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Course Abstract

3D photography is the process of using cameras and light to capture the shape and appearance of
real objects. This process provides a simple way of acquiring graphical models of unparalleled
detail and realism by scanning them in from the real world. This course provides an introduction
to the emerging area of 3D photography, focusing on the current state of the art and the principles
underlying several leading approaches.

After introducing fundamental concepts, the course surveys a variety of techniques and provides
an in-depth analysis of a few successful approaches at the forefront of 3D photography, presented
by leading researchers in the field. The focus is on passive and active optical methods, including
stereo vision, photogrammetry, structured light, imaging radar, interferometry, and optical
triangulation. The course concludes with a field study: capturing 3D photographs of
Michelangelo’s statues.

Scope

The course will cover a variety of methods for recovering shape and appearance from images.
The course begins with novel 2D sensing technologies such as catadioptric cameras and high
dynamic range sensors. A number of standard and emerging passive vision methods will be
presented, including stereo, structure from motion, shape from focus/defocus, shape from
shading, interactive photogrammetry, and voxel coloring. Active vision methods will include
imaging radar, optical triangulation, moire, active stereo, active depth from defocus, and desktop
shadow striping. An overview of reconstructing shape and appearance from range images will be
followed by the first presentation of the Digital Michelangelo Project to the SIGGRAPH
community.

Prerequisites

Participants will benefit from an understanding of basic techniques for representing and rendering
surfaces and volumes. In particular, the course will assume familiarity with triangular meshes,
voxels, and implicit functions (isosurfaces of volumes). Rendering concepts will include light
interaction with surfaces (e.g., diffuse and specular reflection) and the mathematics of perspective
projection. Understanding of basic image-processing will also be important. Experience with
still photography will be helpful.

Course Notes Description

Course notes consist of copies of the speakers’ slides, images and VRML files of some of the
demonstrations, references to related work, and copies of related papers. Links to online 3D
Photography resources, additional slides, and other materials may be found on the course web
page at: http://www.cs.cmu.edu/~seitz/3DPhoto.html
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Course Syllabus

(Note: these times are tentative and subject to change on the day of the course.)

A. 8:30 - 8:50, 20 min
Introduction (Seitz)
1. Overview of area and the course
2. Acquiring 3D models from images
3. Applications to computer graphics

B. 8:50-9:35, 45 min
Sensing for vision and graphics (Nayar)

1. The dimensions of visual sensing
2. Catadioptric vision
3. Panoramic and omnidirectional cameras
4. Spherical mosiacs
6. Radiometric self calibration
7. High dynamic range imaging

C. 9:35-10:15, 40 min
Overview of passive vision techniques (Seitz)
1. Cues for 3D inference (parallax, shading, focus, texture)
2. Camera Calibration
3. Single view techniques
4. Multiple view techniques
- Stereo
- Structure from motion
- Photometric stereo
5. Strengths and Limitations

<> 10:15 - 10:30 Break

D. 10:30 - 11:20, 50 min
Facade: modeling architectural scenes (Debevec)

1. Constrained structure recovery
- Architectural primitives
2. Photogrammetry
- Recovering camera parameters
- Importance of user-interaction
3. Model-based stereo
4. Connections to image-based rendering
- Impact of geometric accuracy on rendering quality
- Local vs. global 3D models



E. 11:20 - 12:00, 40 min
Voxels from images (Seitz)
1. Voxel-based scene representation
2. Volume intersection
- Shape from silhouettes
3. Voxel coloring
- Modeling radiance
- Plane-sweep visibility
4. Space carving
- General visibility modeling
- Ambiguities in scene reconstruction
5. Related Techniques

<> 12:00 - 1:30 Lunch

F. 1:30-2:10, 40 min
Overview of active vision techniques (Curless)

1. Imaging radar
- Time of flight
- Amplititude modulation

2. Optical triangulation
- Scanning with points and stripes
- Spacetime analysis

3. Interferometry
- Moire

4. Structured light applied to passive vision
- Stereo
- Depth from defocus

5. Reflectance capture
- From shape-directed lighting
- Using additional lighting

G. 2:10 - 2:50, 40 min
Desktop 3D Photography (Bouguet)
1. Traditional scanning is expensive, but...
desklamp + pencil = structured light
2. Geometry of shadow scanning
- Indoor: on the desktop
- Outdoor: the sun as structured light
3. Image processing: Spacetime analysis for better accuracies
4. Calibration issues
- Camera calibration
- Light source calibration
5. Experimental results (indoor and outdoor)
6. Error analysis and Real-time implementation



H. 2:50 - 3:35, 45 min
Shape and appearance from images and range data (Curless)
1. Registration
2. Reconstruction from point clouds
3. Reconstruction from range images
- Zippering
- Volumetric merging
4. Modeling appearance

<> 3:35 - 3:50 Break

I. 3:50-5:00, 70 min
Application: The Digital Michelangelo Project (Levoy)
Scholarly and commercial motivations
Hardware and software
Scanning the David
Acquiring a big light field
Implications of 3D scanning
Lessons learned from the project
The problem of the Forma Urbis Romae

NoOok~wN =

<> Adjourn
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Introduction

3D photography is an emerging technology for capturing richly detailed models of objects in the real world. Whereas
traditional optical cameras capture scene appearance in the form of radiant light energy, 3D photographs measure surface
characteristics like 3D geometry and reflectance—exactly what is needed to construct graphical models. Consequently this
technology provides a means for acquiring graphical objects and scenes of unprecedented detail and realism by scanning
them in from the real world.

Methods to digitize and reconstruct the shapes of complex three dimensional objects have evolved rapidly in recent years.
The speed and accuracy of digitizing technologies owe much to advances in the areas of physics and electrical engineering,
including the development of lasers, CCD’s, and high speed sampling and timing circuitry. Such technologies allow us to
take detailed shape measurements with precision better than 1 part per 1000 at rates exceeding 10,000 samples per second.
To capture the complete shape of an object, many thousands, sometimes millions of samples must be acquired. The resulting
mass of data requires algorithms that can efficiently and reliably generate computer models from these samples. The future
of 3D photography will see systems that capture precise geometry and reflectance information at even larger spatial scales,
enabling the acquisition of landscapes and complex urban scenes, and fast scanners that enable 3D video at real-time rates.

The applications of 3D photography are wide-ranging and include manufacturing, virtual simulation, human-computer
interaction, scientific exploration, medicine, and consumer marketing.

Dissemination of museum artifacts

Museum artifacts represent one-of-a-kind objects that attract the interest of scientists and lay people world-wide. Tradition-
ally, to visualize these objects, it has been necessary to visit potentially distant museums or obtain non-interactive images
or video sequences. By digitizing these parts, museum curators can make them available for interactive visualization. For
scientists, computer models afford the opportunity to study and measure artifacts remotely using powerful computer tools.
A case in point is the Digital Michelangelo Project headed by Marc Levoy at Stanford University. The goal of this multi-
year project is to create a high-quality 3D computer archive of the sculptures and architecture of Michelangelo. This course
features the first presentation of the Digital Michelangelo Project to the SIGGRAPH community.

Special effects, games, and virtual worlds

Synthetic imagery is playing an increasingly prominent role in creating special effects for cinema. In addition, video games
and gaming hardware are moving steadily toward interactive 3D graphics. Virtual reality as a means of simulating worlds
of experience is also growing in popularity. All of these applications require 3D models that may be taken from real life or
from sculptures created by artists. Digitizing the shapes of physical models will be essential to populating these synthetic
environments.

Reverse engineering

Many manufacturable parts are currently designed with Computer Aided Design (CAD) software. However, in some in-
stances, a mechanical part exists and belongs to a working system but has no computer model needed to regenerate the part.
This is frequently the case for machines currently in service that were designed before the advent of computers and CAD
systems, as well as for parts that were hand-tuned to fit into existing machinery. If such a part breaks, and neither spare
parts nor casting molds exist, then it may be possible to remove a part from a working system and digitize it precisely for
re-manufacture.

Collaborative design

While CAD tools can be helpful in designing parts, in some cases the most intuitive design method is physical interaction
with the model. This is especially true when the model must have esthetic appeal, such as the exteriors of consumer products
ranging from perfume bottles to automobiles. Frequently, companies employ sculptors to design these models in a medium
such as clay. Once the sculpture is ready, it may be digitized and reconstructed on a computer. The computer model is



then suitable for dissemination to local engineers or remote clients for careful review, or it may serve as a starting point for
constructing a CAD model suitable for manufacture.

Medicine

Applications of 3D Photography in medicine are wide ranging as well. Prosthetics can be custom designed when the
dimensions of the patient are known to high precision. Plastic surgeons can use the shape of an individual’s face to model
tissue scarring processes and visualize the outcomes of surgery. When performing radiation treatment, a model of the
patient’s shape can help guide the doctor in directing the radiation accurately.

Web commerce

As the World Wide Web provides a backbone for interaction over the Internet, commercial vendors are taking advantage
of the ability to market products through this medium. By making 3D models of their products available over the Web,
vendors can allow the customer to explore their products interactively. Standards for disseminating 3D models over the web
are already underway (e.g., the Virtual Reality Modeling Language (VRML)).

Course Objectives

In this course we will focus on the technology underlying the field of 3D photography, focusing on the current state-of-
the-art and the principles underlying several leading approaches. Our intent is to cover the fundamentals but also to give
an understanding of current research directions and exciting applications. With these objectives in mind we have designed
a course that brings together several leading researchers and practitioners to present state-of-the-art 3D photography ap-
proaches from the ground up.

The course will cover a variety of methods for recovering shape and reflectance from images. The course begins with
novel 2D sensing technologies such as catadioptric cameras and high dynamic range sensors. Several passive vision methods
will be presented, including stereo, structure from motion, shape from shading, volume intersection, and voxel coloring.
Active vision methods will include imaging radar, optical triangulation, moire, active stereo, active depth from defocus, and
desktop shadow striping. The course concludes with a field study: capturing 3D photographs of Michelangelo’s statues.

We hope the material in this volume will prove useful to you to help gain a deeper understanding of the concepts behind
3D photography, but moreover to help you build your own 3D photography system on your desktop. To this end, we have
provided material that we believe is sufficient to design and build practical 3D photography systems from scratch.

Steve Seitz
Brian Curless
April 2000
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Overview

Pinhole camera
Lenses
* Principles of operation
 Limitations
Charge-coupled devices
* Principles of operation
 Limitations

The pinhole camera

The first camera - “camera obscura” - known to
Aristotle.

‘I/mage plane
%\

pinhole

Pinhole camera

Small aperture = high fidelity
but requires long exposure or bright illumination




Pinhole camera

If aperture is too small, then diffraction causes blur.

0.35 mm

Luz

OPTICA

fotenmar a

0.07 mm

[Figure from Hecht87]

Lenses

Lenses focus a bundle of rays to one point.
=> can have larger aperture.

[Figure from Hecht87]




Lenses

aperture

‘ v
optical axis__ ( :

I

A lens images a bundle of parallel rays to a focal
point at a distance, f, beyond the plane of the lens.

Note: fis a function of the index of refraction of the
lens.

An aperture of diameter, D, restricts the extent of
the bundile of refracted rays.

Lenses

For economical manufacture, lens surfaces are
usually spherical.

A spherical lens is behaves ideally if ¢ is small:

AN

sing =9 -+

=0

The angle restriction means we consider rays near
the optical axis -- “paraxial rays.”




Lenses

For a “thin” lens, we ignore lens thickness, and
the paraxial approximation leads to the familiar
Gaussian lens formula:

[Figure from Hecht87]

Cardinal points of a lens system

Most cameras do not consist of a single thin lens.
Rather, they contain multiple lenses, some thick.

A system of lenses can be treated as a “black box”
characterized by its cardinal points.




Focal and principal points

The focal and principal points and the principal
“planes” describe the paths of rays parallel to the

optical axis.
e 2
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Fl\ :'Hl Hy \
‘;1. ............... S
Nodal points

The nodal points describe the paths of rays that
are not refracted, but are translated down the

optical axis.

N /

i




Cardinal points of a lens system

If:

* the optical system is surrounded by air

* and the principal planes are assumed planar
then

* the nodal and principal points are the same

f
’ o

£

N, Ny
f

- >

d, d;

The system still obeys Gauss’s law, but all
distances are now relative to the principal points.

Depth of field

Lens systems do have some limitations.

First, points that are not in the object plane will
appear out of focus.

The depth of field is a measure of how far from the
object plane points can be before appearing “too
blurry.”




Monochromatic aberrations

Allowing for the next higher terms in the sin®
approximation:

sin(b:(b—%%—...z(b—%

...we arrive at the third order theory. Deviations
from ideal optics are called the primary or Seidel
aberrations:

e Spherical aberration ¢ Petzval curvature
e Coma e Distortion
» Astigmatism

Distortion

Cause:
Oblique rays bent by the edges of the lens
Effect:
Non-radial lines curve out (barrel) or curve in
(pin cushion)
Ways of improving:
Symmetrical design.

[Figure from Hecht87]




Distortion

5 @N
i

~

[Figures from Hecht87]

Chromatic aberration

Cause:
Index of refraction varies with wavelength.
Effect:
Focus shifts with color, colored fringes on
highlights
Ways of improving:
Achromatic designs

[Figure from Hecht87]




Flare

Light rays refract and reflect at the interfaces
between air and the lens.

The “stray” light is not focused at the desired
point in the image, resulting in ghosts or haziness.

Optical coatings

Optical coatings are tuned to cancel out reflections
at certain angles and wavelengths.

Uncoated glass

Double-layer V,
ARC

\

W
N

Multi-layer
ARC

/////f Optical thickness = Nz
=z — %00 500 500 760 300 900
A (nm)
[Figure from Burke96]
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Vignetting

Light rays oblique to the lens will deliver less
power per unit area (irradiance) due to:

* mechanical vignetting
» optical vignetting

Result: darkening at the edges of the image.

Mechanical vignetting

Occlusion by apertures and lens extents results in
mechanical vignetting.

[Figure from Horn87]
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Optical vignetting

At grazing angles, less power per unit area is
delivered to the image plane -- optical vignetting.

The irradiance at the sensor varies with the angle
to the image plane, 9, as:

2
E~L D cos* @
f

Note also: the irradiance is proportional to the
radiance along the path.

The art of optical design...

[Figure from Goldberg92]
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Charge-coupled devices

The most popular image recording technology for
3D photography is the charge-coupled device
(CCD).

* Image is readily digitized
* CCD cells respond linearly to irradiance

> But, camera makers often re-map the values to correct
for TV monitor gamma or to behave like film

* Available at low cost

Photo-conversion

When a MOS capacitor is biased into “deep
depletion,” it can collect charges generated by
photons.

photon photon

(a) (b)

[Figure from Theuwissen87]
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Charge transfer

By manipulating voltages of neighboring cells, we
can move a bucket of charge one gate to the right.

oV 10V OV 0oV oV 10VioVvV 0V

oV 10V1iOVvV OV o0V 5V 10V 0V
(I’; 44 E
© (d
oV oV 10V OV
Q‘ tf_’:*j . .
(e) [Figure from Theuwissen87]

Three-phase clocking system

With three gates, we can move disjoint charge
packets along a linear array of CCD’s.

[Figure from Theuwissen87]
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Linear array sensors

transfer
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[Figure from Theuwissen87]
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Frame transfer (FT) CCD

[Figure from Theuwissen87]

Interline transfer (IT) CCD

[Figure from Theuwissen87]
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Frame interline transfer (FIT) CCD’s

Photodiode array

Vertical CCD registers

Memory array

Output Horizontal output CCD register

[Figure from Theuwissen87]

A closer look...
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Frame transfer Interline transfer

[Figure from Muller86]
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Spectral response

Relative response R/R .,
(=]

visible spectrum

0.01

Il:rl
o
o

T
o
o
=

0.4 05 06 07 038 09
Wavelength (pm)

[Figure from Theuwissen87]

11

Spectral response (A/W)

3-chip color cameras

CCD(R)

[Figure from Theuwissen87]

Signal Processor
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Single chip color filters

R]G[B[G|R
RIG[B[G|R
RIGIBIG R RGBGRGBGR
. . RlclBlaIR
Stripe filters RlGBlaR| @ _  booommer
[Cy|G |Ye[Cy|G
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[YfecyYelCy~-n+1 =[c[a[G[G ]+ — +_ B B
Ye Cy Ye Cy|
. B Mosaic filters
YSJQ/YB‘CY‘@" Jrﬂslrileh R 5 H, ta . BB BB
?8’::95503: ‘GfgiGlg IR_RI |R_R| B BB B
popiss <™ ' :

()

[Figures from Theuwissen87]

Limitations of CCD’s

* Smear vs. aliasing
* Blooming
e Diffusion
* Transfer efficiency
* Noise
* Processing defects

* Dark-current noise
e Output amplifier noise

* Dynamic range

19



Blooming and diffusion

8v OV 8V 8V o0V 8V

p-Si

Blooming Diffusion

[Figures from Theuwissen87]
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Field of View

Single Mirror Systems

image plane

telecentric
lens

paraboloid

scene point
O

(Nayar 97)
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Flexibility: Resolution vs. FOV

180
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Optical Folding
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Urbie : Tactical Mobile Robot

: JPL , IS Robotics , CMU , Columbia , CycloVision
Sponsor : DARPA TMR Project
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Deployable Omnicameras

PASSIVE CYCLOPS ACTIVE CYCLOPS

COLLABORATION: COLUMBIA (OPTICS AND IMAGING) AND CMU (MECHANICS - SCHEMPF GROUP)
ACM SIGGRAPH 2000, Course Notes
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ParaRover
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360 Sheet Camera Rotation
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360 x 360 Spherical Mosaic
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360—Sliee

Left Panorama
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Stereoscopic Panorama
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Problem of Dynamic Range

( Mitsunaga & Nayar 99)

8-bit Images and the Real World

Image M, Image M,
(High exposure) (Low exposure)

ACM SIGGRAPH 2000, Course Notes
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ca
— radiance =————— padiance

—Photo | Tmage Image . Film
Formation = Exposure Film Development

Response Function from Images : Previous Work

Mann and Picard (95):

+ Restrictive Model for f: M=o+ T g

+ Precisely Known Exposures

Debevec and Malik (97):

+ General Model for f : Only Smoothness Constraint

+ Precisely Known Exposures

Goal : Rough Exposure Ratios and Noisy Images

ACM SIGGRAPH 2000, Course Notes
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Response Function : General Characteristics

Some Popular Imaging Systems :

1

KODAK VISION 250D (FILM) ngh Or‘der‘ Po'ynomlal *
FUJICOLOR F64D (FILM)
FUJICHROME VELVIA (FILM)
AGFACHROME RSX200 (FILM)
CCANON OPTURA (VIDEO)
SONY DXC950 (y = 1) (VIDEO)

Scene Radiance Image Brightness

- f is semi-monotonic

+ £ is smooth
ACM SIGGRAPH 2000, Course Notes

Self Calibration Algorithm

(Mitsunaga and Nayar 98)

Radiance Ratio: . = i = R (exposure ratio)

200 "M Pq+l

>

o-1 P N N
Objective Function : e= 22[2 M, R, . Z(:”M,,_W”]

g=1 p=1L n=0 n=0

TN

Iterative Algorithm : ratios R ., coeff ¢

Images: ¢=12,..Q
\_/ Pixels: p=1,2,
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Self Calibration Algorithm : Flow Chart

Initialize {Rqq+1}

EStima
Update { Rgq+ }

Converged?

ACM SIGGRAPH 2000, Course Notes

100 Tests with Noisy Synthetic Images

Actual Exposure Ratios: 0.45 < R < 0.55
Initial Ratio Guess: R = 0.5

Solid : Computed Response Function
Dots : Actual Response Function

ACM SIGGRAPH 2000, Course Notes
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Results : Adobe Room

Captured images

A& L& A ,i.

1

058 '

0.6 %

0.4 -' e
0.2 i i .

0
0 02 04 06 08 1
M

Computed response function Computed radiance image
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Results : Taos Clay Oven

Captured images

Computed response function Computed radiance image

ACM SIGGRAPH 2000, Course Notes
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High Dynamic Range from Single Image

(N & Mitsunaga 00 )
- Spatially Varied Exposure (SVE) Camera

Mask

Incident lowlb :
light ow D-range Image High/ D-range

Sensor processing image

1
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N
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N
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N
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N
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exposures EEEEmEEENE
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Mask Pattern

Characteristics

Conventional Camer SVE Came
Dynamic Range ' DR,,, =20log Iy

min min emin

K-l p
G ay Levels - O =(1+ZRoun(1(((1—l)—(q—l)i)
k=0 ()1_1
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High Dynamic Range Image Reconstruction

Exposure Normalized Image

A\

\

\
\
\

ACM SIGGRAPH 2000, Course Notes

8-Bit Images with Different Exposures

Exposure: 16 T Exposure: 64 T
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Spatially Varying Exposure (SVE) Image

ACM SIGGRAPH 2000, Course Notes

Computed High Dynamic Range Image

ACM SIGGRAPH 2000, Course Notes
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Summary

- Bigger Images and Clearer Images

+ General Approach :

_ new visual
optics | | sensor | | compute

information

ACM SIGGRAPH 2000, Course Notes
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The End
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SIGGRAPH 2000 Course on
3D Photography

Passive 3D Photography

Steve Seitz
Carnegie Mellon University

http://www.cs.cmu.edu/~seitz

Talk Outline

1. Visual Cues
2. Classical Vision Algorithms

3. State of the Art (video)




Visual Cues

Motion

Visual Cues

Shading

Merle Norman Cosmetics, Los Angeles




Visual Cues

Texture

The Visual Cliff, by William Vandivert, 1960

Visual Cues

y, Canon




Visual Cues

Others:
* Highlights
* Shadows
* Silhouettes
* Inter-reflections
Symmetry
Light Polarization

Reconstruction Algorithms

Shape From X
v/« Stereo (shape from parallax)

Structure from motion
Shape from shading
Photometric stereo
Shape from texture
Shape from focus/defocus
Shape from silhouettes, ...




Stereo

The Stereo Problem

* Reconstruct scene geometry from two or more
calibrated images

scene point

focal point

Stereo

The Stereo Problem

* Reconstruct scene geometry from two or more
calibrated images

v

Basic Principle: Triangulation

* Gives reconstruction as intersection of two rays
* Requires point correspondence




Stereo Correspondence

Determine Pixel Correspondence
* Pairs of points that correspond to same scene point

.

epipolar line : epipolar line
epipolar plane

Epipolar Constraint

* Reduces correspondence problem to 1D search along
conjugate epipolar lines

Stereo Matching Algorithms

Match Pixels in Conjugate Epipolar Lines
* Assume color of point does not change
* Pitfalls
> specularities (non-Lambertian surfaces)
> ambiguity (low-contrast regions)
> missing data (occlusions)
> intensity error (quantization, sensor error)
> position error (camera calibration)
* Numerous approaches
> winner-take all
> dynamic programming [Ohta 85]
> smoothness functionals
> more images (trinocular, N-ocular) [Okutomi 93]




Structure from Motion

The SFM Problem

* Reconstruct scene geometry and camera motion from
two or more images

Assume
* Pixel correspondence
> via tracking
* Projection model
> classic methods are orthographic

Orthographic Projection

u=IIX+1t
2x1 2x33x1  2x1
el f k X

image point projection scene image
matrix point offset

Trick
e Choose scene origin to be centroid of 3D points
* Choose image origins to be centroid of 2D points
* Allows us to drop the camera translation:

u=I1X

2x1 2x3 3x1




Shape by Factorization [Tomasi & Kanade, 92]

projection of I features in one image:

lul u, - unJ:H[Xl X,
2Xn 2Xn 3Xn

projection of I features in fimages

=>—

NS

2f %3

W measurement M motion S shape

Shape by Factorization [Tomasi & Kanade, 92]

solve for
2f%3 3xn

Factorization Technique
* Wis at most rank 3 (assuming no noise)
* We can use singular value decomposition to factor W:

W =M"’§"’

2f xn 2f X3 3xn

e S’differs from S by a linear transformation A:

W =M’S’= (MA )(AS)

* Solve for A by enforcing constraints on




Shape from Shading

Shape from Shading [Horn, 1970]

Classical Approach
* Suppose reflected light depends only on o

radiance = k coso




The Reflectance Map

v

The Reflectance Map

Reflectance Map

Reflectance Map: R

N=p ¢ -1]
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Finding a Unique Solution

Three Approaches

* Characteristic Strip Method [Horn, 77]
> select a few points where normal is known
> grow solution by moving direction of VR

» Variational Method [Ikeuchi & Horn, 81]
> start with an initial guess of surface shape
> define energy function
> refine to minimize energy function

* Photometric Stereo [Woodham 80]
> use more images

Photometric Stereo

Two Images Under Different Lighting

Need Three Images for Unique Solution

11



Photometric Stereo: Matrix Formulation

Write Equations in Matrix Form

Advantage:
e Can solve for variable reflectance k

Resources

Computer Vision Home Page
e http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

Computer Vision Textbooks
¢ D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982.
O. Faugeras, Three-Dimensional Computer Vision, MIT Press, 1993.
B. K. P. Horn, Robot Vision, McGraw-Hill, 1986.
R. Jain, R. Kasturi and B. G. Schunck, Machine Vision, McGraw-Hill, 1995.
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M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision,
Brooks/Cole Publishing, 1999.
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1998.
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Abstract

Inferring scene geometry and camera motion from a stream of images is
possible in principle, but is an ill-conditioned problem when the objects are
distant with respect to their size. We have developed a factorization method
that can overcome this difficulty by recovering shape and motion without
computing depth as an intermediate step.

An image stream can be represented by the 2F x P measurement matrix of
the image coordinates of P points tracked through F' frames. We show that
under orthographic projection this matrix is of rank 3.

Using this observation, the factorization method uses the singular value de-
composition technique to factor the measurement matrix into two matrices
which represent object shape and camera motion respectively. The method
can also handle and obtain a full solution from a partially filled-in measure-
ment matrix, which occurs when features appear and disappear in the image
sequence due to occlusions or tracking failures.

The method gives accurate results, and does not introduce smoothing in
either shape or motion. We demonstrate this with a series of experiments on
laboratory and outdoor image streams, with and without occlusions.



Chapter 1

Introduction

The structure from motion problem — recovering scene geometry and camera
motion from a sequence of images — has attracted much of the attention of
the vision community over the last decade. Yet it is common knowledge
that existing solutions work well for perfect images, but are very sensitive
to noise. We present a new method called the factorization method which
can robustly recover shape and motion from a sequence of images without
assuming a model of motion, such as constant translation or rotation.

More specifically, an image sequence can be represented as a 2F x P
measurement matrix W, which is made up of the horizontal and vertical
coordinates of P points tracked through F' frames. If image coordinates are
measured with respect to their centroid, we prove the rank theorem: under
orthography, the measurement matrix is of rank 3. As a consequence of
this theorem, we show that the measurement matrix can be factored into
the product of two matrices R and 5. Here, R is a 2F X 3 matrix that
represents camera rotation, and S is a 3 X P matrix which represents shape
in a coordinate system attached to the object centroid. The two components
of the camera translation along the image plane are computed as averages of
the rows of W. When features appear and disappear in the image sequence
due to occlusions or tracking failures, the resultant measurement matrix W
is only partially filled-in. The factorization method can handle this situation
by growing a partial solution obtained from an initial full submatrix into a
full solution with an iterative procedure.

The rank theorem precisely captures the nature of the redundancy that
exists in an image sequence, and permits a large number of points and frames



to be processed in a conceptually simple and computationally efficient way to
reduce the effects of noise. The resulting algorithm is based on the singular
value decomposition, which is numerically well-behaved and stable. The
robustness of the recovery algorithm in turn enables us to use an image
sequence with a very short interval between frames (an image stream), which
makes feature tracking relatively easy.

We have demonstrated the accuracy and robustness of the factorization
method in a series of experiments on laboratory and outdoor sequences, with
and without occlusions.



Chapter 2

Relation to Previous Work

In Ullman’s original proof of existence of a solution [Ullman, 1979] for the
structure from motion problem under orthography, as well as in the perspec-
tive formulation in [Roach and Aggarwal, 1979], the coordinates of feature
points in the world are expressed in a world-centered system of reference.
Since then, however, this choice has been replaced by most computer vision
researchers with that of a camera-centered representation of shape [Prazdny,
1980], [Bruss and Horn, 1983], [Tsai and Huang, 1984, [Adiv, 1985], [Wax-
man and Wohn, 1985], [Bolles et al., 1987], [Horn et al., 1988], [Heeger and
Jepson, 1989], [Heel, 1989], [Matthies et al., 1989], [Spetsakis and Aloimonos,
1989], [Broida et al., 1990]. With this representation, the position of feature
points is specified by their image coordinates and by their depths, defined as
the distances between the camera center and the feature points, measured
along the optical axis. Unfortunately, although a camera-centered repre-
sentation simplifies the equations for perspective projection, it makes shape
estimation difficult, unstable, and noise sensitive.

There are two fundamental reasons for this. First, when camera motion
is small, effects of camera rotation and translation can be confused with
each other: for example, small rotation about the vertical axis and small
translation along the horizontal axis both generate a very similar change
in an image. Any attempt to recover or differentiate between these two
motions, though doable mathematically, is naturally noise sensitive. Second,
the computation of shape as relative depth, for example, the height of a
building as the difference of depths between the top and the bottom, is
very sensitive to noise, since it is a small difference between large values.



These difficulties are especially magnified when the objects are distant from
the camera relative to their sizes, which is usually the case for interesting
applications such as site modeling.

The factorization method we present in this paper takes advantage of
the fact that both difficulties disappear when the problem is reformulated in
world-centered coordinates, unlike the conventional camera-centered formu-
lation. This new (old — in a sense) formulation links object-centered shape
to image motion directly, without using retinotopic depth as an intermedi-
ate quantity, and leads to a simple and well-behaved solution. Furthermore,
the mutual independence of shape and motion in world-centered coordinates
makes it possible to cast the structure-from-motion problem as a factorization
problem, in which a matrix representing image measurements is decomposed
directly into camera motion and object shape.

We first introduced this factorization method in [Tomasi and Kanade,
1990a, Tomasi and Kanade, 1990b], where we treated the case of single-
scanline images in a flat, two-dimensional world. In [Tomasi and Kanade,
1991] we presented the theory for the case of arbitrary camera motion in
three dimensions and full two-dimensional images. This paper extends the
factorization method for dealing with feature occlusions as well as presenting
more experimental results with real-world images. Debrunner and Ahuja
have pursued an approach related to ours, but using a different formalism
[Debrunner and Ahuja, 1990, Debrunner and Ahuja, 1991]. Assuming that
motion is constant over a period, they provide both closed-form expressions
for shape and motion and an incremental solution (one image at a time) for
multiple motions by taking advantage of the redundancy of measurements.
Boult and Brown have investigated the factorization method for multiple
motions [Boult and Brown, 1991], in which they count and segment separate
motions in the field of view of the camera.



Chapter 3

The Factorization Method

Given an image stream, suppose that we have tracked P feature points over
F frames. We then obtain trajectories of image coordinates {(uysp,vsp) | f =
1,...,F,p=1,...,P}. We write the horizontal feature coordinates uy, into
an F x P matrix U: we use one row per frame, and one column per feature
point. Similarly, an F' x P matrix V is built from the vertical coordinates
vfp. The combined matrix of size 2F x P
Nt
\%

is called the measurement matriz. The rows of the matrices U and V are
then registered by subtracting from each entry the mean of the entries in the

same Tow: _
Usp — Ugpp — Gy 3.1
Vip = vgp— by, ( )
where
Ly
ay = 5 Usp
szl
1 P
bf = szfp.
p=1



is called the registered measurement matriz. This is the input to our factor-
ization method.

3.1 The Rank Theorem

We now analyze the relation between camera motion, shape, and the entries
of the registered measurement matrix W. This analysis leads to the key
result that W is highly rank-deficient.

Referring to Figure 3.1, suppose we place the origin of the world reference
system z —y — z at the centroid of the P points s, = (Zp,Yp,2p) ,p =
1,..., P}, in space which correspond to the P feature points tracked in the
image stream. The orientation of the camera reference system corresponding
to frame number f is determined by a pair of unit vectors, i;and j;, pointing
along the scanlines and the columns of the image respectively, and defined
with respect to the world reference system. Under orthography, all projection
rays are then parallel to the cross product of iyand j;:

k; =1; xjs .

From Figure 3.1 we see that the projection (uyp,vyp), @.€., the image feature
position, of point s, = (z,,p, 2,)7 onto frame f is given by the equations
< T
ugp = ip (sp —ty)
. T
vip = Jr (sp —ts),
where t; = (as,bs,¢7)T is the vector from the world origin to the origin of

image frame f. Here note that since the origin of the world coordinates is
placed at the centroid of object points,

1P
— s, =0.

We can now write expressions for the entries %y, and 74, defined in (3.1) of
the registered measurement matrix. For the the registered horizontal image
projection we have

Upp = Upp — Gy



object

centroid

= i;Ts, . (3.2)

We can write a similar equation for v4,. To summarize,

- . T
Ug, = 148
~fp - -fT P (3.3)
Vip = Jf Sp -
Because of the two sets of F' x P equations (3.3), the registered measurement
matrix W can be expressed in a matrix form:

W =RS (3.4)

where

represents the camera rotation, and

S:[sl Sp] (3.6)



is the shape matrix. In fact, the rows of R represent the orientations of the
horizontal and vertical camera reference axes throughout the stream, while
the columns of S are the coordinates of the P feature points with respect to
their centroid.

Since Ris 2F x 3 and S is 3 X P, the equation (3.4) implies the following.

Rank Theorem: Without noise, the registered measurement ma-
triz W is at most of rank three.

The rank theorem expresses the fact that the 2F x P image measurements
are highly redundant. Indeed, they could all be described concisely by giving
F frame reference systems and P point coordinate vectors, if only these were
known.

From the first and the last line of equation (3.2), the original unregistered
matrix W can be written as

W = RS + te}, (3.7)
where t = (ay,...,ar,b1,...,br)T is a 2F-dimensional vector that collects
the projections of camera translation along the image plane (see equation
(3.2)), and e = (1,...,1) is a vector of P ones. In scalar form,

Usp = i?%"’“f
Vip — j?sp + by . (3'8)

Comparing with equations (3.1), we see that the two components of camera
translation along the image plane are simply the averages of the rows of W.

In the equations above, iy and j,; are mutually orthogonal unit vectors,
so they must satisfy the constraints

Also, the rotation matrix R is unique if the system of reference for the solution
is aligned, say, with that of the first camera position, so that:

iy = (1,0,007 and j, =(0,1,0)T. (3.10)

The registered measurement matrix W must be at most of rank three
without noise. When noise corrupts the images, however, W will not be
exactly of rank 3. However, the rank theorem can be extended to the case
of noisy measurements in a well-defined manner. The next sectionintroduces
the notion of approximate rank, using the concept of singular value decom-
position [Golub and Reinsch, 1971].



3.2 Approximate Rank

Assuming ' that 2F > P, the matrix W can be decomposed [Golub and
Reinsch, 1971] into a 2F x P matrix Oy, a diagonal P x P matrix ¥, and a
P x P matrix O,

W = 0,%0,, (3.11)
such that OT0;, = 070, = 0,0T = I, where T is the P x P identity
matrix. Y is a diagonal matrix whose diagonal entries are the singular values
o1 > ... > op sorted in non-decreasing order. This is the Singular Value
Decomposition (SVD) of the matrix w.

Suppose that we pay attention only to the first three columns of Oy, the
first 3 X 3 submatrix of ¥ and the first three rows of O,. If we partition the
matrices Oq, ¥, and O, as follows:

0, = |01 0] ]}er

=
3 P-3

5 X0 }3
- 0 |X" | }p-3
~ ~~
3 P-3

O, | }s
0, = lO;’l yp-z

~—
P

(3.12)

we have

01202 — O;EIO; —|— 0112110121 .

Let W~ be the ideal registered measurement matrix, that is, the matrix
we would obtain in the absence of noise. Because of the rank theorem, W’
has at most three non-zero singular values. Since the singular values in X
are sorted in non-increasing order, %’ must contain all the singular values of

}VThis assumption is not crucial: if 2F < P, everything can be repeated for the transpose

of W.



W™ that exceed the noise level. As a consequence, the term O7%"0) must
be due entirely to noise, and the best possible rank-3 approximation to the
ideal registered measurement matrix W is the product:

W = 01Y0,
We can now restate our rank theorem for the case of noisy measurements.

Rank Theorem for Noisy Measurements: All the shape and
rotation information in W is contained in its three greatest sin-
gular values, together with the corresponding left and right eigen-
vectors.

Now if we define

R = Oy
§ = [B77°0;,
we can write ) .
W = RS . (3.13)

The two matrices R and $ are of the same size as the desired rotation and
shape matrices R and S: Ris 2F x 3, and Sis3x P. However, the decom-
position (3.13) is not unique. In fact, if @ is any invertible 3 x 3 matrix, the
matrices ]%Q and Q_lg are also a valid decomposition of W, since
(RR)Q7'S) =R(QQ™)S=RS=W.

Thus, R and S are in general different from R and S. A striking fact,
however, is that except for noise the matrix R is a linear transformation of
the true rotation matrix R, and the matrix §S is a linear transformation of
the true shape matrix 5. Indeed, in the absence of noise, R and R both
span the column space of the registered measurement matrix W=W =W.
Since that column space is three-dimensional because of the rank theorem,
R and R are different bases for the same space, and there must be a linear
transformation between them.

Whether the noise level is low enough that it can be ignored at this
juncture depends also on the camera motion and on shape. Notice, however,
that the singular value decomposition yields sufficient information to make
this decision: the requirement is that the ratio between the third and the
fourth largest singular values of W be sufficiently large.

10



3.3 The Metric Constraints

We have found that the matrix R is a linear transformation of the true
rotation matrix R. Likewise, S is a linear transformation of the true shape
matrix §. More specifically, there exists a 3 x 3 matrix ¢ such that

R = R
? (3.14)
S = QS.
In order to find ) we observe that the rows of the true rotation matrix
R are unit vectors and the first F' are orthogonal to corresponding F' in
the second half of R. These metric constraints yield the over-constrained,
quadratic system
AT T
iy Q@71 = 1
00T, 3.15
jr QQ%3; = 1 (3.15)
R B
iy QQ%j; = 0
in the entries of ). This is a simple data fitting problem which, though
nonlinear, can be solved efficiently and reliably. Its solution is determined
up to a rotation of the whole reference system, since the orientation of the
world reference system was arbitrary. This arbitrariness can be removed by
enforcing the constraints (3.10), that is, selecting the z —y axes of the world
reference system to be parallel with those of the first frame.

3.4 Outline of the Complete Algorithm

Based on the development in the previous chapters, we now have a complete
algorithm for the factorization of the registered measurement matrix W de-
rived from a stream of images into shape S and rotation R as defined in

equations (3.4) - (3.6).
1. Compute the singular-value decomposition W = 0,20,.

2. Define & = 0!(X")*/? and S = (220!, where the primes refer to the
block partitioning defined in (3.12).

3. Compute the matrix @ in equations (3.14) by imposing the metric
constraints (equations (3.15)).

11



4. Compute the rotation matrix R and the shape matrix S as R = ];’,Q
and S = Q7'S.

5. If desired, align the first camera reference system with the world ref-
erence system by forming the products RR, and RIS, where the or-
thonormal matrix Ry = [i; J; ki] rotates the first camera reference
system into the identity matrix.

12



Chapter 4

Experiment

We test the factorization method with two real streams of images: one taken
in a controlled laboratory environment with ground-truth motion data, and
the other in an outdoor environment with a hand-held camcorder.

4.1 "“Hotel” Image Stream in a Laboratory

Some frames in this stream are shown in figure 4.1. The images depict a
small plastic model of a building. The camera is a Sony CCD camera with a
200 mm lens, and is moved by means of a high-precision positioning platform.
Camera pitch, yaw, and roll around the model are all varied as shown by the
dashed curves in figure 4.2. The translation of the camera is such as to keep
the building within the field of view of the camera.

For feature tracking, we extended the Lucas-Kanade method described in
[Lucas and Kanade, 1981] to allow also for the automatic selection of image
features. The Lucas-Kanade method of tracking obtains the displacement
vector of the window around a feature as the solution of a linear 2 X2 equation
system. As good image features we select those points for which the above
equation systems are stable. The details are presented in [Tomasi, 1991,
Tomasi and Kanade, 1992].

The entire set of 430 features thus selected is displayed in figure 4.3, over-
laid on the first frame of the stream. Of these features, 42 were abandoned
during tracking because their appearance changed too much. The trajecto-
ries of the remaining 388 features are used as the measurement matrix for

13



the computation of shape and motion.

The motion recovery is precise. The plots in figure 4.2 compare the rota-
tion components computed by the factorization method (solid curves) with
the values measured mechanically from the mobile platform (dashed curves).
The differences are magnified in figure 4.4. The errors are everywhere less
than 0.4 degrees and on average 0.2 degrees. The computed motion follows
closely also rotations with curved profiles, such as the roll profile between
frames 1 and 20 (second plot in figure 4.2), and faithfully preserves all dis-
continuities in the rotational velocities: the factorization method does not
smooth the results.

Between frames 60 and 80, yaw and pitch are nearly constant, and the
camera merely rotates about its optical axis. That is, the motion is actually
degenerate during this period, but still it has been correctly recovered. This
demonstrates that the factorization method can deal without difficulty with
streams that contain degenerate substreams, because the information in the
stream is used as a whole in the method.

The shape results are evaluated qualitatively in figure 4.5, which shows
the computed shape viewed from above. The view in figure 4.5 is similar
to that in figure 4.6, included for visual comparison. Notice that the walls,
the windows on the roof, and the chimneys are recovered in their correct
positions.

To evaluate the shape performance quantitatively, we measured some
distances on the actual house model with a ruler and compared them with the
distances computed from the point coordinates in the shape results. Figure
4.7 shows the selected features. The diagram in figure 4.8 shows the distances
between pairs of features measured on the actual model and those computed
by the factorization method. The measured distances between the steps along
the right side of the roof (7.2 mm) were obtained by measuring five steps
and dividing the total distance (36 mm) by five. The differences between
computed and measured results are of the order of the resolution of our ruler
measurements (one millimeter).

Part of the errors in the results is due to the use of orthography as the
projection model. However, it tends to be fairly small for many realistic
situations. In fact, it has been shown that errors due to the orthogrphic
distortion are approximately about the same percentage as the ratio of the
object size in depth to the distance of the object from the camera [Tomasi,

1991].
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4.2 Outdoor "House” Image Stream

The factorization method has been tested with an image stream of a real
building, taken with a hand-held camera. Figure 4.9 shows some of the 180
frames of the building stream. The overall motion covers a relatively small
rotation angle, approximately 15 degrees. Outdoor images are harder to
process than those produced in a controlled environment of the laboratory,
because lighting changes less predictably and the motion of the camera is
more difficult to control. As a consequence, features are harder to track:
the images are unpredictably blurred by motion, and corrupted by vibra-
tions of the video recorder’s head, both during recording and digitization.
Furthermore, the camera’s jumps and jerks produce a wide range of image
disparities.

The features found by the selection algorithm in the first frame are shown
in figure 4.10. There are many false features. The reflections in the window
partially visible in the top left of the image move non-rigidly. More false
features can be found in the lower left corner of the picture, where the vertical
bars of the handrail intersect the horizontal edges of the bricks of the wall
behind. We masked away these two parts of the image from the analysis.

In total, 376 features were found by the selection algorithm and tracked.
Figure 4.11 plots the tracks of some (60) of the features for illustration.
Notice the very jagged trajectories due to the vibrating motion of the hand-
held camera.

Figures 4.12 and 4.13 show a front and a top view of the building as re-
constructed by the factorization method. To render these figures for display,
we triangulated the computed 3D points into a set of small surface patches
and mapped the pixel values in the first frame onto the resulting surface. The
structure of the visible part of the building’s three walls has clearly been re-
constructed. In these figures, the left wall appears to bend somewhat on the
right where it intersects the middle wall. This occurred because the feature
selector found features along the shadow of the roof just on the right of the
intersection of the two walls, rather than at the intersection itself. Thus,
the appearance of a bending wall is an artifact of the triangulation done for
rendering.

This experiment with an image stream taken outdoors with the jerky
motion produced by a hand-held camera demonstrates that the factorization
method does not require a smooth motion assumption. The identification of

15



false features, that is, of features that do not move rigidly with respect of
the environment, remains an open problem that must be solved for a fully
autonomous system. An initial effort has been seen in [Boult and Brown,

1991].
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Chapter 5

Occlusions

In reality, as the camera moves, features can appear and disappear from
the image, because of occlusions. Also, a feature tracking method will not
always succeed in tracking features throughout the image stream. These
phenomena are frequent enough to make a shape and motion computation
method unrealistic if it cannot deal with them.

Sequences with appearing and disappearing features result in a measure-
ment matrix W which is only partially filled in. The factorization method
introduced in chapterd cannot be applied directly. However, there is usually
sufficient information in the stream to determine all the camera positions and
all the three-dimensional feature point coordinates. If that is the case, we can
not only solve the shape and motion recovery problem from the incomplete
measurement matrix W, but we can even hallucinate the unknown entries of
W by projecting the computed three-dimensional feature coordinates onto
the computed camera positions.

5.1 Solution for Noise-Free Images

Suppose that a feature point is not visible in a certain frame. If the same
feature is seen often enough in other frames, its position in space should
be recoverable. Moreover, if the frame in question includes enough other
features, the corresponding camera position be recoverable as well. Then
from point and camera positions thus recovered, we should also be able to
reconstruct the missing image measurement. Formally, we have the following
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F+f —]

Figure 5.1: The Reconstruction Condition. If the dotted entries of the mea-
surement matrix are known, the two unknown ones (question marks) can be
reconstructed.

sufficient condition.

