (Figure 7m).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values of crep and � used to
generate the meshes in the examples, along with other performance
statistics. In all these examples, the table entry “varied” refers to
a spring constant schedule of f10�2; 10�3; 10�4; 10�8g. In fact,
all meshes in Figure 1 are also created using the same parameters
(except that crep was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

6 Related Work
Surface Fitting There is a large body of literature on fitting em-
beddings of a rectangular domain; see Bolle and Vemuri [1] for a
review. Schudy and Ballard [11, 12] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and
tori. Sclaroff and Pentland [13] consider embeddings of a deformed
superquadric. Miller et al. [9] approximate an isosurface of volume
data by fitting a mesh homeomorphic to a sphere. While it appears
that their method could be extended to finding isosurfaces of arbi-
trary topological type, it it less obvious how it could be modified to



handle point instead of volume data. Mallet [7] discusses interpola-
tion of functions over simplicial complexes of arbitrary topological
type.

Our method allows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensional points. In [2], we
sketched an algorithm for fitting a mesh of fixed vertex connectivity
to the data. The algorithm presented here is an extension of this idea
in which we also allow the number of vertices and their connectivity
to vary. To the best of our knowledge, this has not been done before.

Mesh Simplification Two notable papers discussing the mesh
simplification problem are Schroeder et al. [10] and Turk [15].

The motivation of Schroeder et al. is to simplify meshes gener-
ated by “marching cubes” that may consist of more than a million
triangles. In their iterative approach, the basic operation is removal
of a vertex and re-triangulation of the hole thus created. The crite-
rion for vertex removal in the simplest case (interior vertex not on
edge or corner) is the distance from the vertex to the plane approx-
imating its surrounding vertices. It is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previous iteration; deviation from the original mesh
does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while
remaining faithful to the original topology and geometry. His basic
idea is to distribute points on the existing mesh that are to become
the new vertices. He then creates a triangulation containing both old
and new vertices, and finally removes the old vertices. The density
of the new vertices is chosen to be higher in areas of high curvature.

The principal advantage of our mesh simplification method com-
pared to the techniques mentioned above is that we cast mesh sim-
plification as an optimization problem: we find a new mesh of lower
complexity that is as close as possible to the original mesh. This
is recognized as a desirable property by Turk (Section 8, p. 63):
“Another topic is finding measures of how closely matched a given
re-tiling is to the original model. Can such a quality measure be used
to guide the re-tiling process?”. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that
are elongated along directions of low curvature, another property
recognized as desirable by Turk.

7 Summary and Future Work
We have described an energy minimization approach to solving the
mesh optimization problem. The energy function we use consists of
three terms: a distance energy that measures the closeness of fit, a
representation energy that penalizes meshes with a large number of
vertices, and a regularizing term that conceptually places springs of
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the starting
mesh.

Mesh optimization has proven effective as the second phase of
our method for surface reconstruction from unorganized points, as
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the number of vertices of the mesh produced
in phase one.)

Our method has also performed well for mesh simplification, that
is, the reduction of the number of vertices in a dense triangular mesh.
It produces meshes whose edges align themselves along directions
of low curvature, and whose vertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges and
corners.

A number of areas of future research still remain, including:

� Investigate the use of more sophisticated optimization meth-
ods, such as simulated annealing for discrete optimization and
quadratic methods for non-linear least squares optimization, in
order to avoid undesirable local minima in the energy and to
accelerate convergence.

� Gain more insight into the use of the spring energy as a regu-
larizing term, especially in the presence of appreciable noise.

� Improve the speed of the algorithm and investigate implemen-
tations on parallel architectures.

� Develop methods for fitting higher order splines to more accu-
rately and concisely model curved surfaces.

� Experiment with sparse, non-uniform, and noisy data.

� Extend the current algorithm to other distance measures such as
maximum error (L1 norm) or average error (L1 norm), instead
of the current L2 norm.
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(a) Object to be sampled (b) Sampled points X (n = 4102) (c) Output of phase one (M0) (d) Optimization without Espring

(e) Optimum for fixed K0 (f) Optimum with � = 10�2 (g) Optimum with � = 10�3 (h) Final optimum with � = 10�8
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(m) Smooth shading from segments (n) Laser range data (n = 16; 864) (o) Output of phase one (p) Output of phase two

(q) Original mesh M0 (r) Sampled points X (n = 6752) (s) Simplified mesh (crep = 10�5) (t) Simplified mesh (crep = 10�4)

Figure 7: Examples of surface reconstruction and mesh simplification.



Abstract
Range imaging offers an inexpensive and accurate means for

digitizing the shape of three-dimensional objects.  Because most
objects self occlude, no single range image suffices to describe the
entire object.  We present a method for combining a collection of
range images into a single polygonal mesh that completely describes
an object to the extent that it is visible from the outside.

The steps in our method are:  1) align the meshes with each other
using a modified iterated closest-point algorithm, 2) zipper together
adjacent meshes to form a continuous surface that correctly captures
the topology of the object, and 3) compute local weighted averages
of surface positions on all meshes to form a consensus surface
geometry.

Our system differs from previous approaches in that it is incre-
mental; scans are acquired and combined one at a time.  This
approach allows us to acquire and combine large numbers of scans
with minimal storage overhead.  Our largest models contain up to
360,000 triangles.  All the steps needed to digitize an object  that
requires up to 10 range scans can be performed using our system with
five minutes of user interaction and a few hours of compute time.  We
show two models created using our method with range data from a
commercial rangefinder that employs laser stripe technology.

CR Categories: I.3.5 [Computer Graphics]:  Computational Geom-
etry and Object Modelling.
Additional Key Words: Surface reconstruction, surface fitting,
polygon mesh, range images, structured light range scanner.

1  Introduction
This paper presents a method of combining multiple views of an

object, captured by a range scanner, and assembling these views into
one unbroken polygonal surface.  Applications for such a method
include:

• Digitizing complex objects for animation and visual simulation.
• Digitizing the shape of a found object such as an archaeological

artifact for measurement and for dissemination to the scientific
community.

• Digitizing human external anatomy for surgical planning,
remote consultation or the compilation of anatomical atlases.

• Digitizing the shape of a damaged machine part to help create
a replacement.

There is currently no procedure that will allow a user to easily
capture a digital description of a physical object.  The dream tool
would allow one to set an industrial part or a clay figure onto a
platform, press a button, and have a complete digital description of
that object returned in a few minutes.  The reality is that much
digitization is done by a user painstakingly touching a 3D sensing
probe to hundreds or thousands of positions on the object, then
manually specifying the connectivity of these points.  Fortunately
range scanners offer promise in replacing this tedious operation.

A range scanner is any device that senses 3D positions on an
object’s surface and returns an array of distance values.  A range
image is an m×n grid of distances (range points) that describe a
surface either in Cartesian coordinates (a height field) or cylindrical
coordinates, with two of the coordinates being implicitly defined by
the indices of the grid.  Quite a number of measurement techniques
can be used to create a range image, including structured light,
time-of-flight lasers, radar, sonar, and several methods from the
computer vision literature such as depth from stereo, shading, tex-
ture, motion and focus.  The range images used to create the models
in this paper were captured using structured light (described later),
but our techniques can be used with any range images where the
uncertainties of the distance values are smaller than the spacing
between the samples.

Range scanners seem like a natural solution to the problem of
capturing a digital description of physical objects.  Unfortunately,
few objects are simple enough that they can be fully described by a
single range image.  For instance, a coffee cup handle will obscure
a portion of the cup’s surface even using a cylindrical scan.  To
capture the full geometry of a moderately complicated object (e.g. a
clay model of a cat) may require as many as a dozen range images.

There are two main issues in creating a single model from multiple
range images: registration and integration.  Registration refers to
computing a rigid transformation that brings the points of one range
image into alignment with the portions of a surface that is shares with
another range image.  Integration is the process of creating a single
surface representation from the sample points from two or more
range images.

Our approach to registration uses an iterative process to minimize
the distance between two triangle meshes that were created from the
range images.  We accelerate registration by performing the match-
ing on a hierarchy of increasingly more detailed meshes.  This
method allows an object to be scanned from any orientation without
the need for a six-degree-of-freedom motion device.