Condition for Reconstruction: In the absence of noise, an
unknown image measurement pair (usp,vysp) in frame f can be
reconstructed if point p is visible in at least three more frames
f1, f2, f3, and if there are at least three more points p;, ps, p3 that
are visible in all the four frames: the original f and the additional

flafZaf3'

Referring to Figure 5.1, this means that the dotted entries must be known
to reconstruct the question marks. This is equivalent to Ullman’s result [Ull-
man, 1979] that three views of four points determine structure and motion.
In this section, we prove the reconstruction condition in our formalism and
develop the reconstruction procedure. To this end, we notice that the rows
and columns of the noise-free measurement matrix W can always be per-
muted so that fy =p; =1, fo=ps =2, s =p3 =3, f = p =4. We can
therefore suppose that uyy and vy, are the only two unknown entries in the

18



8 X 4 matrix

U1 U2 U13 Ui14

Uz1 U2 U2z U4

Uz1 Uza2 U3z U34

W = lil _ | Y41 Usz Ugs ?
|4 V11 V12 Vi3 V14

Va1 V22 V23 V24

V31 V32 7Vs3z Vs4

| Va1 V42 Va3 ? |

Then, the factorization method can be applied to the first three rows of U
and V, that is, to the 6 x 4 submatrix

U11

U1
U31

W6><4 -

V11

Va1

V31

to produce the partial translation and rotation

ay
a3
as
t6 X1 —

b
b,
b3

and the full shape matrix

U2 U1z U14
Uzz2 U2z U4
Uz U3z Uz4
V12 Vi3 V14
Va2 Va2z V24
V32 U3z V34 |
submatrices
_ if -
iy
iT
and Reys = %’
J1
i
| 35 |

S:[sl Sy Sz 54]

such that

Wexa = Hex3S + texlef

where el = (1,1,1,1).

(5.1)

(5.2)

(5.3)

To complete the rotation solution, we need to compute the vectors 14

and j,. However, a registration problem must be solved first. In fact, only
three points are visible in the fourth frame, while equation (5.3) yields all
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four points in space. Since the factorization method computes the space
coordinates with respect to the centroid of the points, we have s; + s5 + s3 +
s4 = 0, while the image coordinates in the fourth frame are measured with
respect to the centroid of just three observed points (1, 2, 3). Thus, before
we can compute 15 and j, we must make the two origins coincide by referring
all coordinates to the centroid

1
c= 5(51 + sy + 83)

of the three points that are visible in all four frames. In the fourth frame,
the projection of ¢ has coordinates

a; = 5(”41 + a2 + u43)
1
b, = 5(’041 + vao + va3)

so we can define the new coordinates

1

s,=sp—c¢ for p=1,2,3
in space and

' )
tap = Uap — @4 for p=1,2,3

r /
Vyp = Vap — b}

in the fourth frame. Then, iy and j, are the solutions of the two 3 x 3 systems

] ] ] T ] ] !
[ Uy Ugy Uy ] = 14 [ S1 Sy 83 ]
] ] ] _ T ] ] ]
[ Vg1 Vg2 Vg3 ] = Ja [ S1 Sz S3 ] (54)

derived from equation (3.4). The second equation in (5.2) and the solution
to (5.4) yield the entire rotation matrix R, while shape is given by equation
(5.3).

The components a; and b, of translation in the fourth frame with re-
spect to the centroid of all four points can be computed by postmultiplying
equation (3.7) by the vector 7, = (1,1,1,0)7:

Wiy = RSns + teln, .
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Since efn, = 3, we obtain
1
t = §(W — RS, . (5.5)

In particular, rows 4 and 8 of this equation yield a4 and by. Notice that the
unknown entries u4q and vaq are multiplied by zeros in equation (5.5).

Now that both motion and shape are known, the missing entries w4,
v44 of the measurement matrix W can be found by orthographic projection
(equation (3.8)):

T
Ugqe = 1,84+ a4
T
JaSa+bs.

Va4

The procedure thus completed factors the full 6 x 4 submatrix of W and
then reasons on the three points that are visible in all the frames to compute
motion for the fourth frame. Alternatively, one can first apply factorization
to the 8 x 3 submatrix

U1 U122 U13
Uz1 U2z U2z
Uzl Uzz Uzz
Weys = Ug1 Ugz Ugz (5.6)
V11 V12 Vi3
V21 V22 V23
V31 V32 V33

V41 V42 Va3

to produce the full translation and rotation submatrices

_ - M T
al 1%
G/IZ 12
aj i7
a il
t' = b'4 and R=|.} (5.7)
1 J%
!
i 5
b? J%
| b ] | Ja |
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and the partial shape matrix

S3x3z = [ S| s, s} ] (5.8)
such that

stg = RS:I:’X:,’ + t'e?,: .

The primes here signal again that coordinates refer to the centroid of only
the first three points. Then, this partial solution can be extended to s) by
solving the following overconstrained system of six equations in the three
unknown entries of sj:

[ T 7 - 1A -
1% a, Uig
M 7 7
1, ay Uy
il al u!

3 ' 3 | _ 34

T S4 + bl - ! (5 9)
J1 1 V14
T / !
J2 b Vay
T ’ !

| J3 | | 05 ] | Usq |

where

' )
e = s _‘Z,f for f=1,2,3.

’Uf4 — 'Uf4 f
The ”primed” shape coordinates can now be registered with respect to their
centroid to yield the "unprimed” coordinates:

1
Sp =S, — ZS'e4 for p=1,2,3,4

and the "unprimed” translation can again be found from equation (5.5).
In summary, the full motion and shape solution can be found in either of
the following ways:

1. factor Wey4 to find a partial motion and full shape solution, and prop-
agate it to include motion for the remaining frame (equations (5.4)).
This will be used for reconstructing the complete W by row-wise ex-
tension.

2. factor Wsy3 to find a full motion and partial shape solution, and propa-
gate it to include the remaining feature point (equation (5.9)). This will
be used for reconstructing the complete W by column-wise extension.
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5.2 Solution in the Presence of Noise

The solution propagation method introduced in the previous sectioncan be
extended to 2F x P measurement matrices with ¥ > 4 and P > 4. In
fact, the only difference is that the propagation equations (5.4) and (5.9)
now become overconstrained. If the measurement matrix W is noisy, this
redundancy is beneficial, since equations (5.4) and (5.9) can be solved in the
Least Square Error sense, and the effect of noise is reduced.

In the general case of a noisy 2F x P matrix W the solution propagation
method can be summarized as follows. A possibly large, full subblock of W
is first decomposed by factorization. Then, this initial solution is grown one
row or one column at a time by solving systems analogous to those in (5.4)
or (5.9) in the Least Square Error sense.

However, because of noise, the order in which the rows and columns
of W are incorporated into the solution can affect the exact values of the
final motion and shape solution. Consequently, once the solution has been
propagated to the entire measurement matrix W, it may be necessary to
refine the results with a steepest-descent minimization of the residue

1

(see equation (3.7)).

There remain the two problems of how to choose the initial full subblock
to which factorization is applied and in what order to grow the solution. In
fact, however, because of the final refinement step, neither choice is critical
as long as the initial matrix is large enough to yield a good starting point.
We illustrate this point in the next chapterof experiments.
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Chapter 6

More Experiments

We will first test the propagation method with image streams which include
substantial occlusions. We first use an image stream taken in a laboratory.
Then, we demonstrate the robustness of the factorization method with an-
other stream taken with a hand-held amateur camera.

6.1 ”Ping-Pong Ball” Image Stream

A ping-pong ball with black dots marked on its surface is rotated 450 de-
grees in front of the camera, so features appear and disappear. The rotation
between adjacent frames is 2 degrees, so the stream is 226 frames long. Fig-
ure 6.14 shows the first frame of the stream, with the automatically selected
features overlaid.

Every 30 frames (60 degrees) of rotation, the feature tracker looks for
new features. In this way, features that disappear on one side around the
ball are replaced by new ones that appear on the other side. Figure 6.15
shows the tracks of 60 features, randomly chosen among the total 829 found
by the selector.

If all measurements are collected into the noisy measurement matrix W,
the U and V parts of W have the same fill pattern: if the  coordinate of
a measurement is known, so is the y coordinate. Figure 6.16 shows this fill
matriz for our experiment. This matrix has the same size as either U or
V, that is, F' x P. A column corresponds to a feature point, and a row to
a frame. Shaded regions denote known entries. The fill matrix shown has
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226 x 829 = 187354 entries, of which 30185 (about 16 percent) are known.

To start the motion and shape computation, the algorithm finds a large
full submatrix by applying simple heuristics based on typical patterns of
the fill matrix. The choice of the starting matrix is not critical, as long as
it leads to a reliable initialization of the motion and shape matrices. The
initial solution is then grown by repeatedly solving overconstrained versions
of the linear system corresponding to (5.4) to add new rows, and of the
system corresponding to (5.9) to add new columns. The rows and columns
to add are selected so as to maximize the redundancy of the linear systems.
Eventually, all of the motion and shape values are determined. As a result,
the unknown 84 percent of the measurement matrix can be hallucinated from
the known 16 percent.

Figure 6.17 shows two views of the final shape results, taken from the
top and from the side. The missing features at the bottom of the ball in the
side view correspond to the part of the ball that remained always invisible,
because it rested on the rotating platform.

To display the motion results, we look at thei; and j,; vectors directly. We
recall that these unit vectors point along the rows and columns of the image
frames fin 1,..., F. Because the ping-pong ball rotates around a fixed axis,
both i; and j; should sweep a cone in space, as shown in Figure 6.18. The
tips of iy and j; should describe two circles in space, centered along the axis of
rotation. Figure 6.19 shows two views of these vector tips, from the top and
from the side. Those trajectories indicate that the motion recovery was done
correctly. Notice the double arc in the top part of figure 6.19 corresponding
to more than 360 degrees rotation. If the motion reconstruction were perfect,
the two arcs would be indistinguishable.

6.2 ”Cup and Hand” Image Stream

In this sectionwe describe an experiment with a natural scene including oc-
clusion as a dominant phenomenon. A hand holds a cup and rotates it by
about ninety degrees in front of the camera mounted on a fixed stand. Figure
6.20 shows four out of the 240 frames of the stream.

An additional need in this experiment is figure/ground segmentation.
Since the camera was fixed, however, this problem is easily solved: features
that do not move belong to the background. Also, the stream includes some
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nonrigid motion: as the hand turns, the configuration and relative position
of the fingers changes slightly. This effect, however, is small and did not
affect the results appreciably.

A total of 207 features was selected. Occlusions were marked by hand
in this experiment. The fill matrix of figure 6.22 illustrates the occlusion
pattern. Figure 6.21 shows the image trajectory of 60 randomly selected
features.

Figures 6.23 and 6.24 show a front and a top view of the cup and the
visible fingers as reconstructed by the propagation method. The shape of
the cup was recovered, as well as the rough shape of the fingers. These
renderings were obtained, as for the "House” image stream in section4.1, by
triangulating the tracked feature points and mapping pixel values onto the
resulting surface.
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Chapter 7

Conclusion

The rank theorem, which is the basis of the factorization method, is both
surprising and powerful. Surprising because it states that the correlation
among measurements made in an image stream has a simple expression no
matter what the camera motion is and no matter what the shape of an object
is, thus making motion or surface assumptions (such as smooth, constant,
linear, planar and quadratic) fundamentally superfluous. Powerful because
the rank theorem leads to factorization of the measurement matrix into shape
and motion in a well-behaved and stable manner.

The factorization method exploits the redundancy of the measurement
matrix to counter the noise sensitivity of structure-from-motion and allows
using very short inter-frame camera motion to simplify feature tracking. The
structural insight into shape-from-motion afforded by the rank theorem led to
a systematic procedure to solve the occlusion problem within the factorization
method. The experiments in the lab demonstrate the high accuracy of the
method, and the outdoor experiments show its robustness.

The rank theorem is strongly related to Ullman’s twelve year old result
that three pictures of four points determine structure and motion under or-
thography. Thus, in a sense, the theoretical foundation of our result has been
around for a long time. The factorization method evolves the applicability of
that foundation from mathematical images to actual noisy image streams.
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Figure 4.3: The 430 features selected by the automatic
detection method.
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Figure 4.1: Some frames in the sequence. The whole
sequence is 150 frames.
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Figure 4.4: Blow-up of the errors in figure 4.2.

Figure 4.2: True and computed camera yaw, roll, pitch.
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Figure 4.5: A view of the computed shape from approx-
imately above the building (compare with figure 4.6).

Figure 4.6: A real picture from above the building, sim-
ilar to figure 4.5.
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Figure 4.7: For a quantitative evaluation, distances be-
tween the features shown in the picture were measured
on the actual model, and compared with the computed
results. The comparison is shown in figure 4.8.
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117 76/75.7 102 9/9.1 47

53/53 53/532

282 84/84.1 68/69.3 273

Figure 4.8: Comparison between measured and com-
puted distances for the features in figure 4.7. The num-
ber before the slash is the measured distance, the one af-
ter is the computed distance. Lengths are in millimeters.
Computed distances were scaled so that the computed
distance between features 117 and 282 is the same as the
measured distance.
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Figure 4.12: A front view of the three reconstructed
120 180 walls, with the original image intensities mapped onto

the resulting surface.
Figure 4.9: Four out of the 180 frames of the real house

image stream.
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Figure 4.10: The features selected in the first frame of
the real house stream (figure 4.9)

Figure 4.13: A view from above of the three recon-
structed walls, with 1mage intensities mapped onto the
surface.

Figure 4.11: Tracks of 60 randomly selected features
from the real house stream (figure 4.9.)
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Figure 6.17: Top and side views of the reconstructed
ping-pong ball.
Figure 6.14: The first frame of the ping-pong stream,
with overlaid features. i

\E/// Figure 6.18: Rotational component of the camera mo-
\—j’//// tion for the ping-pong stream. Because rotation occurs

-;/ around a fixed axis, the two mutually orthogonal unit
% vectors iy and j;, pointing along rows and columns of
% the image sensor, sweep two 450-degree cones in space.

Figure 6.15: Tracks of 60 randomly selected features gl m' E i
from the stream of figure 6.14. A \__,/ ;

—

o o —
WWWWWWMMM N

Figure 6.16: The fill matrix for the ping-pong ball ex-
periment. Shaded entries are known.

Figure 6.19: Top and side views of the iy and j; vectors
identifying the camera rotation. See Figure 6.18.



Figure 6.23: A front view of the cup and fingers, with
160 240 the original image intensities mapped onto the resulting
surface.
Figure 6.20: Four out of the 240 frames of the cup image
stream.

Figure 6.21: Tracks of 60 randomly selected features
from the cup stream.

MM I !

Figure 6.24: A view from above of the cup and fingers
“‘ with image intensities mapped onto the surface.

Figure 6.22: The 240 x 207 fill matrix for the cup stream
(figure 6.20). Shaded entries are known.
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A Multiple-Baseline Stereo

Masatoshi Okutomi, Member, IEEE, and Takeo Kanade, Fellow, IEEE

Abstract—This paper presents a stereo matching method that
uses multiple stereo pairs with various baselines to obtain precise
distance estimates without suffering from ambiguity.

In stereo processing, a short baseline means that the estimated
distance will be less precise due to narrow triangulation. For
more precise distance estimation, a longer baseline is desired.
With a longer baseline, however, a larger disparity range must be
searched to find a match. As a result, matching is more difficult,
and there is a greater possibility of a false match. Therefore, there
is a tradeoff between precision and accuracy in matching.

The stereo matching method presented in this paper uses multi-
ple stereo pairs with different baselines generated by a lateral
displacement of a camera. Matching is performed simply by
compufiig ‘the sum of squared-difference (SSD) values. The SSD
functions for individual stereo pairs are represented with respect
to the inverse distance (rather than the disparity, as is usually
done) and are then simply added to produce the sum of SSD’s.
This resulting function is called the SSSD-in-inverse-distance. We
show that the SSSD-in-inverse-distance function exhibits a unique
and clear minimum at the correct matching position, even when
the underlying intensity patterns of the scene include ambiguities
or repetitive patterns. An advantage of this method is that we
can eliminate false matches and increase precision without any
search or sequential filtering.

This paper first defines a stereo algorithm based on the SSSD-
in-inverse-distance and presents a mathematical analysis to show
how the algorithm can remove ambiguity and increase precision.
Then, a few experimental results with real stereo images are
presented to demonstrate the effectiveness of the algorithm.

Index Terms— Image matching, mulitple baselines, stereo vi-
sion, sum of squared differences, 3-D vision.

I. INTRODUCTION

TEREO IS A useful technique for obtaining 3-D infor-

mation from 2-D images in computer vision. In stereo
matching, we measure the disparity d, which is the difference
between the corresponding points of left and right images. The
disparity d is related to the distance z by

1
d=BF- 1))
z

where B and F are baseline and focal length, respectively.
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This equation indicates that for the same distance, the
disparity is proportional to the baseline or that the baseline
length B acts as a magnification factor in measuring d in order
to obtain z, that is, the estimated distance is more precise if
we set the two cameras farther apart from each other, which
means a longer baseline. A longer baseline, however, poses
its own problem. Because a longer disparity range must be
searched, matching is more difficult, and thus, there is a greater
possibility of a false match. Therefore, there is a tradeoff
between precision and accuracy (correctness) in matching.

One of the most common methods in dealing with the
problem is a coarse-to-fine control strategy [1]-[5]. Matching
is done at a low resolution to reduce false matches, and then,
the result is used to limit the search range of matching at a
higher resolution, where more precise disparity measurements
are calculated. Using a coarse resolution, however, does not
always remove false matches. This is especially true when
there is inherent ambiguity in matching, such as a repeated
pattern over a large part of the scene (e.g., a scene of a
picket fence). Another approach to remove false matches and
to increase precision is to use multiple images, especially a
sequence of densely sampled images along a camera path
[6]-[9]. A short baseline between a pair of consecutive images
makes the matching or tracking of features easy, whereas the
structure imposed by the camera motion allows integration
of the possibly noisy individual measurements into a precise
estimate. The integration has been performed either by exploit-
ing constraints on the EPI [6], [7] or by a sequential Kalman
filtering technique [8], [9].

The stereo matching method presented in this paper belongs
to the second approach: use of multiple images with different
baselines obtained by a lateral displacement of a camera. The
matching technique, however, is based on the idea that global
mismatches can be reduced by adding the sum of squared-
difference (SSD) values from multiple stereo pairs, that is,
the SSD values are computed first for each pair of stereo
images. We represent the SSD values with respect to the
inverse distance 1/z (rather than the disparity d, as is usually
done). The resulting SSD functions from all stereo pairs are
added together to produce the sum of SSD’S, which we call
SSSD-in-inverse-distance. We show that the SSSD-in-inverse-
distance function exhibits a unique and clear minimum at the
correct matching position, even when the underlying intensity
patterns of the scene include ambiguities or repetitive patterns.

There have been stereo techniques that use multiple im-
age pairs taken by cameras that are arranged along a line
[10]-[12], in the form of a triangle [13]-[15] (called trinocular
stereo), or in the other formation [16]. However, all of these
techniques, except [10] and [16], decide candidate points

0162-8828/93%$03.00 © 1993 IEEE
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for correspondence in each image pair and then search for
the correct combinations of correspondences among them
using the geometrical consistencies they must satisfy. Since
the intermediate decisions on correspondences are inherently
noisy, ambiguous, and multiple, finding the correct combina-
tions requires sophisticated consistency checks and search or
filtering. In contrast, our method does not make any decisions
about the correspondences in each stereo image pair; instead,
it simply accumulates the measures of matching (SSD’s) from
all the stereo pairs into a single evaluation function, i.e., SSSD-
in-inverse-distance, and ‘then obtains one corresponding point
from it. In other words, our method integrates evidence for
a final decision rather than filtering intermediate decisions.
In this sense, Tsai [16] employed strategy very similar to
ours; he used multiple images to sharpen the peaks of his
overall similarity measures, which he called JMM and WVM.
However, the relationship between the improvement of the
similarity measures and the camera baseline arrangement was
not analyzed, nor was. the method tested with real imagery.
In this paper, we show both mathematical analysis and exper-
imental results with real indoor and outdoor images, which
demonstrate how the SSSD-in-inverse-distance function based
on multiple image pairs from different baselines can greatly
reduce false matches while improving precision.

In the next section, we present the method mathematically
and show how ambiguity can be removed and precision in-
creased by the method. Section III provides a few experimental
results with real stereo images to demonstrate the effectiveness
of the algorithm. Section IV presents conclusions.

II. MATHEMATICAL ANALYSIS

The essence of stereo matching is, given a point in one
image, to find in another image the corresponding point such
that the two points are the projections of the same physical
point in space. This task usually requires some criterion to
measure similarity between images. The SSD of the intensity
values (or values of preprocessed images, such as bandpass
filtered images) over a window is the simplest and most
effective criterion. In this section, we define the sum of
SSD with respect to the inverse distance (SSSD-in-inverse-
distance) for multiple-baseline stereo and mathematically show
its advantage in removing ambiguity and increasing precision.
For this analysis, we use 1-D stereo intensity signals, but the
extension to 2-D images is straightforward.

A. SSD Function

Suppose that we have cameras at positions Py, P1,..., P,
along a line with their optical axes perpendicular to the line and
a resulting set of stereo pairs with baselines By, By, ..., By,
as shown in Fig. 1. Let fo(z) and f;(z) be the image pair at
the camera positions Py and P;, respectively. Imagine a scene
point Z whose distance is z. Its disparity d,(;) for the image
pair taken from P, and P; is

B,F
drip) = —

)

PO Pl P2 Pn
L] L] ®

Bl

B2

Br

Fig. 1. Camera positions for stereo.

We model the image intensity functions fo(z) and f;(x) near
the matching positions for Z as

fo(z) = f(2) + no(z)

filz) = f(z - drii)) + ni(2) A3

assuming constant distance near Z and independent Gaussian
white noise such that

nﬂ(‘r)vni(m) NN(070'121)' 4

The SSD value ey(;) over a window W at a pixel position
z of image fo(x) for the candidate disparity d(;) is defined as

eaiy(z, @) = Y (folz +3) — fiz +dy +5))* (5)
jEW
where the ) jew mMmeans summation over the window. The
d(;) that gives a minimum of ed(i)(z,d(i)) is determined as
the estimate of the disparity at z. Since the SSD measure-
ment eg(;)(z,d;)) is a random variable, we will compute its
expected value in order to analyze its behavior:

Eleqgy(,dy)]

=E| Y (flz+3)— fle+da) — ds) +5)
liew
+ no(z + J) — ni(z +dgy) +j))2}
=E| ) (flz+7) - f(z+da — driy + 5))°
.jew
+ E| Y 2f(@+7) — f(z +d = driy +9)
_JEW
- (no(z + j) — ni(z + dgy + 1))
+ E|Y (nole + 5) — ni(z 1dg) + 4))°
_jGW
= Z (fz +7) — flz +duy — dry + 5)) + 2Nyo?,
JEW

©

where N,, is the number of the points within the window.
For the rest of the paper, F[] denotes the expected value of
a random variable. In deriving the above equation, we have
assumed that d,.(; is constant over the window. Equation (6)
says that naturally, the SSD function eq(;)(x, d(;y) is expected
to take a minimum when d;y = d..(;), i.e., at the right disparity.
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Let us examine how the SSD function eq(;)(x, d(;)) behaves
when there is ambiguity in the underlying intensity function.
Suppose that the intensity signal f(z) has the same pattern
around pixel positions = and = + a

fl@ +3) = f&+a+7)
where a # 0 is a constant. Then, from (6)
Eleawy(@, dv(iy)] = Eleagy(@, dviiy + @)] = 2Nwoi.  (8)

This means that ambiguity is expected in matching in terms of
positions of minimum SSD values. Moreover, the false match
at d,(; + a appears in exactly the same way for all ¢; it is
separated from the correct match by a for all the stereo pairs.
Using multiple baselines does not help to disambiguate.

jew O

B. SSD with Respect to Inverse Distance

Now, let us introduce the inverse distance ¢ such that

1
(== ©
From (2)
driy = BiF¢, (10)
d@y = BiF¢ 1)

where ¢, and ( are the real and the candidate inverse distance,
respectively. Substituting (11) into (5), we have the SSD with
respect to the inverse distance

> (folz +34) - filz + BiF(+ ) (12)

JEW

e((i)(z’ C) =

at position x for a candidate inverse distance C. Its expected
value is

Elec(x,Q)] =
> (fle+7)

JEW

— f(e+ BiF({ = &) + ) + 2Nuor,. (13)

Finally, we define a new evaluation function e¢(12...n)(7, ¢),
which is the sum of SSD functions with respect to the inverse
distance (SSSD-in-inverse-distance) for multiple stereo pairs.
It is obtained by adding the SSD functions e¢;(z,() for
individual sterco pairs:

ecaz-n)(Z,¢) = Z eci)(z, €)- (14)
=1
Its expected value is
Elecan(2:Q)] = Y Elec(s (@, Q)]
=1
=Y > (fle+4)
=1 jeEW
— f(z + BiF(C = &) + 5))* + 2nNyo?2.
(15)

In the next three subsections, we will analyze the character-
istics of these evaluation functions to see how ambiguity is
removed and precision is improved.

355

C. Elimination of Ambiguity 1

As before, suppose the underlying intensity pattern f(z)
has the same pattern around z and z + a (see (7)). Then,
according to (13), we have

Ele¢sy(z,¢r)) = Elecqy(®, 6 + )] = 2Ny03.

a
B,F (16)
We still have an ambiguity; a minimum is expected at a faise
inverse distance (5 = ¢, + 5. However, an important point
to be observed here is that this minimum for the false inverse
distance (; changes its position as the baseline B; changes,
whereas the minimum for the correct inverse distance ¢, does
not. This is the property that the new evaluation function,
the SSSD-in-inverse-distance (14), exploits to eliminate the
ambiguity. For example, suppose we use two baselines B;
and Bg (Bl # Bz) From (15)

Elecagn(z, Q)] =
ST (fz+4) = f=+ BiF(¢ - &) +5))°

JEW
+ 3 (f(@+7) = fle+ BoF(¢ = G) +3)* + 4Nuoy.
JEW
17
We can prove that
Elec2)(z,Q)] > 4Nyop = Elecaa(@,¢)]  for ¢ # G
@18

(refer to Appendix A) In words, ec(12)(z,() is expected to
have the smallest value at the correct (., that is, the ambiguity
is likely to be eliminated by use of the new evaluation function
with two different baselines.

We can illustrate this using synthesized data. Suppose the
point whose distance we want to determine is at z = 0, and
the underlying function f(z) is given by

f@) = {ios( z)+2

Fig. 2(a) shows a plot of f(z). Assuming that d,.;;y = 5,
o2 = 0.2, and the window size is 5, the expected values of
the SSD function eg()(x, d(1)) are as shown in Fig. 2(b). We
see that there is an ambiguity; the minima occur at the correct
match d(;) =6 and at the false match d(;) = 13. The match
that will be selected will depend on the noise, search range,
and search strategy. Now, suppose we have a longer baseline
By such that gf = 1.5. From equations (6) and (10), we
obtain Eleq(3)] as shown in Fig. 2(c). Again, we encounter an
ambiguity, and the separation of the two minima is the same.

Now, let us evaluate the SSD values with respect to the
inverse distance ( rather than the disparity d by using (12)
through (15). The expected values of the SSD measurements
Ele¢(1)] and Ele¢(z)] with baselines By and Bs are shown in
Figs. 2(d) and (e), respectively (the plot is normalized such that
B F = 1). Note that the minima at the correct inverse distance
(¢ = 5) does not move, whereas the minima for the false match
changes its position as the baseline changes. When the two
functions are added to produce the SSSD-in-inverse-distance,
its expected values Efec(12)] are as shown in Fig. 2(f). We can

if-4<z<12

ifz<—-4orl12<z. (19)
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Fig. 2. Expected values of evaluation functions: (a) Underlying function; (b)
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see that the ambiguity has been reduced because the SSSD-
in-inverse-distance has a smaller value at the correct match
position than at the false match.

D. Elimination of Ambiguity 2

An extreme case of ambiguity occurs when the underlying
function f(x) is a periodic function, like a scene of a picket
fence. We can show that this ambiguity can also be eliminated.

Let f(z) be a periodic function with period T. Then, each
e¢iy(x, ¢) is expected to be a periodic function of ¢ with the
period BTF This means that there will be multiple mlmma of
eci)(,€) (i.e., ambiguity in matching) at intervals of g & B + in
¢. When we use two baselines and add their SSD values, the
resulting e¢(12)(, ¢) will still be a periodic function of ¢, but
its period T2 is increased to

T2 =LCM ( (20)

T T
B,F’ ByF
where LCM() denotes least common multiple, that is, the

()
“Town” data set: (a) Image0; (b) image9.

Fig. 3.

period of the expected value of the new evaluation function
can be made longer than that of the individual stereo pairs. Fur-
thermore, it can be controlled by choosing the baselines B; and
B; appropriately so that the expected value of the evaluation
function has only one minimum within the search range. This
means that using multiple-baseline stereo pairs simultaneously
can eliminate ambiguity, although each individual baseline
stereo may suffer from ambiguity.

We illustrate this by using real stereo images. Fig. 3(a)
shows an image of a sample scene. At the top of the scene,
there is a grid board whose intensity function is nearly
periodic. We took ten images of this scene by shifting the
camera vertically as in Fig. 4. The actual distance between
consecutive camera positions is 0.05 in. Let this distance
be b. Fig. 3 shows the first and the last images of the
sequence. We selected a point  within the repetitive grid
board area in image9. The SSD values ec(;)(z,¢) over 5-by-
5-pixel windows are plotted for various baseline stereo pairs
in Fig. 5. The horizontal axis of all the plots is the inverse
distance, normalized such that 8bF = 1. Fig. 5 illustrates the
tradeoff between precision and ambiguity in terms of baselines,
that is, for a shorter baseline, there are fewer minima (i.e.,
less ambiguity), but the SSD curve is flatter (i.e., less precise
localization). On the other hand, for a longer baseline, there
are more minima (i.e., more ambiguity), but the curve near
the minimum is sharper, that is, the estimated distance is more
precise if we can find the correct one.
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Fig. 4. “Town” data set image sequence.

Fig. 6. Combining two stereo pairs with different baselines.

b
%E‘\k / the dotted curve show the SSD for B = 5b and B = 8b,
0 3 70 15 20 i

respectively. Let us suppose the search range goes from 0 to

SSD

20 in the horizontal axis, which in this case corresponds to
12 to oo inches in distance. Although the SSD values take a

(@)
7
minimum at the correct answer near { = 5, there are also other
minima for both cases. The solid curve shows the evaluation
0 5 16 15 50

function for the multiple-baseline stereo, which is the sum of

§SD

the dashed curve and the dotted curve. The solid curve shows

(®)
7 only one clear minimum, that is, the ambiguity is resolved.
Thus far, we have considered using only two stereo pairs.
‘ ) We can easily extend the idea to multiple-baseline stereo,
o 5 10 15 20
©

$SD

which uses more than two stereo pairs. Corresponding to (20),
the period of Ele¢(12...n)(, ()] becomes

T T T
%mm / Tio,.. = LCM( , _) (21)
0 * 70 15 % B1F' ByF' "’ B.F

S§SD

8 2 where B1, By, ..., B, are baselines for each stereo pair.
“° We will demonstrate how the ambiguity can be further
%W reduced by increasing the number of stereo pairs. From the
° 5 70 15 20 data of Fig. 4, we first choose imagel and image9 as a
© long baseline stereo pair, i.e., 1) B = 8b. Then, we increase

the number of stereo pairs by dividing the baseline between
imagel and image9, ie., 2) B = 4b and 8b, 3) B = 2b,
4b, 6b, and 8b, 4) B = b, 2b, 3b, 4b, 5b, 6b, 7b, and 8b.
0 s 10 5 » Fig. 7 demonstrates that the SSSD-in-inverse-distance shows

® the minimum at the correct position more clearly as more
stereo pairs are used.

SSD
]

)
o

E. Precision

® We have shown that ambiguities can be resolved by using
the SSSD-in-inverse-distance computed from multiple baseline
stereo pairs. The technique also increases precision in estimat-
ing the true inverse distance. We can show this by analyzing
the statistical characteristics of the evaluation functions near
() the correct match.

Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c) From (3), (10), and (12), we have
B = 3b; (d)B_4b (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b.
The horizontal axis is normalized such that 8bF = 1.

$SD
S

Y
@
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o
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eciy(@:¢) =Y (f@+35) = fle+BiF(C = ) + )
Now, let us take two stereo image pairs: one with B = 5b JEW
and the other with B = 8b. In Fig. 6, the dashed curve and +ng(z +7) —ni(e + BiFC+ )2 (22)
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Fig. 7. Combining multiple baseline stereo pairs.

By taking the Taylor expansion about ¢ = ¢, up to the linear
terms, we obtain

fl@+BiF(( = () +5) = f(z+1) + BiF(C = ¢) f (@ + ).

(23)
Substituting this into (22), we can approximate e¢(;)(x, {) near
¢, by a quadratic form of ¢:

eciy(@ Q) m Y (=BiF(( = ) f (z +7)
JEW
+no(z + j) — ni(z + BiFC + ))?
= BfF?a(z)(¢ - ¢;)°

+ 2BlFbl(fL')(< —_ Cr) + Ci(i) (24)
where
a(@) =Y (f'(@+4)* 25)
jEw
bi(x) = Z f'(z+3)
JEW
(ni(z + BiF¢C + j) — no(z + 7)) (26)
ci(z) = > (ni(z + BiFC+ ) —no(z +§))*. (7

JEW
The estimated inverse distance @(i) is the value ¢ that makes
(24) minimum:
bi(z)

Ari =4Lr — . 28
Gy =6 BiFa(®) (28)
Since E[b;(z)] = 0, the expected value of the estimate ér(i)
is the correct value (,, but it varies due to the noise. The

variance of this estimate is

Vor) = )

BF?(a(z))?

2aﬁ

= s 29)

B?F?q(z)

Basically, this equation states that for the same amount of
image noise o2, the variance is smaller (the estimate is more
precise) as the baseline B; is longer or as the variation of
intensity signal a(x) is larger.
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We can follow the same analysis for e¢(12...n)(2, ¢) of (14),
which is the new evaluation function with multiple baselines.
Near (., it is

eca2--n) (@, ¢) = (Z B?)FQG(QT)(C - )
=1

+2F (Z Bibi(x)> C=¢)+ Z ci().
=1 i=1 (30)

The variance of the estimated inverse distance fr(lg,_.n)that
minimizes this function is

VarCoam) = oo @D)
ar(Cr12.-m)) = T B Fra(a)
From (29) and (31), we see that
1 _ 1 32)

i=1 Va"'(ér(i)) .

The inverse of the variance represents the precision of the
estimate. Therefore, (32) means that by using the SSSD-
in-inverse-distance with multiple baseline stereo pairs, the
estimate becomes more precise. We can confirm this charac-
teristic in Figs. 6 and 7 by observing that the curve around the
correct inverse distance becomes sharper as more baselines
are used.

Var(&r(l}--n))

III. EXPERIMENTAL RESULTS

This section presents experimental results of the multiple-
baseline stereo based on SSSD-in-inverse-distance with real 2-
D images. A complete description of the algorithm is included
in Appendix B.

The first result is for the “Town” data set that we showed in
Fig. 3. Fig. 8 is the distance map and its isometric plot with a
short baseline B = 3b. The result with a single long baseline
B = 9b is shown in Fig. 9. Comparing these two results, we
observe that the distance map computed by using the long
baseline is smoother on flat surfaces, i.e., more precise, but
has gross errors in matching at the top of the scene because
of the repeated pattern. These results illustrate the tradeoff
between ambiguity and precision. Fig. 10, on the other hand,
shows the distance map and its isometric plot obtained by the
new algorithm using three different baselines 3b, 6b, and 9b.
For comparison, the corresponding oblique view of the scene
is shown in Fig. 11. We can note that the computed distance
map is less ambiguous and more precise than those of the
single-baseline stereo.

Fig. 12 shows another data set used for our experiment. Figs.
13 and 14 compare the distance maps computed from the short
baseline stereo and the long baseline stereo; the longer baseline
is five times longer than the short one. For comparison, the
actual oblique view roughly corresponding to the isometric
plot is shown in Fig. 15. Although no repetitive patterns are
apparent in the images, we can still observe gross errors in
the distance map obtained with the long baseline due to false
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®)

Fig. 8. Result with a short baseline B = 3b: (a) Distance map; (b) isometric
plot of the distance map from the upper left corner. The matching is mostly
correct but very noisy.

matching. In contrast, the result from the multiple-baseline
stereo shown in Fig. 16 demonstrates both the advantage
of unambiguous matching with a short baseline and that of
precise matching with a long baseline.

Fig. 17(a) and (b) shows one of the real outdoor scenes to
which the multiple-baseline stereo technique has been applied.
The distance to the front object (curb) is roughly 20 m, and
it is another 8 m to the building wall. We used a Sony CCD
camera with a 50-mm lens and captured six images (five stereo
image pairs) by moving the camera horizontally. The baseline
between the neighboring camera positions is 1.9 ¢cm so that the
disparity is of the order of a few pixels (less than 15 pixels
for the image pair with the longest baseline). Fig. 17(c) is
the distance map obtained; we used a 9 x 9 window for SSD
computation and used DOG-filtered images as input rather than
the original intensity images in order to compensate for the
change in sunlight during the data collection session. Pebbles
on the road in front of the curb are detectable in the map,
and the occlusion edges of the sign board are very sharp.
Naturally, range measurements are noisy along the top edge
of the curb, which is mostly horizontal. Note that the map is
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correct distance

wrong
distance

®)

Fig. 9. Result with a long baseline B = 9b: (a) Distance map; (b) isometric
plot. The matching is less noisy when it is correct. However, there are many
gross mistakes, especially in the top of the image where, due to a repetitive
pattern, the matching is completely wrong.

the direct output of the stereo algorithm with no smoothing or
postprocessing applied.

During the experiments with this and other scenes, we found
that we invariably obtained better results by using relatively
short baselines. As seen in Fig. 17(a) and (b), the disparity
is. typically only 10 to 15 pixels, even for the closest objects
in the image pair with the largest baseline. This is somewhat
surprising since for precision, we anticipated that we would
need much longer baselines, at least for one or two pairs.
What is happening here seems to be the following. When
the baselines become longer, the effect of photographic and
geometric distortions, as well as occlusions, become severe.
Use of the shorter baselines generally decreases precision but
alleviates these problems, making the SSD functions show
more consistent behavior. Yet, since we accumulate multiple
observations, sufficient precision is still achievable. This is, in
fact, an advantage of the method since it means fewer occluded
parts in the final range map, and less computation as well,
since the range of SSD computation is shorter. Moreover, after
finding the unique minimum position of the SSSD function, we
can compute the minimum positions of each individual pair’s
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Fig. 10. Result with multiple baselines B = 3b, 6b, and 9b: (a) Distance
map; (b) isometric plot. Compared with Figs. 8(b) and 9(b), we see that the
distance map is less noisy and that gross errors have been removed.

Fig. 11.

Oblique view.

SSD functions near the overall minimum, their curvature at
their minimums, and finally, their minimum values. We have
found some indication that these can be used to evaluate the
uncertainty of the correctness of the matching and, further,
to classify the situation into occlusion, terminal edges, and
specular reflections. We are investigating these issues further
[17].

Fig. 12. “Coal mine” data set, long-baseline pair.

IV. CONCLUSIONS

In this paper, we have presented a new stereo matching
method that uses multiple baseline stereo pairs. This method
can overcome the tradeoff between precision and accuracy
(avoidance of false matches) in stereo. The method is rather
straightforward; we represent the SSD values for individual
stereo pairs as a function of the inverse distance and add
those functions. The resulting function (the SSSD-in-inverse-
distance) exhibits an unambiguous and sharper minimum at
the correct matching position. As a result, there is no need for
search or sequential estimation procedures.

The key idea of the method is to relate SSD values to the
inverse distance rather than the disparity. As an afterthought,
this idea is natural. Whereas disparity is a function of the
baseline, there is only one true (inverse) distance for each
pixel position for all of the stereo pairs. Therefore, there
must be a single minimum for the SSD values when they
are summed and plotted with respect to the inverse distance.
We have shown the advantage of the proposed method in
removing ambiguity and improving precision by analytical and
experimental results.

APPENDIX A
SSSD-IN-INVERSE DISTANCE FOR AMBIGUOUS PATTERN

Proposition: Suppose that there are two and only two
repetitions of the same pattern around positions = and z + a
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(b)

Fig. 13. Result with a short baseline: (a) Distance map; (b) isometric plot
of the distance map viewed from the lower left corner.

where a # 0 is a constant, that is, for j € W

flze+7)=f(€+j), ifandonlyif{ =z or{=z+a.
(33)
Then, if By # Bs, for V¢, ¢ # ¢

Elecaz(z, Q)] = z (f(z+ )
JEW
~ f(z + BiF(¢~ G) +3))°
+ ) (fle+5)
JEW
— f(@+ BaF(C = ) +4))2 + 4Nyoy
> ANyo% = Elecan(z, &) (34
Proof: Tentatively suppose that for 3y, (¢ # (r
S (flz+4) - fl@+ BiF((s = &) +0))°
Jjew
+ > (fl@+j) = f(z + BoF (s = G) +4))% = 0. (35)
JEW
Then, it must be the case that
flz+7) = flz+a1+7)
and  f(z+j) = f(z + a2 +j) (36)
for j € W, where

a1 = BiF(C - G)
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(®)

Fig. 14. Result with a long baseline: (a) Distance map; (b) isometric plot.

Fig. 15.

Oblique view.

ay = BaF((s = ().
Since By # By and (. # (r
a1 # as. 37
Therefore, we have

e +3)=f€+3),

Since this contradicts assumption (33), (35) does not hold. Its
left-hand side must be positive. Hence, (34) holds.

for £ = x, x + ay, or z + as. (38)
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®)
Fig. 16. Multiple baselines: (a) Distance map; (b) isometric plot.

APPENDIX B
MULTIPLE-BASELINE STEREQ ALGORITHM

We present a complete description of the stereo algorithm
using multiple-baseline stereo pairs. The task is, given n stereo
pairs, find the ¢ that minimizes the SSSD-in-inverse-distance
function

n

SSSD(x,¢) =Y Y (fo(z+j)— fi(z+B:F(+j))%. (39)

i=1jEW

We will perform this task in two steps: one at pixel resolution
by minimum detection and the other at subpixel resolution by
iterative estimation.

Minimum of SSSD at Pixel Resolution

For convenience, instead of using the inverse distance, we
normalize the disparity values of individual stereo pairs with
different baselines to the corresponding values for the largest
baseline. Suppose B; < By < --- < B,. We define the
baseline ratio R; such that

B;
R, = B (40)
Then
BiF( = R;B,F( = Rid( 41

~—— building wall

round bush

road

Fig. 17. Result with a real outdoor scene: (a),(b) Long baseline pair of
images; (c) isometric plot of the distance map.

where d(,) is the disparity for the stereo pair with baseline
B,,. Substituting this into (39)

SSSD(z,dm)) = > > (folz+3) — filz + Ridimy +5))%.
i=1jeW

(42)
We compute the SSSD function for a range of disparity values
at the pixel resolution and identify the disparity that gives the
minimum. Note that pixel resolution for the image pair with
the longest baseline (B,,) requires calculation of SSD values
at subpixel resolution for other shorter baseline stereo pairs.

Iterative Estimation at Subpixel Resolution

Once we obtain disparity at pixel resolution for the longest
baseline stereo, we improve the disparity estimate to subpixel
resolution by an iterative algorithm presented in [12] and [18].
For this iterative estimation, we use only the image pair fo(x)
and f,(z) with the longest baseline. This is due to a few
reasons. First, since the pixel-level estimate was obtained by
using the SSSD-in-inverse-distance, the ambiguity has been
eliminated, and only improvement of precision is intended at
this stage. Second, using only the longest-baseline image pair
reduces the computational requirement for SSD calculation
by a factor of n and yet does not degrade precision too
significantly.

In the experiments shown in Section III, we used the
following algorithm for subpixel estimation: Let dy(,) be the
initial disparity estimate obtained at pixel resolution. Then, a
more precise estimate is computed by calculating the following
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two quantities:
Adn) =

Y jew (fo(z +7) = fu(z + dom) + §)) fr (2 + dogn) + 7)
Yiew (Fn(@ + domy + ))?

@3)
202
S o (@ + dogy T “9

2 -
Tade,) =

The value AJ(n) is the estimate of the correction of the
disparity to further minimize the SSD, and aidw is its
variance. We iterate this procedure by replacing do(,) by

dogny  dogn) + Ad(n) 45)

until the estimate converges or up to a certain maximum
number of iterations.
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Abstract direction(not parallel to the plane). We are then concerned
with three canonical types of measurement: (i) measure-
We describe how 3D affine measurements may be comments of the distandeetweerany of the planes which are
puted from a single perspective view of a scene given onlyparallel to the reference plane; (i) measurememtthese
minimal geometric information determined from the image. planes (and comparison of these measurements to those ob-
This minimal information is typically the vanishing line of tained on any plane); and (iii) determining the camera’s po-
a reference plane, and a vanishing point for a direction not sition in terms of the reference plane and direction. The
parallel to the plane. Itis shown that affine scene structure measurement methods developed here are independent of
may then be determined from the image, without knowledgethe camera’s internal parameters: focal length, aspect ratio,
of the camera’s internal calibration (e.g. focal length), nor principal point, skew.
of the explicit relation between camera and world (pose). The ideas in this paper can be seen as reversing the rules
In particular, we show how to (i) compute the distance for drawing perspective images given by Leon Battista Al-
between planes parallel to the reference plane (up to a com-perti [1] in his treatise on perspective (1435). These are
mon scale factor); (ii) compute area and length ratios on the rules followed by the Italian Renaissance painters of the
any plane parallel to the reference plane; (iii) determine the 15th century, and indeed we demonstrate the correctness
camera’s (viewer’s) location. Simple geometric derivations of their mastery of perspective by analysing a painting by
are given for these results. We also develop an algebraicpijero della Francesca.
representation which unifies the three types of measurement e begin in section 2 by giving geometric interpretations
and, amongst other advantages, permits a first order error for the key scene features, and then give simple geomet-
propagation analysis to be performed, associating an un- ric derivations of how, in principle, three dimensional affine
certainty with each measurement. information may be extracted from the image. In section
We demonstrate the technique for a variety of applica- 3 we introduce an algebraic representation of the problem
tions, including height measurements in forensic imagesand show that this representation unifies the three canoni-
and 3D graphical modelling from single images. cal measurement types, leading to simple formulae in each
case. In section 4 we describe how errors in image mea-
surements propagate to errors in the 3D measurements, and
hence we are able to compute confidence intervals onthe 3D
In this paper we describe how aspects of the affine 3D measurements, i.e. a quantitative assessment of accuracy.
geometry of a scene may be measured from a single perThe work has a variety of applications, and we demonstrate
spective image. We will concentrate on scenes containingtwo important ones: forensic measurement and virtual mod-
planes and parallel lines, although the methods are not scelling in section 5.
restricted. The methods we develop extend and generalize
previous results on single view metrology [8, 9, 13, 14]. 2. Geometry
It is assumed that images are obtained by perspective
projection. In addition, we assume that the vanishing line of  The camera model employed here is central projection.
areference planén the scene may be determined from the We assume that the vanishing line of a reference plane in
image, together with a vanishing point for anotleference  the scene may be computed from image measurements, to-

*The authors would like to thank Andrew Fitzgibbon for assistance gether with & VanIShmg point for another direction (nOt par-

with the TargetJr libraries, and David Liebowitz and Luc van Gool for dis- al!el to the plape). This information is generally easily ob-
cussions. This work was supported by the EU Esprit Project IMPROOFS. tainable from images of structured scenes [3, 11, 12]. Ef-

1. Introduction
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Figure 1: Basic geometry: The plane’s vanishing linkis the intersection

of the image plane with a plane parallel to the reference plane and passing
through the camera centre. The vanishing peins the intersection of

the image plane with a line parallel to the reference direction through the
camera centre.

fects such as radial distortion (often arising in slightly wide- Egﬁtri gr'] tﬁf;;ﬁ?: TThh:y Z?;n;ﬁgﬂgéhﬁitﬁl?r?:’\r,a%?ghﬁﬁgog‘:;tt?ht: ©
angle lenses typically used in security cameras) which cor-four pointsv, t, b and the intersection of the line joining them with the
rupt the central projection model can generally be removedvanishing line define a cross-ratio. The value of the cross-ratio determines
[6], and are therefore not detrimental to our methods (See'a ratio of distances between planes in the world, see text.

for example, figure 9). _ _ . _

Although the schematic figures show the camera centreOf thg cross-ratio prowd_es an affine length ratio. In fact we
at a finite location, the results we derive apply also to the pbtaln the ratio of the dlstancg between the planes contain-
case of a camera centre at infinity, i.e. where the images ard"9 t andb, to the camera’s distance from the planeor
obtained by parallel projection. The basic geometry of the ™ depending on the ordering of the cross-ratio). The abso-
plane’s vanishing line and the vanishing point are illustrated Ute distance can be obtained from this distance ratio once
in figure 1. The vanishing linkof the reference plane isthe ~the camera's distance from is specified. However it is
projection of the line at infinity of the reference plane into usually more practical to determine the distance via a sec-
the image. The vanishing poistis the image of the point ond measurement in the image, that of a known reference
atinfinity in the reference direction. Note that the reference l€ngth.
direction need not be vertical, although for clarity we will ~ Furthermore, since the vanishing line is the imaged axis
often refer to the vanishing point as the “vertical” vanishing ©f the pencil of planes parallel to the reference plane, the
point. The vanishing point is then the image of the vertical knowledge of the distance betweany pair of the planes
“footprint" of the camera centre on the reference p|ane_ is sufficient to determine the absolute distance between an-

It can be seen (for example, by inspection of figure 1) other two of the planes.
that the vanishing line partitions all points in scene space.Example. Figure 3 shows that a person’s height may be
Any scene point which projects onto the vanishing line is computed from an image given a vertical reference height
at the same distance from the plane as the camera centreglsewhere in the scene. The formula used to compute this
if it lies “above” the line it is further from the plane, and if resultis given in section 3.1.

“below” the vanishing line, then it is closer to the plane than

the camera centre. 2.2. Measurements on parallel planes
Two points on separate planes (parallel to the reference . _ _
plane)correspondf the line joining them is parallel to the If the reference planer is affine calibrated (we know

reference direction; hence the image of each point and thets vanishing line) then from image measurements we can
vanishing point are collinear. For example, if the direction compute: (i) ratios of lengths of parallel line segments on
is vertical, then the top of an upright person’s head and thethe plane; (i) ratios of areas on the plane. Moreover the

sole of his/her foot correspond. vanishing line is shared by the pencil of planes parallel to
the reference plane, hence affine measurements may be ob-
2.1. Measurements between parallel planes tained for any other plane in the pencil. However, although

affine measurements, such as an area ratio, may beanade
We wish to measure the distance between two parallela particular plane, the areas of regions lying on two parallel
planes, specified by the image pointandb, in the refer- planes cannot be compared directly. If the region is parallel
ence direction. Figure 2 shows the geometry, with points projected in the scene from one plane onto the other, affine
t andb in correspondence. The four points marked on the measurements can then be made from the image since both
figure define a cross-ratio. The vanishing point is the imageregions are now on the same plane, and parallel projection
of a point at infinity in the scene [15]. In the image the value between parallel planes does not alter affine properties.
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Figure 4: Homology mapping between parallel planes:(left) A point

X on planer is mapped into the poifiX’ on«’ by a parallel projection.
(right) In the image the mapping between the images of the two planes is
a homology, withv the vertex and the axis. The correspondenbe— t

fixes the remaining degree of freedom of the homology from the cross-ratio
of the four pointswv, i, t andb.

Figure 3: Measuring the height of a person:(top) original image; (bot-
tom) the height of the person is computed from the image as 178.8cm (the
true height is 180cm, but note that the person is leaning down a bit on his
right foot). The vanishing line is shown in white and the reference height
is the segmentt(, b,.). The vertical vanishing point is not shown since it
lies well below the imaget is the top of the head arlalis the base of the
feet of the person whiléis the intersection with the vanishing line.

A map in the world between parallel planes induces a
map in the image between images of points on the two
planes. This image map igpanar homology15], which is
a plane projective transformation with five degrees of free-
dom, having a line of fixed points, called tlais and a Figure 5: Measuring the ratio of lengths of parallel line segments lying
distinct fixed point not on the axis known as thertex Pla- on two parallel scene planesThe pointst andb (together with the plane
nar homologies arise naturally in an image when two p|anesvanishing line and the vanishing p_oir_n) define the homology between the

Lo . two planes on the facade of the building.
related by a perspectivity in 3-space are imaged [16]. The
geometry is illustrated in figure 4.

In our case the vanishing line of the plane, and the verti-
cal vanishing point, are, respectively, the axis and vertex of
the homology which relates a pair of planes in the pencil.
This line and point specify four of the five degrees of free-
dom of the homology. The remaining degree of freedom of
the homology is uniquely determined from any pair of im-

ogy and then, since the reference plane’s vanishing line is
known, make affine measurements in the plane, e.g. parallel
length or area ratios.

Example. Figure 5 shows that given the reference vanish-

ing line and vanishing point, and a point correspondence (in
the reference direction) on each of two parallel planes, then
. X . the ratio of lengths of parallel line segments may be com-

age points which correspond between the planes (pbints puted from the image. The formula used to compute this

andt n figure 4). result is given in section 3.2.
This means that we can compare measurements made

on two separate planes by mapping between the planes i3, 3 potarmining the camera position
the reference direction via the homology. In particular we
may compute (i) the ratio between two parallel lengths, one  In section 2.1, we computed distances between planes as
length on each plane; (ii) the ratio between two areas, onea ratio relative to the camera’s distance from the reference
area on each plane. In fact we can simply transfer all pointsplane. Conversely, we may compute the camera’s distance
from one plane to the reference plane using the homol-from a particular plane knowing a single reference distance.



Furthermore, by considering figure 1 it is seen that the plane to image map is degenerate. Consequently, the final
location of the camera relative to the reference plane is thecolumn (the origin of the coordinate system) must not lie
back-projection of the vanishing point onto the reference on the vanishing line, since if it does then all three columns
plane. This back-projection is accomplished by a homog- are points on the vanishing line, and thus are not linearly
raphy which maps the image to the reference plane (andndependent. Hence we set it tobe= p, = 1/||1|| = 1.
vice-versa). Although the choice of coordinate frame inthe  Therefore the final parametrization of the projection ma-
world is somewhat arbitrary, fixing this frame immediately trix P is:
defines the homography uniquely and hence the camera po- (1)
sition.

We show an example in figure 12, where the location of wherea is a scale factor, which has an importaaterto
the camera centre has been determined, and superimposeggay in the remainder of the paper.
into a virtual view of the scene. In the following sections we show how to compute
various measurements from this projection matrix. Mea-
surements between planes are independent of the first two
(under-determined) columns Bf For these measurements

The measurements described in the previous section arehe only unknown quantity ie. Coordinate measurements
computed in terms of cross-ratios. In this section we de- within the planes depend on the first two and the fourth
velop a uniform algebraic approach to the problem which columns of. They define an affine coordinate frame within
has a number of advantages over direct geometric constructhe plane. Affine measurements (e.g. area ratios), though,
tion: first, it avoids potential problems with ordering for the are independent of the actual coordinate frame and depend
cross-ratio; second, it enables us to deal with both mini- only on the fourth column of. If any metric information
mal or over-constrained configurations uniformly; third, we on the plane is known, we may impose constraints on the
unify the different types of measurement within one rep- choice of the frame.
resentation; and fourth, in section 4 we use this algebraic
representation to develop an uncertainty analysis for mea-3.1. Measurements between parallel planes

surements. ) )
To begin we define an affine coordinate syst&ii Z in We wish to measure the distance between scene planes

space. Let the origin of the coordinate frame lie on the refer- SPECified by a base poilt on the reference plane and top
ence plane, with th& andY -axes spanning the plane. The pointT in the scene. These points may pe chosen as respec-
7Z-axis is the reference direction, which is thus any direc- iVely (X,Y,0) and(X,Y, Z), and their images are and

tion not parallel to the plane. The image coordinate systemt' If P is the projection matrix then the image coordinates
is the usuaky affine image frame, and a poiXtin spaceis ¢
projected to the image poigtvia a3 x 4 projection matrix

P as:

P=[l 1y av i]

3. Algebraic Representation

x=PX=[p1 p» p3 pa|X

where x and X are homogeneous vectors in the form: . .
The equations above can be rewritten as

x = (v,yw)’, X = (X,Y,Z,W)T", and =" means
equality up to scale. b = p(Xpi+Yp:+ps) 2)

If we denote the vanishing points for thé, Y and Z
9P t = wXp1+Yp2+ Zpz+p4) )

directions as (respectively)y, vy andv, thenitis clear by

inspectionthat the first three columnspoére the vanishing
points; vy = pi, vy = p2 andv = psz, and that the
final column ofP is the projection of the origin of the world
coordinate systemy = p4. Since our choice of coordinate
frame has th& andY axesin the reference plape = vx

andp, = vy are two distinct points on the vanishing line.

Choosing these points fixes th& andY” affine coordinate
axes. We denote the vanishing line hyand to emphasise
that the vanishing points x andvy lie on it, we denote
them byl 13-, with I- - 1= 0.

wherep andy are unknown scale factors, apd is theith
column of theP matrix.

Taking the scalar product of (2) withyieldsp = 1- b,
and combining this with the third column of (1) and (3) we
obtain

_ by

BN | 4
(L-b)|lv x t] @

SinceaZ scales linearly with we have obtained affine
structure. Ifa is known, then we immediately obtain a met-

Columns 1, 2 and 4 of the projection matrix are the three ric value forZ. Conversely, ifZ is known (i.e. it is a refer-
columns of the reference plane to image homography. Thisence distance) then we have a means of computjrend
homography must have rank three, otherwise the referencénence removing the affine ambiguity.



Figure 6: Measuring heights using parallel lines: Given the vertical
vanishing point, the vanishing line for the ground plane and a reference
height, the distance of the top of the window on the right wall from the
ground plane is measured from the distance between the two horizontal
lines shown, one defined by the top edge of the window, and the other on
the ground plane.

Figure 7: Measuring ratios of areas on separate planesThe image
pointst andb together with the vanishing line of the two parallel planes
and the vanishing point for the orthogonal direction define the homology
between the planes. The ratio between the area of the window on the left

Example. In figure 6 heights from the ground plane are plane and that of the window on the right plane is computed.

measured between two parallel lines, one off the plane (top)

and one on the plane (base). In fact, thanks to the plane3 3. Determining camera position

vanishing line, given one line parallel to the reference plane ) .

itis easy to compute the family of parallel lines. Computing ~_ Suppose the camera centreds= (X., Y, Z., W) " in

the distance between them is a straightforward application@ffine coordinates (see figure 1). Then sikee = 0 we

have

of (4).
— 1L €L 1 —

3.2. Measurements on parallel planes PC=L X+ LY +avZ. +1W. =0 ©)
The projection matrise from the world to the image is The solution to this set of equations is given (using Cramer’s

defined above with respect to a coordinate frame on the ref-fule) by

erence plane. In this section we determine the projection _ n = _ n &

matrixP’ referred to the parallel plan€’ and we show how Xé B ge:[li VL ll’ % :?jett[lll ‘ll 1 (7)

the homology between the two planes can be derived di- ““¢ =~ — etliy 1y 1], We =detlli L v]

rectly from the two projection matrices. Note that once again we obtain structure off the plane up to
Suppose the world coordmate system is trans_late(_j froMihe affine scale factar. As before, we may upgrade the

the planer onto the planer’ along the reference direction, istance to metric with knowledge of, or use knowledge

then it is easy to show that we can parametrize the new pro-,f camera height to computeand upgrade the affine struc-
jection matrixp’ as: ture.

Note that affine viewing conditions (where the camera
centre is at infinity) present no problem to the expressions

in (7), since in this case we hale= [0 0 ] and

PP=[p1 p2 av aZv-I—i]

where Z is the distance between the planes. Note that if
Z = 0thenP’ = P correctly.

T .
The plane to image homographies can be extracted from” = [« = 0] . HenceW. = 0 so we obtain a cam-
the projection matrices ignoring the third column, to give;  €r centre on the plane at infinity, as we would expect. This
point onr, represents the viewing direction for the paral-

H=[p1 p 1, H=[p p> aZv+]] lel projection.

If the viewpoint is finite (i.e. not affine viewing condi-
tions) then the formula foreZ. may be developed further
by taking the scalar product of both sides of (6) with the
vanishing linel. The resultisnZ, = —(1-v)~L.

ThenH = H'H~! maps image points on the plameonto
points on the plang’ and so defines the homology.
A short computation gives the homology matiigs:

H=T1+ azvi' 5) ) _
. _ . 4. Uncertainty Analysis
Given the homology between two planes in the pencil we

can transfer all points from one plane to the other and make Feature detection and extraction —whether manual or au-
affine measurements in the plane (see fig 5 and fig 7). tomatic (e.g. using an edge detector) — can only be achieved



Figure 9: Uncertainty analysis on height measurements:The image
shown was captured from a cheap security type camera which exhibited
radial distortion. This has been corrected and the height of the man es-
timated (measurements are in cm). (left) The height of the man and the
associated uncertainty are computed as 190.@cidround truth value
190cm). The vanishing line for the ground plane is shown in white at
the top of the image. When one reference height is used the uncertainty
(3-sigma) is+=4.1cm, while (right) it reduces t&-2.9cm as two more ref-
erence heights are introduced (the filing cabinet and the table on the left).

Figure 8: Maximum likelihood estimation of the top and base points
(closeup of fig. 9): (left) The top and base uncertainty ellipses, respec-
tively At andAy, are shown. These ellipses are specified by the user, and
indicate a confidence region for localizing the points. (right) MLE top and Now, assummg the statistical mdependencé ehdP
base points andb are aligned with the vertical vanishing point (outside we obtain a first order apprOX|mat|0n for the variance of the

the image
ge). distance measurement:

to a finite accuracy. Any features extracted from an image, ) Ay, O T

therefore, are subject to errors. In this section we consider o = Vi ( 0 Ap ) Vi (8)
how these errors propagate through the measurement for-

mulae in order to quantify the uncertainty on the final mea-  whereVv,, is thel x 10 Jacobian matrix of the function
surements. which maps the projection matrix and top and base points to

When making measurements between planes, uncera distance between them (4). The validity of all approxima-
tainty arises from the uncertainty i) and from the uncer-  tion has been tested by Monte Carlo simulations and by a
tain image locations of the top and base potrasidb. The number of measurements on real images where the ground
uncertainty inP depends on the location of the vanishing truth was known.
line, the location of the vanishing point, and @nthe affine Example. An image obtained from a poor quality security
scale factor. Since only the final two columns contribute, camera is shown in figure 9. It has been corrected for ra-
we model the uncertainty ih as a6 x 6 homogeneous co- dial distortion using the method described in [6], and the
variance matrixAp. Since the two columns have only five floor taken as the reference plane. Vertical and horizontal
degrees of freedom (two for, two for 1 and one fora), lines are used to compute tRematrix of the scene. One
the covariance matrix is singular, with rank five. Details reference height is used to obtain the affine scale fagtor
of its computation are given in [4] and are omitted here for from (4), so other measurements in the same direction are
brevity. metric.

Likewise, the uncertainty in the top and base points (re-  The computed height of the man and an associated 3-
sulting largely from the finite accuracy with which these standard deviation uncertainty are displayed in the figure.
features may be located in the image) is modelled by covari-The height obtained differs by only 6mm from the known
ance matricedy, andA¢. Since in the error-free case, these true value. As the number of reference distances is in-
points must be aligned with the vertical vanishing point we creased, so the uncertainty @n(in fact just ona) de-
can determine maximum likelihood estimates of their true creases, resulting in a decrease in uncertainty of the mea-
locations § andb) by minimising the objective sured height, as theoretically expected.

(b = Bo) T Ap, (b2 —bo) + (82 ~8)TAL (2 —8) g )\ jications
(which is the sum of the Mahalanobis distances between
the input points and the ML estimates, the subscript 2 in-
dicates inhomogeneous 2-vectosspject to the alignment A common requirement in surveillance images is to ob-
constraint v - (£ x b) = 0. Using standard techniques [7] = tain measurements from the scene, such as the height of a
we obtain a first order approximation to the 4, rank three  felon. Although, the felon has usually departed the scene,
covariance of the parametets= ( £2T 132T ). Figure 8 reference lengths can be measured from fixtures such as ta-
illustrates the idea. bles and windows.

5.1. Forensic science



Figure 10: Measuring the height of a person in an outdoor sceneThe
ground plane is the reference plane, and its vanishing line is computed
from the slabs on the floor. The vertical vanishing point is computed from
the edges of the phone box, whose height is known and used as reference
The veridical height is 187cm, but note that the person is leaning slightly
on his right foot.

Figure 12: Complete 3D reconstruction of a real scene(left) original

Figure 11: Measuring heights of objects on separate planesising the image; (right) a view of the reconstructed 3D model; (bottom) A view of
homology between the ground plane (initial reference) and the plane of thethe reconstructed 3D model which shows the position of the camera centre
table, we can determine the height of the file on the table. (plane location X,Y and height) with respect to the scene.

In figure 10 the edges of the paving stones on the floor lengths. The position of the camera centre is also estimated
are used to compute the vanishing line of the ground plane;and is shown in the figure.
the edges of the phonebox to compute the vertical vanishing
point; and the height of the phone box provides the metric 5 3, Modelling paintings
calibration in the vertical direction. The height of the person
is then computed using (4). Figure 13 shows a masterpiece of Italian Renaissance
Figure 11 shows an example where the homology is usedpainting, “La Flagellazione di Cristo” by Piero della
to project points between planes so that a vertical distanceFrancesca (1416 - 1492). The painting faithfully follows the
may be measured given the distance between a plane angeometric rules of perspective, and therefore we can apply

the reference plane. the methods developed here to obtain a correct 3D recon-
struction of the scene.
5.2. Virtual modelling Unlike other techniques [8] whose main aim is to cre-

ate convincing new views of the painting regardless of the
In figure 12 we show an example of complete 3D re- correctness of the 3D geometry, here we reconstruct a geo-
construction of a scene. Two sets of horizontal edges aremetrically correct 3D model of the viewed scene.
used to compute the vanishing line for the ground plane, Inthe painting analyzed here, the ground plane is chosen
and vertical edges used to compute the vertical vanishingas reference and its vanishing line can be computed from
point. Four points with known Euclidean coordinates deter- the several parallel lines on it. The vertical vanishing point
mine the metric calibration of the ground plane and thus for follows from the vertical lines and consequently the relative
the pencil of horizontal planes which share the vanishing heights of people and columns can be computed. Further-
line. The distance of the top of the window to the ground, more the ground plane can be rectified from the square floor
and the height of one of the pillars are used as referencepatterns and therefore the position on the ground of each



vertical object estimated [5, 10]. The measurements, up to
an overall scale factor, are used to compute a three dimen- | =
sional VRML model of the scene. Two different views of "
the model are shown in figure 13.

6. Summary and Conclusions

We have explored how the affine structure of 3-space
may be partially recovered from perspective images in
terms of a set of planes parallel to a reference plane and a
reference direction not parallel to the reference plane. More
generally, affine 3 space may be represented entirely by sets| p— L
of parallel planes and directions [2]. We are currently in- FESSRSES———

vestigating how this full geometry is best represented and e

computed from a single perspective image.
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Camera Calibration

Geometry
* Where is the camera?
e Where is it pointing?
» What are the internal parameters?
* What's the point spread function?

Radiometry
* What is the mapping from light to pixel values?
» [Debevec 97]

If Only Cameras Were “Smart” . . .




Geometric Camera Calibration

Augmented pin-hole camera model
* Focal point, orientation
» Focal length, aspect ratio, center, lens distortion

e

2D U 3D 2D U 2D
correspondence correspondence

“Classical” calibration SEM, “Self-calibration”

Linear Geometric Calibration

Know 3D coords, 2D coords

» Find projection matrix P

11 unknowns (up to scale)
2 equations per point

Paz (dliminate d)

el &prs
U= 6 pointsis sufficient




Nonlinear M ethods

Problems with Linear Method
* Too many free parameters
e Doesn’t model lens distortion

Nonlinear Methods [Tsai, 1985]

o Parameterize P in terms of
> rotation: q,f,y
> translation: X, Y, Z
> intrinsics: f, aspect ratio, image center
> radial lens distortion: k;, k,

Code Available Via Course Web Page

Calibration Patterns

Calibration grid Chromaglyphs
Z. Zhang, Microsoft Research Bruce Culbertson, HP-labs




Calibration From 2D M otion

Structure From Motion (SFM)
e Track points over a seqguence of images
» Solve for 3D positions and camera positions
e Calibrate internal parameters beforehand
Self-Calibration
» Solve for internal and external parameters
* E.g., [Polleyfeys, 98]

Resour ces

Computer Vision Home Page
e http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

Matlab and C Implementations
* Via course web page
e http://www.cs.cmu.edu/~seitz/course/3DPhoto.html
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3D Reconstruction from Calibrated | mages

Scene Volume
AV

Input Images
(Calibrated)

Goal: Determine transparency, radiance of points in V




Discrete Formulation: Voxel Coloring

Discretized
Scene Volume

Input Images
(Calibrated)

Goal: Assign RGBA values to voxels in V
photo-consistent with images

Complexity and Computability

Discretized

Scene Volume
N2 voxels
C colors

G = space of all colorings (CN )
A = space of all photo-consistent colorings (computable?)
S = true scene (not computable)

ST Al G




Voxel Coloring Solutions

. C=2 (silhouettes)
* Volume intersection [Martin 81, Szeliski 93]

. C unconstrained, viewpoint constraints
e Voxel coloring algorithm [Seitz & Dyer 97]

. General Case
e Space carving [Kutulakos & Seitz 98]

Reconstruction from Silhouettes (C = 2)

Binary Images =g &

Approach:
e Backproject each silhouette
e Intersect backprojected volumes




Volume | nter section

Reconstruction Contains the True Scene
* But is generally not the same (no concavities)
* In the limit (all views) get visual hull or line hull
> Complement of all lines that don’t intersect S

VVoxel Algorithm for Volume I nter section

Color voxel black if on silhouette in every image
« O(MN3), for M images, N® voxels
- Don’t have to search 2V possible scenes!




Properties of Volume I ntersection

Pros
e Easy to implement, fast
» Accelerated via octrees [Szeliski 1993]

Cons
* No concavities
» Reconstruction is not photo-consistent
» Requires identification of silhouettes

Voxel Coloring Solutions

2. C unconstrained, viewpoint constraints
» Voxel coloring algorithm [Seitz & Dyer 97]




Voxel Coloring Approach

1. Choose voxel
2. Project and correlate
3. Color if consistent

Visibility Problem: in which images is each voxel visible?

The Global Visihility Problem

Which points are visible in which images?

Known Scene Unknown Scene

Forward Visibility Inverse Visibility
known scene known images




Depth Ordering: visit occludersfirst!

Scene
Traversal

Condition: depth order is view-independent

What is A View-I ndependent Depth Order ?

A function f over a scene S and a camera space C

Such that forallpandqginS,vinC

p occludes g fromv onlyif f(p) < f(Qq)

For example: f=distance from separating plane




Panoramic Depth Ordering

» Cameras oriented in many different directions
» Planar depth ordering does not apply

|

"
I
N

@

Panoramic Depth Ordering

L ayersradiate outwards from cameras




Panoramic Layering

L ayersradiate outwar ds from cameras

Panoramic Layering

L ayersradiate outwards from cameras




Compatible Camera Configurations

Depth-Order Constraint
e Scene outside convex hull of camera centers

Inward-Looking Outward-Looking
cameras above scene cameras inside scene

Calibrated | mage Acquisition

r

éf}

Selected Dinosaur Images

Calibrated Turntable

360° rotation (21 images)

Selected Flower Images
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Voxel Coloring Results (Video)

)

J

RN

Di msaur Reconstruction Flower Reconstruction
72 K voxels colored 70 K voxels colored
7.6 M voxels tested 7.6 M voxels tested
7 min. to compute 7 min. to compute
on a 250MHz SGI on a 250MHz SGI

Limitations of Depth Ordering

A view-independent depth order may not exist

I. .............. oo .I

P

Need more powerful general-case algorithms

* Unconstrained camera positions
e Unconstrained scene geometry/topology

11



A More Difficult Problem: Walkthrough

window

Input: calibrated images from arbitrary positions
Output: 3D model photo-consistent with all images

Voxel Coloring Solutions

3. General Case
e Space carving [Kutulakos & Seitz 98]

12



Space Carving Algorithm

e Step 1: Initialize V to volume containing true scene
e Step 2: For every voxel on surface of V

> test photo-consistency of voxel

> if voxel is inconsistent, carve it
o Step 3: Repeat Step 2 until all voxels consistent

Convergence:

e Always converges to a photo-consistent model
(when all assumptions are met)

e Good results on difficult real-world scenes

Visibility Property

pl S consistent b pl consistent
pl inconsistent P pl S inconsistent

This property ensures that carving converges

13



Space Carving Convergence Properties

Properties

e Guaranteed convergence to photo-consistent
reconstruction (M) called the photo hull

>M=EA -- union of all photo-consistent scenes
e Tightest possible bound on true scene
« Worst case # consistency checks: (# cameras)?(# voxels)

" - : " = :

P,
True Scene Reconstruction

Multi-Pass Plane Sweep

e Sweep plane in each of 6 principle directions
e Consider cameras on only one side of plane
* Repeat until convergence

Lo N

KX &= ¥

True Scene Reconstruction




Multi-Pass Plane Sweep

* Sweep plane in each of 6 principle directions
* Consider cameras on only one side of plane
» Repeat until convergence

S N

Multi-Pass Plane Sweep

e Sweep plane in each of 6 principle directions
e Consider cameras on only one side of plane
* Repeat until convergence

15



Multi-Pass Plane Sweep

* Sweep plane in each of 6 principle directions
* Consider cameras on only one side of plane
» Repeat until convergence

Multi-Pass Plane Sweep

e Sweep plane in each of 6 principle directions
e Consider cameras on only one side of plane
* Repeat until convergence

a
-

LN
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Space Carving Algorithm

Optimal algorithm is unwieldy
o Complex visibility update procedure

Alternative: multi-pass plane sweep
» Efficient, can use texture-mapping hardware

e Converges quickly in practice
» Easy to implement

Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

Reconstruction Reconstruction

17



Space Carving Results: Hand

Input Image
(1 of 100)

Views of Reconstruction

House Walkthrough

24 rendered input views from inside and outside

18



Space Carving Results: House

Input Image Reconstruction
(true scene) 370,000 voxels

Space Carving Results. House

Input Image Reconstruction
(true scene) 370,000 voxels

e W
ol 4 "'\.}
3l e LR

2
L b |

L.

i
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Space Carving Results: House

New View (true scene) Reconstruction

New View Reconstruction Reconstruction
(true scene) (with new input view)

Other Features

Coarse-to-fine Reconstruction

* Represent scene as octree

e Reconstruct low-res model first, then refine
Hardware-Acceleration

* Use texture-mapping to compute voxel projections

» Process voxels an entire plane at a time
Limitations

» Need to acquire calibrated images

» Restriction to simple radiance models

* Bias toward maximal (fat) reconstructions

* Transparency not supported

20



Other Approaches

Level-Set Methods [Faugeras & Keriven 1998]
o Evolve implicit function by solving PDE’s
Transparency and Matting [Szeliski & Golland 1998]
o Compute voxels with alpha-channel
Max Flow/Min Cut [Roy & Cox 1998]
e Graph theoretic formulation
Mesh-Based Stereo [Fua & Leclerc 95]
» Mesh-based but similar consistency formulation
Virtualized Reality [Narayan, Rander, Kanade 1998]
» Perform stereo 3 images at a time, merge results

Conclusions

Advantages of Voxels
* Non-parametric
> can model arbitrary geometry
> can model arbitrary topology
e Good reconstruction algorithms
* Good rendering algorithms (splatting, LDI)
Disadvantages
» Expensive to process hi-res voxel grids
e Large number of parameters
> Simple scenes (e.g., planes) require lots of voxels
e Meshes simplify better

21
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Abstract

A novel scene reconstruction technique is presented,
different from previous approaches in its ability to cope
with large changes in visibility and its modeling of in-
trinsic scene color and texture information. The method
avoids image correspondence problems by working in a
discretized scene space whose voxels are traversed in a
fixed visibility ordering. This strategy takes full account
of occlusions and allows the input cameras to be far apart
and widely distributed about the environment. The algo-
rithm identifies a special set of invariant voxels which to-
gether forma spatial and photometric reconstruction of the
scene, fully consistent with theinput images. The approach
is evaluated with images from both inward- and outward-
facing cameras.

1 Introduction

We consider the problem of acquiring photorealistic 3D
models of real environmentsfrom widely distributed view-
points. Thisproblem hassparked recent interest in the com-
puter vision community [1, 2, 3, 4, 5] asaresult of new ap-
plications in telepresence, virtual walkthroughs, and other
graphics-oriented problems that require realistic textured
object models.

We use the term photorealism to describe 3D recon-
structions of real scenes whose reprojections contain suf-
ficient color and texture information to accurately repro-
duceimages of the scenefrom abroad range of target view-
points. To ensure accurate reprojections, the input images
should be representative, i.e., sparsely distributed through-
out the target range of viewpoints. Accordingly, we pro-
pose two criteria that a photorealistic reconstruction tech-
nigue should satisfy:

e Photo Integrity: The reprojected model should accu-
rately reproduce the input images, preserving color,

The support of DARPA and the National Science Foundation under Grant
No. IRI-9530985 is gratefully acknowledged.

texture and pixel resolution

e Broad Viewpoint Coverage: Reprojections should be
accurate over alarge range of target viewpoints. This
requires that the input images are widely distributed
about the environment

The photoredlistic scene reconstruction problem, as
presently formulated, raises a number of unique challenges
that push the limits of existing reconstruction techniques.
Photo integrity requires that the reconstruction be dense
and sufficiently accurate to reproduce the original images.
This criterion poses a problem for existing feature- and
contour-based techniques that do not provide dense shape
estimates. While these techniques can produce texture-
mapped models[1, 3, 4], accuracy isensured only in places
where features have been detected. The second criterion
meansthat theinput views may befar apart and contain sig-
nificant occlusions. While some stereo methods [6, 7] can
copewith limited occlusions, handling visibility changes of
greater magnitude appearsto be beyond the state of the art.

Instead of approaching this problem as one of shapere-
construction, we instead formulate a color reconstruction
problem, in which the goal is an assignment of colors (ra-
diances) to points in an (unknown) approximately Lam-
bertian scene. As a solution, we present a voxel coloring
technique that traverses a discretized 3D space in “depth-
order” to identify voxels that have a unique coloring, con-
stant across al possible interpretations of the scene. This
approach has several advantages over existing stereo and
structure-from-motion approaches to scene reconstruction.
First, occlusions are explicitly modeled and accounted for.
Second, the cameras can be positioned far apart without de-
grading accuracy or run-time. Third, the technique inte-
grates numerousimagesto yield dense reconstructionsthat
are accurate over awide range of target viewpoints.

The voxel coloring algorithm presented here works by
discretizing scene space into a set of voxels that is tra-
versed and colored in a specia order. In this respect, the
method is similar to Collins' Space-Sweep approach [8]



which performs an analogous scene traversal. However,
the Space-Sweep algorithm does not provide a solution to
the occlusion problem, a primary contribution of this pa-
per. Katayama et a. [9] described a related method in
whichimagesare matched by detecting linesthrough dices
of an epipolar volume, noting that occlusions could be ex-
plained by labeling linesin order of increasing slope. Our
voxel traversal strategy yields a similar scene-space or-
dering but is not restricted to linear camera paths. How-
ever, their agorithm used a reference image, thereby ig-
noring points that are occluded in the reference image but
visible elsewhere. Also related are recently developed
panoramic stereo [10, 11] algorithms which avoid field of
view problems by matching 360° panoramic images di-
rectly. Panoramic reconstructions can also be achieved us-
ing our approach, but without the need to build panoramic
images (see Figs. 1 (b) and 4).

Theremainder of the paper isorganized asfollows: Sec-
tion 2 formulates and solves the voxel coloring problem,
and describes its relations to shape reconstruction. Sec-
tion 3 presents an efficient algorithm for computing the
voxel coloring from a set of images, discussing complex-
ity and related issues. Section 4 describes experiments on
real and synthetic image sequences.

2 Voxe Coloring

The voxel coloring problem is to assign colors (radi-
ances) to voxels (points) in a 3D volume so asto maximize
photo integrity with a set of input images. That is, render-
ing the col ored voxel sfrom each input viewpoint should re-
produce the original image as closely as possible. In order
to solvethis col oring problem we must consider thefollow-
ing two issues:

e Uniqueness: Multiple voxel colorings can be consis-
tent with a given set of images. How can the problem
be well-defined?

e Computation: How can avoxel coloring be computed
from a set of input images?

This section formalizes the voxel coloring problem and
explores geometrical constraints on camera placement that
enable an efficient solution. In order to addressthe unique-
ness and computation issues, we introduce a novel visibil-
ity constraint that greatly simplifies the analysis. This or-
dinal visibility constraint enables the identification of cer-
tain invariant voxelswhose coloringsare uniquely defined.
In addition, the constraint defines a depth-ordering of vox-
els by which the coloring can be computed in asingle pass
through the scene volume.

21 Notation

We assume that both the scene and lighting are station-

ary and that surfaces are approximately Lambertian. Under

T

-

(@ (b)

Figure 1: Compatible Camera Configurations. Both of the
following camera configurations satisfy the ordinal visibil-
ity constraint: (a) a downward-facing camera moved 360
degrees around an object, and (b) arig of outward-facing
cameras distributed around a sphere.

these conditions, the radiance at each point isisotropic and
can therefore be described by a scalar value which we call
color. We also use the term color to refer to the irradiance
of an image pixel. Theterm’s meaning should be clear by
context.

A 3D scene S is represented as a finite' set of opaque
voxels (volume elements), each of which occupies afinite
homogeneous scene volume and has a fixed color. We de-
note the set of all voxels with the symbol V. Animageis
specified by the set 7 of all its pixels. For now, assume that
pixels areinfinitesmally small.

Given an image pixel p and scene S, we refer to the
voxel V' € S that isvisibleand projectstop by V' = S(p).
The color of an image pixel p € Z isgiven by color(p,Z)
and of avoxel V by color(V,S). A scene S issaid to be
complete with respect to aset of imagesif, for every image
7 and every pixel p € Z, thereexistsavoxel V' € S such
that V' = S(p). A complete sceneis said to be consistent
with a set of images if, for every image Z and every pixel
p€eL,

color(p,T) = color(S(p),S) (1)
2.2 TheOrdinal Visbility Constraint
For concreteness, a pinhole

perspective projection model is assumed. To simplify the
analysis, we introduce a constraint on the positions of the
camerasrelativeto the scene. Thisconstraint simplifiesthe
task of resolving visibility relationships by establishing a
fixed depth-order enumeration of pointsin the scene.

Let P and @ be scene points and Z be an image from
acameracentered at C. We say P occludes @ if P lieson
thelinesegment C'Q. We requirethat theinput camerasare
positioned so as to satisfy the following constraint:

L1t is assumed that the visible scene is spatially bounded.



(a) (b) (©)

(d) (e)

Figure 2: Ambiguity in Scene Reconstruction. All five scenes are indistinguishable from these two viewpoints. Shape am-
biguity: scenes(a) and (b) have no pointsin common—no hard points exist. Color ambiguity: (c) and (d) share a point that
has a different color assignment in the two scenes. Color invariants: each point in () has the same color in every consistent
sceneinwhich it is contained. These six points constitute the voxel coloring for these two views.

Ordinal visibility constraint: There exists a

norm || - || such that for al scene points P and
@, and input images Z, P occludes ) in Z only
P < (IR

We call such a norm occlusion-compatible. For some
camera configurations, it is not possible to define an
occlusion-compatible norm. However, a norm does ex-
ist for a broad range of practical configurations. For in-
stance, suppose the cameras are distributed on a plane and
the sceneisentirely below that plane, asshownin Fig. 1(a).
For every such viewpoint, the relative visibility of any two
scene pointsdependsentirely on which pointiscloser to the
plane, so we may define || - || to be distance to the plane.
More generally, the ordinal visibility constraint is satisfied
whenever no scene point is contained within the convex
hull C of the camera centers. Here we use the occlusion-
compatible norm || P|| ., defined to be the Euclidean dis-
tance from P to C. For convenience, C is referred to as
the camera volume. Fig. 1 shows two useful camera con-
figurations that satisfy this constraint. Fig. 1(a) depicts an
inward-facing overhead camera rotating 360° around an
object. Ordinal visibility is satisfied provided the camerais
positioned dightly abovethe object. Theconstraint also en-
ables panoramic reconstructionsfrom outward-facing cam-
eras, asin Fig. 1(b).

2.3 Color Invariance

The ordinal visibility constraint provides a depth-
ordering of pointsin the scene. We now describe how this
ordering can be used in scene reconstruction. Scene recon-
struction is complicated by the fact that a set of images can
be consistent with more than onerigid scene. Determining
ascene'sspatial occupancy isthereforeanill-posedtask be-
cause avoxel contained in one consistent scene may not be
contained in another. (see Fig. 2(a),(b)). Alternatively, a
voxel may be part of two consistent scenes, but have dif-
ferent colorsin each (Fig. 2(c),(d)).

Given amultiplicity of solutionsto the color reconstruc-
tion problem, the only way to recover intrinsic scene in-
formation is through invariants— propertiesthat are satis-
fied by every consistent scene. For instance, consider the
set of voxels that are contained in every consistent scene.
Laurentini [12] described how these invariants, called hard
points, could be recovered by volume intersection from bi-
nary images. Hard points are useful in that they provide
absolute information about the true scene. However, such
pointsarerelatively rare; someimagesmay yield none(see,
for example, Fig. 2). Inthis section we describeamorefre-
guently occurring type of invariant relating to color rather
than shape.

A voxel V isacolor invariant with respect to a
set of imagesif, for every pair of scenesS and S’
consistent with theimages, V € S NS’ implies
color(V,S) = color(V,S")

Unlike shape invariance, color invariance does not re-
quire that a point be contained in every consistent scene.
As aresult, color invariants are more prevalent than hard
points. In particular, any set of images satisfying the or-
dina visihility constraint yields enough color invariantsto
form a compl ete scene reconstruction, as will be shown.

Let 7,,...,7,, be a set of images. For a given
image point p € Z; define V, to be the voxel in
{S(p) | S consistent} thatisclosest to the cameravolume.
We claim that V,, isacolor invariant. To establish this, ob-
servethat V, € SimpliesV, = S(p), forif V, # S(p),
S(p) must be closer to the cameravolume, which isimpos-
sible by the definition of V. It followsfrom Eq. (1) that V,
has the same color in every consistent scene; V,, is a color
invariant.

Thevoxel coloringof animageset 74, . ..
defined to be:
S ={V|pel;1<i<m}

s I 1S



Fig. 2(e) showsthe voxel coloring for the pair of images
in Fig. 2. These six points have a unique color interpreta-
tion, constant in every consistent scene. They also com-
prise the closest consistent scene to the camerasin the fol-
lowing sense—every point in each consistent scene is ei-
ther contained inthevoxel coloring or is occluded by points
in the voxel coloring. An interesting consequence of this
closeness biasis that neighboring image pixels of the same
color produce cusps in the voxel coloring, i.e., protrusions
toward the camera volume. This phenomenon is clearly
shown in Fig. 2(e), where the white and black points form
two separate cusps. Also, observe that the voxel coloring
is not aminimal reconstruction; removing the two closest
pointsin Fig. 2(e) <till leaves a consistent scene.

2.4 Computing the Voxel Coloring

In this section we describe how to compute the voxel
coloring from a set of images that satisfy the ordinal vis-
ibility constraint. In addition it will be shown that the set
of voxels contained in the voxel coloring form a complete
scene reconstruction that is consistent with the input im-
ages.

Thevoxel coloring iscomputed onevoxel at atimeinan
order that ensures agreement with the images at each step,
guaranteeing that all reconstructed voxels satisfy Eq. (1).
To demonstratethat voxel coloringsform consistent scenes,
we also have to show that they are complete, i.e., they ac-
count for every image pixel as defined in Section 2.1.

In order to make sure that the construction is incremen-
tally consistent, i.e., agreeswith theimagesat each step, we
need to introduce aweaker form of consistency that applies
to incomplete voxel sets. Accordingly, we say that a set
of voxels with color assignments is voxel-consistent if its
projection agrees fully with the subset of every input im-
age that it overlaps. More formally, a set S is said to be
voxel-consistent withimagesZ, , . . ., Z,, if for every voxel
V e Sandimagepixelsp € Z; andg € Z;, V = S(p) =
S(q) implies color(p,Z;) = color(q,Z;) = color(V,S).
For notational convenience, define Sy, to be the set of all
voxelsin S that are closer than V' to the camera volume.
Scene consistency and voxel consistency are related by the
following properties:

1. If Sisaconsistent scenethen {V} U Sy isavoxel-
consistent set for every V € S.

2. SupposesS iscompleteand, for eachpointV € S, VU
Sy isvoxe-consistent. Then S is a consistent scene.

A consistent scene may be created using the second
property by incrementally moving farther from the camera
volume and adding voxels to the current set that maintain
voxel-consistency. To formalize this idea, we define the
following partition of 3D spaceinto voxel layersof uniform

distance from the camera volume:

vé = {VI[IIVlle =d} @
v = v ©
i=1
whered,, ..., d, isanincreasing sequence of numbers.

The voxel coloring is computed inductively as follows:

SP1 = {V |V e€Vy,{V} voxe-consistent}
SPr = {V|V eV, {V}USP\_, voxel-consistent}
SP = {V |V =8P,(p) for somepixel p}
We clam SP = S. To prove this, first define

Si = {VI|V €& |Vl < d} S € SP
by the first consistency property. Inductively, assume that
Sp—1 C SPj_1 andletV € S;. By thefirst consistency
property, {V} U Sy, is voxel-consistent, implying that
{V}USP_, isaso voxel-consistent, because the second
set includes the first and SPy, 1 isitself voxel-consistent.
It followsthat S C SP,.. Note also that SP,. is complete,
sinceone of its subsetsiscomplete, and hence consistent by
the second consistency property. SP contains all the vox-
elsin SP, that are visible in any image, and is therefore
consistent aswell. Therefore SP isaconsistent scene such
that for each pixel p, SP(p) isat least ascloseto C asS(p).
Hence SP = S. m]

In summary, the following propertiesof voxel colorings
have been shown:

¢ Sisaconsistent scene
e Every voxel in S isacolor invariant

e S iscomputable from any set of images satisfying the
ordinal visibility constraint

3 Reconstruction by Voxel Coloring

In this section we present a voxel coloring algorithm
for reconstructing a scene from a set of calibrated images.
The agorithm closely follows the voxel coloring construc-
tion outlined in Section 2.4, adapted to account for im-
age discretization and noise. As before, it is assumed that
3D space has been partitioned into a series of voxel lay-
ers V', ..., V4" increasing in distance from the camera
volume. The images 7, ...,7Z,, are assumed to be dis-
cretized into finite non-overlapping pixels. The cameras
are assumed to satisfy the ordinal visibility constraint, i.e.,
no scene point lies within the camera volume.