Zippered Polygon Meshes from Range Images

Greg Turk and Marc Levoy
Computer Science Department

Stanford University
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We separate the task of integration into two steps:  1) creating a
mesh that reflects the topology of the object, and 2) refining the
vertex positions of the mesh by averaging the geometric detail that is
present in all scans.  We capture the topology of an object by merging
pairs of triangle meshes that are each created from a single range
image.  Merging begins by converting two meshes that may have
considerable overlap into a pair of meshes that just barely overlap
along portions of their boundaries.  This is done by simultaneously
eating back the boundaries of each mesh that lie directly on top of the
other mesh.  Next, the meshes are zippered together: the triangles of
one mesh are clipped to the boundary of the other mesh and the
vertices on the boundary are shared.  Once all the meshes have been
combined, we allow all of the scans to contribute to the surface detail
by finding the consensus geometry.  The final position of a vertex is
found by taking an average of nearby positions from each of the
original range images.  The order in which we perform zippering and
consensus geometry is important.  We deliberately postpone the
refinement of surface geometry until after the overall shape of the
object has been determined.  This eliminates discontinuities that may
be introduced during zippering.

The remainder of this paper is organized as follows.  Section 2
describes previous work on combining range images.  Section 3
covers the basic principles of a structured light range scanner.
Section 4 presents the automatic registration process.  Section 5
describes zippering meshes into one continuous surface.   Section 6
describes how surface detail is captured through consensus geom-
etry.  Section 7 shows examples of digitized models and compares
our approach to other methods of combining range data.  Section 8
concludes this paper by discussing future work.

2  Previous Work
There is a great deal of published work on registration and

integration of depth information, particularly in the vision literature.
Our literature review only covers work on registration or integration
of dense range data captured by an active range scanner, and where
the product of the integration is a polygon mesh.

2.1 Registration
Two themes dominate work in range image registration: matching

of “created” features in the images to be matched, and minimization
of distances between all points on the surface represented by the two
images.  In the first category, Wada and co-authors performed six
degree of freedom registration by matching distinctive facets from
the convex hulls of range images [Wada 93].  They computed a
rotation matrix from corresponding facets using a least squares fit of
the normal vectors of the facets.

In the second category, Champleboux and co-workers used a data
structure called an octree-spline that is a sampled representation of
distances to an object’s surface [Champleboux 92].  This gave them
a rapid way to determine distances from a surface (and the distance
gradient) with a low overhead in storage.  Chen and Medioni
establish a correspondence between points on one surface and nearby
tangent planes on the other surface [Chen 92].  They find a rigid
motion that minimizes the point-to-tangent collection directly and
then iterate.  Besl and McKay use an approach they call the iterated
closest-point algorithm [Besl 92]. This method finds the nearest
positions on one surface to a collection of points on the other surface
and then transforms one surface so as to minimize the collective
distance.  They iterate this procedure until convergence.

Our registration method falls into the general category of direct
distance minimization algorithms, and is an adaptation of [Besl 92].
It differs in that we do not require that one surface be a strict subset
of the other.  It is described in Section 4.

2.2 Integration
Integration of multiple range scans can be classified into struc-

tured and unstructured methods.  Unstructured integration presumes

that one has a procedure that creates a polygonal surface from an
arbitrary collection of points in 3-space.  Integration in this case is
performed by collecting together all the range points from multiple
scans and presenting them to the polygonal reconstruction proce-
dure.  The Delaunay triangulation of a set of points in 3-space has
been proposed as the basis of one such reconstruction method
[Boissonnat 84].  Another candidate for surface reconstruction is a
generalization of the convex hull of a point set known as the alpha
shape [Edelsbrunner 92].  Hoppe and co-authors use graph traversal
techniques to help construct a signed distance function from a
collection of unorganized points [Hoppe 92].  An isosurface extrac-
tion technique produces a polygon mesh from this distance function.

Structured integration methods make use of information about
how each point was obtained, such as using error bounds on a point’s
position or adjacency information between points within one range
image.  Soucy and Laurendeau use a structured integration technique
to combine multiple range images [Soucy 92] that is similar in
several respects to our algorithm.  Given n range images of an object,
they first partition the points into a number of sets that are called
common surface sets.  The range points in one set are then used to
create a grid of triangles whose positions are guided by a weighted
average of the points in the set.  Subsets of these grids are stitched
together by a constrained Delaunay triangulation in one of n  projec-
tions onto a plane.  We compare our method to Soucy’s in Section 7.

3  Structured Light Range Scanners
In this section we describe the operating principles of range

scanners based on structured light.  We do this because it highlights
issues common to many range scanners and also because the range
images used in this article were created by such a scanner.

3.1 Triangulation
Structured light scanners operate on the principle of triangulation

(see Figure 1, left).  One portion of the scanner projects a specific
pattern of light onto the object being scanned.  This pattern of light
is observed by the sensor of the scanner along a viewing direction that
is off-axis from the source of light.  The position of the illuminated
part of the object is determined by finding the intersection of the
light’s projected direction and the viewing direction of the sensor.
Positions can be accumulated across the length of the object while the
object is moved across the path of the projected light.  Some of the
patterns that have been used in such scanners include a spot, a circle,
a line, and several lines at once.  Typically the sensor is a CCD array
or a lateral effect photodiode.

The scanner used for the examples in this paper is a Cyberware
Model 3030 MS.  It projects a vertical sheet of He-Ne laser light onto
the surface of an object.  The laser sheet is created by spreading a laser
beam using a cylindrical lens into a sheet roughly 2 mm wide and 30
cm high.  The sensor of the Cyberware scanner is a 768 × 486 pixel
CCD array.  A typical CCD image shows a ribbon of laser light
running from the top to the bottom (see Figure 2).  A range point is
created by looking across a scanline for the peak intensity of this
ribbon. A range point’s distance from the scanner (the “depth”) is
given by the horizontal position of this peak and the vertical position
of the range point is given by the number of the scanline.  Finding the
peaks for each scanline in one frame gives an entire column of range
points, and combining the columns from multiple frames as the
object is moved through the laser sheet gives the full range image.

3.2 Sources of Error
Any approach to combining range scans should attempt to take

into account the possible sources of error inherent in a given scanner.
Two sources of error are particularly relevant to integration.  One is
a result of light falling on the object at a grazing angle.  When the
projected light falls on a portion of the object that is nearly parallel
to the light’s path, the sensor sees a dim and stretched-out version of
the pattern.  Finding the center of the laser sheet when it grazes the



object becomes difficult, and this adds uncertainty to the position of
the range points.  The degree of uncertainty at a given range point can
be quantified, and we make use of such information at several stages
in our approach to combining range images.

A second source of inaccuracy occurs when only a portion of the
laser sheet hits an object, such as when the laser sheet falls off the
edge of a book that is perpendicular to the laser sheet (see Figure 1,
right).  This results in a false position because the peak-detection and
triangulation method assumes that the entire width of the sheet is
visible.  Such an assumption results in edges of objects that are both
curled and extended beyond their correct position.  This false
extension of a surface at edges is an issue that needs to be specifically
addressed when combining range images.

3.3 Creating Triangle Meshes from Range Images
We use a mesh of triangles to represent the range image data at all

stages of our integration method.  Each sample point in the m×n range
image is a potential vertex in the triangle mesh.  We take special care
to avoid inadvertently joining portions of the surface together that are
separated by depth discontinuities (see Figure 3).

To build a mesh, we create zero, one or two triangles from four
points of a range image that are in adjacent rows and columns.  We
find the shortest of the two diagonals between the points and use this
to identify the two triplets of points that may become triangles.  Each
of these point triples is made into a triangle if the edge lengths fall
below a distance threshold.  Let s be the maximum distance between
adjacent range points when we flatten the range image, that is, when
we don’t include the depth information (see Figure 3).  We take the
distance threshold be a small multiple of this sampling distance,
typically 4s.  Although having such a distance threshold may prevent
joining some range points that should in fact be connected, we can
rely on other range images (those with better views of the location in
question) to give the correct adjacency information.

This willingness to discard questionable data is representative of
a deliberate overall strategy: to acquire and process large amounts of
data rather than draw hypotheses (possibly erroneous) from sparse
data.  This strategy appears in several places in our algorithm.

4  Registration of Range Images
Once a triangle mesh is created for each range image, we turn to

the task of bringing corresponding portions of different range images
into alignment with one another.  If all range images are captured
using a six-degree of freedom precision motion device then the
information needed to register them is available from the motion
control software.  This is the case when the object or scanner is
mounted on a robot arm or the motion platform of a precision milling
machine.  Inexpensive motion platforms are often limited to one or
two degrees of freedom, typically translation in a single direction or
rotation about an axis.  One of our goals is to create an inexpensive
system.  Consequently, we employ a registration method that does
not depend on measured position and orientation.  With our scanner,
which offers translation and rotation around one axis, we typically
take one cylindrical and four translational scans by moving the object
with the motion device.  To capture the top or the underside of the
object, we pick it up by hand and place it on its side.  Now the
orientation of subsequent scans cannot be matched with those taken
earlier, and using a registration method becomes mandatory.

4.1 Iterated Closest-Point Algorithm
This section describes a modified iterated closest-point (ICP)

algorithm for quickly registering a pair of meshes created from range
images.  This method allows a user to crudely align one range image
with another on-screen and then invoke an algorithm that snaps the
position of one range image into accurate alignment with the other.

The iterated closest-point of [Besl 92] cannot be used to register
range images because it requires that every point on one surface have

Figure 1:  Structured light triangulation (left) and false edge extension in the presence of a partially illuminated edge (right).
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a corresponding point on the other surface.  Since our scans are
overlapping, we seldom produce data that satisfies this requirement.
Thus we have developed our own variant of this algorithm.  Its steps
are:

1) Find the nearest position on mesh A to each vertex of mesh B.
2) Discard pairs of points that are too far apart.
3) Eliminate pairs in which either points is on a mesh boundary.
4) Find the rigid transformation that minimizes a weighted

least-squared distance between the pairs of points.
5) Iterate until convergence.
6) Perform ICP on a more detailed mesh in the hierarchy.

In step 1, it is important to note that we are looking for the 3-space
position A

i
 on the surface of mesh A that is closest to a given vertex

B
i
 of mesh B (see Figure 4).  The nearest point A

i
 may be a vertex of

A, may be a point within a triangle, or may lie on a triangle’s edge.
Allowing these points A

i
 to be anywhere on a C0 continuous surface

means that the registration between surfaces can have greater accu-
racy than the spacing s between range points.

4.2 Constraints on ICP
Our ICP algorithm differs from Besl’s in several ways.  First, we

have added a distance threshold to the basic iterated closest-point
method to avoid matching any vertex B

i
 of one mesh to a remote part

of another mesh that is likely to not correspond to B
i
.  Such a vertex

B
i
 from mesh B might be from a portion of the scanned object that was

not captured in the mesh A, and thus no pairing should be made to any
point on A.  We have found that excellent registration will result when
this distance threshold is set to twice the spacing s between range
points.  Limiting the distance between pairs of corresponding points
allows us to perform step 2 (eliminating remote pairs) during the
nearest points search in step 1.

The nearest points search can be accelerated considerably by
placing the mesh vertices in a uniform subdivision of space based on
the distance threshold.  Because the triangle size is limited in the
mesh creation step, we can search over all triangles within a fixed
distance and guarantee that we miss no nearby portion of any triangle.
Because we will use this constrained nearest-point search again later,
it is worth giving a name to this query.  Let nearest_on_mesh(P,d,M)
be a routine that returns the nearest position on a mesh M to a given
point P, or that returns nothing if there is no such point within the
distance d.

Second, we have added the restriction that we never allow
boundary points to be part of a match between surfaces.  Boundary
points are those points that lie on the edge of a triangle and where that
edge is not shared by another triangle.  Figure 4 illustrates how such
matches can drag a mesh in a contrary direction to the majority of the
point correspondences.

4.3 Best Rigid Motion
The heart of the iterated closest-point approach is in finding a rigid

transformation that minimizes the least-squared distance between

the point pairs.  Berthold Horn describes a closed-form solution to
this problem [Horn 87] that is linear in time with respect to the
number of point pairs.  Horn’s method finds the translation vector T
and the rotation R such that:

is minimized, where A
i
 and B

i
 are given pairs of positions in

3-space and B
c
 is the centroid of the B

i
.  Horn showed that T is just the

difference between the centroid of the points A
i
 and the centroid of the

points B
i
.  R is found by constructing a cross-covariance matrix

between centroid-adjusted pairs of points.  The final rotation is given
by a unit quaternion that is the eigenvector corresponding to the
largest eigenvalue of a matrix constructed from the elements of this
cross-covariance matrix.  Details can be found in both [Horn 87] and
[Besl 92].

As we discussed earlier, not all range points have the same error
bounds on their position.  We can take advantage of an optional
weighting term in Horn’s minimization to incorporate the positional
uncertainties into the registration process.  Let a value in the range
from 0 to 1 called confidence be a measure of how certain we are of
a given range point’s position.  For the case of structured light
scanners, we take the confidence of a point P on a mesh to be the dot
product of the mesh normal N at P and the vector L that points from
P to the light source of the scanner.  (We take the normal at P to be
the average of the normals of the triangles that meet at P.)  Addition-
ally, we lower the confidence of vertices near the mesh boundaries
to take into account possible error due to false edge extension and
curl.  We take the confidence of a pair of corresponding points A

i
 and

B
i
 from two meshes to be the product of their confidences, and we will

use w
i
 to represent this value.  The problem is now to find a weighted

least-squares minimum:

The weighted minimization problem is solved in much the same
way as before.  The translation factor T is just the difference between
the weighted centroids of the corresponding points.  The solution for
R is described by Horn.

4.4 Alignment in Practice
The above registration method can be made faster by matching

increasingly more detailed meshes from a hierarchy.  We typically
use a mesh hierarchy in which each mesh uses one-forth the number
of range points that are used in the next higher level.  The less-
detailed meshes in this hierarchy are constructed by sub-sampling the
range images.  Registration begins by running constrained ICP on the
lowest-level mesh and then using the resulting transformation as the
initial position for the next level up in the hierarchy.  The matching
distance threshold d is halved with each move up the hierarchy.

Besl and McKay describe how to use linear and quadratic extrapo-
lation of the registration parameters to accelerate the alignment
process.  We use this technique for our alignment at each level in the
hierarchy, and find it works well in practice.  Details of this method
can be found in their paper.

The constrained ICP algorithm registers only two meshes at a
time, and there is no obvious extension that will register three or more
meshes simultaneously.  This is the case with all the registration
algorithms we know.  If we have meshes A, B, C and D, should we
register A with B, then B with C and finally C with D, perhaps
compounding registration errors?  We can minimize this problem by
registering all meshes to a single mesh that is created from a
cylindrical range image.  In this way the cylindrical range image acts
as a common anchor for all of the other meshes.  Note that if a
cylindrical scan covers an object from top to bottom, it captures all
the surfaces that lie on the convex hull of the object.  This means that,

Mesh A

Mesh B

Figure 4:  Finding corresponding points for mesh registration.
Dotted arrows show matches that should be avoided because
they will cause mesh B to be erroneously dragged up and left.
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for almost all objects, there will be some common portions between
the cylindrical scan and all linear scans, although the degree of this
overlap depends on the extent of the concavities of the object.  We
used such a cylindrical scan for alignment when constructing the
models shown in this paper.

5  Integration: Mesh Zippering
The central step in combining range images is the integration of

multiple views into a single model.  The goal of integration is to arrive
at a description of the overall topology of the object being scanned.
In this section we examine how two triangle meshes can be combined
into a single surface.  The full topology of a surface is realized by
zippering new range scans one by one into the final triangle mesh.

Zippering two triangle meshes consists of three steps, each of
which we will consider in detail below:

1) Remove overlapping portions of the meshes.
2) Clip one mesh against another.
3) Remove the small triangles introduced during clipping.

5.1 Removing Redundant Surfaces
Before attempting to join a pair of meshes, we eat away at the

boundaries of both meshes until they just meet.  We remove those
triangles in each mesh that are in some sense “redundant,” in that the
other mesh includes an unbroken surface at that same position in
space.  Although this step removes triangles from the meshes, we are
not discarding data since all range points eventually will be used to
find the consensus geometry (Section 6).  Given two triangle meshes
A and B, here is the process that removes their redundant portions:

Repeat until both meshes remain unchanged:
Remove redundant triangles on the boundary of mesh A
Remove redundant triangles on the boundary of mesh B

Before we can remove a given triangle T from mesh A, we need
to determine whether the triangle is redundant.  We accomplish this
by querying mesh B using the nearest_on_mesh() routine that was
introduced earlier.  In particular, we ask for the nearest positions on
mesh B to the vertices V

1
, V

2
 and V

3
 of T.  We will declare T to be

redundant if the three queries return positions on B that are within a
tolerance distance d and if none of these positions are on the boundary
of B.  Figure 7 shows two overlapping surfaces before and after
removing their redundant triangles.  In some cases this particular
decision procedure for removing triangles will leave tiny gaps where
the meshes meet.  The resulting holes are no larger than the maximum
triangle size and we currently fill them in an automatic post-processing
step to zippering.  Using the fast triangle redundancy check was an
implementation decision for the sake of efficiency, not a necessary
characteristic of our zippering approach, and it could easily be
replaced by a more cautious redundancy check that leaves no gaps.
We have not found this necessary in practice.