If avoxel V' isnot fully occluded in image Z;, its pro-
jection will overlap a nonempty set of image pixels, ;.
Without noise or quantization effects, a consistent voxel
should project to a set of pixelswith equal color values. In
the presence of these effects, we evaluate the correlation of



the pixel colors to measure the likelihood of voxel consis-
tency. Let s be the standard deviation and n the cardinal-

ity of U ;. Suppose the sensor error (accuracy of irradi-
j=1

ance measurement) is approximately normally distributed

with standard deviation oy. If o isunknown, it can be es-

timated by imaging a homogeneous surface and comput-

ing the standard deviation of image pixels. The consistency

of avoxel can be estimated using the likelihood ratio test:
v = =D distributed as y? [13).

g

31 Voxiel Coloring Algorithm
Theadgorithm is asfollows:

S=190
for i=1,...,r do

for every VeV¢ do
project to Iy,...,Z,, conmpute Ay
if Av <thresh then S=SU{V}

Thethreshold, thresh, correspondsto the maximum al-
lowable correlation error. An overly conservative (small)
value of thresh results in an accurate but incomplete re-
construction. On the other hand, alarge threshold yields a
more complete reconstruction, but one that includes some
erroneousvoxels. In practice, thresh should be chosen ac-
cording to the desired characteristics of the reconstructed
model, in terms of accuracy vs. completeness.

Much of the work of the algorithm lies in the computa-
tion of \y. The set of overlapping pixels depends both on
the shape of Vs projection and the set S of possibly oc-
cluding voxels. To simplify the computation, our imple-
mentation used a square mask to approximatethe projected
voxel shape. The problem of detecting occlusionsis solved
by the scene traversal ordering used in the algorithm; the
order is such that if V' occludes V' then V' is visited be-
fore V'. Therefore, occlusions can be detected by using a
one-bit mask for each image pixel. Themask isinitialized
to 0. When avoxel V' is processed, 7; is the set of pixels
that overlap Vs projectionin Z; and have mask values of 0.
These pixels are marked with masks of 1 if Ay < thresh.

Voxel traversal can be made more efficient by employ-
ing alternative occlusion-compatible norms. For instance,
using the axis-aligned bounding box of the cameravolume
instead of C, and L, instead of L, givesriseto asequence
of axis-aligned cube-shaped layers.

3.2 Discussion

The algorithm
visits each voxel exactly once and projectsit into every im-
age. Therefore, the time complexity of voxel coloring is:
O(vozxels = images). To determine the space complexity,
observe that evaluating one voxel does not require access

to or comparison with other voxels. Consequently, voxels
need not be stored in main memory during the algorithm;
thevoxelsmaking up thevoxel coloringwill simply be out-
put one at atime. Only the images and one-bit masks need
to be allocated. Thefact that the space and time complexi-
ties of voxel coloring are linear in the number of imagesis
essential in that large numbers of images can be processed
at once.

The agorithm differsfrom stereo and optical-flow tech-
niquesin that it does not perform window-based image cor-
relation in the reconstruction process. Correspondencesare
found during the course of scene traversal by voxel pro-
jection. A disadvantage of this searchless strategy is that
it requires very precise camera calibration to achieve the
triangulation accuracy of stereo methods. Accuracy and
run-time also depend on the voxel resolution, a parameter
that can be set by the user or determined automatically to
match the pixel resolution, calibration accuracy, and com-
putational resources.

Importantly, the approach reconstructs only one of the
potentially numerous scenes consistent with the input im-
ages. Consequently, it is susceptible to aperture problems
caused by image regions of near-uniform color. These re-
gionscause cuspsin thereconstruction (seeFig. 2(€)), since
voxel coloring yields the reconstruction closest to the cam-
eravolume. Thisisabias, just like smoothnessisabiasin
stereo methods, but one that guarantees a consistent recon-
struction even with severe occlusions.

4 Experimental Results

The first experiment involved 3D reconstruction from
twenty-one views spanning a 360° object rotation. Our
strategy for calibrating theviewswassimilar tothat in[14].
Instead of aturntable, we placed the objects on a software-
controlled pan-tilt head, viewed from aboveby afixed cam-
era(seeFig. 1(a)). Tsai'smethod [15] was used to calibrate
the camera with respect to the head, by rotating a known
object and manually selecting image features for three pan
positions. The calibration error was approximately 3%.

Fig. 3 showsthe voxel colorings computed from acom-
plete revolution of a dinosaur toy and a rose. To facili-
tate reconstruction, we used a black background and elim-
inated most of the background points by thresholding the
images. While background subtraction is not strictly nec-
essary, leaving this step out results in background-colored
voxelsscattered around the edges of the scenevolume. The
threshold may be chosen conservatively since removing
most of the background pixelsis sufficient to eliminate this
background scattering effect. The middle columnin Fig. 3
shows the reconstructions from a viewpoint corresponding
to one of the input images (shown at |eft), to demonstrate
photointegrity. Notethat evenfine detailssuch asthewind-
up rod on the dinosaur and the leaves of the rose were re-



Figure 3: Voxel Coloring of Dinosaur Toy and Rose. The objects were rotated 360° below a camera. At left is one of 21
input images of each object. The other images show different views rendered from the reconstructions.

(b) © (d)

Figure 4: Reconstruction of Synthetic Room Scene. Theinput imageswere all taken from cameras|ocated inside the room.
(a) showsthe voxel coloring and (b) the original model from anew interior viewpoint. (c) and (d) show the reconstruction
and original model, respectively, from a new viewpoint outside of the room.



constructed.

We experimented with different voxel resolutionsto de-
termine the effects of voxel sampling on reconstruction
quality. Increasing the sampling rate improved the recon-
struction quality, up to the limits of image quantization and
calibration accuracy, at the cost of increased run-time. A
low-resolution model can be built very quickly; a recon-
struction (not shown) containing 980 voxelstook lessthan a
second to compute on a250 MHz SGI Indigo2. In contrast,
the 72,497-voxel dinosaur reconstruction shown in Fig. 3
required evaluating a volume of 7 million voxels and took
roughly three minutesto compute.

The next experiment involved reconstructing asynthetic
room from camerasinside theroom. Theroominterior was
highly concave, making reconstruction by volumeintersec-
tion or other contour-based methodsimpractical. Theroom
consisted of three texture-mapped walls and two shaded
models. The models, a bust of Beethoven and a human
figure, were illuminated diffusely from above. 24 cameras
were placed at different positions and orientationsthrough-
out theroom. The optical axeswere parallel to the horizon-
tal (XZ) plane.

Fig. 4 compares the original and reconstructed models
from new viewpoints. The voxel coloring reproduced im-
ages from the room interior quite accurately (as shown in
(@), although some fine details were lost due to quantiza-
tion effects. The overhead view (c) more clearly shows
some discrepancies between the original and reconstructed
shapes. For instance, the reconstructed walls are not per-
fectly planar, as some points lie just off the surface. This
point drift effect ismost noticeablein regionswherethetex-
ture is locally homogeneous, indicating that texture infor-
mation is important for accurate reconstruction. Not sur-
prisingly, the quality of image (c) is worse than that of (a),
sincetheformer view was much farther from theinput cam-
eras. On the whole, Fig. 4 shows that the overall shape of
the scenewas captured quitewell inthereconstruction. The
recovered model contained 52,670 voxels and took 95 sec-
onds to compute.

5 Conclusions

This paper presented a new scene reconstruction tech-
niquethat incorporatesintrinsic color and texture informa-
tion for the acquisition of photorealistic scene models. Un-
like existing stereo and structure-from-motion techniques,
the method guarantees that a consistent reconstruction is
found, even under large visibility differencesacrossthein-
put images. The method relies on a constraint on the input
camera configuration that enables a simple solution for de-
termining voxel visibility. A second contribution was the
constructive proof of the existence of a set of color invari-
ants. These points are useful in two ways: first, they pro-
vide information that is intrinsic, i.e., constant across al

possible consistent scenes. Second, together they consti-
tute a spatial and photometric reconstruction of the scene
whose projections reproduce the input images.
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Abstract. In this paper we consider the problem of computing the 3D shape of an
unknown, arbitrarily-shaped scene from multiple photographs taken at known but
arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes
that reproduce the input photographs, we prove the existence of a special member
of this class, the photo hull, that (1) can be computed directly from photographs
of the scene, and (2) subsumes all other members of this class. We then give a
provably-correct algorithm, called Space Carving, for computing this shape and
present experimental results on complex real-world scenes. The approach is designed
to (1) capture photorealistic shapes that accurately model scene appearance from
a wide range of viewpoints, and (2) account for the complex interactions between
occlusion, parallax, shading, and their view-dependent effects on scene-appearance.

Keywords: scene modeling, photorealistic reconstruction, multi-view stereo, space
carving, voxel coloring, shape-from-silhouettes, visual hull, volumetric shape repre-
sentations, metameric shapes, 3D photography

1. Introduction

A fundamental problem in computer vision is reconstructing the shape
of a complex 3D scene from multiple photographs. While current tech-
niques work well under controlled conditions (e.g., small stereo base-
lines (Okutomi and Kanade, 1993), active viewpoint control (Kutu-
lakos and Dyer, 1994), spatial and temporal smoothness (Poggio et al.,
1985; Bolles et al., 1987; Katayama et al., 1995), or scenes containing
curved lines (Bascle and Deriche, 1993), planes (Pritchett and Zisser-
man, 1998), or texture-less surfaces (Cipolla and Blake, 1992; Vail-
lant and Faugeras, 1992; Laurentini, 1994; Szeliski and Weiss, 1994;
Kutulakos and Dyer, 1995)), very little is known about scene recon-
struction under general conditions. In particular, in the absence of
a priori geometric information, what can we infer about the struc-
ture of an unknown scene from N arbitrarily positioned cameras at
known viewpoints? Answering this question has many implications for
reconstructing real objects and environments, which tend to be non-
smooth, exhibit significant occlusions, and may contain both textured
and texture-less surface regions (Figure 1).

';:‘ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Kutulakos and Seitz

In this paper, we develop a theory for reconstructing 3D scenes from
photographs by formulating shape recovery as a constraint satisfaction
problem. We show that any set of photographs of a rigid scene defines a
collection of picture constraints that are satisfied by every scene project-
ing to those photographs. Furthermore, we characterize the set of all 3D
shapes that satisfy these constraints and use the underlying theory to
design a practical reconstruction algorithm, called Space Carving, that
applies to fully-general shapes and camera configurations. In particular,
we address three questions:

— Given N input photographs, can we characterize the set of all
photo-consistent shapes, i.e., shapes that reproduce the input pho-
tographs?

— Is it possible to compute a shape from this set and if so, what is
the algorithm?

— What is the relationship of the computed shape to all other photo-
consistent shapes?

Our goal is to study the N-view shape recovery problem in the
general case where no constraints are placed upon the scene’s shape
or the viewpoints of the input photographs. In particular, we address
the above questions for the case when (1) no constraints are imposed
on scene geometry or topology, (2) no constraints are imposed on the
positions of the input cameras, (3) no information is available about
the existence of specific image features in the input photographs (e.g.,
edges, points, lines, contours, texture, or color), and (4) no a priori
correspondence information is available. Unfortunately, even though
several algorithms have been proposed for recovering shape from mul-
tiple views that work under some of these conditions (e.g., work on
stereo (Belhumeur, 1996; Cox et al., 1996; Stewart, 1995)), very little
is currently known about how to answer the above questions, and even
less so about how to answer them in this general case.

At the heart of our work is the observation that these questions
become tractable when scene radiance belongs to a general class of radi-
ance functions we call locally computable. This class characterizes scenes
for which global illumination effects such as shadows, transparency and
inter-reflections can be ignored, and is sufficiently general to include
scenes with parameterized radiance models (e.g., Lambertian, Phong
(Foley et al., 1990), Torrance-Sparrow (Torrance and Sparrow, 1967)).
Using this observation as a starting point, we show how to compute,
from N photographs of an unknown scene, a maximal shape called the
photo hull that encloses the set of all photo-consistent reconstructions.
The only requirements are that (1) the viewpoint of each photograph is
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A Theory of Shape by Space Carving 3

known in a common 3D world reference frame (Euclidean, affine (Koen-
derink and van Doorn, 1991), or projective (Mundy and Zisserman,
1992)), and (2) scene radiance follows a known, locally-computable ra-
diance function. Experimental results demonstrating our method’s per-
formance are given for both real and simulated geometrically-complex
scenes.

Central to our analysis is the realization that parallax, occlusion,
and scene radiance all contribute to a photograph’s dependence on
viewpoint. Since our notion of photo-consistency implicitly ensures
that all of these 3D shape cues are taken into account in the recov-
ery process, our approach is related to work on stereo (Okutomi and
Kanade, 1993; Cox et al., 1996; Hoff and Ahuja, 1989), shape-from-
contour (Cipolla and Blake, 1992; Vaillant and Faugeras, 1992; Szeliski,
1993), as well as shape-from-shading (Epstein et al., 1996; Belhumeur
and Kriegman, 1996; Woodham et al., 1991). These approaches rely
on studying a single 3D shape cue under the assumptions that other
sources of variability can be safely ignored, and that the input pho-
tographs contain features relevant to that cue (Bolles and Cain, 1982).1
Unfortunately, these approaches cannot be easily generalized to attack
the N-view reconstruction problem for arbitrary 3D scenes because
neither assumption holds true in general. Implicit in this previous work
is the view that untangling parallax, self-occlusion and shading effects
in N arbitrary photographs of a scene leads to a problem that is either
under-constrained or intractable. Here we challenge this view by show-
ing that shape recovery from N arbitrary photographs of an unknown
scene is not only a tractable problem but has a simple solution as well.

To our knowledge, no previous theoretical work has studied the
equivalence class of solutions to the general N-view reconstruction
problem or provably-correct algorithms for computing them. The Space
Carving Algorithm that results from our analysis, however, is related
to other 3D scene-space stereo algorithms that have been recently
proposed (Fua and Leclerc, 1995; Collins, 1996; Seitz and Dyer, 1999;
Seitz and Kutulakos, 1998; Zitnick and Webb, 1996; Narayanan et al.,
1998; Szeliski and Golland, 1998; Roy and Cox, 1998). Of these, most
closely related are mesh-based (Fua and Leclerc, 1995) and level-set
(Faugeras and Keriven, 1998) algorithms, as well as methods that sweep
a plane or other manifold through a discretized scene space (Collins,
1996; Seitz and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and
Golland, 1998; Langer and Zucker, 1994). While the algorithms in
(Faugeras and Keriven, 1998; Fua and Leclerc, 1995) generate high-
quality reconstructions and perform well in the presence of occlusions,
their use of regularization techniques penalizes complex surfaces and
shapes. Even more importantly, no formal study has been undertaken
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4 Kutulakos and Seitz

to establish their validity for recovering arbitrarily-shaped scenes from
unconstrained camera configurations (e.g., the one shown in Figure
la). In contrast, our Space Carving Algorithm is provably correct and
has no regularization biases. Even though space-sweep approaches have
many attractive properties, existing algorithms (Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Szeliski and Golland, 1998)
are not fully general i.e., they rely on the presence of specific image
features such as edges and hence generate only sparse reconstructions
(Collins, 1996), or they place strong constraints on the input view-
points relative to the scene (Seitz and Dyer, 1999; Seitz and Kutulakos,
1998). Unlike all previous methods, Space Carving guarantees complete
reconstruction in the general case.

Our approach offers six main contributions over the existing state
of the art:

1. It introduces an algorithm-independent analysis of the shape re-
covery problem from N arbitrary photographs, making explicit the
assumptions required for solving it as well as the ambiguities intrin-
sic to the problem. This analysis not only extends previous work on
reconstruction but also puts forth a concise geometrical framework
for analyzing the general properties of recently-proposed scene-
space stereo techniques (Fua and Leclerc, 1995; Collins, 1996; Seitz
and Dyer, 1999; Seitz and Kutulakos, 1998; Zitnick and Webb,
1996; Narayanan et al., 1998; Szeliski and Golland, 1998; Roy and
Cox, 1998). In this respect, our analysis has goals similar to those
of theoretical approaches to structure-from-motion (Faugeras and
Maybank, 1990), although the different assumptions employed (i.e.,
unknown vs. known correspondences, known vs. unknown cam-
era motion), make the geometry, solution space, and underlying
techniques completely different.

2. Our analysis provides a volume which is the tightest possible bound
on the shape of the true scene that can be inferred from N pho-
tographs. This bound is important because it tells us precisely what
shape information we can hope to extract from N photographs,
in the absence of a priori geometric and point correspondence
information, regardless of the specific algorithm being employed.

3. The Space Carving Algorithm presented in this paper is the only
provably-correct method, to our knowledge, that enables scene re-
construction from input cameras at arbitrary positions. As such, the
algorithm enables reconstruction of complex scenes from viewpoints
distributed throughout an unknown 3D environment—an extreme
example is shown in Fig. 11a where the interior and exterior of a
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house are reconstructed simultaneously from cameras distributed
throughout the inside and outside of the house.

4. Because no constraints on the camera viewpoints are imposed, our
approach leads naturally to global reconstruction algorithms (Ku-
tulakos and Dyer, 1995; Seitz and Dyer, 1995) that recover 3D shape
information from all photographs in a single step. This eliminates
the need for complex partial reconstruction and merging operations
(Curless and Levoy, 1996; Turk and Levoy, 1994) in which partial
3D shape information is extracted from subsets of the photographs
(Narayanan et al., 1998; Kanade et al., 1995; Zhao and Mohr,
1996; Seales and Faugeras, 1995), and where global consistency
with the entire set of photographs is not guaranteed for the final
shape.

5. We describe an efficient multi-sweep implementation of the Space
Carving Algorithm that enables recovery of photo-realistic 3D mod-
els from multiple photographs of real scenes, and exploits graphics
hardware acceleration commonly available on desktop PC’s.

6. Because the shape recovered via Space Carving is guaranteed to
be photo-consistent, its reprojections will closely resemble pho-
tographs of the true scene. This property is especially significant in
computer graphics, virtual reality, and tele-presence applications
(Tomasi and Kanade, 1992; Kanade et al., 1995; Moezzi et al.,
1996; Zhang, 1998; Kang and Szeliski, 1996; Sato et al., 1997)
where the photo-realism of constructed 3D models is of primary
importance.

1.1. LEAST-COMMITMENT SHAPE RECOVERY

A key consequence of our photo-consistency analysis is that there are
3D scenes for which no finite set of input photographs can uniquely
determine their shape: in general, there exists an uncountably-infinite
equivalence class of shapes each of which reproduces all of the input
photographs exactly. This result is yet another manifestation of the
well-known fact that 3D shape recovery from a set of images is generally
ill-posed (Poggio et al., 1985), i.e., there may be multiple shapes that
are consistent with the same set of images.? Reconstruction methods
must therefore choose a particular scene to reconstruct from the space
of all consistent shapes. Traditionally, the most common way of dealing
with this ambiguity has been to apply smoothness heuristics and reg-
ularization techniques (Poggio et al., 1985; Aloimonos, 1988) to obtain
reconstructions that are as smooth as possible. A drawback of this
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6 Kutulakos and Seitz

type of approach is that it typically penalizes discontinuities and sharp
edges, features that are very common in real scenes.

The notion of the photo hull introduced in this paper and the
Space Carving Algorithm that computes it lead to an alternative, least
commitment principle (Marr, 1982) for choosing among all of the photo-
consistent shapes: rather than making an arbitrary choice, we choose
the only photo-consistent reconstruction that is guaranteed to subsume
(i.e., contain within its volume) all other photo-consistent reconstruc-
tions of the scene. By doing so we not only avoid the need to impose
ad hoc smoothness constraints, which lead to reconstructions whose
relationship to the true shape are difficult to quantify, we also ensure
that the recovered 3D shape can serve as a description for the entire
equivalence class of photo-consistent shapes.

While our work shows how to obtain a consistent scene reconstruc-
tion without imposing smoothness constraints or other geometric heuris-
tics, there are many cases where it may be advantageous to impose a
priori constraints, especially when the scene is known to have a cer-
tain structure (Debevec et al., 1996; Kakadiaris and Metaxas, 1995).
Least-commitment reconstruction suggests a new way of incorporating
such constraints: rather than imposing them as early as possible in the
reconstruction process, we can impose them after first recovering the
photo hull. This allows us to delay the application of a priori constraints
until a later stage in the reconstruction process, when tight bounds on
scene structure are available and where these constraints are used only
to choose among shapes within the class of photo-consistent reconstruc-
tions. This approach is similar in spirit to “stratification” approaches
of shape recovery (Faugeras, 1995; Koenderink and van Doorn, 1991),
where 3D shape is first recovered modulo an equivalence class of recon-
structions and is then refined within that class at subsequent stages of
processing.

The remainder of this paper is structured as follows. Section 2 ana-
lyzes the constraints that a set of photographs place on scene structure
given a known, locally-computable model of scene radiance. Using these
constraints, a theory of photo-consistency is developed that provides
a basis for characterizing the space of all reconstructions of a scene.
Sections 3 and 4 then use this theory to present the two central re-
sults of the paper, namely the existence of the photo hull and the
development of a provably-correct algorithm called Space Carving that
computes it. Section 5 then presents a discrete implementation of the
Space Carving Algorithm that iteratively “carves” out the scene from
an initial set of voxels. This algorithm can be seen as a generalization
of silhouette-based techniques like volume intersection (Martin and
Aggarwal, 1983; Szeliski, 1993; Kutulakos, 1997; Moezzi et al., 1996)
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Figure 1. Viewing geometry. The scene volume and camera distribution covered
by our analysis are both completely unconstrained. Examples include (a) a 3D
environment viewed from a collection of cameras that are arbitrarily dispersed in
free space, and (b) a 3D object viewed by a single camera moving around it.

to the case of gray-scale and full-color images, and generalizes voxel
coloring (Seitz and Dyer, 1999) and plenoptic decomposition (Seitz and
Kutulakos, 1998) to the case of arbitrary camera geometries.®> Section
6 concludes with experimental results on real and synthetic images.

2. Picture Constraints

Let V be a shape defined by a closed and opaque set of points that
occupy a volume in space.* We assume that V is viewed under perspec-
tive projection from N known positions ¢y, ... ,cy in IR* — V (Figure
1b). The radiance of a point p on the shape’s surface, Surf(V) is a
function rady,(§) that maps every oriented ray £ through the point to the
color of light reflected from p along &. We use the term shape-radiance
scene description to denote the shape V together with an assignment
of a radiance function to every point on its surface. This description
contains all the information needed to reproduce a photograph of the
scene for any camera, position.”

Every photograph of a 3D scene taken from a known location parti-
tions the set of all possible shape-radiance scene descriptions into two
families, those that reproduce the photograph and those that do not.
We characterize this constraint for a given shape and a given radiance
assignment by the notion of photo-consistency:5

Definition 1 (Point Photo-Consistency) Let S be an arbitrary sub-
set of IR3. A point p € S that is visible from c is photo-consistent with
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8 Kutulakos and Seitz

the photograph at ¢ if (1) p does not project to a background pizel, and
(2) the color at p’s projection is equal to rad,(pc). If p is not visible
from ¢, it is trivially photo-consistent with the photograph at c.

Definition 2 (Shape-Radiance Photo-Consistency) A shape-radiance
scene description is photo-consistent with the photograph at c if all
points wvisible from c are photo-consistent and every non-background
pizel is the projection of a point in V.

Definition 3 (Shape Photo-Consistency) A shape V is photo-consistent
with a set of photographs if there is an assignment of radiance func-
tions to the visible points of V that makes the resulting shape-radiance
description photo-consistent with all photographs.

Our goal is to provide a concrete characterization of the family of all
scenes that are photo-consistent with N input photographs. We achieve
this by making explicit the two ways in which photo-consistency with
N photographs can constrain a scene’s shape.

2.1. BACKGROUND CONSTRAINTS

Photo-consistency requires that no point of V projects to a background
pixel. If a photograph taken at position ¢ contains identifiable back-
ground pixels, this constraint restricts V to a cone defined by ¢ and the
photograph’s non-background pixels. Given N such photographs, the
scene is restricted to the visual hull, which is the volume of intersection
of their corresponding cones (Laurentini, 1994).

When no a priori information is available about the scene’s ra-
diance, the visual hull defines all the shape constraints in the input
photographs. This is because there is always an assignment of radiance
functions to the points on the surface of the visual hull that makes
the resulting shape-radiance description photo-consistent with the N
input photographs.” The visual hull can therefore be thought of as a
“least commitment reconstruction” of the scene—any further refine-
ment of this volume must rely on assumptions about the scene’s shape
or radiance.

While visual hull reconstruction has often been used as a method
for recovering 3D shape from photographs (Szeliski, 1993; Kutulakos,
1997), the picture constraints captured by the visual hull only exploit
information from the background pixels in these photographs. Unfor-
tunately, these constraints become useless when photographs contain
no background pixels (i.e., the visual hull degenerates to IR3) or when
background identification (Smith and Blinn, 1996) cannot be performed
accurately. Below we study picture constraints from non-background
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pixels when the scene’s radiance is restricted to a special class of radi-
ance models. The resulting constraints lead to photo-consistent scene
reconstructions that are subsets of the visual hull, and unlike the visual
hull, can contain concavities.

2.2. RADIANCE CONSTRAINTS

Surfaces that are not transparent or mirror-like reflect light in a coher-
ent manner, i.e., the color of light reflected from a single point along
different directions is not arbitrary. This coherence provides additional
picture constraints beyond what can be obtained from background in-
formation. In order to take advantage of these constraints, we focus on
scenes whose radiance satisfies the following criteria:

Consistency Check Criteria:

1. An algorithm consistg() is available that takes as input at
least K < N colors coly,... ,colg, K vectors &1,...,€k, and
the light source positions (non-Lambertian case), and decides
whether it is possible for a single surface point to reflect light

of color col; in direction &; simultaneously for all 4 =1,... , K.

2. consistg() is assumed to be monotonic, i.e.,
consistg(coly,... ,colj,&1,. .. ,&;) implies that
consistg(coly,... colj_1,&,. .. ,&—1) for every permutation
of 1,...,7.

Given a shape V, the Consistency Check Criteria give us a way to
establish the photo-consistency of every point on V’s surface. These
criteria define a general class of radiance models, that we call locally
computable, that are characterized by a locality property: the radiance
at any point is independent of the radiance of all other points in
the scene. The class of locally-computable radiance models therefore
restricts our analysis to scenes where global illumination effects such
as transparency (Szeliski and Golland, 1998), inter-reflection (Forsyth
and Zisserman, 1991), and shadows can be ignored. For example, inter-
reflection and shadows in Lambertian scenes viewed under fixed illumi-
nation are correctly accounted for because scene radiance is isotropic
even when such effects are present. As a result, the class of locally-
computable radiance models subsumes the Lambertian (K = 2) and
other parameterized models of scene radiance.®

Given an a priori locally computable radiance model for the scene,
we can determine whether or not a given shape V is photo-consistent
with a collection of photographs. Even more importantly, when the
scene’s radiance is described by such a model, the non-photo-consistency
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o1 Cq

Figure 2. Illustration of the Visibility and Non-Photo-Consistency Lemmas. If p is
non-photo-consistent with the photographs at ci,c2,cs, it is non-photo-consistent
with the entire set Visys (p), which also includes c4.

of a shape V tells us a great deal about the shape of the underlying
scene. We use the following two lemmas to make explicit the structure
of the family of photo-consistent shapes. These lemmas provide the
analytical tools needed to describe how the non-photo-consistency of a
shape V affects the photo-consistency of its subsets (Figure 2):

Lemma 1 (Visibility Lemma) Let p be a point onV’s surface, Surf(V),
and let Visy(p) be the collection of input photographs in which V does
not occlude p. If V' C V is a shape that also has p on its surface,
ViSv (p) g ViSV/ (p)

Proof. Since V' is a subset of V, no point of V' can lie between p and
the cameras corresponding to Visy(p). QED

Lemma 2 (Non-Photo-Consistency Lemma) Ifp € Surf(V) is not
photo-consistent with a subset of Visy(p), it is not photo-consistent with
Visy (p).

Intuitively, Lemmas 1 and 2 suggest that both visibility and non-
photo-consistency exhibit a form of “monotonicity:” the Visibility Lemma,
tells us that the collection of photographs from which a surface point
p € Surf(V) is visible strictly expands as V gets smaller (Figure 2).
Analogously, the Non-Photo-Consistency Lemma, which follows as a
direct consequence of the definition of photo-consistency, tells us that
each new photograph can be thought of as an additional constraint
on the photo-consistency of surface points—the more photographs are
available, the more difficult it is for those points to achieve photo-
consistency. Furthermore, once a surface point fails to be photo-consistent
no new photograph of that point can re-establish photo-consistency.

The key consequence of Lemmas 1 and 2 is given by the following
theorem which shows that non-photo-consistency at a point rules out
the photo-consistency of an entire family of shapes:
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Theorem 1 (Subset Theorem) Ifp € Surf(V) is not photo-consistent,
no photo-consistent subset of V contains p.

Proof. Let V' C V be a shape that contains p. Since p lies on the
surface of V, it must also lie on the surface of V'. From the Visibility
Lemma it follows that Visy(p) C Visy (p). The theorem now follows
by applying the Non-Photo-Consistency Lemma to V' and using the
locality property of locally computable radiance models. QED

We explore the ramifications of the Subset Theorem in the next
section.

3. The Photo Hull

The family of all shapes that are photo-consistent with NV photographs
defines the ambiguity inherent in the problem of recovering 3D shape
from those photographs. When there is more than one photo-consistent
shape it is impossible to decide, based on those photographs alone,
which photo-consistent shape corresponds to the true scene. This am-
biguity raises two important questions regarding the feasibility of scene
reconstruction from photographs:

— Is it possible to compute a shape that is photo-consistent with N
photographs and, if so, what is the algorithm?

— If a photo-consistent shape can be computed, how can we relate
that shape to all other photo-consistent 3D interpretations of the
scene?

Before providing a general answer to these questions we observe that
when the number of input photographs is finite, the first question can
be answered with a trivial shape (Figure 3a). In general, trivial shape
solutions such as this one can be eliminated with the incorporation
of free space constraints, i.e., regions of space that are known not to
contain scene points. Our analysis enables the (optional) inclusion of
such constraints by specifying an arbitrary set V within which a photo-
consistent shape is known to lie.”

In particular, our answers to both questions rest on the following
theorem. Theorem 2 shows that for any shape V there is a unique
photo-consistent shape that subsumes, i.e., contains within its volume,
all other photo-consistent shapes in V (Figure 3b):

Theorem 2 (Photo Hull Theorem) Let V be an arbitrary subset of
IR3. If V* is the union of all photo-consistent shapes in V), every point
on the surface of V* is photo-consistent. We call V* the photo hull.”
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12 Kutulakos and Seitz

(a) (b)

Figure 8. Photo-consistent shapes for a two-dimensional scene viewed by four cam-
eras. The scene consists of a black square whose sides are painted diffuse red, blue,
orange, and green. (a) Trivial shape solutions in the absence of free-space constraints.
Carving out a small circle around each camera and projecting the image onto the
interior of that circle yields a trivial photo-consistent shape, shown in gray. (b)
Illustration of the Photo Hull Theorem. The gray-shaded region corresponds to an
arbitrary shape V containing the square in (a). V" is a polygonal region that extends
beyond the true scene and whose boundary is defined by the polygonal segments
a, 3,7, and §. When these segments are colored as shown, V*’s projections are
indistinguishable from that of the true object and no photo-consistent shape in the
gray-shaded region can contain points outside V*.

Proof. (By contradiction) Suppose that p is a surface point on V*
that is not photo-consistent. Since p € V*, there exists a photo-consistent
shape, V' C V*, that also has p on its surface. It follows from the Subset
Theorem that V' is not photo-consistent. QED

Corollary 1 If V* is closed, it is a photo-consistent shape.

Theorem 2 provides an explicit relation between the photo hull and
all other possible 3D interpretations of the scene: the theorem guaran-
tees that every such interpretation is a subset of the photo hull. The
photo hull therefore represents a least-commitment reconstruction of
the scene.

While every point on the photo hull is photo-consistent, the hull
itself is not guaranteed to be closed, i.e., it may not satisfy our definition
of a shape. Specific cases of interest where V* is closed include (1)
discretized scene volumes, i.e., scenes that are composed of a finite
number of volume elements, and (2) instances where the number of
photo-consistent shapes in a volume is finite. We describe a volumetric
algorithm for computing discretized photo hulls in the next section.
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The general case, where the photo hull is an infinite union of shapes,
is considered in the Appendix.

4. Reconstruction by Space Carving

An important feature of the photo hull is that it can be computed
using a simple, discrete algorithm that “carves” space in a well-defined
manner. Given an initial volume V that contains the scene, the algo-
rithm proceeds by iteratively removing (i.e. “carving”) portions of that
volume until it converges to the photo hull, V*. The algorithm can
therefore be fully specified by answering four questions: (1) how do we
select the initial volume V), (2) how should we represent that volume to
facilitate carving, (3) how do we carve at each iteration to guarantee
convergence to the photo hull, and (4) when do we terminate carving?

The choice of the initial volume has a considerable impact on the
outcome of the reconstruction process (Figure 3). Nevertheless, selec-
tion of this volume is beyond the scope of this paper; it will depend on
the specific 3D shape recovery application and on information about
the manner in which the input photographs were acquired.!! Below
we consider a general algorithm that, given N photographs and any
initial volume that contains the scene, is guaranteed to find the (unique)
photo hull contained in that volume.

In particular, let V be an arbitrary finite volume that contains the
scene as an unknown sub-volume. Also, assume that the surface of the
true scene conforms to a radiance model defined by a consistency check
algorithm consisty(). We represent V as a finite collection of voxels
v1,... ,Up. Using this representation, each carving iteration removes a
single voxel from V.

The Subset Theorem leads directly to a method for selecting a voxel
to carve away from V at each iteration. Specifically, the theorem tells
us that if a voxel v on the surface of V is not photo-consistent, the
volume V = V — {v} must still contain the photo hull. Hence, if only
non-photo-consistent voxels are removed at each iteration, the carved
volume is guaranteed to converge to the photo hull. The order in which
non-photo-consistent voxels are examined and removed is not impor-
tant for guaranteeing correctness. Convergence to this shape occurs
when no non-photo-consistent voxel can be found on the surface of the
carved volume. These considerations lead to the following algorithm for
computing the photo hull:'?

Space Carving Algorithm

Step 1: Initialize V to a volume containing the true scene.
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Step 2: Repeat the following steps for voxels v € Surf(V) until a non-
photo-consistent voxel is found:

a. Project v to all photographs in Visy(v). Let coly,... ,col; be
the pixel colors to which v projects and let £;,... ,{; be the
optical rays connecting v to the corresponding optical centers.

b. Determine the photo-consistency of v using
consistg(coly,... ,colj, &1, .. ,&).

Step 3: If no non-photo-consistent voxel is found, set V* = V and
terminate. Otherwise, set V =V — {v} and repeat Step 2.

The key step in the algorithm is the search and voxel consistency
checking of Step 2. The following proposition gives an upper bound on
the number of voxel photo-consistency checks:

Proposition 1 The total number of required photo-consistency checks
s bounded by N * M where N is the number of input photographs and
M is the number of vozels in the initial (i.e., uncarved) volume.

Proof. Since (1) the photo-consistency of a voxel v that remains on
V’s surface for several carving iterations can change only when Visy(v)
changes due to V’s carving, and (2) Visy(v) expands monotonically as
V is carved (Visibility Lemma), the photo-consistency of v must be
checked at most N times. QED

5. A Multi-Sweep Implementation of Space Carving

Despite being relatively simple to describe, the Space Carving Algo-
rithm as described in Section 4 requires a difficult update procedure
because of the need to keep track of scene visibility from all of the input
cameras. In particular, every time a voxel is carved a new set of voxels
becomes newly visible and must be re-evaluated for photo-consistency.
Keeping track of such changes necessitates computationally-expensive
ray-tracing techniques or memory-intensive spatial data structures (Cul-
bertson et al., 1999). To overcome these problems, we instead de-
scribe a multi-sweep implementation of the Space Carving Algorithm
that enables efficient visibility computations with minimal memory
requirements.
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Figure 4. A Visibility Cycle. Voxel p occludes ¢ from c¢1, whereas ¢ occludes p from
c2. Hence, no visibility order exists that is the same for both cameras.

5.1. MULTI-VIEW VISIBILITY ORDERING

A convenient method of keeping track of voxel visibility is to evaluate
voxels in order of visibility, i.e., visit occluders before the voxels that
they occlude. The key advantage of this approach is that backtracking
is avoided—carving a voxel affects only voxels encountered later in the
sequence. For a single camera, visibility ordering amounts to visiting
voxels in a front-to-back order and may be accomplished by depth-
sorting (Newell et al., 1972; Fuchs et al., 1980). The problem of defining
visibility orders that apply simultaneously to multiple cameras is more
difficult, however, because it requires that voxels occlude each other
in the same order from different viewpoints. More precisely, voxel p is
evaluated before g only if ¢ does not occlude p from any one of the
input viewpoints.

It is known that multi-view visibility orders exist for cameras that
lie on one side of a plane (Langer and Zucker, 1994). Recently, Seitz
and Dyer (Seitz and Dyer, 1999) generalized this case to a range of
interesting camera configurations by showing that multi-view visibility
orders always exist when the scene lies outside the convex hull of the
camera centers. When this constraint is satisfied, evaluating voxels in
order of increasing distance to this camera hull yields a multi-view
visibility order that may be used to reconstruct the scene. The convex
hull constraint is a significant limitation, however, because it strongly
restricts the types of scenes and range of views that are reconstructible.
In fact, it can be readily shown that no multi-view visibility constraint
exists in general (Fig. 4). Therefore, different techniques are needed
in order to reconstruct scenes like Fig. 4 that violate the convex hull
constraint.

5.2. PLANE-SWEEP VISIBILITY

While multi-view visibility orders do not exist in the general case, it is
possible to define visibility orders that apply to a subset of the input
cameras. In particular, consider visiting voxels in order of increasing X
coordinate and, for each voxel p = (X,,Y),, Z,), consider only cameras
whose X coordinates are less than Xj,. If p occludes ¢ from a camera
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16 Kutulakos and Seitz

Figure 5. Plane-Sweep Visibility. The plane-sweep algorithm ensures that voxels are
visited in order of visibility with respect to all active cameras. The current plane and
active set of cameras is shown in orange. (b) The shape evolves and new cameras
become active as the plane moves through the scene volume.

at c, it follows that p is on the line segment cg and therefore X, < X,.
Consequently, p is evaluated before ¢, i.e., occluders are visited before
the voxels that they occlude.

Given this ordering strategy, the Space Carving Algorithm can be
implemented as a multi-sweep volumetric algorithm in which a solid
block of voxels is iteratively carved away by sweeping a single plane
through the scene along a set of pre-defined sweep directions (Fig. 5).
For each position of the plane, voxels on the plane are evaluated by
considering their projections into input images from viewpoints on one
side of the plane. In the above example, a plane parallel to the Y-Z
axis is swept in the increasing X direction.

Plane Sweep Algorithm

Step 1: Given an initial volume V), initialize the sweep plane IT such
that V lies below II (i.e., II is swept towards V).

Step 2: Intersect II with the current shape V.
Step 3: For each surface voxel v on II:

a. let c¢q,... ,¢j be the cameras above II for which v projects to
an unmarked pixel;

b. determine the photo-consistency of v using
consistg(coly,... ,colj,&1,...,&));

c. if v is inconsistent then set V =V — {v}, otherwise mark the
pixels to which v projects.

Step 4: Move Il downward one voxel width and repeat Step 2 until V
lies above II.
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The dominant costs of this algorithm are (1) projecting a plane of
voxels into N images, and (2) correlating pixels using consistg (coly, ...
Our implementation exploits texture-mapping graphics hardware (the
kind found on standard PC graphics cards) to project an entire plane
of voxels at a time onto each image. We have found that when this
optimization is used, the pixel correlation step dominates the compu-
tation.

5.3. MULTI-SWEEP SPACE CARVING

The Plane Sweep Algorithm considers only a subset of the input cam-
eras for each voxel, i.e., the cameras on one side of the sweep plane.
Consequently, it may fail to carve voxels that are inconsistent with the
entire set of input images but are consistent with a proper subset of
these images. To ensure that all cameras are considered, we repeat-
edly perform six sweeps through the volume, corresponding to the six
principle directions (increasing and decreasing X, Y, and Z directions).
Furthermore, to guarantee that all cameras visible to a voxel are taken
into account, we perform an additional round of voxel consistency
checks that incorporate the voxel visibility information collected from
individual sweeps. The complete algorithm is as follows:

Multi-Sweep Space Carving Algorithm
Step 1: Initialize V to be a superset of the true scene.

Step 2: Apply the Plane Sweep Algorithm in each of the six principle
directions and update V accordingly.

Step 3: For every voxel in V whose consistency was evaluated in more
than one plane sweep:

a. let c1,... ,c¢j be the cameras that participated in the consistency
check of v in some plane sweep during Step 2;

b. determine the photo-consistency of v using
consistg(coly,... ,colj,&1,... &)

Step 4: If no voxels were removed from V in Steps 2 and 3, set V* =V
and terminate; otherwise, repeat Step 2.

5.4. LAMBERTIAN SCENES

We give special attention to case of Lambertian scenes, in which the
Consistency Check Criteria can be defined using the standard deviation
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18 Kutulakos and Seitz

of colors, colq,... ,colg, at a voxel’s projection. To account for errors
in the image formation process due to quantization, calibration, or
other effects, we call a voxel photo-consistent if o is below a given
threshold. This threshold is chosen by considering o to be a statistical
measure of voxel photo-consistency. In particular, suppose the sensor
error (accuracy of irradiance measurement) is normally distributed!?
with standard deviation gg. The photo-consistency of a voxel v can be
estimated using the likelihood ratio test, distributed as x? with K — 1
degrees of freedom (Freund, 1992):

2
Ay = %_ (1)
0

This formulation of the Consistency Check Criterion allows us to
incorporate two additional optimizations to the Multi-Sweep Carving
Algorithm. First, we maintain sufficient per-voxel color statistics be-
tween sweeps to integrate information from all input images, therefore
eliminating the need for Step 3 of the multi-sweep algorithm. This
is because the standard deviation of K monochrome pixel values of
intensity col;, can be computed using the following recursive formula:

1 K K
ol =— (Z col? — Zcoli> . (2)
K =1 =1

It is therefore sufficient to maintain three numbers per voxel, namely
S K coli, YK col?, and K (i.e., seven numbers for three-component
color pixels). Second, to ensure that no camera is considered more
than once per voxel in the six sweeps, we further restrict the cameras
considered in each sweep to a pyramidal beam defined by the voxel
center and one of its faces, as shown in Fig. 6. This strategy partitions
the cameras into six non-overlapping sets to be processed in the six
respective sweeps, thereby ensuring that each camera is considered

exactly once per voxel during the six sweeps.

6. 3D Photography by Space Carving

6.1. IMAGE ACQUISITION

In the Space Carving Algorithm, every input photograph can be thought
of as a shape constraint that forces the reconstructed scene volume to
contain only voxels consistent with the photograph. To ensure that
the algorithm’s output closely resembles the shape and appearance of

paper.tex; 24/03/2000; 18:30; p.18



A Theory of Shape by Space Carving 19

sweep plane

B

/

i »
3 @/ v‘chel

-
sweep direction

Figure 6. To ensure that a camera is processed at most once per voxel during the six
plane sweeps, the set of cameras considered in each sweep is clipped to a pyramidal
beam defined by the center of the voxel and one of its faces.

a complicated 3D scene it is therefore important to acquire enough
photographs of the scene itself. In a typical image acquisition session,
we take between 10 and 100 calibrated images around the scene of
interest using a Pulnix TMC-9700 color CCD camera (Fig. 7).

A unique property of the Space Carving Algorithm is that it can be
forced to automatically segment a 3D object of interest from a larger
scene using two complementary methods. The first method, illustrated
in the sequence of Fig. 7, involves slightly modifying the image acquisi-
tion process—before we take a photograph of the object of interest
from a new viewpoint, we manually alter the object’s background.
This process enabled segmentation and complete reconstruction of the
gargoyle sculpture; the Space Carving Algorithm effectively removed
all background pixels in all input photographs because the varying
backgrounds ensured that photo-consistency could not be enforced for
points projecting to non-object pixels. Note that image subtraction
or traditional matting techniques (Smith and Blinn, 1996) cannot be
applied to this image sequence to segment the sculpture since every
photograph was taken from a different position in space and therefore
the background is different in each image. The second method, illus-
trated in Fig. 9, involves defining an initial volume V (e.g., a bounding
box) that is “tight enough” to ensure reconstruction of only the object
of interest. This process enabled segmentation of the hand because the
initial volume did not intersect distant objects such as the TV monitor.
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6.2. RECONSTRUCTION RESULTS

In this section we present results from applying our Multi-Sweep im-
plementation of the Space Carving Algorithm to a variety of image
sequences. In all examples, a Lambertian model was used for the Con-
sistency Check Criterion, i.e., it was assumed that a voxel projects to
pixels of the same color in every image. The standard deviation of these
pixels was therefore used to determine whether or not a voxel should
be carved, as described in Section 5.

We first ran the Space Carving Algorithm on 16 images of a gar-
goyle sculpture (Fig. 7). The sub-pixel calibration error in this sequence
enabled using a small threshold of 6% for the RGB component error.
This threshold, along with the voxel size and the 3D coordinates of a
bounding box containing the object were the only parameters given as
input to our implementation. Fig. 8 shows selected input images and
new views of the reconstruction. This reconstruction consisted of 215
thousand surface voxels that were carved out of an initial volume of
approximately 51 million voxels. It took 250 minutes to compute on an
SGI 02 R10000/175MHz workstation. Some errors are still present in
the reconstruction, notably holes that occur as a result of shadows and
other illumination changes due to the object’s rotation inside a static,
mostly diffuse illumination environment. These effects were not mod-
eled by the Lambertian model and therefore caused voxels on shadowed
surfaces to be carved. The finite voxel size, calibration error, and image
discretization effects resulted in a loss of some fine surface detail. Voxel
size could be further reduced with better calibration, but only up to the
point where image discretization effects (i.e., finite pixel size) become
a significant source of error.