If we have a measure of confidence of the vertex positions (as we
do for structured light scanners), then the above method can be
altered to preserve the more confident vertices.  When checking to
see if the vertices V

1
, V

2
 and V

3
 of T lie within the distance tolerance

of mesh B, we also determine whether at least two of these vertices
have a lower confidence measure than the nearby points on B.  If this
is the case, we allow the triangle to be removed.  When no more
triangles can be removed from the boundaries of either mesh, we drop
this confidence value restriction and continue the process until no
more changes can be made.  This procedure results in a pair of meshes
that meet along boundaries of nearly equal confidences.

5.2 Mesh Clipping
We now describe how triangle clipping can be used to smoothly

join two meshes that slightly overlap.  The left portion of Figure 5
shows two overlapping meshes and the right portion shows the result
of clipping.  Let us examine the clipping process in greater detail, and

for the time being make the assumption that we are operating on two
meshes that lie in a common plane.

To clip mesh A against the boundary of mesh B we first need to add
new vertices to the boundary of B.  Specifically, we place a new
vertex wherever an edge of a triangle from mesh A intersects the
boundary of mesh B.  Let Q be the set of all such new vertices.
Together, the new vertices in Q and the old boundary vertices of mesh
B will form a common boundary that the triangles from both meshes
will share.  Once this new boundary is formed we need to incorporate
the vertices Q into the triangles that share this boundary.  Triangles
from mesh B need only to be split once for each new vertex to be
incorporated (shown in Figure 5, right).  Then we need to divide each
border triangle from A into two parts, one part that lies inside the
boundary of B that should be discarded and the other part that lies
outside of this boundary and should be retained (See Figure 5,
middle).  The vertices of the retained portions of the triangle are
passed to a constrained triangulation routine that returns a set of
triangles that incorporates all the necessary vertices (Figure 5, right).

The only modification needed to extend this clipping step to
3-space is to determine precisely how to find the points of intersec-
tion Q.  In 3-space the edges of mesh A might very well pass above
or below the boundary of B instead of exactly intersecting the
boundary.  To correct for this we “thicken” the boundary of mesh B.
In essence we create a wall that runs around the boundary of B and
that is roughly perpendicular to B at any given location along the
boundary.  The portion of the wall at any given edge E is a collection
of four triangles, as shown in Figure 6.  To find the intersection points
with the edges of A, we only need to note where these edges pass
through the wall of triangles.  We then move this intersection point
down to the nearest position on the edge E to which the intersected
portion of the wall belongs.  The rest of the clipping can proceed as
described above.

5.3 Removing Small Triangles
The clipping process can introduce arbitrarily small or thin

triangles into a mesh.  For many applications this does matter, but in
situations where such triangles are undesirable they can easily be
removed.  We use vertex deletion to remove small triangles: if any of
a triangle’s altitudes fall below a user-specified threshold we delete
one of the triangle’s vertices and all the triangles that shared this
vertex.  We then use constrained triangulation to fill the hole that is
left by deleting these triangles (see [Bern 92]).  We preferentially
delete vertices that were introduced as new vertices during the
clipping process.  If all of a triangle’s vertices are original range
points then the vertex opposite the longest side is deleted.

Figure 5:  Mesh A is clipped against the boundary of mesh B.
Circles (left) show intersection between edges of A and B’s
boundary.  Portions of triangles from A are discarded (middle)
and then both meshes incorporate the points of intersection
(right).
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clip boundary Final triangles



5.4  False Edge Extension
As described in Section 3.2, range points from a structured light

scanner that are near an object’s silhouette are extended and curled
away from the true geometry.  These extended edges typically occur
at corners.  If there is at least one scan that spans both sides of the
corner, then our method will correctly reconstruct the surface at the
corner.  Since we lower the confidence of a surface near the mesh
boundaries, triangles at the false edge extensions will be eliminated
during redundant surface removal because there are nearby triangles
with higher confidence in the scan that spans the corner.  For correct
integration at a corner, it is the user’s responsibility to provide a scan
that spans both sides of the corner.  Figure 7 illustrates correct
integration at a corner in the presence of false edge extension.
Unfortunately, no disambiguating scan can be found when an object
is highly curved such as a thin cylinder.

Although the problem of false edge extension is discussed in the
structured light literature [Businski 92], we know of no paper on
surface integration from such range images that addresses or even
mentions this issue.  We are also unaware of any other integration
methods that will correctly determine the geometry of a surface at
locations where there are false extensions.  Our group has developed

a method of reducing false edge extensions when creating the range
images (to appear in a forthcoming paper) and we are exploring
algorithms that will lessen the effect of such errors during integra-
tion.  It is our hope that by emphasizing this issue we will encourage
others to address this topic in future research on range image
integration.

6  Consensus Geometry
When we have zippered the meshes of all the range images

together, the resulting triangle mesh captures the topology of the
scanned object.  This mesh may be sufficient for some applications.
If surface detail is important, however, we need to fine-tune the
geometry of the mesh.

The final model of an object should incorporate all the informa-
tion available about surface detail from each range image of the
object.  Some of this information may have been discarded when we
removed redundant triangles during mesh zippering.  We re-introduce
the information about surface detail by moving each vertex of our
zippered mesh to a consensus position given by a weighted average
of positions from the original range images.  Vertices are moved only
in the direction of the surface normal so that features are not blurred
by lateral motion.  This is in contrast to unstructured techniques
which tend to blur small features isotropically.  Our preference for
averaging only in the direction of the surface normal is based on the
observation that most points in range scans are generally accurately
placed with respect to other points in the same scan, but may differ
between scans due to alignment errors such as uncorrected optical
distortion in the camera.  Let  M

1
, M

2
,..., M

n
 refer to the original

triangle meshes created from the range images.  Then the three steps
for finding the consensus surface are:

1) Find a local approximation to the surface normal.
2) Intersect a line oriented along this normal with each original

range image.
3) Form a weighted average of the points of intersection.

Surface of
Triangle Mesh

Wall to 
thicken
mesh 
boundary

Mesh boundary

Figure 6:  Thickened boundary for clipping in 3-space.

Figure 7: Left (top and bottom): Meshes created from two range images of a telephone.  Red denotes locations of high confidence
and blue shows low confidence.  Note the low confidence at the edges to account for false edge extensions.  Top middle:  The two
meshes (colored red and white) after alignment.  Bottom middle:  Close-up of aligned meshes that shows a jagged ridge of triangles
that is the false edge extension of the white mesh at a corner.  Top right:  The meshes after redundant surface removal.  Bottom
right:  The meshes after zippering.



Figure 9:  Left:  This model of a telephone handset was created by zippering together meshes from ten range images.  The mesh
consists of more than 160,000 triangles.  Right:  The final positions of the vertices in the mesh have been moved to an average
of nearby positions in the original range images.  We call this the consensus geometry.

Figure 8:  Photograph of a plastic dinosaur model (left) and a polygon mesh created by registering and zippering together 14 range
images that were taken of the model (right).  The mesh consists of more than 360,000 polygons.



We approximate the surface normal N at a given vertex V by
taking an average over all vertex normals from the vertices in all the
meshes M

i
 that fall within a small sphere centered at V.  We then

intersect each of the meshes M
i
 with the line passing through V along

the direction N.  Let P be the set of all intersections that are near V.
We take the consensus position of V to be the average of all the points
in P.  If we have a measure of confidence for positions on a mesh we
use this to weight the average.

7  Results and Discussion
The dinosaur model shown in Figure 8 was created from 14 range

images and contains more than 360,000 triangles.  Our integration
method correctly joined together the meshes at all locations except
on the head where some holes due to false edge extensions were filled
manually.  Such holes should not occur once we eliminate the false
extensions in the range images.  The dinosaur model was assembled
from a larger quantity of range data (measured either in number of
scans or number of range points) than any published model known to
us.  Naturally, we plan to explore the use of automatic simplification
methods with our models [Schroeder 92] [Turk 92] [Hoppe 93].
Figure 9 shows a model of a phone that was created from ten range
images and contains over 160,000 triangles.  The mesh on the right
demonstrates that the consensus geometry both reduces noise from
the range images without blurring the model’s features and also that
it eliminates discontinuities at zippered regions.

A key factor that distinguishes our approach from those using
unstructured integration ([Hoppe 92] and others) is that our method
attempts to retain as much of the triangle connectivity as is possible
from the meshes created from the original range images.  Our
integration process concentrates on a one-dimensional portion of the
mesh (the boundary) instead of across an entire two-dimensional
surface, and this makes for rapid integration.