Results from a sequence of one hundred images of a hand are shown
in Figs. 9 and 10. Note that the near-perfect segmentation of the hand
from the rest of the scene was performed not in image-space, but in
3D object space—the background lay outside the initial block of voxels
and was therefore not reconstructed. This method of 3D background
segmentation has significant advantages over image subtraction and
chroma-keying methods because it (1) does not require the background
to be known and (2) will never falsely eliminate foreground pixels, as
these former techniques are prone to do (Smith and Blinn, 1996).

Two kinds of artifacts exist in the resulting reconstructions. First,
voxels that are not visible from any input viewpoint do not have a
well-defined color assignment and are given a default color. These arti-
facts can be eliminated by acquiring additional photographs to provide
adequate coverage of the scene’s surfaces. Second, stray voxels may be
reconstructed in unoccupied regions of space due to accidental agree-
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Figure 7. Nine of sixteen 486x720 RGB images of a gargoyle stone sculpture. The
sequence corresponds to a complete circumnavigation of the object, performed in
approximately 22.5 degree increments.

ments between the input images. Such artifacts can be easily avoided
by re-applying the Space Carving Algorithm on an initial volume that
does not contain those regions or by post-filtering the reconstructed
voxel model.

In a final experiment, we applied our algorithm to images of a
synthetic building scene rendered from both its interior and exterior
(Figure 11). This placement of cameras yields an extremely difficult
stereo problem, due to the drastic changes in visibility between interior
and exterior cameras.'* Figure 11 compares the original model and the
reconstruction from different viewpoints. The model’s appearance is
very good near the input viewpoints, as demonstrated in Figs. 11b-c.
Note that the reconstruction tends to “bulge” out and that the walls are
not perfectly planar (Figure 11e). This behavior is exactly as predicted
by Theorem 2—the algorithm converges to the largest possible shape
that is consistent with the input images. In low-contrast regions where
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(d)

Figure 8. Reconstruction of a gargoyle sculpture. One of 16 input images is shown
(a), along with views of the reconstruction from the same (b) and new (c-d)
viewpoints.
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Figure 9. Six out of one hundred photographs of a hand sequence.

shape is visually ambiguous, this causes significant deviations between
the computed photo hull and the true scene. While these deviations do
not adversely affect scene appearance near the input viewpoints, they
can result in noticeable artifacts for far-away views. These deviations
and the visual artifacts they cause are easily remedied by including
images from a wider range of camera viewpoints to further constrain
the scene’s shape, as shown in Figure 11f.

Our experiments highlight a number of advantages of our approach
over previous techniques. Existing multi-baseline stereo techniques (Oku-
tomi and Kanade, 1993) work best for densely textured scenes and
suffer in the presence of large occlusions. In contrast, the hand sequence
contains many low-textured regions and dramatic changes in visibility.
The low-texture and occlusion properties of such scenes cause problems
for feature-based structure-from-motion methods (Tomasi and Kanade,
1992; Seitz and Dyer, 1995; Beardsley et al., 1996; Pollefeys et al.,
1998), due to the difficulty of locating and tracking a sufficient number
of features throughout the sequence. While contour-based techniques
like volume intersection (Martin and Aggarwal, 1983; Szeliski, 1993)
often work well for similar scenes, they require detecting silhouettes
or occluding contours. For the gargoyle sequence, the background was
unknown and heterogeneous, making the contour detection problem
extremely difficult. Note also that Seitz and Dyer’s voxel coloring tech-
nique (Seitz and Dyer, 1999) would not work for any of the above
sequences because of the constraints it imposes on camera placement.
Our approach succeeds because it integrates both texture and con-
tour information as appropriate, without the need to explicitly detect
features or contours, or constrain viewpoints. Our results indicate the
approach is highly effective for both densely textured and untextured
objects and scenes.
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Figure 10. Reconstruction of a hand. An input image is shown in (a) along with
views of the reconstruction from the same (b) and other (d-f) viewpoints. The
reconstructed model was computed using an RGB component error threshold of
6%. The model has 112 thousand voxels and took 53 seconds to compute. The blue
line in (b) indicates the z-axis of the world coordinate system.
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7. Concluding Remarks

This paper introduced photo-consistency theory as a new, general math-
ematical framework for analyzing the 3D shape recovery problem from
multiple images. We have shown that this theory leads to a “least
commitment” approach for shape recovery and a practical algorithm
called Space Carving that together overcome several limitations in the
current state of the art. First, the approach allows us to analyze and
characterize the set of all possible reconstructions of a scene, without
placing constraints on geometry, topology, or camera configuration.
Second, this is the only provably-correct method, to our knowledge,
capable of reconstructing non-smooth, free-form shapes from cameras
positioned and oriented in a completely arbitrary way. Third, the per-
formance of the Space Carving Algorithm was demonstrated on real and
synthetic image sequences of geometrically-complex objects, including
a large building scene photographed from both interior and exterior
viewpoints. Fourth, the use of photo-consistency as a criterion for 3D
shape recovery enables the development of reconstruction algorithms
that allow faithful image reprojections and resolve the complex in-
teractions between occlusion, parallax, and shading effects in shape
analysis.

While the Space Carving Algorithm’s effectiveness was demonstrated
in the presence of low image noise, the photo-consistency theory itself is
based on an idealized model of image formation. Extending the theory
to explicitly model image noise, quantization and calibration errors, and
their effects on the photo hull is an open research problem (Kutulakos,
2000). Extending the formulation to handle non-locally computable ra-
diance models (e.g., shadows and inter-reflections) is another important
topic of future work. Other research directions include (1) developing
space carving algorithms for images with significant pixel noise, (2) in-
vestigating the use of surface-based rather than voxel-based techniques
for finding the photo hull, (3) incorporating a priori shape constraints
(e.g., smoothness), and (4) analyzing the topological structure of the
set of photo-consistent shapes. Finally, an on-line implementation of
the Space Carving Algorithm, that performs image capture and scene
reconstruction simultaneously, would be extremely useful both to facil-
itate the image acquisition process and to eliminate the need to store
long video sequences.
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wfy < Virtual View

Figure 11. Reconstruction of a synthetic building scene. (a) 24 Cameras were placed
in both the interior and exterior of a building to enable simultaneous, complete re-
construction of its exterior and interior surfaces. The reconstruction contains 370,000
voxels, carved out of a 200 x 170 x 200 voxel block. (b) A rendered image of the
building for a viewpoint near the input cameras (shown as “virtual view” in (a)) is
compared to the view of the reconstruction (c). (d-f) Views of the reconstruction
from far away camera viewpoints. (d) shows a rendered top view of the original
building, (e) the same view of the reconstruction, and (f) a new reconstruction
resulting from adding image (d) to the set of input views. Note that adding just a
single top view dramatically improves the quality of the reconstruction.
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Appendix

In general, the photo hull, V*, of a set V is the union of a potentially
infinite collection of shapes in V. Such unions do not always correspond
to a closed subset of IR? (Armstrong, 1983). As a result, even though
all points of the photo hull are photo-consistent, the photo hull itself
may not satisfy the definition of a 3D shape given in Section 2. In
this Appendix we investigate the properties of the closure, V*, of V*
which is always a valid shape.'® In particular, we show that V* satisfies
a slightly weaker form of photo-consistency called directional e-photo-
consistency, defined below. This property leads to a generalization of
Theorem 2:

Theorem 3 (Closed Photo Hull Theorem) Let V be an arbitrary
shape in IR® and let V* be the closure of the union of all photo-consistent
shapes in V. The shape V* is directionally e-photo-consistent and is
called the closed photo hull.

A.1. THE STRONG VISIBILITY CONDITION

Because we impose no constraints on the structure of the photo-consistent
shapes in V that are considered in our analysis (e.g., smoothness), it is
possible to define degenerate shapes that defy one’s “intuitive” notions
of visibility and occlusion. More specifically, the standard definition of
visibility of a surface point p from a camera c requires that the open line
segment pc does not intersect the shape itself; otherwise, p is defined
to be occluded. When V is arbitrary, however, it is possible to define
shapes whose surface gets infinitesimally close to this line segment at
one or more points other than p. Intuitively, surface points that have
this property are not occluded under the above definition but are not
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“fully visible” either. We therefore refine the notion of visibility in a
way that excludes such degeneracies. In particular, let B(p,€) C IR? be
the open 3-ball of radius e that is centered at p:

Definition 4 (Strong Visibility Condition) A point p on the sur-
face of a shape V is strongly visible to a set of cameras if it is visible
from those cameras and if, for every e > 0, there exists a closed set N
and an € < e such that the following two properties are satisfied:

1. N contains all its occluders, i.e., for every camera ¢ and point
p € N, if q occludes p from c then q € N, and

2. B(p,e') C N C B(p,e).

Intuitively, the strong visibility condition is equivalent to the stan-
dard definition of point visibility for shapes that are “well-behaved” —it
differs from this definition only in cases where the ray from point p to a
camera comes arbitrarily close to the shape outside p’s neighborhood.
An illustration of a strong visibility neighborhood N is given in Fig.
12b.

A.2. DIRECTIONAL e-PHOTO-CONSISTENCY

When V* and V* are not equal, the closed photo hull will contain limit
points that do not belong to any photo-consistent subset of V. These
limit points are not always photo-consistent (Fig. 12a). Fortunately,
even though the photo-consistency of these points cannot be guaran-
teed, these points (as well as the rest of V*) do satisfy the directional
e-photo-consistency property:

Definition 5 (Strongly Visible Camera Set) If p € V, II, is a
plane through p, and C is the set of cameras in Visy(p) that are strictly
above 11, define

C if p is strongly visible to C, 3)

SVisy(I,) =
v (L) {[Z) otherwise.
Definition 6 (Directional Point Photo-Consistency) A pointp in
V is directionally photo-consistent if for every oriented plane 11, through
p, the point p is photo-consistent with all cameras in SVisy(II,).

Definition 7 (Directional e-photo-consistency) A point p inV is
directionally e-photo-consistent if for every € > 0 and every oriented
plane 11, through p, there exists a point ¢ € B(p,e) that is photo-
consistent with all cameras in SVisy(II,).

paper.tex; 24/03/2000; 18:30; p.28



A Theory of Shape by Space Carving 29

Figure 12. (a) Non-photo-consistent points on the closed photo hull. The 2D scene
is composed of a closed thick line segment ab that is painted gray, white, and black.
The points d1,ds, corresponding to color transitions, are painted white. When V is
defined by the triangle abc, the closed photo hull, V*, is defined by the region shown
in light gray. Note that even though p € V* is directionally e-photo-consistent, it
is not photo-consistent: p projects to a white pixel in the left camera and a gray
pixel in the right one. (b)-(c) Proof of Theorem 3. (b) A point p is strongly visible
to three cameras by means of neighborhood N. (c) The closest point ¢ € N NP to
II. is visible to all cameras on or above Il..

Compared to the definition of point photo-consistency (Definition 1),
directional photo-consistency relaxes the requirement that p’s radiance
assignment must agree with all visible cameras. Instead, it requires
the ability to find radiance assignment(s) that force agreement only
with visible cameras within the same half-space. Directional e-photo-
consistency goes a step further, lifting the requirement that every sur-
face point p must have a directionally consistent radiance assignment.
The only requirement is that p is infinitesimally close to a point for
which directional consistency can be established with respect to the
cameras from which p is strongly visible.

Despite their differences, photo-consistency and directional e-photo-
consistency share a common characteristic: we can determine whether
or not these properties hold for a given shape V without having any
information about the photo-consistent shapes contained in V. This
is especially important when attempting to characterize V* because it
establishes a direct link between V* and the image observations that
does not depend on explicit knowledge of the family of photo-consistent
shapes.

A.3. PROOF OF THEOREM 3

Since points that are not strongly visible are always directionally e-
photo-consistent, it is sufficient to consider only strongly visible points
p € V*. More specifically, it suffices to show that every open ball,
B(p, €), contains a point ¢ on some photo-consistent shape P such that
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the set Visp(q) contains all cameras in SVisy=(11,). For if ¢ is photo-
consistent with Visp(q), it follows that ¢ is photo-consistent with any
of its subsets.

We proceed by first choosing a photo-consistent shape P and then
constructing the point ¢ (Figs. 12b,c). In particular, let ¢ be a camera
in SVisy=(I1p) that is closest to II,, and let II. be the plane through c
that is parallel to II,. Fix € such that 0 < € < k, where k is the distance
from c to II,,.

Let N C B(p,€) be a set that establishes p’s strong visibility accord-
ing to Definition 4. According to the definition, NV contains an open ball
B(p, €') for some € < €. By the definition of the photo hull, there exists
a photo-consistent shape P that intersects B(p, €').

We now construct point ¢ and consider the set of cameras from
which ¢ is visible. Let ¢ be a point in the set P N N that minimizes
perpendicular distance to II..!® By construction, no point in N N P
occludes ¢ from the cameras in SVisy=(I,). Moreover, since ¢ € N,
Definition 4 tells us that no point in P — N can occlude g from the
cameras in SVis;=(I1,). It follows that Visp(q) 2 SVisy=(11,). QED

Notes

! Examples include the use of the small baseline assumption in stereo to simplify
correspondence-finding and maximize joint visibility of scene points (Kanade et al.,
1996), the availability of easily-detectable image contours in shape-from-contour
reconstruction (Vaillant and Faugeras, 1992), and the assumption that all views are
taken from the same viewpoint in photometric stereo (Woodham et al., 1991).

% Faugeras (Faugeras, 1998) has recently proposed the term metameric to describe
such shapes, in analogy with the term’s use in the color perception (Alfvin and
Fairchild, 1997) and structure-from-motion literature (van Veen and Werkhoven,
1996).

% Note that both of these generalizations represent significant improvements in
the state of the art. For instance, silhouette-based algorithms require identification
of silhouettes, fail at surface concavities, and treat only the case of binary images.
While (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998) also used a volumetric
algorithm, their method worked only when the scene was outside the convex hull of
the cameras. This restriction strongly limits the kinds of environments that can be
reconstructed, as discussed in Section 6.

* More formally, we use the term shape to refer to any closed set V C IR® for
which every point p € V is infinitesimally close to an open 3-ball inside V. That is,
for every € > 0 there is an open 3-ball, B(p,¢), that contains an open 3-ball lying
inside V. Similarly, we define the surface of V to be the set of points in V that are
infinitesimally close to a point outside V.

® Note that even points on a radiance discontinuity must have a unique radiance
function assigned to them. For example, in the scene of Fig. 3, the point of transition
between red and blue surface points must be assigned either a red or a blue color.
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6 In the following, we make the simplifying assumption that pixel values in the
image measure scene radiance directly.

" For example, set rady(pe) equal to the color at p’s projection.

8 Strictly speaking, locally-computable radiance models cannot completely ac-
count for surface normals and other neighborhood-dependent quantities. However,
it is possible to estimate surface normals based purely on radiance information and
thereby approximately model cases where the light source changes (Seitz and Ku-
tulakos, 1998) or when reflectance is normal-dependent (Sato et al., 1997). Specific
examples include (1) using a mobile camera mounted with a light source to capture
photographs of a scene whose reflectance can be expressed in closed form (e.g., using
the Torrance-Sparrow model (Torrance and Sparrow, 1967; Sato et al., 1997)), and
(2) using multiple cameras to capture photographs of an approximately Lambertian
scene under arbitrary unknown illumination (Figure 1).

9 Note that if V = IR?, the problem reduces to the case when no constraints on
free space are available.

10 Qur use of the term photo hull to denote the “maximal” photo-consistent shape
defined by a collection of photographs is due to a suggestion by Leonard McMillan.

' Examples include defining V to be equal to the visual hull or, in the case of a
camera moving through an environment , IR®> minus a tube along the camera’s path.

12 Convergence to this shape is provably guaranteed only for scenes representable
by a discrete set of voxels.

13 Here we make the simplifying assumption that oo does not vary as a function
of wavelength.

' For example, the algorithms in (Seitz and Dyer, 1999; Seitz and Kutulakos, 1998)
fail catastrophically for this scene because the distribution of the input views and the
resulting occlusion relationships violate the assumptions used by those algorithms.

15 To see this, note that V* is, by definition, a closed subset of IR®. Now observe
that every point p € V* is infinitesimally close to a point on some photo-consistent
shape V'. It follows that p is infinitesimally close to an open 3-ball inside V' C V*.
The closed photo hull therefore satisfies our definition of a shape.

16 Note that such a point does exist since P N N is a closed and bounded subset
of IR® and hence it is compact (Armstrong, 1983).
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1 Introduction

The creation of three-dimensional models of existing architectural scenes with the aid of the computer has
been commonplace for some time, and the resulting model s have been both entertaining virtual environments
aswell asvauablevisudizationtools. Large-scd e effortshave pushed the campuses of |owa State University,
CdliforniaState University — Chico, and swaths of downtown Los Angeles[23] throughthe graphics pipeline.
Unfortunately, the modeling methods employed in such projects are very labor-intensive. They typicaly in-
volvesurveyingthesite, locating and digitizingarchitectura plans(if available), and converting existing CAD
data (if available). Moreover, the renderings of such mode s are noticeably computer-generated; even those
that employ large number of texture-maps generally fail to resemble real photographs.

Already, effortsto build computer models of architectural scenes have produced many interesting appli-
cationsin computer graphics; afew such projectsare shownin Fig. 1. Unfortunatdly, the traditional methods
of constructing models (Fig. 2a) of existing architecture, in which a modeling program is used to manually
position the e ements of the scene, have several drawbacks. Firgt, the process is extremey labor-intensive,
typicaly involving surveying the site, locating and digitizing architectural plans (if available), or converting
existing CAD data(again, if available). Second, itisdifficultto verify whether theresulting model isaccurate.

4-1



Figure 1: Three ambitious projectsto model architecture with computers, each presented with arendering of
the computer model and a photograph of the actual architecture. Top: Soda Hall Walkthru Project [47, 19],
University of Caiforniaat Berkeley. Middle: GizaPlateau M odeling Project, University of Chicago. Bottom:
Virtua Amiens Cathedral, Columbia University. Using traditional modeling techniques (Fig. 2a), each of
these modedls required many person-months of effort to build, and athough each project yielded enjoyable
and useful renderings, the results are qualitatively different from actual photographs of the architecture.
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Most disappointing, though, isthat the renderings of the resulting model s are noti ceably computer-generated;
even those that employ liberal texture-mapping generally fail to resemble real photographs. Asaresult, itis
easy to distinguishthe computer renderings from the real photographsin Fig. 1.

Recently, creating models directly from digital images has received increased interest in both computer
visionand in computer graphicsunder thetitle of image-based modeling and rendering. Sincerea imagesare
used as input, such an image-based system (Fig. 2¢) has an advantage in producing photorealistic renderings
asoutput. Some of these promising systems (e.g. [26, 32, 31, 44, 39], see also Figs. 3 and 4) employ the com-
puter vision technique of computational stereopsis to automatically determine the structure of the scene from
the multiplephotographsavailable. Asaconsequence, however, these systemsare only as strong as theunder-
lying stereo algorithms. This has caused problems because state-of-the-art stereo a gorithms have a number
of significant weaknesses; in particular, the photographs need to have similar viewpointsfor reliable results
to be obtained. Because of this, current image-based techniques must use many closely spaced images, and
in some cases empl oy significant amounts of user input for each image pair to supervise the stereo agorithm.
In thisframework, capturing the data for aredistically renderable model would require an impractical num-
ber of closaly spaced photographs, and deriving the depth from the photographs could require an impractical
amount of user input. These concessions to the weakness of stereo algorithmswould seem to bode poorly for
creating large-scale, freely navigable virtua environmentsfrom photographs.

The techniques presented in these notes aim to make the process of obtai ning basic models of architectural
scenes more convenient, moreaccurate, and more photorealisticthan the methods currently available. The ap-
proach devel oped draws on the strengths of both geometry-based and image-based methods, asillustrated in
Fig. 2b. Theresult isthat our approach to modeing and rendering architecture requires only a sparse set of
photographsand can produce redlistic renderingsfrom arbitrary viewpoints. In our approach, abasic geomet-
ric model of the architecture isrecovered semi-automatically with an easy-to-use photogrammetric modeling
system (explained in the following reprinted paper [12]), novel views are created using view-dependent tex-
ture mapping [12, 13], and additional geometric detail can be recovered through model-based stereo corre-
spondence[12, 10]. Thefinal images can be rendered with current image-based rendering techniques or with
traditional texture-mapping hardware. Because only photographs are required, our approach to modeling ar-
chitectureis neither invasive nor doesit requirearchitectural plans, CAD models, or speciaized instrumenta
tion such as surveying equipment, GPS sensors or |aser range scanners.

2 Work Related to Photogrammetric Modeling

The process of recovering 3D structure from 2D images has been a central endeavor within computer vision,
and the process of rendering such recovered structuresis an emerging topic in computer graphics. Although
no genera technique exists to derive models from images, severa areas of research have provided results
that are applicable to the problem of modeling and rendering architectura scenes. The particularly relevant
areas reviewed here are: Camera Calibration, Structure from Motion, Shape from Silhouette Contours, Stereo
Correspondence, and |mage-Based Rendering.

2.1 Cameracalibration

Recovering 3D structure from images becomes a simpler problem when the images are taken with calibrated
cameras. For our purposes, a camerais said to be calibrated if the mapping between image coordinates and
directions relative to the camera center are known. However, the position of the camera in space (i.e. its
trang ation and rotati on with respect to world coordinates) isnot necessarily known. An excellent presentation
of the algebraic and matrix representations of perspective cameras may befound in[17].

Considerable work has been done in both photogrammetry and computer vision to calibrate cameras and
lenses for both their perspective intrinsic parameters and their distortion patterns. Some successful methods
include [49], [16], and [15]. While there has been recent progress in the use of uncaibrated views for 3D
reconstruction [18], this method does not consider non-perspective camera distortion which prevents high-
precision resultsfor imagestaken withrea cameras. Wehavefound camera calibrationto be astraightforward
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(b) Hybrid Approach

images user input
(a) Geometry—Based g r, 2 (c) Image—Based
user input texture maps Photogrammetrig images (user input)
| | Modeling Program | |
Modeling l Stereo
Program basic model Correspondence
1 — 1
model Model-Base : depth maps
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Rendering Image
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renderings Image renderings
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Figure 2: Schematic of how our hybrid approach combines geometry-based and image-based approaches to
modeling and rendering architecture from photographs. The geometry-based approach illustrated places the
majority of the modeling task on the user, whereas the image-based approach places the mgjority of the task
on the computer. Our method divides the modeling task into two stages, one that is interactive, and one that
isautomated. The dividing point we have chosen capitalizes on the strengths of both the user and the com-
puter to produce the best possible model sand renderings using the fewest number of photographs. The dashed
linein the geometry-based schematic indicates that images may optionally be used in amodeling program as
texture-maps. The dashed linein theimage-based schematic indicates that in some systems user input is used
toinitializethe stereo correspondence algorithm. The dashed linein the hybrid schematic indicatesthat view-
dependent texture-mapping (discussed later inthese notesand in[10, 13, 36]) can be used without performing
stereo correspondence.
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Figure 3: The Immersion ' 94 [32] stereo image sequence capture rig, being operated by Michael Naimark of
Interval Research Corporation. Immersion ' 94 was one project that attempted to create navigable, photoreal -
istic virtual environmentsfrom photographic data. The stroller supportstwo identical 16mm movie cameras,
and has an encoder on one whedl to measure the forward motion of the rig. The cameras are motor-driven
and can be programmed to take picturesin synchrony at any distanceinterval as the camerarollsforward. For
much of the work done for the Immersion project, the forward motion distance between acquired stereo pairs
was one meter.

process that considerably simplifies the problem of 3D reconstruction, although the methods presented here
can aso solve for focal lengths and other intrinsic parameters if necessary. [10], Chapter 4 provides a more
detailed overview of the issues involved in camera calibration and discusses the camera calibration process
used in thiswork.

2.2 Structurefrom motion

Giventhe 2D projection of apointintheworld, itspositionin 3D space could be anywhere on aray extending
out in a particular direction from the camera's optical center. However, when the projections of a sufficient
number of pointsin the world are observed in multipleimages from different positions, it is mathematically
possible to deduce the 3D locations of the points as well as the positions of the origina cameras, up to an
unknown factor of scale.

This problem has been studied in the area of photogrammetry for the principa purpose of producing topo-
graphic maps. In 1913, Kruppa[25] proved the fundamental result that given two views of five distinct points,
one could recover the rotation and translation between the two camera positions as well as the 3D locations
of the points(up to asca e factor). Sincethen, the problem’smathematical and algorithmic aspects have been
explored starting from the fundamental work of Ullman [51] and Longuet-Higgins[29], in the early 1980s.
Faugeras'sbook [17] overviewsthe state of theart as of 1992. So far, akey realization has been that the recov-
ery of structure isvery sensitive to noise in image measurements when the trand ation between the available
camera positionsis small.

Attention has turned to using more than two views with image stream methods such as [48] or recursive
approaches [1]. Tomas and Kanade [48] (see Fig. 5) showed excdlent results for the case of orthographic
cameras, but direct solutions for the perspective case remain dusive. In general, linear algorithms for the
problem fail to make use of al availableinformationwhile nonlinear optimization methods are proneto diffi-
cultiesarising fromlocal minimain the parameter space. An aternativeformulation of the problem by Taylor
and Kriegman [46] (see Fig. 6) useslinesrather than pointsasimage measurements, but the previoudly stated
concernswere showntoremain largely valid. For purposesof computer graphics, thereisyet another problem:
the model s recovered by these algorithms consist of sparse point fields or individual line segments, which are
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Figure 4: The Immersion ' 94 [32] image-based modeling and rendering (see Fig. 2c) project. The top two
photosare astereo pair (reversed for cross-eyed stereo viewing) taken withtheapparatusin Fig. 3in Canada's
Banff National Forest. Thefilm framewas overscanned to assistinimageregistration. The middleleft photois
astereo disparity map produced by aparallel implementation of the Zabih-Woodfill stereo algorithm [55]. To
itsright the map has been processed using a left-right consistency check to invalidate regions where running
stereo based on the left image and stereo based on the right image did not produce consistent results. Below
are two virtual views generated by casting each pixel out into space based on its computed depth estimate,
and reimaging the pixelsinto novel camera positions. On the left is the result of virtually moving one meter
forward, on theright is the result of virtually moving one meter backward. Note the dark de-occluded areas
produced by thesevirtual camera moves; these areas were not seen intheorigina stereo pair. Inthelmmersion
'94 animations, these regions were automatically filled in from neighboring stereo pairs.
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Figure5: Images from the 1992 Tomasi -K anade structurefrom motion paper [48]. Inthis paper, feature points
were automatically tracked in an image sequence of amodel house rotating. By assuming the camerawas or-
thographi ¢ (which was approximated by using a telephoto lens), they were able to solve for the 3D structure
of the pointsusing a linear factorization method. The above | eft picture shows a picture from the original se-
guence, the above right picture shows a second image of the model from above (not in the original sequence),
and the plot below showsthe 3D recovered pointsfrom the same camera angle as the above right picture. Al-
though an el egant and fundamental result, thisapproach isnot directly applicableto real-world scenes because
real camera lenses (especialy thosetypically used for architecture) are too wide-angle to be approximated as
orthographic.
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Figure 6: Images from the 1995 Taylor-Kriegman structure from motion paper [46]. In thiswork, structure
from motionisrecast in terms of line segments rather than points. A principal benefit of thisisthat line fea-

tures are often more easily located in architectural scenes than point features. Above are two of eight images
of a block scene; edge correspondences among the images were provided to the algorithm by the user. The
algorithm then employed a nonlinear optimi zation techniqueto solvefor the 3D positionsof theline segments
as well asthe original camera positions, show below. Thiswork used calibrated cameras, but allowed afull

perspective model to be used in contrast to Tomasi and Kanade [48]. However, the optimization technique
was proneto getting caught inlocal minimaunlessgood initial estimates of the camera orientationswere pro-
vided. Thiswork was extended to become the basis of the photogrammetric modeling method presented in

this section of these notes.
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not directly renderable as solid 3D models.

In our approach, weexpl oit thefact that we are trying to recover geometric model s of architectural scenes,
not arbitrary three-dimensional point sets. Thisenablesusto includeadditiona constraintsnot typically avail-
able to structure from motion algorithms and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in an interactive system for building architectura models
from photographs, described in the following paper.

2.3 Shapefrom silhouette contours

Some work has been done in both computer vision and computer graphics to recover the shape of objects
from their silhouette contoursin multipleimages. If the camera geometry isknown for each image, then each
contour defines an infinite, cone-shaped region of space within which the object must lie. An estimate for
the geometry of the object can thus be obtained by intersecting multiple such regions from different images.
Asagreater variety of views of the object are used, thistechnique can eventually recover theray hull® of the
object. A simpleversion of the basic techniquewas demonstrated in[8], showninFig. 7. Inthisproject, three
nearly orthographic photographs of a car were used to carve out its shape, and the images were mapped onto
thisgeometry to produce renderings. Although just three viewswere used, the recovered shapeisclosetothe
actual shape because the views were chosen to align with the mostly boxy geometry of the object. A projectin
which a continuous stream of views was used to reconstruct object geometry ispresented in [45, 44]; see dso
Fig. 8. A similar silhouette-based technique was used to provide an approximate estimate of object geometry
to improve renderings in the Lumigraph image-based modeling and rendering system [20].

In modeling from silhouettes, qualitatively better results can be obtained for curved objects by assuming
that the object surface normal is perpendicular to the viewing direction at every point of the contour. Using
this constraint, [43] devel oped a surface fitting technique to recover curved models from images.

In general, silhouette contours can be used effectively to recover approximate geometry of individual ob-
jects, and the process can be automated if thereisknown camera geometry and the objects can beautomatically
segmented out of theimages. Silhouette contours can also be used very effectively to recover the precise ge-
ometry of surfaces of revolutioninimages. However, for the general shape of an arbitrary building that has
many sharp corners and concavities, silhouette contours alone can not provide adequately accurate model ge-
ometry.

Although not adequate for genera building shapes, silhouette contours could be useful in recovering the
approximate shapes of trees, bushes, and topiary inarchitectura scenes. Techniquessuch asthosepresentedin
[35] could then be used to synthesize detail ed plant geometry to conform to the shape and type of the origina
flora. Thistechniquewould seem to hold considerably more promisefor practically recovering plant structure
than trying to reconstruct the position and coloration of each individua leaf and branch of every treein the
scene.

2.4 Stereo correspondence

The geometrical theory of structure from motion assumes that one is able to solve the correspondence prob-
lem, whichisto identify the pointsin two or more images that are projections of the same point in the world.
In humans, corresponding pointsin the two slightly differing images on the retinas are determined by the vi-
sual cortex in the process called binocular stereopsis. Two terms used in reference to stereo are baseline and
disparity. The baseline of astereo pair isthe distance between the camera locations of the two images. Dis-
parity refers to the difference in image location between corresponding features in the two images, whichis
projectively related to the depth of the feature in the scene.

Years of research (e.g. [2, 14, 21, 24, 30, 33, 34]) have shown that determining stereo correspondences by
computer is difficult problem. In general, current methods are successful only when theimagesare similarin
appearance, asinthe case of human vision, whichisusualy obtained by using cameras that are closely spaced

1Theray hull of an object isthe complement of the union of all raysin spacewhich do not intersect the object. Theray hull can capture
some forms of object concavities, but not, in general, complicated concave structure.
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Figure7: Imagesfromthe 1991 Chevette M odeling project [8]. Thetop threeimages show picturesof the 1980
Chevette photographed witha210mm lensfrom thetop, side, and front. The Chevette was semi-automatically
segmented from each image, and theseimages were then registered with each other approximating the projec-
tionas orthographic. Theregistered photographsare shown placed in proper rel ation to each other onthefaces
of arectangular box in the center of the figure. The shape of the car is then carved out from the box volume
by perpendicularly sweeping each of the three silhouettes like a cookie-cutter through the box volume. The
recovered volume (shown insidethe box) isthen textured-mapped by projecting theorigina photographsonto
it. The bottom of the figure shows a sampling of frames from a synthetic animation of the car flying across
the screen.  Although (and perhaps because) the final mode has flaws resulting from specularities, missing
concavities, and imperfect image registration, it unequivocally evokes an uncanny sense of the actual vehicle.
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Figure 8: Images from a silhouette modeling project by Rick Szeliski [45, 44]. The cup was videotaped on
a rotating platform (left), and the extracted contours from this image sequence were used to automatically
recover the shape of the cup (right).

relative to the objects in the scene. Asthe distance between the cameras (often called the baseline) increases,
surfaces in the images exhibit different degrees of foreshortening, different patterns of occlusion, and large
disparitiesin their locationsin the two images, al of which makes it much more difficult for the computer to
determine correct stereo correspondences. To be more specific, the mgjor sources of difficulty include:

1. Foreshortening. Surfaces in the scene viewed from different positions will be foreshortened differ-
ently intheimages, causing theimage nel ghborhoodsof corresponding pixelsto appear dissimilar. Such
dissimilarity can confound stereo algorithms that use local similarity metrics to determine correspon-
dences.

2. Occlusions. Depth discontinuitiesin theworld can create half-occluded regionsin an image pair, which
also poses problemsfor local similarity metrics.

3. Lack of Texture. Where there is an absence of image intensity features it is difficult for a stereo ago-
rithm to correctly find the correct match for a particular point, since many point neighborhoodswill be
similar in appearance.

Unfortunately, the dternative of improving stereo correspondence by using images taken from nearby |o-
cations has the disadvantage that computing depth becomes very sensitive to noise in image measurements.
Since depthis computed by taking the inverse of disparity, image pairswith small disparitiestend to giverise
to noisy depth estimates. Geometrically, depth is computed by triangulating the position of a matched point
from its imaged position in the two cameras. When the cameras are placed close together, thistriangle be-
comes very narrow, and the distance to its apex becomes very sensitiveto the angles at itsbase. Noisy depth
estimates mean that nove viewswill become visually unconvincing very quickly asthevirtua camera moves
away from the original viewpoint?.

Thus, computing scene structure from stereo |eaves us with a conundrum: image pairs with narrow base-
lines (relative to the distance of objectsin the scene) are similar in appearance and make it possible to auto-

2Theerror present in asynthetic view asafunction of stereo correspondenceaccuracy can be described asthere-rendering equation.
If the novel view is at the same position as the original view, then no amount of depth estimation error can effect the appearance of the
re-rendered view; it will lwaysbethe sameastheoriginal view up to rotation. However, if the novel view is displaced up to onebaseline
away from the original view, then a stereo correspondenceerror of n pixelswill cause up to n pixels of error in the reprojected position
of the mis-corresponded pixel. For a displacement up to k baselines away from the original viewpoint, the reprojection error will be up
to kn pixelsin the reprojected view, with this bound realized if the cameramotion is parallel to the baseline between the cameras. Thus,
itisadvisableto limit novel viewpointsto be within afew baselines of the original views, lest correspondenceerrors distort the images
very noticeably.
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matically compute stereo correspondences, but give noisy depth estimates. Image pairs with wide baselines
can givevery accurate depth localization for matched points, but the images usually exhibit large disparities,
significant regions of occlusion, and different forms of foreshortening which makes it very difficult to auto-
matically determine correspondences.

In these notes, we help address this problem by showing that having an approximate modd of the pho-
tographed scene can be used to robustly determine stereo correspondences from images taken from widely
varying viewpoints. Specifically, themode enablesusto warp theimages to €liminate unequal foreshortening
and to predict major instances of occlusion before trying to find correspondences. Thistechniqueis a gener-
alization of the plane-plus-parallax parameterization [38] which we call model-based stereo; itispresentedin
the following paper and in [10], Chapter 7.

2.5 Rangescanning

Instead of the approach of using multipleimages to reconstruct scene structure, an aternative techniqueisto
use range imaging sensors (e.g. [4]) to directly measure depth to various pointsin the scene. Range imaging
sensors determine depth either by triangulating the position of a projected laser stripe, or by measuring the
time of flight of adirectional laser pulse. Whileexisting versions of these sensors are generally slow, cumber-
some and expensive, active development of thistechnology is making it of practical use for more and more
applications. Indeed, the improved practicality of these devices combined with their amazing resolution and
range precision will advocate their usein more and more modeling projects. In particular, the Digital Michae-
langelo project [27] being directed by Professor Marc Levoy of Stanford University will undoubtedly serve
as awatershed event in the practical use of laser range devices and digital photography for creating realistic
models of both objects and environmentsfor computer graphics applications.

Algorithmsfor combining multiple range images from different viewpoints have been developed both in
computer vision [53, 42, 41] and in computer graphics[22, 50, 6]; seeadso Fig. 9. In many ways, rangeimage
based techniques and photographic techniques are complementary and each have advantages and disadvan-
tages. Some advantages of modeling from photographicimages are that () still cameras are inexpensive and
widely available, (b) for some architecture that no longer exists (historic buildings, disassembl ed film sets) all
that isavailableare photographs, and (c) photogrammetry works at arbitrary distances, and isawayseye-safe.
Of course, geometry aloneisinsufficient for producing realistic renderings of a scene; photometric informa:
tion from photographsis aso necessary. In general, any image-based rendering techniquethat can work with
geometry acquired from photogrammetry or stereo can work equally well or better with geometry acquired
from range scanning.

2.6 Image-based modeling and rendering

In traditiona image-based rendering systems, the moddl consists of a set of images of a scene and their corre-
sponding depth maps. When the depth of every pointinan imageisknown, theimage can bere-rendered from
any nearby point of view by projecting the pixels of the image to their proper 3D locations and reprojecting
them onto a new image plane. Thus, anew image of the sceneis created by warping theimages according to
their depth maps. A principal attraction of image-based rendering is that it offers a method of rendering ar-
bitrarily complex scenes with a constant amount of computation required per pixel. Using this property, [52]
demonstrated how regularly spaced synthetic images (with their computed depth maps) could be warped and
composited inreal timeto produce a virtual environment.

Inthe Immersion ' 94 project [32], (Fig. 4) stereo photographswith abaseline of eight inches were taken
every meter along atrail inaforest. Depth was extracted from each stereo pair using acensus stereo algorithm
[55]. Novel views were produced by supersampled z-buffered forward pixel splatting based on the stereo
depth estimate of each pixel. ([26] describes a different rendering approach that implicitly triangulated the
depth maps.) By manually determining relative camera pose between successive stereo pairs, it was possible
to optically combine re-renderings from neighboring stereo pairsto fill in missing texture information. The
project was able to produce very realistic synthetic views looking forward along the trail from any position
within ameter of the origina camera path, which was adequate for producing arealistic virtua experience of
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(d)

Figure 9: Severa models constructed from triangul ation-based | aser range scanning techniques. (a) A model
of aperson’s head scanned using acommercially avail able Cyberware | aser range scanner, using acylindrical
scan. (b) A texture-mapped version of thismodel, using imagery acquired by the same video camera used to
detect thelaser stripe. (¢) A more complex geometry assembled by zi ppering together severa triangle meshes
obtained from separate linear range scans of asmall object from [50]. (d) An even more complex geometry
acquired from approximately sixty range scans using the volumetric recovery method in[6].
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walking downthetrail. Thus, for mostly linear environments such as aforest trail, thismethod of capture and
rendering seems promising.

[31] presented a real-time image-based rendering system that used panoramic photographs with depth
computed, in part, from stereo correspondence. One observation of the paper was that extracting reliable
depth estimates from stereo is very difficult. The method was nonetheless able to obtain acceptable results
for nearby views using user input to aid the stereo depth recovery: the correspondence map for each image
pair was seeded with 100 to 500 user-supplied point correspondences and a so post-processed. Even with user
assistance, theimages used still had to be closely spaced; the largest baseline described in the paper was five
feet.

The requirement that samples be close together is a serious limitation to generating a fredy navigable
virtual environment. Covering the size of just one city block could require thousands of panoramic images
spaced five feet apart. Clearly, acquiring so many photographsisimpractical. Moreover, even adense lattice
of ground-based photographswould only allow renderings to be generated from within afew feet of the orig-
inal cameralevd, precluding any virtua fly-bys of the scene. Extending the dense lattice of photographsinto
three dimensions would clearly make the acquisition process even more difficult.

The modeling and rendering approach described in these notes takes advantage of the structure in archi-
tectural scenes so that only a sparse set of photographs can be used to recover both the geometry and the ap-
pearance of an architectural scene. Asan example, the approach was able to create avirtua fly-around of the
UC Berkeley bell tower and the surrounding campus from just twenty photographs (see the following slides
and the web site http://www.cs.berkel ey.edu/~debevec/ Campanile).

Some research done concurrently with the work presented here [3] also shows that taking advantage of
architectural constraints can simplify image-based scene modeling. Thiswork specifically explored the con-
straints associated with the cases of parallel and coplanar edge segments.

An interesting aspect of image-based modeling and rendering is that the accuracy of the geometry can
traded off withthe number of images acquired and thefreedom of movement attainable. [40] for exampl e, uses
no explicit geometry but rather a set of correspondences between two views of a scene to generate arbitrary
viewsintermediateto thetwo origina ones. And[20, 28] blend between avery largearray images of an object
or scene in aview-dependent manner to create the appearance of a3D object, when the actual geometry being
used can be as simple as a single plane passing through the object.

3 Conclusion

The philosophy of the work presented here is that geometry is a good thing to have, and that it should be
acquired as accurately as possible. The particular techniques presented here make it possible to acquire the
basic geometry for many sorts of architectural scenes, using just aset of till photographsand some effort by a
trained user of the system. With the geometry recovered, thefull realism of the scene can be rendered by pro-
jecting theorigina photographsonto the geometry, preferably combining themwith aform of view-dependent
texture mapping. Note that this technique can only render the scene in the origind lighting conditions, and
that it will not be able to convincingly render particularly shiny surfaces, which change in appearance too
much with angle to be captured adequately in a sparse set of views. Addressing these problems requires ob-
taining estimates of the lighting conditionsand materia properties of the scene, which isthe subject of work
in image-based lighting[11, 9], BRDF recovery [7, 37], and Inverse Global Illumination [54].

More extensive information on Image-Based Modeling, Rendering, and Lighting and how it relates to
3D Photography may be found in the SIGGRAPH 99 Course notesfor Course #39, “Image-Based Modeling,
Rendering, and Lighting”.
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Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach

Paul E. Debevec

Camillo J. Taylor

JitendraMalik

University of Californiaat Berkeley*

ABSTRACT

We present a new approach for modeling and rendering existing ar-
chitectural scenesfrom a sparse set of still photographs. Our mod-
eling approach, which combines both geometry-based and image-
based techniques, has two components. The first component is a
photogrammetric modeling method which facilitates the recovery of
the basic geometry of the photographed scene. Our photogrammet-
ric modeling approach is effective, convenient, and robust because
it exploits the constraints that are characteristic of architectural
scenes. The second component is a model-based stereo algorithm,
which recovers how the real scene deviates from the basic model.
By making use of the model, our stereo techniquerobustly recovers
accurate depth from widely-spaced image pairs. Consequently, our
approach canmodel large architectural environmentswith far fewer
photographs than current image-based modeling approaches. For
producing renderings, we present view-dependent texture mapping,
amethod of compositing multiple views of a scenethat better sim-
ulates geometric detail on basic models. Our approach can be used
to recover modelsfor use in either geometry-based or image-based
rendering systems. \We present results that demonstrate our ap-
proach’s ability to create realistic renderings of architectural scenes
from viewpoints far from the original photographs.

CR Descriptors: 1.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Modeling and recovery of physical at-
tributes; 1.3.7 [Computer Graphics]: Three-Dimensiona Graph-
icsand Realism - Color, shading, shadowing, and texturel.4.8 [Im-
age Processing]: Scene Analysis - Stereo; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD).

1 INTRODUCTION

Efforts to model the appearance and dynamics of the real world
have produced some of the most compelling imagery in computer
graphics. In particular, efforts to model architectural scenes, from
the Amiens Cathedral to the Giza Pyramids to Berkeley's Soda
Hall, have produced impressive walk-throughs and inspiring fly-
bys. Clearly, it is an attractive application to be able to explore the
world's architecture unencumbered by fences, gravity, customs, or
jetlag.

1Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720-1776. {debevec,camillo,malik } @cs.berkeley.edu. See
a so http://www.cs.berkeley.edu/"debevec/Research

Unfortunately, current geometry-based methods (Fig. 1a) of
modeling existing architecture, in which a modeling program is
used to manually position the elements of the scene, have several
drawbacks. First, the processis extremely labor-intensive, typically
involving surveying the site, locating and digitizing architectural
plans(if available), or converting existing CAD data(again, if avail-
able). Second, it is difficult to verify whether the resulting model is
accurate. Most disappointing, though, is that the renderings of the
resulting modelsare noticeably computer-generated; eventhosethat
employ liberal texture-mapping generally fail to resemblereal pho-
tographs.

(b) Hybrid Approach

images user input

(a) Geometry—-Based (c) Image-Based

userinput  texture maps

Modeling
Program

model

Photogrammetrig images
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depth maps

Image
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renderings

(user input)

Modeling Progra

basic model
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Stereo

depth maps
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Warping

renderings

Rendering
Algorithm

renderings

Figure 1: Schematic of how our hybrid approach combines
geometry-based and image-based approachesto modeling and ren-
dering architecturefrom photographs.

Recently, creating models directly from photographs has re-
ceived increased interest in computer graphics. Since real images
are used asinput, such an image-based system (Fig. 1c) hasan ad-
vantage in producing photorealistic renderings as output. Some of
the most promising of these systems[16, 13] rely on the computer
vision techniqueof computational stereopsisto automatically deter-
minethe structure of the scenefrom the multiple photographsavail-
able. Asa conseguence, however, these systems are only as strong
as the underlying stereo algorithms. This has caused problems be-
cause state-of-the-art stereo algorithms have a number of signifi-
cant weaknesses; in particular, the photographsneed to appear very
similar for reliable results to be obtained. Because of this, current
image-based techniques must use many closely spaced images, and
in some cases employ significant amountsof user input for eachim-
age pair to supervise the stereo algorithm. In this framework, cap-
turing the datafor arealistically renderable model would require an
impractical number of closely spaced photographs, and deriving the
depth from the photographs could require an impractical amount of
user input. These concessionsto the weaknessof stereo algorithms
bode poorly for creating large-scale, freely navigable virtual envi-
ronments from photographs.

Our research aims to make the process of modeling architectural
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scenes more convenient, more accurate, and more photorealistic
than themethods currently available. To do this, we havedeveloped
anew approachthat draws on the strengths of both geometry-based
and image-based methods, asillustrated in Fig. 1b. Theresultisthat
our approachto modeling and rendering architecture requiresonly a
sparse set of photographsand can produce realistic renderingsfrom
arbitrary viewpoints. In our approach, a basic geometric model of
the architecture is recovered interactively with an easy-to-use pho-
togrammetric modeling system, novel viewsare created using view-
dependent texture mapping, and additional geometric detail can be
recovered automatically through stereo correspondence. The final
images can be rendered with current image-based rendering tech-
niques. Because only photographs are required, our approach to
modeling architecture is neither invasive nor does it require archi-
tectural plans, CAD models, or specialized instrumentation such as
surveying equipment, GPS sensors or range scanners.

1.1 Background and Related Work

The process of recovering 3D structure from 2D images has been
a central endeavor within computer vision, and the process of ren-
dering such recovered structures is a subject receiving increased
interest in computer graphics. Although no general technique ex-
ists to derive models from images, four particular areas of research
have provided results that are applicableto the problem of modeling
and rendering architectural scenes. They are: Camera Calibration,
Structure from Motion, Stereo Correspondence, and |mage-Based
Rendering.

1.1.1 Camera Calibration

Recovering 3D structure from images becomes a simpler problem
when the cameras used are calibrated, that is, the mapping between
image coordinates and directionsrelative to each camerais known.
This mapping is determined by, among other parameters, the cam-
era’s focal length and its pattern of radial distortion. Camera cali-
bration is awell-studied problem both in photogrammetry and com-
puter vision; some successful methods include [20] and [5]. While
there has been recent progress in the use of uncalibrated views for
3D reconstruction [7], we have found camera calibration to be a
straightforward processthat considerably simplifies the problem.

1.1.2 Structure from Motion

Given the 2D projection of a point in the world, its position in 3D
space could be anywhere on aray extending out in a particular di-
rection from the camera’s optical center. However, when the pro-
jections of a sufficient number of points in the world are observed
in multiple imagesfrom different positions, it is theoretically possi-
ble to deducethe 3D locations of the points aswell as the positions
of the original cameras, up to an unknown factor of scale.

This problem has been studied in the area of photogrammetry
for the principal purpose of producing topographic maps. In 1913,
Kruppa[10] proved the fundamental result that given two views of
five distinct points, one could recover the rotation and translation
between the two camera positions as well asthe 3D locations of the
points (upto ascalefactor). Sincethen, the problem’s mathematical
and algorithmic aspectshave been explored starting from the funda-
mental work of Ullman [21] and Longuet-Higgins[11], in the early
1980s. Faugeras'sbook [6] overviewsthe state of the art as of 1992.
So far, a key realization has been that the recovery of structure is
very sensitiveto noisein image measurementswhen the translation
between the available camera positions is small.

Attention has turned to using more than two views with image
stream methods such as[19] or recursive approaches(e.g. [1]). [19]
showsexcellent results for the case of orthographic cameras, but di-
rect solutions for the perspective case remain elusive. In general,
linear algorithms for the problem fail to make use of al available

information while nonlinear minimization methodsare proneto dif-
ficultiesarising from local minimain the parameter space. An alter-
native formulation of the problem [17] useslines rather than points
as image measurements, but the previously stated concerns were
shown to remain largely valid. For purposes of computer graph-
ics, thereis yet another problem: the models recovered by these al-
gorithms consist of sparse point fields or individual line segments,
which are not directly renderable as solid 3D models.

In our approach, we exploit the fact that we are trying to re-
cover geometric models of architectural scenes, not arbitrary three-
dimensional point sets. This enables us to include additional con-
straints not typically available to structure from motion algorithms
and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in auseful interac-
tive system for building architectural models from photographs.

1.1.3 Stereo Correspondence

The geometrical theory of structure from motion assumesthat one
isableto solvethe correspondenceproblem, which isto identify the
pointsin two or more images that are projections of the same point
in the world. In humans, corresponding points in the two slightly
differing images on the retinas are determined by the visual cortex
in the process called binocular stereopsis.

Years of research (e.g. [2, 4, 8, 9, 12, 15]) have shown that de-
termining stereo correspondencesby computer is difficult problem.
In general, current methods are successful only whentheimagesare
similar in appearance, asin the case of human vision, which is usu-
ally obtained by using camerasthat are closely spacedrelativeto the
objectsin the scene. When the distance between the cameras (often
called the baseline) becomes large, surfaces in the images exhibit
different degrees of foreshortening, different patterns of occlusion,
andlarge disparitiesin their locationsin the two images, all of which
makes it much more difficult for the computer to determine correct
stereo correspondences. Unfortunately, the alternative of improving
stereo correspondenceby using images taken from nearby locations
has the disadvantage that computing depth becomes very sensitive
to noise in image measurements.

In this paper, we show that having an approximate model of the
photographed scene makes it possible to robustly determine stereo
correspondences from images taken from widely varying view-
points. Specifically, the model enables us to warp the images to
eliminate unequal foreshortening and to predict major instances of
occlusion before trying to find correspondences.

1.1.4 Image-Based Rendering

In an image-based rendering system, the model consists of a set of
images of a scene and their corresponding depth maps. When the
depth of every point in an image is known, the image can be re-
rendered from any nearby point of view by projecting the pixels of
the image to their proper 3D locations and reprojecting them onto
a new image plane. Thus, a new image of the scene s created by
warping the images according to their depth maps. A principal at-
traction of image-based rendering is that it offers a method of ren-
dering arbitrarily complex scenes with a constant amount of com-
putation required per pixel. Using this property, [23] demonstrated
how regularly spaced synthetic images (with their computed depth
maps) could bewarped and compositedin real time to produceavir-
tual environment.

More recently, [13] presented a real-time image-based rendering
system that used panoramic photographs with depth computed, in
part, from stereo correspondence. One finding of the paper was that
extracting reliable depth estimates from stereo is “very difficult”.
The method was nonetheless able to obtain acceptable results for
nearby views using user input to aid the stereo depth recovery: the
correspondencemap for eachimage pair was seeded with 100to 500
user-supplied point correspondencesand also post-processed. Even
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with user assistance, the images used still had to be closely spaced;
the largest baseline described in the paper was five feet.

The requirement that samples be close together is a serious lim-
itation to generating a freely navigable virtual environment. Cov-
ering the size of just one city block would require thousands of
panoramic images spaced five feet apart. Clearly, acquiring so
many photographsisimpractical. Moreover, even a denselattice of
ground-based photographswould only allow renderingsto be gener-
ated from within afew feet of the original cameralevel, precluding
any virtual fly-bys of the scene. Extending the dense lattice of pho-
tographs into three dimensionswould clearly make the acquisition
process even more difficult. The approach described in this paper
takes advantage of the structure in architectural scenesso that it re-
quires only a sparse set of photographs. For example, our approach
hasyielded a virtual fly-around of a building from just twelve stan-
dard photographs.

1.2 Overview

In this paper we present three new modeling and rendering tech-
niques. photogrammetric modeling, view-dependent texture map-
ping, and model-based stereo. We show how these techniques can
be used in conjunction to yield a convenient, accurate, and photo-
realistic method of modeling and rendering architecture from pho-
tographs. In our approach, the photogrammetric modeling program
isusedto create abasic volumetric model of the scene, whichisthen
used to constrain stereo matching. Our rendering method compos-
itesinformation from multiple imageswith view-dependent texture-
mapping. Our approach is successful becauseit splits the task of
modeling from imagesinto taskswhich are easily accomplished by
aperson (but not acomputer algorithm), and taskswhich are easily
performed by a computer algorithm (but not a person).

In Section 2, we present our photogrammetric modeling
method. In essence, we have recast the structure from motion prob-
lem not as the recovery of individual point coordinates, but as the
recovery of the parameters of a constrained hierarchy of parametric
primitives. The result is that accurate architectural models can be
recovered robustly from just afew photographsand with aminimal
number of user-supplied correspondences.

In Section 3, we present view-dependent texture mapping, and
show how it can be used to realistically render the recovered model.
Unlike traditional texture-mapping, in which a single static image
is used to color in each face of the model, view-dependent tex-
ture mapping interpolates between the avail able photographs of the
scene depending on the user’s point of view. This results in more
lifelike animations that better capture surface specularities and un-
modeled geometric detail.

Lastly, in Section 4, we present model-based stereo, which is
used to automatically refine abasic model of a photographed scene.
This technique can be used to recover the structure of architectural
ornamentation that would be difficult to recover with photogram-
metric modeling. In particular, we show that projecting pairs of im-
ages onto an initial approximate model allows conventional stereo
techniques to robustly recover very accurate depth measurements
from images with widely varying viewpoints.

2 Photogrammetric Modeling

In this section we present our method for photogrammetric model-
ing, in which the computer determines the parameters of a hierar-
chical model of parametric polyhedral primitives to reconstruct the
architectural scene. We have implemented this method in Fagade,
an easy-to-useinteractive modeling program that allows the user to
construct ageometric model of a scenefrom digitized photographs.
Wefirst overview Fagadefrom the point of view of the user, then we
describe our model representation, and then we explain our recon-
struction algorithm. Lastly, we present results from using Fagadeto
reconstruct several architectural scenes.

2.1 The User’s View

Constructing a geometric model of an architectural scene using
Fagadeisanincremental and straightforward process. Typically, the
user selectsa small number of photographsto begin with, and mod-
elsthe sceneonepieceat atime. The user may refinethe model and
include moreimagesin the project until the model meetsthe desired
level of detail.

Fig. 2(a) and (b) showsthe two typesof windowsused in Fagade:
image viewers and model viewers. The user instantiates the com-
ponents of the model, marks edgesin the images, and corresponds
the edgesin theimages to the edgesin the model. When instructed,
Fagcade computesthe sizes and relative positions of the model com-
ponentsthat best fit the edges marked in the photographs.

Components of the model, called blocks, are parameterized ge-
ometric primitives such as boxes, prisms, and surfaces of revolu-
tion. A box, for example, is parameterized by its length, width, and
height. The user models the scene as a collection of such blocks,
creating new block classesas desired. Of course, the user does not
need to specify numerical values for the blocks' parameters, since
these are recovered by the program.

The user may chooseto constrain the sizes and positions of any
of theblocks. InFig. 2(b), most of the blocks havebeen constrained
to have equal length and width. Additionally, the four pinnacles
have been constrained to have the same shape. Blocks may also be
placed in constrained relations to one other. For example, many of
the blocksin Fig. 2(b) have been constrained to sit centered and on
top of the block below. Such constraints are specified using agraph-
ical 3D interface. When such constraintsare provided, they are used
to simplify the reconstruction problem.

The user marks edge features in the images using a point-and-
click interface; a gradient-based technique asin [14] can be usedto
align the edges with sub-pixel accuracy. We use edge rather than
point features since they are easier to localize and less likely to
be completely obscured. Only a section of each edge needs to be
marked, making it possible to use partially visible edges. For each
marked edge, the user also indicates the corresponding edge in the
model. Generally, accurate reconstructions are obtained if there are
as many correspondences in the images as there are free camera
and model parameters. Thus, Fagadereconstructs scenesaccurately
even when just a portion of the visible edgesand marked in theim-
ages, and when just a portion of the model edges are given corre-
spondences.

At any time, the user may instruct the computer to reconstruct the
scene. The computer then solves for the parameters of the model
that causeit to align with the marked features in the images. Dur-
ing the reconstruction, the computer computes and displays the lo-
cations from which the photographswere taken. For simple models
consisting of just afew blocks, afull reconstruction takesonly afew
seconds; for more complex models, it can take a few minutes. For
this reason, the user can instruct the computer to employ faster but
less precise reconstruction algorithms (see Sec. 2.4) during the in-
termediate stages of modeling.

To verify thethe accuracy of the recovered model and camerapo-
sitions, Fagade can project the model into the original photographs.
Typically, the projected model deviates from the photographs by
lessthan apixel. Fig. 2(c) showstheresults of projecting the edges
of the model in Fig. 2(b) into the original photograph.

Lastly, the user may generate novel views of the model by posi-
tioning avirtual cameraat any desiredlocation. Fagadewill thenuse
the view-dependent texture-mapping method of Section 3 to render
anovel view of the scenefrom thedesired location. Fig. 2(d) shows
an aerial rendering of the tower model.

2.2 Model Representation

The purposeof our choiceof model representationisto representthe
scene as a surface model with as few parameters as possible: when
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Figure 2: (a) A photograph of the Campanile, Berkeley's clock tower, with marked edges shown in green. (b) The model recovered by our
photogrammetricmodeling method. Although only theleft pinnaclewas marked, the remainingthree (including one not visibl€) wererecovered
from symmetrical constraintsin the model. Our method allows any number of images to be used, but in this case constraints of symmetry
made it possible to recover an accurate 3D model froma single photograph. (¢) The accuracy of the model is verified by reprojectingit into
the original photograph through the recovered camera position. (d) A synthetic view of the Campanile generated using the view-dependent
texture-mapping method described in Section 3. A real photograph from this position would be difficult to take since the camera position is

250 feet above the ground.

the model hasfewer parameters, the user needsto specify fewer cor-
respondences, and the computer can reconstruct the model more ef-
ficiently. In Fagade, the sceneis represented as a constrained hier-
archical model of parametric polyhedral primitives, called blocks.
Each block has a small set of parameters which serve to define
its size and shape. Each coordinate of each vertex of the block is
then expressed as linear combination of the block’s parameters, rel-
ative to an internal coordinate frame. For example, for the wedge
block in Fig. 3, the coordinates of the vertex P, are written in
terms of the block parameters width, height, andlength as P, =
(—width, —height, length)” . Eachblock is also given an associ-
ated bounding box.

n
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Figure 3: A wedge block with its parametersand bounding box.

ground_plane

l ()
first_storey
S
= entvance
@ (b)

Figure 4: (a) A geometric model of a simple building. (b) The
model’s hierarchical representation. The nodes in the tree repre-
sent parametric primitives (called blocks) while the links contain
the spatial relationships between the blocks.

Theblocksin Fagadeare organized in ahierarchical tree structure

asshownin Fig. 4(b). Eachnode of thetree representsanindividual
block, while thelinksin the tree contain the spatial relationshipsbe-
tween blocks, called relations. Such hierarchical structures are also
used in traditional modeling systems.

Therelation between ablock and its parent is most generally rep-
resented as arotation matrix R and atranslation vector ¢. Thisrep-
resentation requiressix parameters: threeeachfor R and¢. Inarchi-
tectural scenes, however, the relationship between two blocks usu-
ally has a simple form that can be represented with fewer parame-
ters, and Fagade allows the user to build such constraintson R and
¢t into the model. Therotation R between ablock and its parent can
be specifiedin oneof threeways: first, asan unconstrained rotation,
requiring three parameters; second, as a rotation about a particular
coordinate axis, requiring just one parameter; or third, as afixed or
null rotation, requiring no parameters.

Likewise, Facade allows for constraints to be placed on each
component of the translation vector ¢. Specifically, the user can
constrain the bounding boxes of two blocks to align themselvesin
some manner along each dimension. For example, in order to en-
sure that the roof block in Fig. 4 lies on top of thefirst story block,
the user can require that the maximum y extent of the first story
block be equal to the minimum y extent of the roof block. With
this constraint, the translation along the y axisis computed (¢, =
(first_story,”** — roof)""™)) rather than represented as a pa-
rameter of the model.

Each parameter of each instantiated block is actually areference
to anamed symbolic variable, asillustrated in Fig. 5. As a result,
two parameters of different blocks (or of the same block) can be
equated by having each parameter reference the same symbol. This
facility allows the user to equate two or more of the dimensionsin
a model, which makes modeling symmetrical blocks and repeated
structure more convenient. Importantly, these constraintsreducethe
number of degreesof freedomin the model, which, aswe will show,
simplifiesthe structure recovery problem.

Once the blocks and their relations have been parameterized, it
is straightforward to derive expressions for the world coordinates
of the block vertices. Consider the set of edges which link a spe-
cific block in the model to the ground plane as shown in Fig. 4.
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BLOCKS VARIABLES
Blockl
name: "building_length"
type: wedge .
ype e
name: "building_width"
velue 100
name:"roof_height"
value: 2.0
Block2
type: box name: “first_storey_height"
v a0

Figure5: Representation of block parametersas symbol references.
A singlevariable can be referenced by the model in multiple places,
allowing constraints of symmetry to be embedded in the model.

Letg: (X), ..., gn(X) representtherigid transformations associated
with each of these links, where X represents the vector of all the
model parameters. The world coordinates P.,(X') of a particular
block vertex P(X') isthen:

Pu(X) = g1 (X)..ga(X) P(X) M

Similarly, the world orientation v., (X') of a particular line seg-
ment v(X) is:
v (X) = g1(X)...gn(X)v(X) 2

Inthese equations, the point vectors P and P., andthe orientation
vectorsv and v, are represented in homogeneous coordinates.

Modeling the scenewith polyhedral blocks, asopposedto points,
line segments, surface patches, or polygons, is advantageousfor a
number of reasons:

e Most architectural scenesare well modeled by an arrangement
of geometric primitives.

¢ Blocksimplicitly contain common architectural elementssuch
asparalel lines and right angles.

¢ Manipulating block primitives is convenient since they are at
asuitably high level of abstraction; individual features such as
points and lines are less manageable.

e A surface model of the scene is readily obtained from the
blocks, so there is no need to infer surfaces from discrete fea-
tures.

e Modeling in terms of blocks and relationships greatly reduces
the number of parameters that the reconstruction algorithm
needsto recover.

Thelast pointiscrucial to the robustnessof our reconstruction al-
gorithm and the viability of our modeling system, and is illustrated
best with an example. The model in Fig. 2 is parameterized by just
33 variables (the unknown camera position adds six more). If each
block in the scene were unconstrained (in its dimensions and posi-
tion), the model would have 240 parameters; if each line segmentin
the scene were treated independently, the model would have 2,896
parameters. This reduction in the number of parameters greatly en-
hancesthe robustness and efficiency of the method as compared to
traditional structure from motion algorithms. Lastly, since the num-
ber of correspondences needed to suitably overconstrain the mini-
mization is roughly proportional to the number of parametersin the
model, thisreduction meansthat the number of correspondencesre-
quired of the user is manageable.

2.3 Reconstruction Algorithm

Our reconstruction algorithm works by minimizing an objective
function O that sums the disparity between the projected edges of
the model and the edges marked in theimages, i.e. © = 5" Err;
where Err; represents the disparity computed for edge feature .

Thus, the unknown model parameters and camera positions are
computed by minimizing O with respectto thesevariables. Our sys-
tem uses the the error function Err; from [17], described below.

image plane
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Figure 6: (a) Projection of a straight line onto a camera’s image
plane. (b) Theerror function used in the reconstruction algorithm.
Theheavy line representsthe obser ved edge segment (mar ked by the
user) and thelighter line representsthe model edge predicted by the
current camera and model parameters.

Fig. 6(a) shows how a straight line in the model projects onto
the image plane of a camera. The straight line can be defined by
apair of vectors (v, d) where v represents the direction of the line
and d representsapoint on theline. Thesevectors can be computed
from equations2 and 1 respectively. The position of the camerawith
respect to world coordinatesis given interms of arotation matrix R;
and atranslation vector ¢;. The normal vector denoted by m in the
figureis computed from the following expression:

m = R;(v x (d - t;)) ©)

The projection of the line onto the image plane is simply thein-
tersection of the planedefined by m with theimage plane, located at
z = — f where f isthe focal length of the camera. Thus, the image
edge is defined by the equation m,x + myy — m. f = 0.

Fig. 6(b) shows how the error between the observed image edge
{(z1,y1), (z2,y2)} and the predicted image line is calculated for
each correspondence. Points on the observed edge segment can be
parameterized by a single scalar variable s € [0,1] wherel is the
length of theedge. Welet h(s) bethefunction that returnsthe short-
est distancefrom apoint onthe segment, p(s), to the predicted edge.

With these definitions, the total error between the observed edge
segment and the predicted edgeis calculated as:

14

Err; = / R (s)ds = é(h§+h1h2+h§) = m” (A" BA)m
0

©

where:

m = (m$7my7mZ)T
A B ( s yl 1 )
Tr2 Y2 1
B = l 1 0.5

Thefinal objectivefunction © isthe sum of the error termsresult-
ing from each correspondence. We minimize © using a variant of
the Newton-Raphson method, which involves calcul ating the gradi-
ent and Hessian of O with respect to the parameters of the camera
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and the model. As we have shown, it is simple to construct sym-
bolic expressionsfor m in terms of the unknown model parameters.
The minimization algorithm differentiates these expressions sym-
bolically to evaluate the gradient and Hessian after each iteration.
The procedure is inexpensive since the expressionsfor d and v in
Equations 2 and 1 have a particularly simple form.

2.4 Computing an Initial Estimate

Theobjectivefunction described in Section 2.3 sectionis non-linear
with respect to the model and camera parameters and consequently
can have local minima. If the algorithm begins at a random loca-
tion in the parameter space, it stands little chance of converging to
the correct solution. To overcome this problem we have developed
amethod to directly compute a good initial estimate for the model
parameters and camera positionsthat is near the correct solution. In
practice, our initial estimate method consistently enables the non-
linear minimization algorithm to converge to the correct solution.

Ourinitial estimate method consistsof two procedures performed
in sequence. The first procedure estimates the camera rotations
while the second estimates the camera translations and the parame-
tersof themodel. Bothinitial estimate proceduresarebased uponan
examination of Equation 3. From this equation the following con-
straints can be deduced:

T
m- R;v

m” R;(d —t;)

0 )
0 (6)

Given an observed edgeu; ; the measured normal m’ to theplane
passing through the camera center is:

m'=(y11)X(y§) )
—f —f

From these equations, we seethat any model edges of known ori-
entation constrain the possible valuesfor R;. Since most architec-
tural models contain many such edges (e.g. horizontal and vertical
lines), each camera rotation can be usually be estimated from the
model independent of the model parameters and independent of the
camera’slocation in space. Our method doesthis by minimizing the
following objective function O, that sums the extentsto which the
rotations R; violate the constraints arising from Equation 5:

Or =Y (m"Ryvi)’, vi € {#,9,%) ®
Once initial estimates for the camera rotations are computed,
Equation 6 is used to obtain initial estimates of the model param-
eters and camera locations. Equation 6 reflects the constraint that
all of the points on the line defined by the tuple (v, d) shouldlie on
the plane with normal vector m passing through the camera center.
This constraint is expressed in the following objective function O»
where P;(X') and Q;(X') are expressionsfor the verticesof an edge
of the model.

02 =Y (" Ry(PAX) = 1,))" + (m" Ry (Qu(X) = 1,))° (9)
In the special case where al of the block relations in the model
have a known rotation, this objective function becomes a simple
quadratic form which is easily minimized by solving a set of linear
equations.

Oncetheinitial estimateis obtained, the non-linear minimization
over the entire parameter spaceis applied to producethe best possi-
ble reconstruction. Typically, the minimization requires fewer than
ten iterations and adjusts the parameters of the model by at most a
few percent from theinitial estimates. The edges of the recovered
models typically conform to the original photographs to within a
pixel.

= = =
Figure 7: Threeof twelve photographsused to reconstructthe entire
exterior of University High School in Urbana, Illinois. The super-
imposed lines indicate the edges the user has marked.

(©
Figure 8: The high school model, reconstructed from twelve pho-
tographs. (a) Overhead view. (b) Rear view. (c) Aerial view show-
ing the recovered camera positions. Two nearly coincident cameras
can be observed in front of the building; their photographs were
taken from the second story of a building acrossthe street.

E -
Figure 9: A synthetic view of University High School. Thisis a
frame from an animation of flying around the entire building.
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Figure 10: Reconstructionof Hoover Tower, Sanford, CA (a) Origi-
nal photograph, with marked edgesindicated. (b) Model recovered
fromthe single photograph shownin (a). (c) Texture-mappedaerial
view fromthe virtual camera position indicated in (b). Regionsnot
seenin (a) areindicated in blue.

2.5 Results

Fig. 2 showed the results of using Facade to reconstruct a clock
tower from a single image. Figs. 7 and 8 show the results of us-
ing Fagade to reconstruct a high school building from twelve pho-
tographs. (The model was originally constructed from just five im-
ages, theremaining imageswere added to the project for purposesof
generating renderings using the techniques of Section 3.) The pho-
tographsweretaken with acalibrated 35mm still camerawith astan-
dard 50mm lens and digitized with the PhotoCD process. Images at
the 1536 x 1024 pixel resolution were processed to correct for lens
distortion, then filtered downto 768 x 512 pixelsfor usein themod-
eling system. Fig. 8 shows some views of the recovered model and
camerapositions, and Fig. 9 showsa synthetic view of the building
generated by the techniquein Sec. 3.

Fig. 10 shows the reconstruction of another tower from a sin-
gle photograph. The dome was modeled specially since the recon-
struction algorithm does not recover curved surfaces. The user con-
strained atwo-parameter hemisphere block to sit centered on top of
the tower, and manually adjusted its height and width to align with
the photograph. Each of the models presented took approximately
four hoursto create.

3 View-Dependent Texture-Mapping

In this section we present view-dependent texture-mapping, an ef-
fective method of rendering the scene that involves projecting the
original photographsonto the model. Thisform of texture-mapping
is most effective when the model conforms closely to the actual
structure of the scene, and when the original photographs show the
scenein similar lighting conditions. In Section 4 we will show how
view-dependent texture-mapping can be used in conjunction with
model-based stereo to produce realistic renderings when the recov-
ered model only approximately models the structure of the scene.

Since the camera positions of the original photographs are re-
covered during the modeling phase, projecting the images onto the
model is straightforward. In this section we first describe how we
project a singleimage onto the model, and then how we merge sev-
eral image projections to render the entire model. Unlike tradi-
tional texture-mapping, our method projects different images onto
themodel depending on the user’sviewpoint. Asaresult, our view-
dependent texture mapping can give a better illusion of additional
geometric detail in the model.

3.1 Projecting a Single Image

The process of texture-mapping a single image onto the model can
be thought of as replacing each camera with a slide projector that
projects the original image onto the model. When the model is not

conve, it is possible that some parts of the model will shadow oth-
erswith respect to the camera. While such shadowed regions could
bedetermined using an object-spacevisible surface algorithm, or an
image-spaceray casting algorithm, we use an image-space shadow
map algorithm based on [22] sinceit is efficiently implemented us-
ing z-buffer hardware.

Fig. 11, upper left, showsthe results of mapping a single image
onto the high school building model. The recovered camera posi-
tion for the projected imageis indicated in the lower |eft corner of
theimage. Becauseof self-shadowing, not every point on the model
within the camera’s viewing frustum is mapped.

3.2 Compositing Multiple Images

In general, each photograph will view only a piece of the model.
Thus, it is usually necessary to use multiple imagesin order to ren-
der the entire model from anovel point of view. The top images of
Fig. 11 show two different images mapped onto the model and ren-
dered from anovel viewpoint. Somepixelsare coloredinjust one of
the renderings, while some are colored in both. Thesetwo render-
ings can be merged into a composite rendering by considering the
corresponding pixels in the rendered views. If apixel is mappedin
only onerendering, its valuefrom that rendering is usedin the com-
posite. If it is mapped in more than one rendering, the renderer has
to decide which image (or combination of images) to use.

It would be convenient, of course, if the projected images would
agree perfectly where they overlap. However, the images will not
necessarily agreeif thereisunmodeled geometric detail in the build-
ing, or if the surfaces of the building exhibit non-Lambertian reflec-
tion. In this case, the best image to use is clearly the one with the
viewing angle closest to that of the rendered view. However, using
theimage closest in angleat every pixel meansthat neighboring ren-
dered pixels may be sampled from different original images. When
this happens, specularity and unmodeled geometric detail can cause
visible seamsin the rendering. To avoid this problem, we smooth
these transitions through weighted averaging asin Fig. 12.

Figure 11: The process of assembling projected images to form a
composite rendering. The top two pictures show two images pro-
jected onto the model fromtheir respective recovered camera posi-
tions. The lower left picture shows the results of compositing these
two renderings using our view-dependent weighting function. The
lower right picture shows the results of compositing renderings of
all twelve original images. Some pixels near the front edge of the
roof not seen in any image have been filled in with the hole-filling
algorithmfrom[23].

Even with this weighting, neighboring pixels can still be sam-
pledfrom different viewsat theboundary of aprojected image, since
the contribution of an image must be zero outside its boundary. To
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virtual view

model

Figure 12: The weighting function used in view-dependent texture
mapping. The pixel in the virtual view corresponding to the point
on the model is assigned a weighted average of the corresponding
pixelsin actual views 1 and 2. Theweightsw; and w. areinversely
inversely proportional to the magnitude of anglesa; and az. Al-
ter nately, more sophisti cated weighting functionsbased on expected
foreshortening and image resampling can be used.

address this, the pixel weights are ramped down near the boundary
of the projected images. Although this method does not guarantee
smoothtransitionsin all cases, we havefound that it eliminates most
artifacts in renderings and animations arising from such seams.

If an origina photograph features an unwanted car, tourist, or
other object in front of the architecture of interest, the unwanted ob-
ject will be projected onto the surface of the model. To prevent this
from happening, the user may mask out the object by painting over
the obstruction with areserved color. The rendering algorithm will
then set the weights for any pixels corresponding to the masked re-
gionsto zero, and decreasethe weights of the pixelsnear the bound-
ary asbefore to minimize seams. Any regionsin the compositeim-
age which are occluded in every projected image are filled in using
the hole-filling method from [23].

Inthe discussion so far, projected image weights are computed at
every pixel of every projected rendering. Sincethe weighting func-
tion is smooth (though not constant) across flat surfaces, it is not
generally not necessary to compute it for every pixel of every face
of the model. For example, using a single weight for each face of
the model, computed at the face's center, produces acceptable re-
sults. By coarsely subdividing large faces, the results are visually
indistinguishable from the case where a unique weight is computed
for every pixel. Importantly, this technique suggestsareal-time im-
plementation of view-dependent texture mapping using a texture-
mapping graphics pipeline to render the projected views, and «-
channel blending to composite them.

For complex model swhere most imagesare entirely occludedfor
the typical view, it can be very inefficient to project every original
photographto the novel viewpoint. Some efficient techniquesto de-
termine such visibility a priori in architectural scenesthrough spa-
tial partitioning are presentedin [18].

4 Model-Based Stereopsis

The modeling system described in Section 2 allows the user to cre-
ate a basic model of ascene, but in general the scene will have ad-
ditional geometric detail (such asfriezes and cornices) not captured
in the model. In this section we present a new method of recov-
ering such additional geometric detail automatically through stereo
correspondence, which we call model-based stereo. Model-based
stereo differs from traditional stereo in that it measures how the ac-
tual scene deviates from the approximate model, rather than trying
to measure the structure of the scenewithout any prior information.
The model servesto place the imagesinto a common frame of ref-
erence that makes the stereo correspondence possible even for im-
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Figure 13: View-dependent texturemapping. (a) A detail view of the
high school model. (b) A renderingof the model fromthe same posi-
tion using view-dependent texture mapping. Note that although the
model does not capture the slightly recessed windows, the windows
appear properly recessed because the texture map is sampled pri-
marily froma photograph which viewed the windows from approx-
imately the same direction. (c) The same piece of the model viewed
froma different angle, using the same texture map as in (b). Since
thetextureis not selected from an image that viewed the model from
approximately the same angle, the recessed windows appear unnat-
ural. (d) A more natural result obtained by using view-dependent
texture mapping. Since the angle of view in (d) is different than in
(b), adifferent composition of original imagesis usedto texture-map
the model.

agestaken from relatively far apart. The stereo correspondencein-
formation can then be used to render novel views of the scene using
image-based rendering techniques.

As in traditional stereo, given two images (which we call the
key and offset), model-based stereo computes the associated depth
map for the key image by determining corresponding points in the
key and offset images. Like many stereo algorithms, our method is
correlation-based, inthat it attemptsto determinethe corresponding
point in the offset image by comparing small pixel neighborhoods
aroundthe points. Assuch, correlation-based stereo algorithmsgen-
erally require the neighborhood of each point in the key image to
resemble the neighborhood of its corresponding point in the offset
image.

The problem we face is that when the key and offset images
are taken from relatively far apart, asis the case for our modeling
method, corresponding pixel neighborhoods can be foreshortened
very differently. InFigs. 14(a) and (c), pixel neighborhoodstoward
theright of the key image are foreshortened horizontally by nearly
afactor of four in the offset image.

The key observation in model-based stereo is that even though
two images of the same scene may appear very different, they ap-
pear similar after being projected onto an approximate model of the
scene. In particular, projecting the offset image onto the model and
viewing it from the position of the key image produceswhat we call
the war ped offset image, which appears very similar to the key im-
age. The geometrically detailed scenein Fig. 14 was modeled as
two flat surfaceswith our modeling program, which also determined
therelative camerapositions. As expected, the warped offset image
(Fig. 14(b)) exhibits the same pattern of foreshortening as the key
image.

In model-based stereo, pixel neighborhoods are compared be-
tween the key and warped offset images rather than the key and off-
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(a) Key Image

(b) Warped Offset Image

model-based stereo algorithm.

set images. When a correspondenceisfound, it is simple to convert
its disparity to the corresponding disparity between the key and off-
set images, from which the point’s depth is easily calculated. Fig.
14(d) shows a disparity map computed for the key imagein (a).

The reduction of differencesin foreshortening is just one of sev-
eral waysthat the warped offset image simplifies stereo correspon-
dence. Some other desirable properties of the warped offset image
are:

¢ Any point in the scene which lies on the approximate model
will havezero disparity betweenthe key image and thewarped
offset image.

o Disparities between the key and warped offset imagesare eas-
ily converted to a depth map for the key image.

¢ Depth estimates are far less sensitive to noise in image mea-
surements since images taken from relatively far apart can be
compared.

e Placeswhere the model occludesitself relative to the key im-
age can be detected and indicated in the warped offset image.

¢ A linear epipolar geometry (Sec. 4.1) exists between the key
and warped offset images, despite the warping. In fact, the
epipolar lines of the warped offset image coincide with the
epipolar lines of the key image.

4.1 Model-Based Epipolar Geometry

In traditional stereo, the epipolar constraint (see [6]) is often used
to constrain the search for corresponding points in the offset im-
age to searching along an epipolar line. This constraint simplifies
stereo not only by reducing the search for each correspondence to
one dimension, but also by reducing the chance of selecting afalse
matches. In this section we show that taking advantage of the epipo-
lar constraint is no more difficult in model-based stereo case, despite
the fact that the offset image is non-uniformly warped.

Fig. 15 shows the epipolar geometry for model-based stereo. If
we consider apoint P in the scene, thereis a unique epipolar plane
which passesthrough P and the centers of the key and offset cam-
eras. Thisepipolar planeintersects the key and offset image planes
in epipolar lines e, and e,. If we consider the projection p of P
onto the key image plane, the epipolar constraint statesthat the cor-
responding point in the offset image must lie somewhere along the
offset image's epipolar line.

In model-based stereo, neighborhoodsin the key image are com-
pared to the warped offset image rather than the offset image. Thus,
to make use of the epipolar constraint, it is necessary to determine
where the pixels on the offset image’s epipolar line project to in the
warped offsetimage. Thewarped offset imageisformed by project-
ing the offset image onto the model, and then reprojecting the model
onto the image plane of the key camera. Thus, the projection p,, of
P in the offset image projects onto the model at @, and then repro-
jectsto gx in the warped offset image. Since each of these projec-
tions occurswithin the epipolar plane, any possible correspondence

(c) Offset Image

(d) Computed Disparity Map

Figure 14: (a) and (c) Two images of the entrance to Peterhouse chapel in Cambridge, UK. The Fagcade program was used to model the
facade and ground as a flat surfaces and to recover the relative camera positions. (b) The warped offset image, produced by projecting the
offset image onto the approximate model and viewing it from the position of the key camera. This projection eliminates most of the disparity
and foreshortening with respect to the key image, greatly simplifying stereo correspondence. (d) An unedited disparity map produced by our
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Figure 15: Epipolar geometry for model-based stereo.

for px. in the key image must lie on the key image’s epipolar line in
the warped offset image. In the case where the actual structure and
the model coincide at P, p, is projected to P and then reprojected
to px, yielding a correspondence with zero disparity.

Thefact that the epipolar geometry remainslinear after the warp-
ing step also facilitates the use of the ordering constraint [2, 6]
through a dynamic programming technique.

4.2 Stereo Results and Rerendering

While the warping step makes it dramatically easier to determine
stereo correspondences, a stereo algorithm is still necessary to ac-
tually determine them. The algorithm we developed to produce the
imagesin this paper is described in [3].

Once a depth map has been computed for a particular image, we
can rerender the scene from novel viewpoints using the methods
described in [23, 16, 13]. Furthermore, when several images and
their corresponding depth maps are available, we can use the view-
dependent texture-mapping method of Section 3 to composite the
multiple renderings. The novel views of the chapel facade in Fig.
16 were produced through such compositing of four images.

5 Conclusion and Future Work

To conclude, we have presented a new, photograph-based approach
to modeling and rendering architectural scenes. Our modeling
approach, which combines both geometry-based and image-based
modeling techniques, is built from two components that we have
developed. The first component is an easy-to-use photogrammet-
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Figure 16: Novel views of the scene generated fromfour original photographs. Theseare frames from an animated moviein which the facade
rotates continuously. The depth is computed from model-based stereo and the frames are made by compositing image-based renderingswith

view-dependent texture-mapping.

ric modeling system which facilitates the recovery of a basic geo-
metric model of the photographed scene. The second component is
amodel-based stereo algorithm, which recovers precisely how the
real scenediffers from the basic model. For rendering, we havepre-
sented view-dependent texture-mapping, which producesimages by
warping and compositing multiple views of the scene. Through ju-
dicious use of images, models, and human assistance, our approach
is more convenient, more accurate, and more photorealistic than
current geometry-based or image-based approaches for modeling
and rendering real-world architectural scenes.

Thereare several improvementsand extensionsthat can be made
to our approach. First, surfacesof revolution represent an important
component of architecture (e.g. domes, columns, and minarets) that
are not recovered in our photogrammetric modeling approach. (As
noted, the domein Fig. 10 was manually sized by the user.) Fortu-
nately, there has been much work (e.g. [24]) that presents methods
of recovering such structures from image contours. Curved model
geometry isalso entirely consistent with our approach to recovering
additional detail with model-based stereo.

Second, our techniques should be extended to recognize and
model the photometric properties of the materials in the scene. The
system should be able to make better use of photographs taken in
varying lighting conditions, and it should be able to render images
of the scene as it would appear at any time of day, in any weather,
and with any configuration of artificial light. Already, therecovered
model can be used to predict shadowingin the scenewith respect to
an arbitrary light source. However, a full treatment of the problem
will require estimating the photometric properties (i.e. the bidirec-
tional reflectancedistribution functions) of the surfacesin the scene.

Third, it isclear that further investigation should be madeinto the
problem of selecting which original images to use when rendering
anovel view of the scene. This problemis especially difficult when
theavailableimagesare taken at arbitrary locations. Our current so-
lution to this problem, the weighting function presented in Section
3, still allows seams to appear in renderings and does not consider
issues arising from image resampling. Another form of view selec-
tion is required to choose which pairs of images should be matched
to recover depth in the model-based stereo algorithm.

Lastly, it will clearly be an attractive application to integrate
the models created with the techniques presented in this paper into
forthcoming real-time image-based rendering systems.
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Recovering Archesin Facade
using
Ray - Planeintersectionsin 3-D

G. D. Borshukov and P. Debevec

Department of Electrica Engineering and Computer Science,
University of California, Berkeley, CA 94720

1 Assumptions

1. Focal length f and image plane center (up, Vo) in pixelsare known.

2. CameralocationsR€, TC intheworld coordinate system are previously reconstructed
by the minimization algorithm.

3. Thearchisinitialy created as abox which parent and relation are specified. Then, its
widht, depth, and height are reconstructed by the minimization algorithm.

4. We know image pointslike (x;,y;) that lie on the arch contour in the image plane.

2 Derivation

First theimage measurement (x;, y; ) isconvertedinto cameracoordinatesp; =[ x 'y —1 17
where

(X = X —Uo)

= =

Yy = ¥i—Ww) (1)

Now pp; isaray from the camera's COP passing through (x;, ;). Thisray intersectsthe
face of the arch box where the arch begins at point pgp; -

Tofindthisintersection, i.e. the value of p, we useapoint P on the face (the middle of
the bottom edge) with world coordinates pY¥ and camera coordinates p§ = R (p¥ — TC),
and the face normal n. The point pgp; lieson theface, therefore, its distance from the face:

[Mopi —PS]T(RN) = 0 2
which gives: e
_ [Pl (R¥n)
o= prRen) )
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" World Coord. System

X R T

Camera Coord. System

Figure 1: Geometry and notation

We need to rotate the vector (pop; — p$) back into world coordinates to obtain the de-
sired vector r:

r = R~ (popi — pS) (4)

The algorithm uses the projectionsr and h of this vector onto the bottom edge and the
middle axis of the face to automatically generate the arch surface.
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1.2.3 Results

Fig. 1.3 shows the results of reconstructing a 3-D model of the Arc de Triomphe

using the new arch recovery tools.

(c) (d)

Figure 1.3: Model of the Arc de Triomphe demonstrating the new arch recovery capabilities
of Fagade. (a) One of three photographs used to reconstruct the Arc de Triomphe, with
marked features indicated. (b) Reconstructed model edges projected into the original pho-
tograph. (¢) Recovered model of the Arc de Triomphe. (d) Another view of the recovered
3-D model.



Recovering the Radius and Offset
of a Cross-Section in SORs using
Minimum Distance between Two Raysin 3-D

G. D. Borshukov and P. Debevec

Department of Electrica Engineering and Computer Science,
University of California, Berkeley, CA 94720

1 Assumptions

1. Focadl length f and image plane center (ug, V) in pixelsare known.

2. CameralocationsR€, TC intheworld coordinate system are previously reconstructed
by the minimization algorithm. The camera coordinate system is aligned with the
world coordinate system. From now on all vectorswill be in world coordinates.

3. The SOR central axisisknown, i.e. we know a point on the axis py, (usually the base
point) and the axis directionm (usually [ 0 1 0]7).

4. Weknow image pointslike(x;, y;) that lie on the occluding contour intheimage plane.

2 Derivation

First theimage measurement (x;, y; ) isconvertedinto cameracoordinatesp; =[ x 'y —1 17
where

(X = X —uUo)

(1)

=l =

y = VYi—Vo)

We want find the minimum distance between the rays pp +Am and pp;. Exploiting the fact
that the minimum distance vector

do = (HoPi — Pp —Aom) (2

must be perpendicular to each ray, conveniently, our task boilsdown to solving thefollowing
simultaneous equationswith respect to Ag and .

Hopi'dg = O (3
Aom'dyg = O (4)

Excluding the trivial solutions Ag = 0 and g = 0 and substituting (1) into (2) and (3) we
get

4-31



P+ Am

COP aligned with world coordinate system

Figure 1: Geometry and notation

Alp—-Cho = B
CHO_E)\O =D
where
A = pi'p
B = pi'po
C = p'm
D = m'p
E = mm
Further using (4) we obtain
_ B+CAg
Ho=—4
which could be substituted in (5) to yield
A _ BC-AD
07 AE—C2

4-32

(5)
(6)

(7)
(8)
(9)
(10)
(11)

(12)

(13)



Now knowing Ag and L, theradiusR of acircular cross section offset by H = Agm from
pp(usually on the base plane) can be expressed by

R=4/do"dg (14)

The agorithm uses the quantities H and R to automatically generate the surface of rev-
olution.
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Figure 1.5: Model of the majestic Taj Mahal created with the new surface of revolution
and arch reconstruction tools. (a) A single low-resolution photograph of the Taj Mahal
obtained from the Internet, with marked features shown. (b) Reconstructed model edges
projected onto the original photograph. (c¢) 3-D model of the Taj Mahal, complete with
domes and minarets, recovered from the single photograph in less than an hour of modeling
time. (d) Another view of the recovered 3-D model.
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Overview

Introduction
Active vision techniques
eImaging radar
*Triangulation
*Moire
*Active Stereo
*Active depth-from-defocus
Capturing appearance




A taxonomy

Shape acquisition

S

}nta{x Non-contact
Non-destructive Destructive Reﬂectlve Transnnsswe
CMM Jointed arms  Slicing Non-optlcal Industrlal CT

Microwave radar Sonar

A taxonomy

Optical
Passwe\\ Active
Stereo Depth from / Active depth
Imaging radar
focus/defocus sine from defocus
Shape from Shape from . . .
shading silhouettes Triangulation Active stereo

Interferometry

Moire = Holography




Structure of the data

Point Profile

- 4
LY
LT

Range image Volumetric

Quality measures

Resolution

Smallest change in depth that sensor can report?
Quantization? Spacing of samples?