Our algorithm shares several characteristics with the approach of
Soucy and Laurendeau, which is also a structured integration method
[Soucy 92].  The most important difference is the order in which the
two methods perform integration and geometry averaging.  Soucy’s
method first creates the final vertex positions by averaging between
range images and then stitches together the common surface sets.  By
determining geometry before connectivity, their approach may be
sensitive to artifacts of the stitching process.  This is particularly
undesirable because their method can create seams between as many
as 2n common surface sets from n range images.  Such artifacts are
minimized in our approach by performing geometry averaging after
zippering.

In summary, we use zippering of triangle meshes followed by
refinement of surface geometry to build detailed models from range
scans.  We expect that in the near future range image technology will
replace manual digitization of models in several application areas.

8  Future Work
There are several open problems related to integration of multiple

range images.  One issue is how an algorithm might automatically
determine the next best view to capture more of an object’s surface.
Another important issue is merging reflectance information (includ-
ing color) with the geometry of an object.  Maybe the biggest
outstanding issue is how to create higher-order surface descriptions
such as Bezier patches or NURBS from range data, perhaps guided
by a polygon model.
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A Volumetric Method for Building Complex Models from Range Images

Brian Curless and Marc Levoy
Stanford University

Abstract
A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable set
of properties for such algorithms includes: incremental updating, rep-
resentation of directional uncertainty, the ability to fill gaps in the re-
construction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possesses all of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at a time,
we first scan-convert it to a distance function, then combine this with
the data already acquired using a simple additive scheme. To achieve
space efficiency, we employ a run-length encoding of the volume. To
achieve time efficiency, we resample the range image to align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
face is optimal in the least squares sense. To fill gaps in the model, we
tessellate over the boundaries between regions seen to be empty and
regions never observed.

Using this method, we are able to integrate a large number of range
images (as many as 70) yielding seamless, high-detail models of up to
2.6 million triangles.

CR Categories: I.3.5 [Computer Graphics] Computational Geome-
try and Object Modeling
Additional keywords: Surface fitting, three-dimensional shape re-
covery, range image integration, isosurface extraction

1 Introduction
Recent years have witnessed a rise in the availability of fast, accurate
range scanners. These range scanners have provided data for applica-
tions such as medicine, reverse engineering, and digital film-making.
Many of these devicesgenerate range images; i.e., they produce depth
values on a regular sampling lattice. Figure 1 illustrates how an op-
tical triangulation scanner can be used to acquire a range image. By
connecting nearest neighbors with triangular elements, one can con-
struct a range surface as shown in Figure 1d. Range images are typi-
cally formed by sweeping a 1D or 2D sensor linearly across an object
or circularly around it, and generally do not contain enough informa-
tion to reconstruct the entire object being scanned. Accordingly, we
require algorithms that can merge multiple range images into a sin-
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gle description of the surface. A set of desirable properties for such a
surface reconstruction algorithm includes:

� Representation of range uncertainty. The data in range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, as illustrated for optical tri-
angulation in Figure 1a. The method of range integration should
reflect this fact.

� Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can re-
duce sensor noise.

� Incremental and order independent updating. Incremental up-
dates allow us to obtain a reconstruction after each scan or small
set of scans and allow us to choose the next best orientation for
scanning. Order independence is desirable to ensure that results
are not biased by earlier scans. Together, they allow for straight-
forward parallelization.

� Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

� Robustness. Outliers and systematic range distortions can create
challenging situations for reconstruction algorithms. A robust
algorithm needs to handle these situations without catastrophic
failures such as holes in surfaces and self-intersecting surfaces.

� No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful results in only a restricted class of problems.

� Ability to fill holes in the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessible to the sensor. In these
cases, we desire an algorithm that can automatically fill these
holes with plausible surfaces, yielding a model that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present a volumetric method for integrating range
images that possesses all of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gaps in the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
so as to keep time and space costs reasonable. In section 6, we show
the results of surface reconstruction from many range images of com-
plex objects. Finally, in section 7 we conclude and discuss limitations
and future directions.

2 Previous work
Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along
two basic directions: reconstruction from unorganized points, and
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Figure 1. From optical triangulation to a range surface. (a) In 2D, a narrow laser beam illuminates a surface, and a linear sensor images the reflection from an
object. The center of the image pulse maps to the center of the laser, yielding a range value. The uncertainty,�x , in determining the center of the pulse results
in range uncertainty, �z along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines of
sight of the CCD. (b) In 3D, a laser stripe triangulation scanner first spreads the laser beam into a sheet of light with a cylindrical lens. The CCD observes the
reflected stripe from which a depth profile is computed. The object sweeps through the field of view, yielding a range image. Other scanner configurations rotate
the object to obtain a cylindrical scan or sweep a laser beam or stripe over a stationary object. (c) A range image obtained from the scanner in (b) is a collection
of points with regular spacing. (d) By connecting nearest neighbors with triangles, we create a piecewise linear range surface.

reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfaces or by re-
constructing an implicit function.

A major advantage of the unorganized points algorithms is the fact
that they do not make any prior assumptions about connectivity of
points. In the absence of range images or contours to provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Mücke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et al [16] for generating a signed distance
function followed by an isosurface extraction. More recently, Bajaj,
et al [1] used alpha-shapes to construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range im-
ages in a polygonal domain. Soucy and Laurendeau [25] describe
a method using Venn diagrams to identify overlapping data regions,
followed by re-parameterization and merging of regions. Turk and
Levoy [30] devised an incremental algorithm that updates a recon-
struction by eroding redundantgeometry, followed by zippering along
the remaining boundaries, and finally a consensus step that rein-
troduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] use errors along the sensor’s lines of sight to es-
tablish consensus surface positions followed by a re-tessellation that
incorporates redundant data. These algorithms typically perform bet-
ter than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplified in Figure 9.

Several algorithms have been proposed for integrating structured
data to generate implicit functions. These algorithms can be classified
as to whether voxels are assigned one of two (or three) states or are
samples of a continuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] casts rays from a range image accessedas
a quad-tree into a voxel grid stored as an octree, and generates results
for synthetic data. Chien, et al [3] efficiently generate octree models
under the severe assumption that all views are taken from the direc-
tions corresponding to the 6 faces of a cube. Li and Crebbin [19] and

Tarbox and Gottschlich [28] also describe methods for generating bi-
nary voxel grids from range images. None of these methods has been
used to generate surfaces. Further, without an underlying continuous
function, there are no mechanism for representing range uncertainty
or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method falls into this category. Previous efforts in this
area include the work of Grosso, et al [12], who generate depth maps
from stereo and average them into a volume with occupancyramps of
varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et al [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using a straight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or spaceoptimizations, and the final models are of low resolution. Re-
cently, Hilton, et al [14] have developed a method similar to ours in
that it uses weighted signed distance functions for merging range im-
ages, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
space for potential hole filling, all of which we believe are crucial for
the success of this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
space is a scalar probability field which they update using a Bayesian
formulation. The results have been used for robot navigation, but not
for surface extraction. A difficulty with this technique is the fact that
the best description of the surface lies at the peak or ridge of the proba-
bility function, and the problem of ridge-finding is not one with robust
solutions [8]. This is one of our primary motivations for taking an iso-
surface approach in the next section: it leverages off of well-behaved
surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdrops to
help carve out the emptiness of space is one we demonstrate in sec-
tion 4.

3 Volumetric integration
Our algorithm employs a continuous implicit function, D(x), repre-
sented by samples. The function we represent is the weighted signed
distance of each point x to the nearest range surface along the line of
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Figure 2. Unweighted signed distance functions in 3D. (a) A range sen-
sor looking down the x-axis observes a range image, shown here as a re-
constructed range surface. Following one line of sight down the x-axis,
we can generate a signed distance function as shown. The zero crossing
of this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing process results in a
slightly different range surface. In general, the second surface would inter-
penetrate the first, but we have shown it as an offset from the first surface
for purposes of illustration. Following the same line of sight as before, we
obtain another signed distance function. By summing these functions, we
arrive at a cumulative function with a new zero crossing positioned mid-
way between the original range measurements.

sight to the sensor. We construct this function by combining signed
distance functions d1(x), d2(x), ... dn(x) and weight functions
w1(x), w2(x), ... wn(x) obtained from range images 1 ... n. Our
combining rules give us for each voxel a cumulative signed distance
function, D(x), and a cumulative weight W (x). We represent these
functions on a discrete voxel grid and extract an isosurface corre-
sponding to D(x) = 0. Under a certain set of assumptions, this iso-
surface is optimal in the least squares sense. A full proof of this op-
timality is beyond the scope of this paper, but a sketch appears in ap-
pendix A.