Accuracy

Statistical variations among repeated measurements
of known value.

Repeatability
Do the measurements drift?
Environmental sensitivity
Does temperature or wind speed influence measurements?

Speed




Optical range acquisition

Strengths
* Non-contact
* Safe
* Inexpensive (?)
* Fast
Limitations
e Can only acquire visible portions of the surface
* Sensitivity to surface properties

> transparency, shininess, rapid color variations,
darkness (no reflected light), subsurface scatter

e Confused by interreflections

INIumination

Why are lasers a good idea?
e Compact
* Low power
* Single wavelength is easy to isolate
* No chromatic aberration
* Tight focus over long distances




INIumination
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Collimated \
beam /s s /

Lens system

INIumination
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Lens system




INIumination

Collimated H\¥/

Lens system
Illumination
‘R
W N2 w
Collimated o4 e
Lens system
o TC'W(E
R

zp = Rayleigh range
Wwo = beam waist (narrowest laser width)
L = wavelength of laser




INIumination

Limitations of lasers
» Eye safety concerns
* Laser speckle adds noise
> Narrowing the aperture increases the noise

Surface Surface

_% < - <
— —
- Sensor - Sensor
G sl G 4

1 1

O O

IMuminant Illuminant

Imaging radar: time of flight

A pulse of light is emitted, and the time of the
reflected pulse is recorded:

ct =2r =roundtrip distance
Typical scanning configuration:

Nodding mirror

Half-silvered
mirror




Imaging radar: Amplitude Modulation

The current to a laser diode is driven at frequency:

C
fAM:

A’AM

The phase difference between incoming and
outgoing signals gives the range:

2r(Ap) =ni,, + %ﬂ/w = r(Ap) = 1ﬁvAM (ALZEH)

Total Range to Surface

Figure from [Besl89]

Phase
Difference Reflecting

Source Ambiguity Proportional
and Interval to Range
Detector

Surface

Imaging radar: Amplitude Modulation

Note the ambiguity due to the + 2rrn. This
translates into range ambiguity:

_ Ay
rambig - 2

The ambiguity can be overcome with sweeps of
increasingly finer wavelengths.




Optical triangulation

A beam of light strikes the surface, and some of
the light bounces toward an off-axis sensor.

The center of the imaged reflection is triangulated
against the laser line of sight.

\_// Surface

/:0
Range | ..~ Tmaging lens
point. | =

Sensor

Optical triangulation

Lenses map planes to planes. If the object plane
is tilted, then so should the image plane.

The image plane tilt is described by the
Scheimpflug condition:

tan @

tano =

where M is the on-axis magnification.




Triangulation angle

When designing an optical triangulation, we want:
* Small triangulation angle
¢ Uniform resolution

These requirements are at odds with each other.

Triangulation scanning configurations

A scene can be scanned by sweeping the
illuminant. Problems:
e L oss of resolution due to defocus
e Large variation in field of view
e Large variation in resolution

==

\

Rotating mirror

10



Triangulation scanning configurations

Can instead move the laser and camera together,
e.g., by translating or rotating a scanning unit.

3

Triangulation scanning configurations

A novel design was created and patented at the
NRC of Canada [Rioux’87].

Basic idea: sweep the laser and sensor
simultaneously.

Fixed mirror

IN

Rotating mirror

Fixed mirror

After unfolding the optics

11



Triangulation scanning configurations

Extension to 3D achievable as:
* flying spot
* sweeping light stripe
* hand-held light stripe on jointed arm

Direction of travel
—_—

\(\ CCD image plane

o3 Cylindrical lens 4
Laser CCD

ﬁ Laser sheet

Errors in optical triangulation

Finding the center of the imaged pulse is tricky.

If the surface exhibits variations in reflectance or
shape, then laser width limits accuracy.

Surface

AE Resulting
/ . range surface
Range | —
point : N\
; Sensor
E .A Typical range error = | mm
/\ for 1 mm wide laser
||I|
Iluminant
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Errors in optical triangulation

pl 2
Surface
|
L2 Resulting
/ E.Je\ range surface
Range

for 1 mm wide laser

oint % : -/
P i \ Sensor
/j\ .d Typical range error = 0.5 mm

Tuminant

Spacetime analysis

A solution to this problem is spacetime analysis
[Curless 95]:

Surface /

Sensor

Tlluminant
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Spacetime analysis

Surface /

Illuminant

Spacetime analysis

Surface /4

tz_/?\

Tlluminant
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Spacetime analysis

Surface ’,"

Iluminant

Spacetime analysis

Surface ’,"

Ly

Iluminant
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Spacetime analysis

Surface \

Tlluminant

Spacetime analysis

(t. s.)

Tlluminant
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Spacetime analysis: results

Reflectance correction

Reflectance card Traditional analysis Spacetime analysis

Edge curl reduction

1 [0

Two thin strips Traditional analysis Spacetime analysis

Improved shape extraction

’1ﬂ|ls:4/\1‘: ‘ Shaddl  Alakd

Shape ribbon Traditional analysis ~ Spacetime analysis

Multi-spot and multi-stripe triangulation

For faster acquisition, some scanners use multiple
spots or stripes.

Trade off depth-of-field for speed.
Problem: ambiguity.

/i\i/ /iw\//

O=
O
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Binary coded illumination

Alternative: resolve visibility hierarchically (logN).

L L LN
=
[w]
o]

RN

jwioh =
O S

Moire

—OO— %.
v

St

Moire methods extract shape from interference
patterns:
* llluminate a surface with a periodic grating.

e Capture image as seen at an angle through another
grating.
=> interference pattern, phase encodes shape
* Low pass filter the image to extract the phase signal.

Requires that the shape varies slowly so that
phase is low frequency, much lower than grating
frequency.




Example: shadow moire

Shadow moire:

* Place a grating (e.g., stripes on a transparency) near
the surface.

¢ [llluminate with a lamp.
e Instant moire!

i

T

s

Shadow moire

Active stereo

Passive stereo methods match features observed
by two cameras and triangulate.

Active stereo simplifies feature finding with
structured light. Problem: ambiguity.

&
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Active multi-baseline stereo

Using multiple cameras reduces
matches.

likelihood of false

Active depth from defocus

Depth of field for large apertures will cause the

image of a point to blur.

The amount of blur indicates distance to the point.

Sensor glfjed #l
Image #1
Sensor /\ Object #2
Image#2...;;_::::12'_..f.......\./ ---- )
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Active depth from defocus

Depth ambiguity can be resolved with two sensor
planes.

Amount of defocus depends on presence of
texture. Solution: project structured lighting onto
surface.

[Nayar’95] demonstrates a real-time system
utilizing telecentric optics.

Active depth from defocus

Illumination

. EE __ Projected
pattern

<T>| Telecentric
CCD 2 —|—-| optics

| A
I

Half-silvered
mirror

) Vi
CCD1 Prism Telecentric

optics
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Capturing appearance

“Appearance” refers to the way an object reflects
light to a viewer.

We can think of appearance under:
* fixed lighting
* variable lighting

Appearance under fixed lighting

Under fixed lighting, a static radiance field forms.

Each point on the object reflects a 2D (directional)
radiance function.

We can acquire samples of these radiance
functions with photographs registered to the
geometry.

22



Appearance under variable lighting

To re-render the surface under novel lighting, we
must capture the BRDF -- the bi-directional
reflectance distribution function.

In the general case, this problem is hard-:
* The BRDF is a 4D function -- may need many samples.

* Interreflections imply the need to perform difficult
inverse rendering calculations.

Here, we mention ways of capturing the data
needed to estimate the BRDF.

BRDF capture

To capture the BRDF, we must acquire images of
the surface under known lighting conditions.

[Sato’97] captures color images with point source
illumination. The camera and light are calibrated,
and pose is determined by a robot arm.

[Baribeau’92] uses a white laser that is also used
for optical triangulation. Reflectance samples are
registered to range samples.

Key advantage: minimizes interreflection.
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Better Optical Triangulation through Spacetime Analysis
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Abstract / Surface

The standard methods for extracting range data from optical trian- 2N

gulation scanners are accurate only for planar objects of uniform Range o ”'nagmglens
reflectance illuminated by an incoherent source. Using these meth- point |

ods, curved surfaces, discontinuous surfaces, and surfaces of vary- i y/ Sensor
ing reflectance cause systematic distortions of the range data. Co- ‘

herent light sources such as lasers introduce speckle artifacts that
further degrade the data. We present a new ranging method based
on analyzing the time evolution of the structured light reflections.
Using our spacetime analysis, we can correct for each of these arti-
facts, thereby attaining significantly higher accuracy using existing
technology. We present results that demonstrate the validity of our

method using a commercial laser stripe triangulation scanner. Figure 1: Optical triangulation geometry. The angles the trian-
gulation angle whilex is the tilt of the sensor plane needed to keep

the laser plane in focus.

I1luminant

1 Introduction

Active optical triangulation is one of the most common methods tion or wavelength are sufficient to overcome the reflectance errors,
for acquiring range data. Although this technology has been in use though some restrictive assumptions are necessary for the case of
for over twenty years, its speed and accuracy has increased dramatiffering wavelengths. Kanade, et al, [11] describe a rangefinder
ically in recent years with the development of geometrically sta- that finds peaks in time for a stationary sensor with pixels that view
ble imaging sensors such as CCD's and lateral effect photodiodesfixed points on an object. This method of peak detection is very
The range acquisition literature contains many descriptions of op- similar to the one presented in this paper for solving some of the
tical triangulation range scanners, of which we list a handful [2] problems of optical triangulation; however, the authors in [11] do
[8] [10] [12] [14][17] . The variety of methods differ primarily in not indicate that their design solves or even addresses these prob-
the structure of the illuminant (typically point, stripe, multi-point, lems. Further, we show that the principle generalizes to other scan-
or multi-stripe), the dimensionality of the sensor (linear array or ning geometries.
CCD grid), and the scanning method (move the object or move the  In the following sections, we first show how range errors arise
scanner hardware). with traditional triangulation techniques. In section 3, we show that
Figure 1 shows a typical system configuration in two dimen- by analyzing the time evolution of structured light reflections, a
sions. The location of the center of the reflected light pulse imaged process we call spacetime analysis, we can overcome the accuracy
on the sensor corresponds to a line of sight that intersects the illu- limitations caused by shape and reflectance variations. Experimen-
minant in exactly one point, yielding a depth value. The shape of tal evidence also indicates that laser speckle behaves in a manner
the object is acquired by translating or rotating the object through that allows us to reduce its distorting effect as well.
the beam or by scanning the beam across the object. In sections 4 and 5, we describe our hardware and software im-
The accuracy of optical triangulation methods hinges on the plementation of the spacetime analysis using a commercial scanner
ability to locate the “center” of the imaged pulse at each time step. and a video digitizer, and we demonstrate a significant improve-
For optical triangulation systems that extract range from single im- ment in range accuracy. Finally, in section 6, we conclude and de-
aged pulses at a time, variations in surface reflectance and shape&cribe future directions.
result in systematic range errors. Several researchers have observed
one or both of these accuracy limitations [4] [12] [16]. For the
case of coherent illumination, the images of reflections from rough 2 Errorin trlangulatlon systems
surfaces are also subject to laser speckle noise, introducing noise
into the range data. Researchers have studied the effect of specklé-or optical triangulation systems, the accuracy of the range data
on range determination and have indicated that it is a fundamentaldepends on proper interpretation of imaged light reflections. The
limit to the accuracy of laser range triangulation, though its effects most common approach is to reduce the problem to one of finding
can be reduced with well-known speckle reduction techniques [1] the “center” of a one dimensional pulse, where the “center” refers
[5]. Mundy and Porter [12] attempt to correct for variations in sur- to the position on the sensor which hopefully maps to the center of
face reflectance by noting that two imaged pulses, differing in posi- the illuminant. Typically, researchers have opted for a statistic such
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Figure 2: Range errors using traditional triangulation methods. (a) Reflectance discontinuity. (b) Corner. (c) Shape discontinuity with respect

to the illumination. (d) Sensor occlusion.

as mean, median or peak of the imaged light as representative ofthe beam center and tlee 2 point of the irradiance profile, a con-
the center. These statistics give the correct answer when the surfacerention common to the optics literature. We present the range er-
is perfectly planar, but they are generally inaccurate whenever the rors in a scale invariant form by dividing all distances by the beam
surface perturbs the shape of the illuminant. width. Figure 3 illustrates the maximum deviation from planarity
introduced by scanning reflectance discontinuities of varying step
s magnitudes for varying triangulation angles. As the size of the step
2.1 Geometric intuition increases, the error increases correspondingly. In addition, smaller
triangulation angles, which are desirable for reducing the likelihood
of missing data due to sensor occlusions, actually result in larger
range errors. This result is not surprising, as sensor mean posi-
tions are converted to depths through a divisiorsing, wheref is
the triangulation angle, so that errors in mean detection translate to

Perturbations of the shape of the imaged illuminant occur when-
ever:

e The surface reflectance varies.

e The surface geometry deviates from planarity. larger range errors for smaller triangulation angles.
Figure 4 shows the effects of a corner on range error, where
e The light paths to the sensor are partially occluded. the error is taken to be the shortest distance between the computed
range data and the exact corner point. The corner is oriented so that
¢ The surface is sufficiently rough to cause laser speckle. the illumination direction bisects the corner's angle as shown in Fig-

ure 2b. As we might expect, a sharper corner results in greater com-
In Figure 2, we give examples of how the first three circumstances pression of the left side of the imaged Gaussian relative to the right
result in range errors even for an ideal triangulation system with side, pushing the mean further to the right on the sensor and push-
infinite sensor resolution and perfect calibration. For purposes of ing the triangulated point further behind the corner. In this case, the
illustration, we omit the imaging optics of Figure 1 and treat the triangulation angle has little effect as the divisiondayé is offset
sensor as a one dimensional orthographic sensor. Further, we asalmost exactly by the smaller observed left/right pulse compression
sume an illuminant of Gaussian cross-section, and we use the mearnmbalance.
for determining the center of an imaged pulse. Figure 2a shows  One possible strategy for reducing these errors would be to de-
how a step reflectance discontinuity results in range points that do crease the width of the beam and increase the resolution of the sen-
not lie on the surface. Figure 2b and 2c provide two examples of sor. However, diffraction limits prevent us from focusing the beam
shape variations resulting in range errors. Note that in Figure 2c, to an arbitrary width. The limits on focusing a Gaussian beam with
the center of the illuminant is not even striking a surface. In this spherical lenses are well known [15]. In recent years, Bickel, et
case, a measure of the center of the pulse results in a range valueal, [3] have explored the use of axicons (e.g., glass cones and other
when in fact the correct answer is to return no range value what- surfaces of revolution) to attain tighter focus of a Gaussian beam.
ever. Finally, Figure 2d shows the effect of occluding the line of The refracted beam, however, has a zeroth order Bessel function
sight between the illuminated surface and the sensor. This rangecross-section; i.e., it has numerous side-lobes of non-negligible ir-
error is very similar to the error encountered in Figure 2c. radiance. The influence of these side-lobes is not well-documented
The fourth source of range error is laser speckle, which arises and would seem to complicate triangulation.
when coherent laser illumination bounces off of a surface that is
rough compared to a wavelength [7]. The surface roughness intro- . .
duces random variations in optical path lengths, causing a random3 A New Method: Spacetime Analysis
interference pattern throughout space and at the sensor. The result
is an imaged pulse with a noise component that affects the meanThe previous section clearly demonstrates that analyzing each im-
pulse detection, causing range errors even from a planar target.  aged pulse using a low order statistic leads to systematic range er-
rors. We have found that these errors can be reduced or eliminated

e by analyzing the time evolution of the pulses.
2.2 Quantifying the error y yzng P

To quantify the errors inherent in using mean pulse analysis, we 3 1  Geometric intuition

have computed the errors introduced by reflectance and shape vari-

ations for an ideal triangulation system with a single Gaussian il- Figure 5illustrates the principle of spacetime analysis for a laser tri-
luminant. We take the beam widthy, to be the distance between angulation scanner with Gaussian illuminant and orthographic sen-
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Figure 4: Plot of errors due to corners. ential element.

scription of coordinate systems; note that in contrast to the previous
sor as it translates across the edge of an object. As the scanner stepsection, the surface element is translating instead of the illuminant-
to the right, the sensor images a smaller and smaller portion of the sensor assembly. The element has a nofaald an initial position
laser cross-section. By tintg, the sensor no longer images the cen- 5, and is translating with velocity, so that:
ter of the illuminant, and conventional methods of range estimation . . .
fail. However, if we look along the lines of sight from the corner to pt) = Po + tv 1)
the laser and from the corner to the sensor, we see that the profil
of the laser is being imagealer timeonto the sensor (indicated by
the dotted Gaussian envelope). Thus, we can find the coordinate

of the corner poin{z., z.) by searching for the mean of a Gaus-  \yith 5 nidirectional Gaussian radiance profile. We can describe
sian along a constant line of sight through the sensor images. Wee tq14] radiance reflected from the element to the sensor as:
can express the coordinates of this mean as a time and a position on

the sensor, where the time is in general between sensor frames and L), @s) = fr(@n,08)|7 - or|T 6%;””2 @)

the position is between sensor pixels. The position on the sensor pit),ws) = Jrir,@s LIEE

indicates a depth, and the time indicates the lateral position of the where f,. is the bidirectional reflection distribution function
center of the illuminant. In the example of Figure 5, we find that the (BRDF) of the pointp,, |7 - &1 | is the cosine of the angle between
spacetime Gaussian corresponding to the exact corner has its meathe surface and illumination. The remaining terms describe a point
at positions. on the sensor at a timg betweent, and¢; during moving in thez-direction under the Gaussian illuminant of width
the scan. We extract the corner's depth by triangulating the centery and powetl ;..

of the illuminant with the line of sight corresponding to the sensor Projecting the poing(t) onto the sensor, we find:

coordinates., while the corner's horizontal position is proportional

to the timet,.. s = (xo — vt)cosh — zosinb 3)

€our objective is to compute the coordina@és = (z., z,) given
the temporal irradiance variations on the sensor. For simplicity, we
Sassume that’ = (—v,0). The illuminant we consider is a laser

wheres is the position on the sensor aéds the angle between the
sensor and laser directions. We combine Equations 2-3 to give us
an equation for the irradiance observed at the sensor as a function
For a more rigorous analysis, we consider the time evolution of Of time and position on the sensor:

the irradiance from a translating differential surface elemé&g!, oy wt)?

as recorded at the sensor. We refer the reader to Figure 6 for a de- Es(t,s) = folor,ws)|n-op|Ire” »*

3.2 A complete derivation



0(s — (xo — vt)cosh — zo8inb) 4
To simplify this expression, we condense the light reflection terms
into one measure:

®)

which we will refer to as the reflectance coefficient of pgiifior the
given illumination and viewing directions. We also note that vt

is a measure of the relative-displacement of the point during a
scan, and: = s/sinf is the relation between sensor coordinates
and depth values along the center of the illuminant. Making these
substitutions we have:

B = fr(@r,ws)| - Wil

Figure 7: Spacetime image of a point passing through a Gaussian
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0((x — xo)cost + (z — zo)sinb)

w

(6)

This equation describes a Gaussian running alorngted line

through the spacetime sensor plane or “spacetime image”. We de-

fine the “spacetime image” to be the image whose columns are filled
with sensor scanlines that evolve over time. Through the substi-
tutions above, position within a column of this image represents
displacement in depth, and position within a row represents time
or displacement in lateral position. Figure 7 shows the theoretical
spacetime image of a single point based on the derivation above,
while Figures 8a and 8b shows the spacetime image generated dur

illuminant.

These conditions ensure that the reflectance coeffici@nt=
fr(@r,@s)|n - wr|, is constant. Note that the illumination need
only be directional; coherent or incoherent light of any pattern is ac-
ceptable. Further, the translational motion need not be of constant
speed, only constant direction; we can correct for known variations
in speed by applying a suitable warp to the spacetime image.

We can weaken each of these restriction$ does not vary ap-
preciably for each point as it passes through the illuminant. A per-
spective sensor is suitable if the changes in viewing directions are
relatively small for neighboring points inside the illuminant. This

ing a real scan. From Figure 7, we see that the tilt anglefisvith
respect to the-axis, and the width of the Gaussian along the line

is:
)

The peak value of the Gaussiand#;,, and its mean along the line
is located af(z,, z,), the exact location of the range point. Note
that the angle of the line and the width of the Gaussian are solely

determined by the fixed parameters of the scamuthe position, The discussion in sections 3.1-3.3 show how we can go about ex-
orientation, or BRDF of the surface element. tracting accurate range data in the presence of shape and reflectance
Thus, extraction of range points should proceed by computing variations, as well as occlusions. But what about laser speckle?
low order statistics along tilted lines through the sensor spacetime Empirical observation of the time evolution of the speckle pattern
image, rather than along columns (scanlines) as in the conventionalwith our optical triangulation scanner strongly suggests that the im-
method. As a result, we can determine the position of the surface age of laser speckle moves as the surface moves. The streaks in
element independently of the orientation and BRDF of the element the spacetime image of Figure 8b correspond to speckle noise, for
and independently of any other nearby surface elements. In the-the object has uniform reflectance and should result in a spacetime
ory, the decoupling of range determination from local shape and jmage with uniform peak amplitudes. These streaks are tilted pre-
reflectance is complete. In practice, optical systems and sensorsisely along the direction of the spacetime analysis, indicating that
have filtering and sampling properties that limit the ability to re- the speckle noise adheres to the surface of the object and behaves
solve neighboring points. In Figure 8d, for instance, the extracted as a noisy reflectance variation. Other researchers have observed
edges extend slightly beyond their actual bounds. We attribute this g “stationary speckle” phenomenon as well [1]. Proper analysis
artifact to filtering which blurs the exact cutoffs of the edges into of this problem is an open question, likely to be resolved with
neighboring pixels in the spacetime image, causing us to find addi- the study of the governing equations of scalar diffraction theory

tional range values. _ _ for imaging of a rough translating surface under coherent Gaussian
As a side effect of the spacetime analysis, the peak of the Gaus-peam illumination [6].

sian yields the irradiance at the sensor due to the point. Thus, we
automatically obtain an intensity image precisely registered to the
range image.

assumption of “local orthography” has yielded excellent results in
practice. In addition, we can tolerate a rotational component to the
motion as long as the radius of curvature of the point path is large

! p—
w = w/cosf relative to the beam width, again minimizing the effectsdon

3.4 Correcting laser speckle

4 Implementation

We have implemented the spacetime analysis presented in the pre-
vious section using a commercial laser triangulation scanner and a
We can easily generalize the previous results to other scanner gereal-time digital video recorder.

ometries under the following conditions:

3.3 Generalizing the geometry

e The illuminant direction is constant over the path of each 4.1 Hardware

range point. The optical triangulation system we use is a Cyberware MS plat-

form scanner. This scanner collects range data by casting a laser
stripe on the object and by observing reflections with a CCD cam-
era positioned at an angle 86° with respect to the plane of the

e The sensor is orthographic.

e The motion is purely translational.
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Figure 8: From geometry to spacetime image to range data. (a) The original geometry. (b) The resulting spacetime image. TA indicates the
direction of traditional analysis, while SA is the direction of the spacetime analysis. The dotted line corresponds to the scanline generated at
the instant shown in (a). (c) Range data after traditional mean analysis. (d) Range data after spacetime analysis.

laser. The platform can either translate or rotate an object throughwheref is the new rotation angle,, andr, are the sample spacing
the field of view of the triangulation optics. The laser width varies in z andz respectively, anér is the triangulation angle. In order to
from 0.8 mm to 1.0 mm over the field of view which is approxi- determine the rotation anglé, for a given scanning rate and region
mately 30 cm in depth and 30 cmin height. Each CCD pixel images of the field of view of our Cyberware scanner, we first determined
a portion of the laser plane roughly 0.5 mm by 0.5 mm. Although the local triangulation angle and the sample spacings in depth (
the Cyberware scanner performs a form of peak detection in real and lateral positionx). Equation 8 then yields the desired angle.
time, we require the actual video frames of the camera for our anal-  In step 3, we compute the statistics of the Gaussians along each
ysis. We capture these frames with an Abekas A20 video digitizer rotated spacetime image raster. Our method of choice for comput-
and an Abekas A60 digital video disk, a system that can acquire 486ing these statistics is a least squares fit of a parabola to the log of
by 720 size frames at 30 Hz. These captured frames have approxithe data. We have experimented with fitting the data directly to
mately the same resolution as the Cyberware range camera, thouglGaussians using the Levenberg-Marquardt non-linear least squares

they represent a resampling of the reconstructed CCD output. algorithm [13], but the results have been substantially the same as
the log-parabola fits. The Gaussian statistics consist of a mean,
4.2 Algorithms which corresponds to a range point, as well as a width and a peak

amplitude, both of which indicate the reliability of the data. Widths

Using the principles of section 3, we can devise a procedure for that are far from the expected width and peak amplitudes near the
extracting range data from spacetime images: noise floor of the sensor imply unreliable data which may be down-
weighted or discarded during later processing (e.g., when combin-
ing multiple range meshes [18]). For the purposes of this paper, we
2. Rotate the spacetime images-by. discard unreliable data.

Finally, in step 4, we rotate the range points back into the global
3. Find the statistics of the Gaussians in the rotated coordinates.coordinate system.
4 Traditionally, researchers have extracted range data at sampling
rates corresponding to one range point per sensor scanline per unit
In order to implement step 1 of this algorithm, we require a se- time. Interpolation of shape between range points has consisted of
guence of CCD images. Most commercial optical triangulation sys- fitting primitives (e.g., linear interpolants like triangles) to the range
tems discard each CCD image after using it (e.g. to compute a stripepoints. Instead, we can regard the spacetime volume as the primary
of the range map). As described in section 4.1, we have assembledsource of information we have about an object. After performing a
the necessary hardware to record the CCD frames. In section 3,real scan, we have a sampled representation of the spacetime vol-
we discussed a one dimensional sensor scenario and indicated thatme, which we can then reconstruct to generate a continuous func-
perspective imaging could be treated as locally orthographic. For tion. This function then acts as our range oracle, which we can
a two dimensional sensor, we can imagine the horizontal scanlinesquery for range data at a sampling rate of our choosing. In practice,
as separate one dimensional sensors with varying vergjgaiff- we can magnify the sampled spacetime volume prior to applying
sets. Each scanline generates a spacetime image, and by stackinije range imaging steps described above. The result is a range grid
the spacetime images one atop another, we define a spaselime  with a higher sampling density based directly on the imaged light
ume In general, we must perform our analysis along the paths of reflections.
points, paths which may cross scanlines within the spacetime vol-
ume. However, we have observed for our system that the illuminant
is sufficiently narrow and the perspective of the range camera suf-5 Results
ficiently weak, that these paths essentially remain within scanlines.
'I_'his _observation allows us to perform our analysis on each space-g 1  Reflectance correction
time image separately.

In step 2, we rotate the spacetime images so that Gaussians aro evaluate the tolerance of the spacetime method to changes in
vertically aligned. In a practical system with different sampling reflectance, we performed two experiments, one quantitative and

1. Perform the range scan and capture the spacetime images.

. Rotate the means back to the original coordinates.

rates inz andz, the correct rotation angle can be computed as: the other qualitative. For the first experiment, we generated pla-
T nar cards with step reflectance changes varying from about 1:1 to
tanf = —tanfr (8) 10:1 and scanned them at an angl&ef (roughly facing the sen-

Tz
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Figure 12: Depth discontinuities and edge curl. (a) Photograph of
(© two strips of paper, and shaded renderings of the range data gen-
erated by (b) mean pulse analysis and (c) spacetime analysis. The
Figure 10: Reflectance card. (a) Photograph of a planar card with “€dge curl” indicated by the hash-marks in (b) is 1.1mm.
the word “Reflectance” printed on it, and shaded renderings of the
range data generated by (b) mean pulse analysis and (c) spacetime
analysis.
mm.

. . L . Finally, we impressed the word “shape” onto a plastic ribbon us-
sor). Flg_ure 9 sh_qws a plot of maximum deV|at|on_s from planarity ing a commonly available label maker. In Figure 10, we wanted the
when using traditional per scanline mean analysis and our space- '

time analysis. The spacetime method has clearly improved over theWord ‘Reflectance” to disappear because it represented changes in
Id meth yd ; Idi P t0 85% reducti : yimp reflectance rather than in geometry. In Figure 13, we want the word
old method, yielding up to o requctions in range errors. - “Shape” to stay because it represents real geometry. Furthermore,
For qualitative comparison, we produced a planar sheet with the

“ o L we wish to resolve it as highly as possible. Figure 13 shows the
ngrd Tﬁﬂsctardce prlnfted On.t':]' tl;IguLe 10 tShOWS tITe rebsults.c;l'_h? result. Using the scanline mean method, the word is barely visible.
old method yields a surtace wi € characters wetl-embossed in OUsing the new spacetime analysis, the word becomes legible.
the geometry, whereas the spacetime method yields a much more
planar surface indicating successful decoupling of geometry and

reflectance.

5.2 Shape correction SHAPE
We conducted several experiments to evaluate the effects of shape gl _I_ 1
variation on range acquisition. In the first experiment, we generated i N '
corners of varying angles by abutting sharp edges of machined alu- @

minum wedges which are painted white. Figure 11 shows the range L Rl
errors that result for traditional and spacetime methods. Again, we

see an increase in accuracy, though not as great as in the reflectance ®)

We also scanned two 4 mm strips of paper at an angR0of

(roughly facing the sensor) to examine the effects of depth con- ©

tinuity. Figure 12b shows the “edge curl” observed with the old ) ) )
method, while the spacetime method in Figure 12c shows a signif- Figure 13: Shape ribbon. (a) Photograph of a surface with raised
icant reduction of this artifact under spacetime analysis. We have lettering (letters are approx. 0.3 mm high), and renderings of the
found that the spacetime method reduces the length of the edge curfange data generated by (b) mean pulse analysis and (c) spacetime
from an average of 1.1 mm to an average of approximately 0.35 analysis.

Ly



5.3 Speckle reduction process of estimating topology, especially in areas of high curva-
re which are prone to edge curl artifacts. We will also investigate
ethods for increasing the resolution of the existing hardware by
registering and deblurring multiple spacetime images [9]. Finally,
we hope to apply the results of scalar diffraction theory to put the
achievement of speckle reduction on sound theoretical footing.

We performed range scans on the planar surfaces and generatea':
range points using the traditional and spacetime methods. After fit-
ting planes to range points, we found a 30-60% reduction in average
deviation from planarity when using the spacetime analysis.
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(@)

with a plot of one row of pixel intensities.

[14]

[15]
[16]

[17]

[18]

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan. Design
of a large depth of view three-dimensional camera for robot
vision. Optical Engineering26(12):1245-1250, Dec 1987.

A.E. SiegmanLasers University Science Books, 1986.

M. Soucy, D. Laurendeau, D. Poussart, and F. Auclair. Be-
haviour of the center of gravity of a reflected gaussian laser
spot near a surface reflectance discontinuityndustrial
Metrology 1(3):261-274, Sept 1990.

T. Strand. Optical three dimensional sensi@ptical Engi-
neering 24(1):33-40, Jan-Feb 1983.

G. Turk and M. Levoy. Zippered polygon meshes from range
images. INSIGGRAPH 94 Conference Proceedingages
311-318, July 1994.

|
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Goal: 3D reconstruction
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Angel experiment

Accuracy: 0.1mm over 10cm

mmm) -~ 0.1% error




Textured objects

Other objects




Pot-pourri scan

Accuracy: Imm over 50cm

mmm) -~ 0.5% error




Scanning with the sun

Accuracy: 1cm over 2m

mmm) -~ 0.5% error

Variance of the error
in depth estimate

d : distance of the
shadow plane IT to the
camera optical center

Image brightness noise

VI : shadow edge sharpness

(image gradient)

[Bouguet’99]
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Real-time implementation

* Performance: 30Hz, 320x240, Pentium IT 300MHz
e Single shadow pass: 20 - 30 seconds (600-900 frames)

* Refined scanning: 1 - 2 minutes

Conclusions

‘/ Low cost and simple technique for dense
3D shape acquisition

X Does not work with specular or dark objects
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What’s next?

e Registration of multiple scans
—) Complete models [Turk’94, Curless’96]

VRML gallery

MetaStream® gallery
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Abstract

A simple and inexpensive approach for extracting the three-
dimensional shape of objects is presented. It is based on ‘weak
structured lighting’; it differs from other conventional struc-
tured lighting approaches in that it requires very little hard-
ware besides the camera: a desk-lamp, a pencil and a checker-
board. The camera faces the object, which is illuminated by the
desk-lamp. The user moves a pencil in front of the light source
casting a moving shadow on the object. The 3D shape of the
object is extracted from the spatial and temporal location of the
observed shadow. Experimental results are presented on three
different scenes demonstrating that the error in reconstructing
the surface is less than 1%.

1 Introduction and Motivation

One of the most valuable functions of our visual sys-
tem is informing us about the shape of the objects that
surround us. Manipulation, recognition, and naviga-
tion are amongst the tasks that we can better accom-
plish by seeing shape. Ever-faster computers, progress
in computer graphics, and the widespread expansion
of the Internet have recently generated much inter-
est in systems that may be used for imaging both the
geometry and surface texture of object. The applica-
tions are numerous. Perhaps the most important ones
are animation and entertainment, industrial design,
archiving, virtual visits to museums and commercial
on-line catalogues.

In designing a system for recovering shape, differ-
ent engineering tradeoffs are proposed by each appli-
cation. The main parameters to be considered are:
cost, accuracy, ease of use and speed of acquisition. So
far, the commercial 3D scanners (e.g. the Cyberware
scanner) have emphasized accuracy over the other pa-
rameters. These systems use motorized transport of
the object, and active (laser, LCD projector) lighting
of the scene, which makes them very accurate, but
expensive and bulky [1, 15, 16, 12, 2].

An interesting challenge for computer vision re-
searchers is to take the opposite point of view: em-
phasize cost and simplicity, perhaps sacrificing some
amount of accuracy, and design 3D scanners that de-
mand little more hardware than a PC and a video
camera, by now almost standard equipment both in
offices and at home, by making better use of the data
that is available in the images.

Figure 1: The general setup of the proposed method:
The camera is facing the scene illuminated by a halogen desk
lamp (left). The scene consists of objects on a plane (the desk).
When an operator freely moves a stick in front of the lamp (over
the desk), a shadow is cast on the scene. The camera acquires
a sequence of images I(x,y,t) as the operator moves the stick
so that the shadow scans the entire scene. This constitutes
the input data to the 3D reconstruction system. The variables
z and y are the pixel coordinates (also referred to as spatial
coordinates), and ¢ the time (or frame number). The three
dimensional shape of the scene is reconstructed using the spatial
and temporal properties of the shadow boundary throughout
the input sequence. The right-hand figure shows the necessary
equipment besides the camera: a desk lamp, a calibration grid
and a pencil for calibration, and a stick for the shadow. One
could use the pencil instead of the stick.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities amongst them. At the
current state of vision research stereoscopic dispar-
ity is the single passive cue that gives reasonable ac-
curacy. Unfortunately it has two major drawbacks:
(a) it requires two cameras thus increasing complexity
and cost, (b) it cannot be used on untextured surfaces
(which are common for industrially manufactured ob-
jects).

We propose a method for capturing 3D surfaces
that is based on ‘weak structured lighting’. It yields
good accuracy and requires minimal equipment be-
sides a computer and a camera: a pencil (two uses), a
checkerboard and a desk-lamp — all readily available in
most homes; some intervention by a human operator,
acting as a low precision motor, is also required.



We start with a description of the method in Sec. 2,
followed in Sec. 3 by a noise sensitivity analysis, and
in Sec. 4 by a number of experiments that assess the
convenience and accuracy of the system. We end with
a discussion and conclusions in Sec. 5.

The user
holding a stick

The edge of the shadow
generated by the stick

Desk plane

Desk lamp

Camera

O

c

c

Figure 2: Geometrical principle of the method: Approx-
imate the light source with a point S, and denote by II; the
desk plane. Assume that the positions of the light source S and
the plane II; in the camera reference frame are known from cal-
ibration. The goal is to estimate the 3D location of the point
P in space corresponding to every pixel Z. in the image. Call
t the time at which a given pixel Z. ‘sees’ the shadow bound-
ary (later referred to as the shadow time). Denote by II(t) the
corresponding shadow plane at that time ¢. Assume that two
portions of the shadow projected on the desk plane are visi-
ble on two given rows of the image (top and bottom rows in
the figure). After extracting the shadow boundary along those
rOwS Ttop(t) and Tpet(t), we find two points on the shadow
plane A(t) and B(t) by intersecting II; with the optical rays
(Oc,Ttop(t)) and (Oc,Tpot(t)) respectively. The shadow plane
II(¢) is then inferred from the three points in space S, A(t) and
B(t). Finally, the point P corresponding to T, is retrieved by
intersecting II(t) with the optical ray (O¢,T.). This final stage
is called triangulation. Notice that the key steps in the whole
scheme are: (a) estimate the shadow time t;(Z.) at every pixel
T (temporal processing), and (b) locate the reference points
Ttop(t) and Tpo(t) at every time instant ¢ (spatial processing).
These two are discussed in detail in section 2.2.

2 Description of the method

The general principle consists of casting a shadow
onto the scene with a pencil or another stick, and us-
ing the image of the deformed shadow to estimate the
three dimensional shape of the scene. Figure 1 shows
the required hardware and the setup of the system.
The objective is to extract scene depth at every pixel

in the image. Figure 2 gives a geometrical description
of the method that we propose to achieve that goal.

2.1 Calibration

The goal of calibration is to recover the geometry
of the setup (that is, the location of the desk plane
ITI; and that of the light source S) as well as the in-
trinsic parameters of the camera (focal length, optical
center and radial distortion factor). We decompose
the procedure into two successive stages: first camera
calibration and then lamp calibration.

Camera calibration: Estimate the intrinsic cam-
era parameters and the location of the desk plane II;
(tabletop) with respect to the camera. The procedure
consists of first placing a planar checkerboard pattern
(see figure 1) on the desk in the location of the objects
to scan. From the image captured by the camera, we
infer the intrinsic and eztrinsic (rigid motion between
camera and desk reference frame) parameters of the
camera, by matching the projections onto the image
plane of the known grid corners with the expected pro-
jection directly measured on the image (extracted cor-
ners of the grid). This method is very much inspired
by the algorithm proposed by Tsai [13]. Note that
since our calibration rig is planar, the optical center
cannot be recovered through that process, and there-
fore is assumed to be fixed at the center of the image.
A description of the whole procedure can be found in
[3]. The reader can also refer to Faugeras [6] for fur-
ther insights on camera calibration. Notice that the
extrinsic parameters directly lead to the position of
the tabletop II; in the camera reference frame.
Lamp calibration: After camera calibration, esti-
mate the 3D location of the point light source S.
Figure 3 gives a description of our method.

2.2 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detection
of the line of intersection of the shadow plane II(t)
with the desktop Il; a simple approach may be used
if we make sure that the top and bottom edges of the
image are free from objects. Then the two tasks to ac-
complish are: (a) Localize the edge of the shadow that
is directly projected on the tabletop (Tiop(t), Tnot(t))
at every time instant ¢ (every frame), leading to the
set of all shadow planes II(¢), (b) Estimate the time
ts(ZT.) (shadow time) where the edge of the shadow
passes through any given pixel T. = (z.,y.) in the im-
age. Curless and Levoy demonstrated in [4] that such
a spatio-temporal approach is appropriate to preserve
sharp discontinuities in the scene. Details of our im-
plementation are given in figure 4. Notice that the
shadow was scanned from the left to the right side of
the scene. This explains why the right edge of the
shadow corresponds to the front edge of the temporal
profile in figure 4.
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Figure 3: Lamp calibration: The operator places a pencil
on the desk plane II;, orthogonal to it (top-left). The camera
observes the shadow of the pencil projected on the tabletop.
The acquired image is shown on the top-right. From the two
points b and Zs on this image, one can infer the positions in
space of K and Ty, respectively the base of the pencil, and the
tip of the pencil shadow (see bottom figure). This is done by
intersecting the optical rays (O, b) and (Oc,ts) with II; (known
from camera calibration). In addition, given that the height of
the pencil h is known, the coordinates of its tip 7" can be directly
inferred from K. Then, the light source point S has to lie on
the line A = (T, Ts) in space. This yields one linear constraint
on the light source position. By taking a second view, with the
pencil at a different location on the desk, one can retrieve a
second independent constraint with another line A’. A closed
form solution for the 3D coordinate of S is then derived by
intersecting the two lines A and A’ (in the least squares sense).
Notice that since the problem is linear, one can easily integrate
the information from more than 2 views and then make the
estimation more accurate. If N > 2 images are used, one can
obtain a closed form solution for the best intersection point S
of the N inferred lines (in the least squares sense). We also
estimate the uncertainty on that estimate from the distance of
S from each one of the A lines. That indicates how consistently
the lines intersect a single point in space. Refer to [3] for the
complete derivations.
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Figure 4: Spatial and temporal shadow location: The
first step consists of localizing spatially the shadow edge
(Ttop(to), Tvos(to)) at every integer time to (i.e. every frame).
The top and bottom rows are ytop = 10 and ypot = 230
on the top figure. This leads to an estimate of the shadow
plane II(to) at every frame. The second processing step con-
sists of extracting at every pixel Z., the time ¢s(Z.) of passage
of the shadow edge. For any given pixel Z. = (z,y), define
Imin(z,y) = ming (I(z,y,t)) and Imax(z,y) = max¢ (I(z,y,t))
as its minimum and maximum brightness throughout the entire
sequence. We then define the shadow edge to be the locations
(in space-time) where the image I(z,y,t) intersects with the
threshold image Ishadow (%,¥) = (Imin(®,¥) + Imax(z,y)) /2.
This may be also regarded as the zero crossings of the dif-
ference image AI(z,y,t) = 1(@,y,t) — Isnadow(®, ). The two
bottom plots illustrate the shadow edge detection in the spa-
tial domain (to find ZTtop and Tpey) and in the temporal do-
main (to find ¢s(Z.)). The bottom-left figure shows the pro-
file of AI(z,y,t) along the top reference row y = ytop = 10
at time ¢t = to = 134 versus the column pixel coordinate x.
The second zero crossing of that profile corresponds to the
top reference point Tgop(to) = (118.42,10) (computed at sub-
pixel accuracy). Identical processing is applied on the bottom
row to obtain Tpe(to) = (130.6,230). Similarly, the bottom-
right figure shows the temporal profile AI(z¢,yc,t) at the pixel
Te = (Te,ye) = (104,128) versus time ¢ (or frame number).
The shadow time at that pixel is defined as the first zero cross-
ing location of that profile: ¢:(104,128) = 133.27 (computed at
sub-frame accuracy).

Notice that the pixels corresponding to regions in
the scene that are not illuminated by the lamp (shad-
ows due to occlusions) do not provide any relevant
depth information. For this reason we can restrict the
processing to pixels that have sufficient swing between
maximum and minimum brightness. Therefore, we
only process pixels with contrast value I.ontrast (¢, y) =
Imax(z,y) — Imin (2, y) larger than a pre-defined thresh-
old Iipresn- This threshold was 70 in all experiments
reported in this paper (recall that the intensity values



are encoded from 0 for black to 255 for white).

We do not apply any spatial filtering on the im-
ages; that would generate undesired blending in the
final depth estimates, especially noticeable at depth
discontinuities (at occlusions for example). However,
it would be acceptable to low-pass filter the brightness
profiles of the top and bottom rows (there is no depth
discontinuity on the tabletop) and low-pass filter the
temporal brightness profiles at every pixel. These op-
erations would preserve sharp spatial discontinuities,
and might decrease the effect of local processing noise
by accounting for smoothness in the motion of the
stick.

Experimentally, we found that this thresholding ap-
proach for shadow edge detection allow for some inter-
nal reflections in the scene [9, 8, 14]. However, if the
light source is not close to an ideal point source, the
mean value between maximum and minimum bright-
ness may not always constitute the optimal value for
the threshold image Ishadow- Indeed, the shadow edge
profile becomes shallower as the distance between the
stick and the surface increases. In addition, it deforms
asymmetrically as the surface normal changes. These
effects could make the task of detecting the shadow
boundary points challenging. In the future, we in-
tend to develop a geometrical model of extended light
sources and incorporate it in the system.

Although I.;, and . are needed to compute
Ishadow, there exists an implementation of that al-
gorithm that does not require storage of the com-
plete image sequence in memory and therefore leads
itself to real-time implementations. All that one needs
to do is update at each frame five different arrays
Imax(xa y); Imin(xa y): Teontrast (J;: Zl), Ishadow(xa y) and
the shadow time ts(z,y), as the images I(x,y,t) are
acquired. For a given pixel (z,y), the maximum
brightness Iax(z,y) is collected at the very begin-
ning of the sequence (the first frame), and then, as
time goes, the incoming images are used to update
the minimum brightness I, (z,y) and the contrast
Icontrast (m,y). Once Icontrast (m,y) Crosses Ithresh; the
adaptive threshold Ishadow (Z, y) starts being computed
and updated at every frame (and activated). This pro-
cess goes on until the pixel brightness I(z,y,t) crosses
Lshadow (z,y) for the first time (in the upwards direc-
tion). That time instant is registered as the shadow
time ts(x,y). In that form of implementation, the left
edge of the shadow is tracked instead of the right one,
however the principle remains the same.

2.3 Triangulation

Once the shadow time ¢5(Z.) is estimated at a given
pixel Z., one can identify the corresponding shadow
plane II(¢5(Z.)). Then, the 3D point P associated to
T, is retrieved by intersecting I1(¢4(Z.)) with the opti-
cal ray (O,,T.) (see figure 2). Notice that the shadow
time t5(T.) acts as an index to the shadow plane list

II(t). Since t5(Z.) is estimated at sub-frame accuracy,
the final plane II(¢5(Z.)) actually results from linear
interpolation between the two planes II(tp — 1) and
(ty) if to — 1 < t5(T.) < to and to integer. Once the
range data are recovered, a mesh may be generated by
connecting neighboring points in triangles. Rendered
views of three reconstructed surface structures can be
seen in figures 6, 7 and 8.