Figure 2 illustrates the principle of combining unweighted signed
distances for the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, reflecting greater uncertainty when the
illumination is at grazing angles to the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemes for our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and has taken two mea-
surements, r1 and r2 . The signed distance profiles, d1(x) and d2(x)
may extend indefinitely in either direction, but the weight functions,
w1(x) and w2(x), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:

D(x) =
�wi(x)di(x)

�wi(x)
(1)

W (x) = �wi(x) (2)
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Figure 3. Signed distance and weight functions in one dimension. (a) The
sensor looks down the x-axis and takes two measurements, r1 and r2.
d1(x) and d2(x) are the signed distance profiles, and w1(x) and w2(x)
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to
be of different magnitude here to illustrate how the profiles combine in the
general case. (b) D(x) is a weighted combination of d1(x) and d2(x),
and W (x) is the sum of the weight functions. Given this formulation, the
zero-crossing,R, becomes the weighted combination of r1 and r2 and rep-
resents ourbest guess of the location of the surface. In practice, we truncate
the distance ramps and weights to the vicinity of the range points.

where, di(x) andwi(x) are the signed distance and weight functions
from the ith range image.

Expressed as an incremental calculation, the rules are:

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) +wi+1(x)
(3)

Wi+1(x) = Wi(x) +wi+1(x) (4)

where Di(x) and Wi(x) are the cumulative signed distance and
weight functions after integrating the ith range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at a range, R given by:

R =
�wiri

�wi

(5)

i.e., a weighted combination of the acquired range values, which is
what one would expect for a least squares minimization.

In principle, the distance and weighting functions should extend in-
definitely in either direction. However, to prevent surfaces on oppo-
site sides of the object from interfering with each other, we force the
weighting function to taper off behind the surface. There is a trade-off
involved in choosing where the weight function tapers off. It should
persist far enough behind the surface to ensure that all distance ramps
will contribute in the vicinity of the final zero crossing, but, it should
also be as narrow as possible to avoid influencing surfaces on the other
side. To meet these requirements, we force the weights to fall off at a
distance equal to half the maximum uncertainty interval of the range
measurements. Similarly, the signed distance and weight functions
need not extend far in front of the surface. Restricting the functions
to the vicinity of the surface yields a more compact representation and
reduces the computational expense of updating the volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to range image in-
tegration include errors in alignment between meshes as well as er-
rors inherent in the scanning technology. A number of algorithms for
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional case for a range curve de-
rived from a single scan containing a row of range samples. In prac-
tice, we use a fixed point representation for the signed distance func-
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Figure 4. Combination of signed distance and weight functions in two di-
mensions. (a) and (d) are the signed distance and weight functions, respec-
tively, generated for a range image viewed from the sensor line of sight
shown in (d). The signed distance functions are chosen to vary between
Dmin and Dmax , as shown in (a). The weighting falls off with increas-
ing obliquity to the sensorand at the edgesof the meshesas indicated by the
darker regions in (e). The normals,n1 andn2 shown in (e), are oriented at
a grazing angle and facing the sensor, respectively. Note how the weight-
ing is lower (darker) for the grazing normal. (b) and (e) are the signed dis-
tance and weight functions for a range image of the same object taken at a
60 degree rotation. (c) is the signed distance function D(x) correspond-
ing to the per voxel weighted combination of (a) and (b) constructed using
equations 3 and 4. (f) is the sum of the weights at each voxel,W (x). The
dotted green curve in (c) is the isosurface that represents our current esti-
mate of the shape of the object.

tion, which bounds the values to lie between Dmin and Dmax as
shown in the figure. The values ofDmin andDmax must be negative
and positive, respectively, as they are on opposite sides of a signed
distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute a weight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near the range surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the range images, we can extract
the zero-crossing isosurface from the volumetric grid. We restrict this
extraction procedure to skip samples with zero weight, generating tri-
angles only in the regions of observed data. We will relax this restric-
tion in the next section.

4 Hole filling
The algorithm described in the previous section is designed to recon-
struct the observed portions of the surface. Unseen portions of the
surface will appear as holes in the reconstruction. While this result
is an accurate representation of the known surface, the holes are es-
thetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,
the authors describe a method for parameterizing patches that entails

Volume

Sensor

Range surface

wawb

wc

w

d

VoxelViewing
ray

Figure 5. Sampling the range surface to update the volume. We compute
the weight, w, and signed distance, d, needed to update the voxel by cast-
ing a ray from the sensor, through the voxel onto the range surface. We
obtain the weight, w, by linearly interpolating the weights (wa , wb, and
wc) stored at neighboring range vertices. Note that for a translating sensor
(like our Cyberware scanner), the sensor point is different for each column
of range points.

generating evenly spaced grid lines by walking across the edges of a
mesh. Gaps in the mesh prevent the algorithm from creating a fair pa-
rameterization. As another example, rapid prototyping technologies
such as stereolithography typically require a “watertight” model in or-
der to construct a solid replica [7].

One option for filling holes is to operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnectedcomponents. Instead, we offer a hole filling ap-
proach that operates on our volume, which contains more information
than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
ume as being in one of three states: unseen, empty, or near the surface.
Holes in the surface are indicated by frontiers between unseen regions
and empty regions (see Figure 6). Surfaces placed at these frontiers
offer a plausible way to plug these holes (dotted in Figure 6). Ob-
taining this classification and generating these hole fillers leads to a
straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previous
section. As before, these voxels take on continuous signed dis-
tance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxels as “empty”. We refer to this step
as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regions that remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fields stored on the voxel lattice. We represent the
unseen state with the function valuesD(x) = Dmax ,W (x) = 0 and
the empty state with the function values D(x) = Dmin, W (x) = 0,
as shown in Figure 6b. The key advantage of this representation is
that we can use the same isosurface extraction algorithm we used in
the previous section without the restriction on interpolating voxels of
zero weight. This extraction finds both the signed distance and hole
fill isosurfaces and connects them naturally where they meet, i.e., at
the corners in Figure 6a where the dotted red line meets the dashed
green line. Note that the triangles that arise from interpolations across
voxels of zero weight are distinct from the others: they are hole fillers.
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Figure 6. Volumetric grid with space carving and hole filling. (a) The re-
gions in front of the surface are seen as empty, regions in the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segments are hole fillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

We take advantage of this distinction when smoothing surfaces as de-
scribed below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derive from observed data. In particular,
they correspond to a boundary that confines where the surface could
plausibly exist. In practice, we find that many of these hole filler sur-
faces are generated in crevices that are hard for the sensor to reach.

Because the transition between unseen and empty is discontinuous
and hole fill triangles are generated as an isosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Since we know which triangles correspond to hole fillers,
we need only concentrate the surface filtering on the these portions of
the mesh. This localized filtering preserves the detail in the observed
surface reconstruction. To achieve a smooth blend between filtered
hole fill vertices and the neighboring “real” surface, we allow the fil-
ter weights to extend beyond and taper off into the vicinity of the hole
fill boundaries.

We have just seen how “space carving” is a useful operation: it tells
us much about the structure of free space, allowing us to fill holes in
an intelligent way. However, our algorithm only carves back from ob-
served surfaces. There are numerous situations where more carving
would be useful. For example, the interior walls of a hollow cylinder
may elude digitization, but by seeing through the hollow portion of
the cylinder to a surface placed behind it, we can better approximate
its geometry. We can extend the carving paradigm to cover these situ-
ations by placing such a backdrop behind the surfaces being scanned.
By placing the backdrop outside of the voxel grid, we utilize it purely
for carving space without introducing its geometry into the model.

5 Implementation
5.1 Hardware
The examples in this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser

light while the reflections are triangulated into depth profiles through
a CCD camera positioned off axis. To improve the quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysis implemented in hard-
ware in our Cyberware scanner, the uncertainty in triangulation for
our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software
The creation of detailed, complex models requires a large amount of
input data to be merged into high resolution voxel grids. The exam-
ples in the next section include models generated from as many as 70
scans containing up to 12 million input vertices with volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space opti-
mizations are critical for merging this data and managing these grids.

5.2.1 Run-length encoding
The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh as a list of vertices and
triangle indices.

5.2.2 Fast volume traversal
Updating the volume from a range image may be likened to inverse
volume rendering: instead of reading from a volume and writing to an
image, we read from a range image and write to a volume. As a re-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of a range image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors” to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through
the voxel scanlines in order while stepping through the corresponding
scanlines in the resampled range image. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resample the range data to yield a distance from the range sur-
face. Using the combination rules given by equations 3 and 4, we up-
date the run-length encoded structure. To preserve the linear mem-
ory structure of the RLE volume (and thus avoid using linked lists of
runs scattered through the memory space), we read the voxel scanlines
from the current volume and write the updated scanlines to a second
RLE volume; i.e., we double-buffer the voxel grid. Note that depend-
ing on the scanner geometry, the mapping from voxels to range image
pixels may not be linear, in which case care must be taken to resample
appropriately [5].

For the case of merging range data only in the vicinity of the sur-
face, we try to avoid processing voxels distant from the surface. To
that end, we construct a binary tree of minimum and maximum depths
for every adjacent pair of resampled range image scanlines. Before
processing each voxel scanline, we query the binary tree to decide
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Figure 7. Range image resampling and scanline order voxel updates. (a) Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the range image, we can obtain the desired range scanline orientation. (c) Casting rays from the p ixels on
the range image means cutting across scanlines of the voxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels, mapping
them to the correct positions on the resampled range image.

which voxels, if any, are near the range surface. In this way, only rel-
evant pieces of the scanline are processed. In a similar fashion, the
space carving steps can be designed to avoid processing voxels that
are not seen to be empty for a given range image. The resulting speed-
ups from the binary tree are typically a factor of 15 without carving,
and a factor of 5 with carving. We did not implement a brute-force
volume update method, however we would expect the overall algo-
rithm described here would be much faster by comparison.

5.2.3 Fast surface extraction
To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with a lookup table that resolves ambiguous cases [22]. To
reduce computational costs, we only process voxels that have varying
data or are at the boundary between empty and unseen.

6 Results
We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gaps in the reconstruction,
and its attainable level of detail. To explore robustness, we scanned a
thin drill bit using the traditional method of optical triangulation. Due
to the false edge extensions inherent in data from triangulation scan-
ners [6], this particular object poses a formidable challenge, yet the
volumetric method behaves robustly where the zippering method [30]
fails catastrophically. The dragon sequence in Figure 11 demonstrates
the effectiveness of carving space for hole filling. The use of a back-
drop here is particularly effective in filling the gaps in the model. Note
that we do not use the backdrop at all times, in part because the range
images are much denser and more expensive to process, and also be-
cause the backdrop tends to obstruct the path of the object when auto-
matically repositioning it with our motion control platform. Finally,
the “Happy Buddha” sequence in Figure 12 shows that our method
can be used to generate very detailed, hole-free models suitable for
rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddha models
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the execution times are still in the range of 3-5 hours, less than the
time spent acquiring and registering the range images. For both mod-
els, the RMS distance between points in the original range images and
points on the reconstructed surfaces is approximately 0.1 mm. This
figure is roughly the same as the accuracy of the scanning technology,
indicating a nearly optimal surface reconstruction.

7 Discussion and future work
We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The

algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustness in the presence of sensor errors, and
the ability to fill gaps in the reconstruction by carving space. Our use
of a run-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled range image scanlines make
the algorithm efficient. This in turn allows us to acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scans into a high resolution voxel grid to
generate million polygon models in a few hours. These models are
free of holes, making them suitable for surface fitting, rapid prototyp-
ing, and rendering.

There are a number of limitations that prevent us from generating
models from an arbitrary object. Some of these limitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp corners if no scan spans both surfaces meeting
at the corner. This is less of a problem when applying our hole-filling
algorithm, but we are also exploring methods that will work without
hole filling. Thin surfaces are also problematic. As described in sec-
tion 3, the influences of observed surfaces extend behind their esti-
mated positions for each range image and can interfere with distance
functions originating from scans of the opposite side of a thin surface.
In this respect, the apexes of sharp corners also behave like thin sur-
faces. While we have limited this influence as much as possible, it
still places a lower limit on the thickness of surface that we can reli-
ably reconstruct without causing artifacts such as thickening of sur-
faces or rounding of sharp corners. We are currently working to lift
this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technologies themselves.
Optical methods such as the one we use in this paper can only pro-
vide data for external surfaces; internal cavities are not seen. Further,
very complicated objects may require an enormous amount of scan-
ning to cover the surface. Optical triangulation scanning has the ad-
ditional problem that both the laser and the sensor must observe each
point on the surface, further restricting the class of objects that can be
scanned completely. The reflectance properties of objects are also a
factor. Optical methods generally operate by casting light onto an ob-
ject, but shiny surfaces can deflect this illumination, dark objects can
absorb it, and bright surfaces can lead to interreflections. To minimize
these effects, we often paint our objects with a flat, gray paint.

Straightforward extensions to our algorithm include improving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,
more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hope to apply our methods to other scanning technologies and to large
scale objects such as terrain and architectural scenes.
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A Isosurface as least squares minimizer

It is possible to show that the isosurface of the weighted signed dis-
tance function is equivalent to a least squares minimization of squared
distances between points on the range surfaces and points on the de-
sired reconstruction. The key assumptions are that the range sensor is
orthographic and that the range errors are independently distributed
along sensor lines of sight. A full proof is beyond the scope of this
paper, but we provide a sketch here. See [5] for details.

Consider a region, R, on the desired surface, f , which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
the reconstructed surface. These distances are taken along the lines of
sight of the sensor, commensurate with the predominant directions of
uncertainty (see Figure 10). The total error is the sum of the integrals
for the n range images:

z = f(x; y)

d1

d2

w2

w1

f2

f1

(x; y; z)

v2

v1

x

y

z

Figure 10. Two range surfaces, f1 and f2, are tessellated range images
acquired from directions v1 and v2. The possible range surface, z =
f(x; y), is evaluated in terms of the weighted squared distances to points
on the range surfaces taken along the lines of sight to the sensor. A point,
(x; y; z), is shown here being evaluated to find its corresponding signed
distances, d1 and d2 , and weights, w1 and w2 .

E(f) =

nX
i=1

ZZ
Ai

wi(s; t; f)di(s; t; f)
2
dsdt (6)

where each (s; t) corresponds to a particular sensor line of sight for
each range image, Ai is the domain of integration for the i’th range
image, and wi(s; t; f) and di(s; t; f) are the weights and signed dis-
tances taken along the i’th range image’s lines of sight.

Now, considera canonicaldomain,A, on a parameter plane, (x; y),
over which R is a function z = f(x; y). The total error can be re-
written as an integration over the canonical domain:

E(z) =

ZZ
A

nX
i=1

�
wi(x; y; z)di(x; y; z)

2
� �
vi � (

@z

@x
;
@z

@y
;�1)

�
dxdy

(7)
where vi is the sensing direction of the i’th range image, and the
weights and distances are evaluated at each point, (x; y; z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areas in A to differential areas in Ai. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the z
that minimizes this integral. Solving this equation we arrive at the fol-
lowing relation:

nX
i=1

@vi
[wi(x; y; z)di(x;y; z)

2] = 0 (8)

where @vi
is the directional derivative along vi. Since the weight as-

sociated with a line of sight does not vary along that line of sight, and
the signed distance has a derivative of unity along the line of sight, we
can simplify this equation to:

nX
i=1

wi(x; y; z)di(x;y; z) = 0 (9)

This weighted sum of signed distances is the same as what we com-
pute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is always positive, the isosurface we
extract in section 3 is exactly the least squares minimizing surface de-
scribed here.
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(a) (b)

(c) (d)

(f) (g) (h)

(i) (j) (k)

(e)

Figure 11. Reconstruction of a dragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (e) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to hole fill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green line in (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holes in the belly. The slice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leads to a hole in the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data as in (a). While some holes are
filled in a reasonable manner, some large regions of space are left untouched and create extraneous tessellations. The slice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regions will be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “backdrop” surfaces to effect more carving. Notice how the extraneous hole fill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the hole fill regions of the belly in (g) corresponds to aliasing artifacts from tessellating
over the discontinuous transition between unseen and empty regions. (d)(h) Reconstruction as in (c)(g) with filtering of the hole fill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regions while preserving the detail in the rest of the model. Careful examination of (h) reveals
a faint ridge in the vicinity of the smoothed hole fill. This ridge is actual geometry present in all of the renderings, (e)-(h). The final model contains 1.8 million
polygons and is watertight.
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(a) (b) (c) (d) (e)

Figure 12. Reconstruction and 3D hardcopy of the “Happy Buddha”. The original is a plastic and rosewood statuette that stands 20 cm tall. Note that the camera parameters for each of these images is
different, creating a slightly different perspective in each case. (a) Photograph of the original after spray painting it matte gray to simplify scanning. (b) Gouraud-shaded rendering of one range image of the
statuette. Scans were acquired using a Cyberware scanner, modified to permit spacetime triangulation [6]. This figure illustrates the limited and fragmentary nature of the information available from a single
range image. (c) Gouraud-shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling. Notice that the reconstructed mesh has at least as much detail as the single range
image, but is less noisy; this is most apparent around the belly. The hole in the base of the model corresponds to regions that were not observed directly by the range sensor. (d) RenderMan rendering of an
800,000 polygon decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop behind the model and taking 10 additional scans, we were able to see through the space
between the base and the Buddha’s garments, allowing us to carve space and fill the holes in the base. (e) Photograph of a hardcopy of the 3D model, manufactured by 3D Systems, Inc., using stereolithography.
The computer model was sliced into 500 layers, 150 microns apart, and the hardcopy was built up layer by layer by selectively hardening a liquid resin. The process took about 10 hours. Afterwards, the
model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered manufacturing.
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The Digital Michelangelo Project

Marc Levoy

Computer Science Department
Stanford University

 2000 Marc Levoy

Executive overview

Create a 3D computer archive of the principal 
statues and architecture of Michelangelo

Scholarly motivations
• pushes technology

• scientific tool

• cultural experiment

• lasting archive

Commercial motivations
• virtual museums

• art reproduction

• 3D stock photography

• 2nd generation multimedia
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Outline of talk

• hardware and software

• scanning the David

• acquiring a big light field

• implications of 3D scanning

• lessons learned from the project

• the problem of the Forma Urbis Romae

 2000 Marc Levoy

Scanners used in the
Digital Michelangelo Project

1.  Cyberware
- main 3D scanner for statues
- planar light field scanner

2.  Faro + 3D Scanners
- for tight spots
- handheld light field scanner?

3.  Cyra
- for architecture
- low-res models for view planning?

• All scanners acquire range and color



Time = 3

Page 3

 2000 Marc Levoy

Laser triangulation scanner
customized for large statues

4 motorized axes

laser, range camera,
white light, and color camera

truss extensions
for tall statues

 2000 Marc Levoy

Scanning St. Matthew

working in
the museum

scanning
geometry

scanning
color
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1 mmSingle scan of St. Matthew

 2000 Marc Levoy

Our scan of St. Matthew

• 104 scans

• 800 million polygons

• 4,000 color images

• 15 gigabytes

• 1 week of scanning
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Post-processing pipeline

• range data
– align scans from different gantry positions

– combine using a volumetric algorithm

– fill holes using space carving

• color data
– compensate for ambient lighting

– discard shadows or reflections

– factor out surface orientation

Artificial surface reflectance
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Estimated diffuse reflectance

 2000 Marc Levoy

Scanning the David

maximum height of gantry:       7.5 meters

weight including subbase:   800 kilograms
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Statistics about the scan

• 480 individually aimed scans

• 2 billion polygons

• 7,000 color images

• 32 gigabytes

• 30 nights of scanning

• 1,080 man-hours

• 22 people

 2000 Marc Levoy

Head of Michelangelo’s David

photograph computer model



Time = 8

Page 8

 2000 Marc Levoy

David’s left eye

• 0.25mm model
– rendering of full statue would be 20,000 pixels high

• space carving used to fill holes

holes from Michelangelo’s drill

artifacts from space carving

noise from laser scatter

Single scan of David’s cornea
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Mesh constructed from several scans

 2000 Marc Levoy

• 4mm model
• 15 million polygons
• Cyra time-of-flight scanner

Model of Galleria dell’Accademia
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Computer representations 
of architectural objects

• unstructured mesh

• line drawings 

• structured 3D model

 2000 Marc Levoy

Light field rendering

• a form of image-based rendering (IBR)

• make new views by rebinning old views

• Advantages
– doesn’t need a 3D model

– less computation than rendering a model

– rendering cost independent of scene complexity

• Disadvantages
– fixed lighting

– static scene geometry

– must stay outside convex hull of object
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A light field is an array of images

 2000 Marc Levoy

Our planned light field
of the Medici Chapel
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What got in the way
of this plan

 2000 Marc Levoy

Acquiring a light field of
Michelangelo’s statue of Night

the light field consists of 7 slabs,
each 70cm x 70cm
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each slab contains 56 x 56
images spaced 12.5mm apart

the camera is always aimed
at the center of the statue

Sample image from center slab
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Statistics about the light field

• 1300 x 1000 pixels per image

• 56 x 56 x 7  =  21,952 images

• 16 gigabytes (using 6:1 JPEG)

• 35 hours of shooting  (over 4 nights)

• also acquired a 0.25mm 3D model of statue

 2000 Marc Levoy

Implications of 3D scanning 
on the viewing of art

• type of reproduction
– scripted computer graphics

– interactive computer graphics

– physical copy

• pros and cons
+ flexible viewing

+ increased accessibility

– increased ubiquity

– separation from context
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Flexible viewpoint

classic 3/4 view left profile

 2000 Marc Levoy

Flexible viewpoint

face-on view
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Flexible lighting

lit from above lit from below

 2000 Marc Levoy

Flexible shading

natural coloring accessibility shading
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natural coloring

accessibility shading
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Implications of 3D scanning 
on the viewing of art

• type of reproduction
– scripted computer graphics

– interactive computer graphics

– physical copy

• pros and cons
+ flexible viewing

+ increased accessibility

– increased ubiquity

– separation from context

⇒

 2000 Marc Levoy

Implications of 3D scanning
for art historians

• restoration record

• permanent archive

• diagnostic maps

• geometric calculations

• projection of images onto statues
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Diagnostic imaging of David

under white light under ultraviolet light

 2000 Marc Levoy

Implications of 3D scanning
for art historians

• restoration record

• permanent archive

• diagnostic maps

• geometric calculations

• projection of images onto statues

⇒
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Implications of 3D scanning
for educators and museums

• virtual exhibitions

• augmented exhibitions

• enhanced documentaries

• interactive multimedia

• physical replicas

 2000 Marc Levoy

Letting the tourists play
with our model of Dawn

7KH\�FDPH���
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Letting the tourists play
with our model of Dawn

7KH\�VDZ���

 2000 Marc Levoy

Letting the tourists play
with our model of Dawn

7KH\�SOD\HG���
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What really happened?

• Kids immediately crowd around.
Some adults step right up; others need invitations. 

• Kids but don't take turns very well.
Some adults don't either. 

• A woman will try it only if a man is not nearby.
Same for girls and boys. 

• Adults usually rotate the statue slowly.
Kids fly around wildly, but are surprisingly good at it. 

 2000 Marc Levoy

What really happened?

• It's amazing how much trouble people can get into.
Zooming too close is the worst offender. 

• People enjoy changing the lighting
as much as they do rotating the statue. 

• People are fascinated by the raw 3D points,
which they see when the model is in motion. 

• People spend a lot of time looking back and forth
between the screen and the real statue. 
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Implications of 3D scanning
for educators and museums

• virtual exhibitions

• augmented exhibitions

• enhanced documentaries

• interactive multimedia

• physical replicas

⇒

Michelangelo’s Pieta handmade replica
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Logistical challenges

• size of the datasets

• safety for the statues

• intellectual property rights

 2000 Marc Levoy

Lessons learned

• hardware and software
– variable standoff distance

– tracking of gantry, not manual alignment of scans

– autocalibration, not stiff gantry

– automatic view planning

• logistics
– scan color quickly - things change

– need a large team - scanning is tedious work

– post-processing takes time and people

– 50% of time on first 90%, 50% on next 9%, ignore last 1%
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Il Plastico:
a model of ancient Rome

• made in the 1930’s

• measures 60 feet on a side

• at the Museum of Roman Civilization

 2000 Marc Levoy

the Roman census bureau
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The Forma Urbis Romae:
a map of ancient Rome

• carved circa 200 A.D.

• 60 wide x 45 feet high

• marble, 4 inches thick

• showed the entire city at 1:240

• single most important document 
about ancient Roman topography

its back wall still exists, and on it was hung...

 2000 Marc Levoy

Fragment #10g
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Fragment #10g

room with door

interior courtyard with
columned portico

staircase

18 cm on map
43 meters on the ground

 2000 Marc Levoy

Solving the jigsaw puzzle

• 1,163 fragments
– 200 identified

– 500 unidentified

– 400 unincised

• 15% of map remains
– but strongly clustered

• available clues
– fragment shape  (2D or 3D)

– incised patterns

– marble veining

– matches to ruins
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Scanning the fragments

XQFUDWLQJ���

 2000 Marc Levoy

Scanning the fragments

SRVLWLRQLQJ���
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Scanning the fragments

VFDQQLQJ���
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Scanning the fragments

DOLJQLQJ���



Time = 30

Page 30

 2000 Marc Levoy

Fragment #642

3D model color photograph
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