3 Noise Sensitivity

The overall scheme is based on first extracting from
every frame (i.e. every time instants ¢) the x coordi-
nates of the two reference points @yop(t) and @pet(t),
and second estimating the shadow time ¢s(T.) at ev-
ery pixel T.. Those input data are used to estimate
the depth Z. at every pixel. The purpose of the noise
sensitivity analysis is to quantify the effect of the noise
in the measurement data {Zyop(t), Tvos(t),ts(Tc))} on
the final reconstructed scene depth map. One key step
in the analysis is to transfer the noise affecting the
shadow time t4(Z.) into a scalar noise affecting the
z coordinate of T. after scaling by the local shadow
speed on the image at that pixel. Let V' be the vol-
ume of the parallelepiped formed by the three vectors
0.4, O.B and 0O.S, originating at O, (see figure 2):

V=X¢{(Xp-Xs)x (Xa—Xs)}

where YS = [XS YS ZS]T, YA = [XA YA ZA]T and
Xp = [Xp Y Zp|T are the coordinate vectors of
S, A and B in the camera reference frame (x is the
standard outer product operator). Notice that V is
computed at the triangulation stage, and therefore is
always available (see [3]). Define X, = [X, Y. Z.*
as the coordinate vector in the camera reference frame
of the point in space corresponding to Z.. Assume
that the z coordinates of the top and bottom reference
points (after normalization) are affected by additive
white Gaussian noise with zero mean and variances
o? and o} respectively. Assume in addition that the
variance on the z coordinate of Z, is o2 (different at
every pixel). The following expression for the variance
0%, of the induced noise on the depth estimate Z. was
derived by taking first order derivatives of Z. with
respect to the ‘new’ noisy input variables Ziop, ZThot
and T, (notice that the time variable does not appear

any longer in the analysis):

2
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where W, hg, a1, f1, 71, a2, B2 and 7 are constants
depending only on the geometry (see figure 5):

oy =2Za(ZpYs —YB Zs)
B1=-Za(Zp — Zs)

1 =2a(Yp —Ys)

ay =Zp(YaZs—ZaYs)
B =Zp(Za—Zs)
y2=—Zp(Ya—Ys)

The first term in equation 1 comes from the tempo-
ral noise (on ts(Z.) transferred to Z.); the second and
third terms from the spatial noise (on Tiop and Thoy)-
Let oy be the standard deviation of the image bright-
ness noise. Given that we use linear interpolation of
the temporal brightness profile to calculate the shadow
time t4(Z.), we can write o,, as a function of the
horizontal spatial image gradient I,(Z.) at T. at time
t =ts(Z.):
a1

7 = L) .
Since 0, in inversely proportional to the image gra-
dient, the accuracy improves with shadow edge sharp-
ness. This justifies the improvement in experiment
3 after removing the lamp reflector (thereby signif-
icantly increasing sharpness). In addition, observe
that o,, does not depend on the local shadow speed.
Therefore, decreasing the scanning speed would not
increase accuracy. However, for the analysis leading
to equation 2 to remain valid, the temporal pixel pro-
file must be sufficiently sampled within the transition
area of the shadow edge (the penumbra). Therefore,
if the shadow edge were sharper, the scanning should
also be slower so that the temporal profile at every
pixel would be properly sampled. Decreasing further
the scanning speed would benefit the accuracy only if
the temporal profile were appropriately low-pass fil-
tered before extraction of t5(Z.). This is an issue for
future research.

Notice that oz, aside from quantifying the uncer-
tainties on the depth estimate Z. at every pixel T, it
also constitutes a good indicator of the overall accu-
racies in reconstruction, since most of the errors are
located along the Z direction of the camera frame.
In addition, we found numerically that most of the
variations in the variance o% are due to the varia-
tion of volume V' within a single scan. This explains
why the reconstruction noise is systematically larger
in portions of the scene further away from the lamp
(see figures 6, 7 and 8). Indeed, it can be shown that,
as the shadow moves into the opposite direction of the
lamp (e.g. to the right if the lamp is on the left of the
camera), the absolute value of the volume |V| strictly

decreases, making o, larger (see [3] for details).

Light source

Figure 5: Geometric setup: The camera is positioned at a
distance dg away from the desk plane II; and tilted down to-
wards it at an angle 0. The light source is located at a height
hs, with its direction defined by the azimuth and elevation an-
gles £ and ¢. Notice the sign of cos ¢ directly relates to which
side of the camera the lamp is standing: positive on the right,
and negative on the left. The bottom figure is a side view of
the system (in the (Oc,Yc, Zc) plane). The points A and B are
the reference points on the desk plane (see figure 2).

In order to obtain a uniformly accurate reconstruc-
tion of the entire scene, one may take two scans of the
same scene with the lamp at two different locations
(on the left (L) and on the right (R) of the camera),
and merge them together using at each pixel the esti-
mated reliability of the two measurements. Assume
that the camera position, as well as the height hg
of the lamp, are kept identical for both scans. Sup-
pose in addition that the scanning speeds were ap-
proximately the same. Then, at every pixel Z. in the
image, the two scan data sets provide two estimates
ZE and ZF of the same depth Z. with respective relia-
bilities 0 and ¢ given by equation 1. In addition,
if we call Vi, and Vg the two respective volumes, then
the relative uncertainty between ZX and Z!* reduces
to a function of the volumes: o3 /0% = (VL/Vg)*.
Notice that calculating that relative uncertainty does
not require any extra computation, since V7 and Vg
are available from the two triangulations. The final
depth is computed by weighted average of ZL and
ZB: 7. =wp Zl + wgp ZE. 1If ZE and ZL were Gaus-



sian distributed, and independent, they would be op-
timally averaged using the inverse of the variances as
weights [10]: wr = 0%, /(0%, +0%.) = a*/(1 +a?)
and wg = o /(03 +o03,.) = 1/(1 + a?), where
a = Vi /Vg. Experimentally, we found that this
choice does not yield very good merged surfaces. It
makes the noisy areas of one view interact too sig-
nificantly with the clean corresponding areas in the
other view, degrading the overall final reconstruc-
tion. This happens possibly because the random vari-
ables ZL and ZE are not Gaussian. A heuristic solu-
tion to that problem is to use sigmoid functions to
calculate the weights: wy = (1+exp{-BAV}) ",
and wp = (L+exp{BAV}) " with AV = (V2 —
V2)/(VE + V3E) = (& —1)/(a® + 1). The positive
coefficient 8 controls the amount of diffusion between
the left and the right regions, and should be deter-
mined experimentally. In the limit, as 8 tends to in-
finity, merging reduces to a hard decision: Z. = Z% if
Vi, > Vg, and Z, = ZF otherwise. Our merging tech-
nique presents two advantages: (a) obtaining more
coverage of the scene and (b) reducing the estimation
noise. Moreover, since we do not move the camera be-
tween scans, we do not have to solve for the difficult
problem of view alignment [11, 7, 5]. One merging
example is presented in experiment 3.

Independently from local variations in accuracy
within one scan, one would also wish to maximize
the global (or average) accuracy of reconstruction
throughout the entire scene. In this paper, scanning is
vertical (shadow parallel to the y axis of the image).
Therefore, the average relative depth error |0z, /Z,|
is inversely proportional to |cosé| (see [3]). The two
best values for the azimuth angle are then £ = 0 and
¢ = m corresponding to the lamp standing either to
the right (£ = 0) or to the left (¢ = m) of the camera
(see figure 5-top).

4 Experimental Results
4.1 Calibration accuracies

Camera calibration. For a given setup, we ac-
quired 10 images of the checkerboard (see figure 1),
and performed independent calibrations on them. The
checkerboard consisted of approximately 90 visible
corners on a 8 x 9 grid. Then, we computed both mean
values and standard deviations of all the parameters
independently: the focal length f., radial distortion
factor k. and desk plane position II;. Regarding the
desk plane position, it is convenient to look at the
height d4 and the surface normal vector 74 of Il ex-
pressed in the camera reference frame. An additional
geometrical quantity related to 74 is the tilt angle 6
(see figure 5). The following table summarizes the cal-
ibration results (notice that the relative error on the
angle 6 is computed referring to 360 degrees):

Parameters Estimates Relative
errors
fe (pixels) 857.3 +1.3 0.2%
ke —0.199 + 0.002 1%
dg (cm) 16.69 £ 0.02 0.1%
—0.0427 £ 0.0003
ng 0.7515 4+ 0.0003 0.06%
0.6594 £ 0.0004
0 (degrees) 41.27 +0.02 0.006%

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like figure 3-top-right) and per-
formed calibration of the light source on them. See
section 2.1. Notice that the points b and ¢, were man-
ually extracted from the images. Define S, as the co-
ordinate vector of the light source in the camera frame.
The following table summarizes the calibration results
(refer to figure 5 for notation):

Parameters Estimates Relative
errors
_ ~13.7£0.1
Sc (cm) —17.2+£0.3 ~ 2%
—2.94+0.1
hs (cm) 34.04 £ 0.15 0.5%
¢ (degrees) 146.0 £ 0.8 0.2%
¢ (degrees) 64.6 + 0.2 0.06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34 £ 0.5 cm.

Our method yields an accuracy of approximately
3 mm (in standard deviation) in localizing the light
source. This accuracy is sufficient for final shape re-
covery without significant deformation, as we discuss
in the next section.

4.2 Scene reconstructions

On the first scene (figure 6), we evaluated the accu-
racy of reconstruction based on the sizes and shapes
of the plane at the bottom left corner and the corner
object on the top of the scene (see figure 4-top).
Planarity of the plane: We fit a plane across the
points lying on the planar patch and estimated the
standard deviation of the set of residual distances
of the points to the plane to 0.23 mm. This cor-
responds to the granularity (or roughness) noise on
the planar surface. The fit was done over a sur-
face patch of approximate size 4 cm X 6 cm. This
leads to a relative non planarity of approximately
0.23mm/5cm = 0.4%. To check for possible global
deformations due to errors in calibration, we also fit
a quadratic patch across those points. We noticed
a decrease of approximately 6% in residual standard
deviation after quadratic warping. This leads us to
believe that global geometric deformations are negli-
gible compared to local surface noise. In other words,
one may assume that the errors of calibration do not
induce significant global deformations on the final re-
construction.



Figure 6: Experiment 1 - The plane/ball/corner scene:
Two views of the mesh generated from the cloud of points ob-
tained after triangulation. The original sequence was 270 frames
long, the images being 320 x 240 pixels each. At 60 Hz acquisi-
tion frequency, the entire scanning take 5 seconds. The camera
was positioned at distance dy = 16.7 cm from the desk plane,
tilted down by 6 = 41.3 degrees. The light source was at height
hs = 37.7 cm, on the left of the camera at angles £ = 157.1
degrees and ¢ = 64.8 degrees. From the right-hand figure we
notice that the right-hand side of the reconstructed scene is
more noisy than the left-hand side. This was expected since the
lamp was standing on the left of the camera (refer to section 3
for details).

Geometry of the corner: We fit 2 planes to the
corner structure, one corresponding to the top surface
(the horizontal plane) and the other one to the frontal
surface (vertical plane). We estimated the surface
noise of the top surface to 0.125 mm, and that of the
frontal face to 0.8 mm (almost 7 times larger). This
noise difference between the two planes can be ob-
served on figure 6. Once again, after fitting quadratic
patches to the two planar portions, we did not no-
tice any significant global geometric distortion in the
scene (from planar to quadratic warping, the residual
noise decreased by only 5% in standard deviation).
From the reconstruction, we estimated the height H
and width D of the right angle structure, as well as
the angle 1) between the two reconstructed planes, and
compared them to their true values:

Parameters Estimates True Relative
values errors

I (cm) 2.57 £ 0.02 | 2.65 L 0.02 3%

D (cm) 3.06 = 0.02 | 3.02 4+ 0.02 1.3%

1 (degrees) 86.21 90 1%

The overall reconstructed structure does not have
any major noticeable global deformation (it seems that
the calibration process gives good enough estimates).
The most noticeable source of errors is the surface
noise due to local image processing. A figure of merit
to keep in mind is a surface noise between 0.1 mm (for
planes roughly parallel to the desk) and 0.8 mm (for
frontal plane in the right corner). In most portions
of the scene, the errors are of the order of 0.3 mm,
i.e. less than 1%. Notice that these figures may very
well vary from experiment to experiment, especially
depending on how fast the scanning is performed. In
all the presented experiments, we kept the speed of
the shadow approximately uniform.

Figure 7: Experiment 2 - The cup/plane/ball scene: The
scanned objects were a cup, the plane and the ball. The ini-
tial image of the scene is shown on the left, and the final re-
constructed mesh on the right. We found agreement between
the estimated height of the cup from the 3D reconstruction,
11.04 £ 0.09 c¢m, and the measured height (obtained using a
ruler), 10.95 + 0.05 cm. Once again the right portion on the
reconstructed scene is noisier than the left portion. This was
expected since the light source was, once again, standing to the
left of the camera. Geometrical parameters: dg = 22.6 cm,
0 = 38.2 degrees, hs = 43.2 cm, £ = 155.9 degrees, and ¢ = 69
degrees.

Figures 7 and 8 report the reconstruction results
achieved on two other scenes.

5 Conclusion and future work

We have presented a simple, low cost system for
extracting surface shape of objects. The method re-
quires very little processing and image storage so that
it can be implemented in real time. The accuracies
we obtained on the final reconstructions are reason-
able (at most 1% or 0.5 mm noise error) considering
the little hardware requirement. In addition, the final
outcome is a dense coverage of the surface (one point
in space for each pixel in the image) allowing for direct
texture mapping.

An error analysis was presented together with the
description of a simple technique for merging multi-
ple 3D scans together in order to (a) obtain a better
coverage of the scene, and (b) reduce the estimation
noise. The overall calibration procedure, even in the
case of multiple scans, is very intuitive, simple, and
sufficiently accurate.

Another advantage of our approach is that it easily
scales to larger scenarios indoors — using more power-
ful lamps like photo-floods — and outdoors where the
sun may be used as a calibrated light source (given
latitude, longitude, and time of day). These are ex-
periments that we wish to carry out in the future.

Other extensions of this work relate to multiple
view integration. We wish to extend the alignment
technique to a method allowing the user to move freely
the object in front of the camera and the lamp between
scans in order to achieve a full coverage. That is nec-
essary to construct complete 3D models.

It is also part of future work to incorporate a geo-
metrical model of extended light source to the shadow
edge detection process, in addition to developing an
uncalibrated (or projective) version of the method.



Figure 8: Experiment 3 - The angel scene: We took two
scans of the angel with the lamp first on the left side (top-left)
and then on the right side (top-right) of the camera. The two
resulting meshes are shown on the second row, left and right.
As expected, the portions further away from the light source are
noisier. The two meshes were then merged together following
the technique described in section 3, with diffusion coefficient
B = 15. Four different views of the final mesh (47076 triangles)
are presented. Notice the small surface noise: we estimated it
to 0.09 mm throughout the entire reconstructed surface. Over
a depth variation of approximately 10 cm, this means a relative
error of 0.1%. The few white holes correspond to the occluded
portions of the scene (not observed from the camera or not
illuminated). Most of the geometrical constants in the setup
were kept roughly identical in both scans: dg = 22 cm, 6 = 40
degrees, hg = 62 cm, ¢ ~ 70 degrees; we only changed the
azimuth angle ¢ from 7 (lamp on the left) to 0 (lamp on the
right). In this experiment we took the lamp reflector off, leaving
the bulb naked. Consequently, we noticed a significant improve-
ment in the sharpness of the projected shadow compared to the
two first experiments. We believe that this operation was the
main reason for the noticeable improvement in reconstruction
quality. Once again, there was no significant global deformation
in the final structured surface: we fit a quadratic model through
the reconstructed set of points on the desk plane and noticed
from planar to quadratic warping a decrease of only 2% on the
standard deviation of surface noise.
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Abstract

A simple and inexpensive approach for extracting the three-
dimensional shape of objects is presented. It is based on ‘weak
structured lighting’. It requires very little hardware besides the
camera: a light source (a desk-lamp or the sun), a stick and
a checkerboard. The object, illuminated by the light source, is
placed on a stage composed of a ground plane and a back plane;
the camera faces the object. The user moves the stick in front
of the light source, casting a moving shadow on the scene. The
3D shape of the object is extracted from the spatial and tempo-
ral location of the observed shadow. Experimental results are
presented on five different scenes (indoor with a desk lamp and
outdoor with the sun) demonstrating that the error in recon-
structing the surface is less than 0.5% of the size of the object.
A mathematical formalism is proposed that simplifies the nota-
tion and keep the algebra compact. A real-time implementation
of the system is also presented.

1 Introduction and motivation

One of the most valuable functions of our visual
system is informing us about the shape of the ob-
jects that surround us. Manipulation, recognition, and
navigation are amongst the tasks that we can better
accomplish by seeing shape. Ever-faster computers,
progress in computer graphics, and the widespread ex-
pansion of the Internet have recently generated inter-
est in imaging both the geometry and surface texture
of objects. The applications are numerous. Perhaps
the most important ones are animation and entertain-
ment, industrial design, archiving, virtual visits to mu-
seums, and commercial on-line catalogues.

In designing a system for recovering shape, differ-
ent engineering tradeoffs are proposed by each appli-
cation. The main parameters to be considered are
cost, accuracy, ease of use and speed of acquisition.
So far the commercial 3D scanners (e.g. the Cy-
berware scanner) have emphasized accuracy over the
other parameters. Active illumination systems are
popular in industrial applications where a fixed in-
stallation with controlled lighting is possible. These
systems use motorized transport of the object and ac-
tive (laser, LCD projector) lighting of the scene which
makes them very accurate, but unfortunately expen-
sive [2, 23, 26, 38, 43]. Furthermore most active sys-
tems fail under bright outdoor scenes except those
based upon synchronized scanning. One such system
has been presented by Riou in [33].

An interesting challenge for vision scientists is to
take the opposite point of view: emphasize low cost

Figure 1: The general setup of the proposed method: The
camera is facing the scene illuminated by the light source (top-
left). The figure illustrates an indoor scenario when a desk lamp
(without reflector) is used as light source. In outdoor the lamp
is substituted by the sun. The objects to scan are positioned
on the ground floor (horizontal plane), in front of a background
plane. When an operator freely moves a stick in front of the
light, a shadow is cast on the scene. The camera acquires a
sequence of images I(x,y,t) as the operator moves the stick so
that the shadow scans the entire scene. A sample image is shown
on the top right figure. This constitutes the input data to the
3D reconstruction system. The three dimensional shape of the
scene is reconstructed using the spatial and temporal properties
of the shadow boundary throughout the input sequence.

and simplicity and design 3D scanners that demand
little more hardware than a PC and a video camera
by making better use of the data that is available in
the images.

A number of passive cues have long been known
to contain information on 3D shape: stereoscopic
disparity, texture, motion parallax, (de)focus, shad-
ows, shading and specularities, occluding contours and
other surface discontinuities. At the current state of
vision research stereoscopic disparity is the single pas-
sive cue that reliably gives reasonable accuracy. Un-
fortunately it has two major drawbacks: it requires
two cameras thus increasing complexity and cost, and
it cannot be used on untextured surfaces, which are
common for industrially manufactured objects.

We propose a method for capturing 3D surfaces
that is based on what we call ‘weak structured light-
ing.” It yields good accuracy and requires minimal
equipment besides a computer and a camera: a stick,
a checkerboard, and a point light source. The light
source may be a desk lamp for indoor scenes, and the
sun for outdoor scenes. A human operator, acting as
a low precision motor, is also required.
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Figure 2: Geometrical principle of the method

We start with the description of the scanning
method in Sec. 2, followed in Sec. 3 by a number
of experiments that assess the convenience and accu-
racy of the system in indoor as well as outdoor sce-
narios. We end with a discussion and conclusions in
Sec. 4. In addition, we show that expressing the prob-
lem in dual-space geometry [12] enables to explore and
compute geometrical properties of three dimensional
scenes with simple and compact notation. This for-
malism is discussed in the appendix together with a
complete error analysis of the method.

2 Description of the method

The general principle consists of casting a moving
shadow with a stick onto the scene, and estimating the
three dimensional shape of the scene from the sequence
of images of the deformed shadow. Figure 1 shows a
typical setup. The objective is to extract scene depth
at every pixel in the image. The point light source and
the leading edge of the stick define, at every time in-
stant, a plane; therefore, the boundary of the shadow
that is cast by the stick on the scene is the intersec-
tion of this plane with the surface of the object. We
exploit this geometrical insight for reconstructing the
3D shape of the object. Figure 2 illustrates the ge-
ometrical principle of the method. Approximate the
light source with a point S, and denote by II; the
horizontal plane (ground) and II, a vertical plane or-
thogonal to IIj,. Assume that the position of the plane
I, in the camera reference frame is known from cal-
ibration (sec. 2.1). We infer the location of II, from
the projection ); (visible in the image) of the inter-
section line A; between II;, and II, (sec. 2.2). The

goal is to estimate the 3D location of the point P in
space corresponding to every pixel p (of coordinates
T.) in the image. Call ¢t the time when the shadow
boundary passes by a given pixel Z.. (later referred to
as the shadow time). Denote by II(t) the correspond-
ing shadow plane at that time ¢. Assume that two
portions of the shadow projected on the two planes
I1;, and II, are visible on the image: Ax(t) and A, (¢).
After extracting these two lines, we deduce the lo-
cation in space of the two corresponding lines Ay (¢)
and A,(t) by intersecting the planes (O, Ay (t)) and
(O, Ay(t)) with IIj, and II, respectively. The shadow
plane II(¢) is then the plane defined by the two non-
collinear lines Ap(t) and A,(t) (sec. 2.5). Finally, the
point P corresponding to T, is retrieved by intersect-
ing II(t) with the optical ray (O.,p). This final stage
is called triangulation (sec. 2.6). Notice that the key
steps are: (a) estimate the shadow time ¢4(Z.) at ev-
ery pixel T. (temporal processing), (b) locate the two
reference lines A (¢) and A\, (t) at every time instant
t (spatial processing), (c) calculate the shadow plane,
and (d) triangulate and calculate depth. These tasks
are described in sections 2.4, 2.5 and 2.6.

Goshtasby et al. [22] also designed a range scanner
using a shadow generated by a fine wire in order to
reconstruct the shape of dental casts. In their system,
the wire was motorized and its position calibrated.

Notice that if the light source is at a known location
in space, then the shadow plane II(¢) may be directly
inferred from the point S and the line Ay (t). Conse-
quently, in such cases, the additional plane IL,(¢) is
not required. We describe here two versions of the
setup: one containing two calibrated planes and an
uncalibrated (possibly moving) light source; the sec-
ond containing one calibrated plane and a calibrated
light source.

2.1 Camera calibration

The goal of calibration is to recover the location of
the ground plane II; and the intrinsic camera parame-
ters (focal length, principal point and radial distortion
factor). The procedure consists of first placing a pla-
nar checkerboard pattern on the ground in the location
of the objects to scan (see figure 3-left). From the im-
age captured by the camera (figure 3-right), we infer
the intrinsic and extrinsic parameters of the camera,
by matching the projections onto the image plane of
the known grid corners with the expected projection
directly measured on the image (extracted corners of
the grid); the method is proposed by Tsai in [39]. We
use a first order symmetric radial distortion model for
the lens, as proposed in [11, 39, 25]. When using a
single image of a planar calibration rig, the principal
point (i.e. the intersection of the optical axis with the
image plane) cannot be recovered [25, 37]. In that
case it is assumed to be identical to the image cen-
ter. In order to fit a full camera model (principal



point included), we propose to extend that approach
by integrating multiple images of the planar grid po-
sitioned at different locations in space (with different
orientations). This method has been suggested, stud-
ied and demonstrated by Sturm and Maybank in [37].
Theoretically, a minimum of two images is required to
recover two focals (along x and y), the principal point
coordinates, and the lens distortion factor. We recom-
mend to use that method with three or four images for
best accuracies on the intrinsic parameters [37]. In our
experience, in order to achieve good 3D reconstruction
accuracies, it is sufficient to use the simple approach
with a single calibration image without estimating the
camera, principal point. In other words, the quality of
reconstruction is quite insensitive to errors on the prin-
cipal point position. A whole body of work supporting
that observation may be found in the literature. We
especially advise the reader most interested in issues
on sensitivity of 3D Euclidean reconstruction results
with respect to intrinsic calibration errors, to refer to
recent publications on self-calibration, such as Boug-
noux [5] or Pollefeys et al. [28, 31, 32].

For more general insights on calibration techniques,
we refer the reader to the work of Faugeras [19] and
others [10, 11, 14, 18, 36, 42]. A 3D rig should be
used for achieving maximum accuracy.

Figure 3: Camera calibration

2.2 Vertical plane localization II,

Call @y, and @, respectively the coordinate vectors
of ITj, and II, (refer to figure 2 and Appendix A for
notation). After calibration, @y is known. The two
planes IIj, and II, intersect along the line A; observed
on the image plane at );. Therefore, according to
proposition 1 in Appendix A, @y, —w, is parallel to \;,
coordinate vector of A;, or equivalently, there exists a
scalar « such that w, = W, +a);. Since the two planes
I, and II, are by construction orthogonal, we have
(Wh,wy) = 0. That leads to the closed-form expression
for calculating @,:

Notice that in every realistic scenario, the two planes
II;, and II, do not contain the camera center O.. Their
coordinate vectors wy, and w, in dual-space are there-
fore always well defined (see Appendix A and sections
2.6 and 2.7 for further discussions).

A pencil of known height h
orthogonal to the plane
| Ground plane

Light source

S must lie on the
line A =(T,Ty)

Figure 4: Light source calibration

2.3 Light source calibration

When using a single reference plane for scanning
(for example II;, without II,), it is required to know
the location of the light source in order to infer the
shadow plane location II(¢) (see section 2.5 for de-
tails). Figure 4 illustrates a simple technique for cal-
ibrating the light source that requires minimal extra
equipment: a pencil of known length. The operator
stands a pencil on the reference plane II;, (see fig.
4-top-left). The camera observes the shadow of the
pencil projected on the ground plane. The acquired
image is shown on figure 4-top-right. From the two
points b and , on this image, one can infer the po-
sitions in space of B and T, respectively the base of
the pencil, and the tip of the pencil shadow (see bot-
tom figure). This is done by intersecting the optical
rays (O, b) and (O.,%s) with II;, (known from cam-
era calibration). In addition, given that the height of
the pencil h is known, the coordinates of its tip 7" can
be directly inferred from B. The point light source
S has to lie on the line A = (T,T5) in space. This
yields one linear constraint on the light source posi-
tion. By taking a second view, with the pencil at a



different location on the plane, one retrieves a second
independent constraint with another line A’. A closed
form solution for the 3D coordinate of S is then de-
rived by intersecting the two lines A and A’ (in the
least squares sense). Notice that since the problem is
linear, one can integrate the information from more
than 2 views and make the estimation more accurate.
If N > 2 images are used, one can obtain a closed form
solution for the closest point S to the N inferred lines
(in the least squares sense). We also estimate the un-
certainty on that estimate from the distance of S to
each one of the A lines. That indicates how consis-
tently the lines intersect a single point in space. Refer
to [7, 8, 6] for the complete derivations.

2.4 Spatial and temporal shadow edge lo-
calization

A fundamental stage of the method is the detec-
tion of the lines of intersection of the shadow plane
II(t) with the two planes II, and II,; a simple ap-
proach to extract A, (t) and A, (t) may be used if we
make sure that a number of pixel rows at the top and
bottom of the image are free from objects. Then the
two tasks to accomplish are: (a) Localize the edges
of the shadow that are directly projected on the two
orthogonal planes A (t) and A, (t) at every discrete
time t (every frame), leading to the set of all shadow
planes II(t) (see sec. 2.5), (b) Estimate the time ¢, (Z.)
(shadow time) where the edge of the shadow passes
through any given pixel T. = (x.,y.) in the image
(see figure 5). Curless and Levoy [16] demonstrated
that such a spatio-temporal approach is appropriate
for preserving sharp discontinuities in the scene as well
as reducing range distortions. A similar temporal pro-
cessing for range sensing was used by Gruss, Tada and
Kanade in [23, 27].

Both processing tasks correspond to finding the
edge of the shadow, but the search domains are dif-
ferent: one operates on the spatial coordinates (image
coordinates) and the other one on the temporal coor-
dinate. Although independent in appearance, the two
search procedures need to be compatible: if at time ¢g
the shadow edge passes through pixel T. = (z¢,yc),
the two searches should find the exact same point
(e, Ye,to) (in space/time). One could observe that
this property does not hold for all techniques. One
example is the image gradient approach for edge de-
tection (e.g. Canny edge detector [13]). Indeed, the
maximum spatial gradient point does not necessar-
ily match with the maximum temporal gradient point
(which is function of the scanning speed). In addition,
the spatial gradient is a function both of changes in
illumination due to the shadow and changes in albedo
and changes in surface orientation. Furthermore, it
is preferable to avoid any spatial filtering on the im-
ages (e.g. smoothing) which would produce blending
in the final depth estimates, especially noticeable at
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Figure 5: Spatial and temporal shadow localization

occlusions and surface discontinuities (corners for ex-
ample). These observations were also addressed by
Curless and Levoy in [16].

It is therefore necessary to use a unique criterion
that would equally describe shadow edges in space
(image coordinates) and time and is insensitive to
changes in surface albedo and surface orientation.
The simple technique we propose here that satisfies
that property is spatio-temporal thresholding. This
is based on the following observation: as the shadow
is scanned across the scene, each pixel (z,y) sees its
brightness intensity going from an initial maximum
value Iax(z,y) (when there is no shadow yet) down to
a minimum value Inin(z,y) (when the pixel is within
the shadow) and then back up to its initial value as the
shadow goes away. This profile is characteristic even
when there is a fair amount of internal reflections in
the scene [29, 41].

For any given pixel T. = (z,y), define Iy (x, y) and
Inax(z,y) as its minimum and maximum brightness
throughout the entire sequence:

[min(xay) = H}:in {[(xayat)}
Inax(z,y) = mtax{I(x,y,t)}

We define the shadow edge to be the locations (in
space-time) where the image I(z,y,t) intersects with
the threshold image Lihadow(Z,y) defined as the mean
value between I ax(z,y) and Ly, (z,y):

(1)

(Imax (2, y) + Imin(z,9))  (2)

N | =

Ishadow (CE, y) =



This may be also regarded as the zero crossings of the
difference image AI(z,y,t) defined as follows:

AI(:U, Y, t) = I(J,', Y, t) - Ishadow(xa y) (3)

The two bottom plots of fig. 5 illustrate shadow
edge detection in the spatial domain (to calculate
An(t) and A, (¢)) and in the temporal domain (to calcu-
late t5(Z.)). The bottom-left plot shows the profile of
Al(z,y,t) along row y = 209 at time t = to = 288
versus the column pixel coordinate z. The second
zero crossing of that profile corresponds to one point
Tedge(to) = (114.51,209) belonging to Ay (o), the right
edge of the shadow (computed at subpixel accuracy by
linear interpolation). Identical processing is applied
on 39 other rows for Ap(to) and 70 rows for A, (¢p) in
order to retrieve the two edges (by least square line fit-
ting across the two sets of points on the image). Simi-
larly, the bottom-right figure shows the temporal pro-
file AI(z.,y.,t) at the pixel T, = (z.,y.) = (133,120)
versus time ¢ (or frame number). The shadow time
at that pixel is defined as the first zero crossing loca-
tion of that profile: ¢5(133,120) = 287.95 (computed
at sub-frame accuracy by linear interpolation). Notice
that the right edge of the shadow corresponds to the
front edge of the temporal profile, because the shadow
was scanned from left to right in all experiments. Intu-
itively, pixels corresponding to occluded regions in the
scene do not provide any relevant depth information.
Therefore, we only process pixels with contrast value
Leontrast (€,Y) = Imax(%,y) — Imin(z,y) larger than a
pre-defined threshold Ilipresn. This threshold was 30
in all experiments reported in this paper (recall that
the intensity values are encoded from 0 for black to
255 for white). This threshold should be proportional
to the level of noise in the image.

Due to the limited dynamic range of the camera, it
is clear that one should avoid saturating the sensor,
and that one would expect poor accuracy in areas of
the scene that reflect little light towards the camera
due to their orientation with respect to the light source
and/or low albedo. Our experiments were designed to
test the extent of this problem.

2.5 Shadow plane estimation II(¢)

Denote by @(t), Ax(t) and A, () the coordinate vec-
tors of the shadow plane II(¢) and of the shadow edges
An(t) and A, (t) at time t. Since Ap(t) is the pro-
jection of the line of intersection Ay (t) between II(t)
and II,, then @(t) lies on the line passing through @),
with direction Ay, () in dual-space (from Appendix A).
That line, denoted Ay, (), is the dual image of Ay (¢) in
dual-space (see Appendix A). Similarly, @(¢) lies on
the line A, (t) passing through @, with direction X, (¢)
(dual image of A,(t)). Therefore, in dual-space, the
coordinate vector of the shadow plane w(t) is at the
intersection between the two known lines Ap(t) and

A=

AV(I) —~—— Dual image of Av(l)

Dual image of Ah(l) —_— Ah(t)
_ Shadow plane
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at time t

— Image of the shadow
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Image of the shadow )
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edge projected on the — X (t)
vertical plane v _
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.
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Figure 6: Shadow plane estimation using two planes: The
coordinate vector of the shadow plane @(t) is the intersection
point of the two dual lines Aj(t) and A, (t) in dual-space ().
In presence of noise, the two lines do not intersect. The vector
w(t) is then the best intersection point between the two lines
(in the least squares sense).

Wy

Ay (t). In the presence of noise these two lines will not
exactly intersect (equivalently, the 3 lines \;, Ap(t)
and A, (t) do not necessarily intersect at one point on
the image plane, or their coordinate vectors \;, Ay (t)
and M, (t) are not coplanar). However, one may still
identify @w(t) with the point that is the closest to the
lines in the least-squares sense. The solution to that
problem reduces to:

with

Wh + anAn(t)
Wy + ayAy(t)

(5)
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—~

~

~
|

if [, a,]T = A~lb, where A and b are defined as
follows (for clarity, the variable ¢ is omitted):

o) ey e

Note that the two vectors wy (t) and w2 (t) are the
orthogonal projections, in dual-space, of @(t) onto
An(t) and A,(t) respectively. The norm of the dif-
ference between these two vectors may be used as an
estimate of the error in recovering II(¢). If the two
edges A\ (t) and A, (t) are estimated with different re-
liabilities, a weighted least squares method may still
be used.

Figure 6 illustrates the principle of shadow plane es-
timation in dual-space when using the two edges Ay (t)
and A, (t). This reconstruction method was used in
experiments 1, 4 and 5.

Notice that the additional vertical plane II, en-
ables us to extract the shadow plane location without
requiring the knowledge of the light source position.

@h,wu — Wp)
<Avawh - wv>

|
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Figure 7: Shadow plane estimation using one plane and
the light source position: In dual-space, the coordinate vec-
tor of the shadow plane @(t) is the intersection point of the line
f\h(t) and the plane S, dual image of the point light source S.
This method requires the knowledge of the light source position.
A light source calibration method is presented in section 2.3.

@y, —— Horizontal plane

Consequently, the light source is allowed to move dur-
ing the scan (this may be the case of the sun, for
example).

When the light source is of fixed and known location
in space, the plane II, is not required. Then, one may
directly infer the shadow plane position from the line
An(t) and from the light source position S:

w(t) =wp + Oéhxh (t) (6)

where

_ 1-— <wh,75>

Sel(t) & (Wi),Xs)y=1 & a,=

where Xg = [Xg Ys Ys]? is the coordinate vector
of the light source S in the camera reference frame.
In dual-space geometry, this corresponds to intersect-
ing the line Ah(t) with the plane S, dual image of
the source point S. This process is illustrated in
figure 7. Notice that (A (t), Xs) = 0 corresponds to
the case where the shadow plane contains the camera
center of projection O.. This is singular configura-
tion that makes the triangulation fail (||@(t)]] — o0).
This approach requires an additional step of estimat-
ing the position of S. Section 2.3 describes a simple
method for light source calibration. This reconstruc-
tion method was used in experiments 2 and 3.

It is shown in Appendix B that 1 — <wh,75> =
hs/dp, where hg and dp, are the orthogonal distances
of the light source S and the camera center O, to the
plane IIj, (see figure 8). Then, the constant «j may
be written as:

_hsfde_ 1dy -
" (An(t), Xs)  (An(t),Xs/hs)

This expression highlights the fact that the algebra
naturally generalizes to cases where the light source is
located at infinity (and calibrated). Indeed, in those
cases, the ratio X g/hg reduces to ds/ sin ¢ where dg
is the normalized light source direction vector (in the
camera reference frame) and ¢ the elevation angle of
the light source with respect to the plane II;, (defined
on figure 8). In dual-space, the construction of the
shadow plane vector @W(t) remains the same: it is still

at the intersection of Ay, (t) with S. The only difference

A~

is that the dual image S is a plane crossing the origin
in dual-space. The surface normal of that plane is
simply the vector dg.

2.6 Triangulation

Once the shadow time t4(Z.) is estimated at a given
pixel Z. = [z, y. 1]7 (in homogeneous coordinates),
one can identify the corresponding shadow plane
II(ts(ZT.)) (with coordinate vector W, = wW(ts(Tc)))-
Then, the point P in space associated to T, is retrieved
by intersecting II(¢5(Z.)) with the optical ray (O.,T.)
(see figure 2):

Z L = X Z.T Te 8

" (@ee) =l =gy ©
if X, = [X. Y. Z]T is defined as the coordinate
vector of P in the camera reference frame.

Notice that the shadow time ¢5(Z.) acts as an index
to the shadow plane list II(¢). Since t5(.) is estimated
at sub-frame accuracy, the plane II(t5(Z.)) (actually
its coordinate vector w.) results from linear interpo-
lation between the two planes II(¢p — 1) and II(¢o) if
to — 1 < t4(ZT.) < to and to integer:

we = Atw(to — 1) + (1 — At) (o),

where At =ty — t5(T.), 0 < At < 1 (see figure 17).

Once the range data are recovered, a mesh is gen-
erated by connecting neighboring points in triangles.
The connectivity is directly given by the image: two
vertices are neighbors if their corresponding pixels are
neighbors in the image. In addition, since every vertex
corresponds to a unique pixel, texture mapping is also
a straightforward task. Figures 9, 11, 12, 13 and 14
show experimental results.

Similarly to stereoscopic vision, when the baseline
becomes shorter, as the shadow plane moves closer
to the camera center triangulation becomes more and
more sensitive to noise. In the limit, if the plane
crosses the origin (or equivalently ||@.|| — o) triangu-
lation becomes impossible. This is why it is not a big
loss that we cannot represent planes going through
the origin with our parameterization. This observa-
tion will appear again in the next section on error
analysis.



2.7 Design Issues - Error analysis

When designing the scanning system, it is impor-
tant to choose a spatial configuration of the camera
and the light source that maximizes the overall qual-
ity of reconstruction of the scene.

The analysis conducted in Appendix C leads to an
expression for the variance o3 of the error of the
depth estimate Z,. of a point P belonging to the scene
(equation 18):

. 2

9 4 wzc0s<p+wysm<p> 2

oy =2, —— o (9)
& ( f VT ()] !

where T, is the coordinate vector of the projection p
of P on the image plane, @, = [w, wy w7 is the
shadow plane vector at time ¢ = t,(%.), VI(ZT.) =
[L:(Z.) I,@)]" = |[VI@.)| [cosp sing]” is the
spatial gradient vector of the image brightness at the
shadow edge at T. at time ¢ = 4(T.) (in units of
brightness per pixel), o is the standard deviation of
the image brightness noise (in units of brightness), and
fe is the camera focal length (in pixels).

Three observations may be drawn from equation 9.
First, since o,_is inversely proportional to [|[VI(z.)]|?,
the reconstruction accuracy increases with the sharp-
ness of the shadow boundary. This behavior has been
observed in past experiments, and discussed in [§].
This might explain why scans obtained using the sun
(experiments 4 and 5) are more noisy that those with a
desk lamp (as the penumbra is larger with the sun by a
factor of approximately 5). Second, notice that U%c is

proportional to [|@.|” (through the terms w} and w}),
or, equivalently, inversely proportional to the square of
the distance of the shadow plane to the camera center
O.. Therefore, as the shadow plane moves closer to the
camera, triangulation becomes more and more sensi-
tive to noise (see discussion in section 2.6). The third
observation is less intuitive: one may notice that oy,
does not explicitly depend on the local shadow speed
at T, at time ¢t = ¢4(T.). Therefore, decreasing the
scanning speed would not increase accuracy. However,
for the analysis leading to equation 9 to remain valid
(see Appendix C), the temporal pixel profile must be
sufficiently sampled within the transition area of the
shadow edge (the penumbra). Therefore, if the shadow
edge were sharper, the scanning should also be slower
so that the temporal profile at every pixel would be
properly sampled. Decreasing further the scanning
speed would benefit the accuracy only if the temporal
profile were appropriately low-pass filtered or other-
wise interpolated before extraction of ¢4(Z.). This is
an issue for future research.

An experimental validation of the variance expres-
sion (9) is reported in section 3 (figure 10).

In the case where the light source position is known,
it is possible to write the “average” depth variance as

Light source

L

Figure 8: Geometric setup: The camera is positioned at a
distance dj, away from the plane II;, and tilted down towards it
at an angle . The light source is located at a height hg, with
its direction defined by the azimuth and elevation angles £ and
¢ in the reference frame attached to the plane II;. Notice that
the sign of cos ¢ directly relates to which side of the camera the
lamp is standing: positive on the right, and negative on the left.

a direct function of the variables defining the geometry
of the system (Appendix C, equation 22):

tan ¢ or
" in20 [cos€| fo L (T.)]

0Zz. average ~ (10)

where the quantities dj, 6, ¢ and ¢ characterize
the spatial configuration of the camera and the light
source with respect to the reference plane II,, (figure
8). Notice that this quantity may even be computed
prior to scanning right after calibration.

In order to maximize the overall reconstruction
quality, the position of the light source needs then to
be chosen so that the norm of the ratio tan ¢/ cos&
is minimized. Therefore, the two optimal values for
the azimuth angle are £ = 0 and £ = 7 corresponding
to positioning the lamp either to the right (£ = 0) or
to the left (£ = m) of the camera (see figure 8). Re-
garding the elevation angle ¢, it would be beneficial
to make tan ¢ as small as possible. However, making
¢ arbitrarily small is not practically possible. Indeed,
setting ¢ = 0 would constrain the light source to lie on
the plane II;, which would then drastically reduce the
effective coverage of the scene due to large amount of
self-shadows cast on the scenery. A reasonable trade-
off for ¢ is roughly between 60 and 70 degrees. Regard-
ing the camera position, it would also be beneficial to
make sin f as large as possible (ideally equal to one).
However, it is very often not practical to make 6 ar-
bitrarily close to 7/2. Indeed, having 8 = 7/2 brings
the reference plane II, parallel to the image plane.
Then, standard visual camera calibration algorithms
are known to fail (due to lack of depth perspective in
the image). In most experiments, we set 6 to roughly
/4.

Once again, for validation purposes, we may use



equation 10 to estimate the reconstruction error of the
scans performed in experiment 3 (figure 12). From a
set of 10 images, we first estimate the average image
brightness noise (o; = 2), and the shadow edge sharp-
ness (||VI|| ~ 50). After camera and light source
calibration, the following set of parameters is recov-
ered: f. = 428 pixels, dp = 22 cm, § = 39.60 degrees,
hs = 53.53 cm, £ = —4.91 degrees and ¢ = 78.39
degrees. Equation 10 returns then an estimate of the
reconstruction error (o7, &~ 0.2 mm) very close to the
actual error experimentally measured on the final re-
constructed surface (between 0.1 mm and 0.2 mm).
The first expression given in equation 9 may also be
used for obtaining a more accurate estimate of oz,
specific to every point in the scene.

2.8 Merging scans

The range data can only be retrieved at pixels cor-
responding to regions in the scene illuminated by the
light source and seen by the camera. In order to ob-
tain better coverage of the scene, one may take multi-
ple scans of the same scene having the light source at
different locations each time, while keeping the cam-
era position fixed. Consider the case of two scans with
the lamp first on the right, and then on the left of the
camera (see figure 9). Assume that at a given pixel T,
on the image, two shadow planes are available from
the two scans: IIY and II%. Denote by WX and w%
their respective coordinate vectors. Then, two esti-
mates Z and ZF of the corresponding depth at Z.
are available (from equation 8):

(11)

ZcL = 1/<Ef,§c>
{ Z¢ = 1/ (@i, 7e)

One may then calculate the depth estimate at 7.
by taking a weighted average of ZL and ZE:

Ze=ap Z +ar ZE (12)

where the weights a, and ar are computed based on
the respective reliabilities of the two depth estimates.
Assuming that ZX and ZF are random variables with
independent noise terms, they are optimally averaged
(in the minimum variance sense) using the inverse of
the variances as weights [30]:

OfL_O'%{ { ar, =o%/ (0%

T 42
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where o7 and o% are the variances of the error at-

tached to ZX and ZE respectively.

A sensitivity analysis of the method described in
Appendix C provides expressions for those variances
(given in equation 9). This technique was used in ex-
periment 1 for merging two scans (see figure 9).

2.9 Real-time implementation

We implemented a real-time version of our 3D scan-
ning algorithm in collaboration with Silvio Savarese of
the university of Naples, Italy. In that implementation
the process is divided into two main steps. In the first
step, the minimum and maximum images I, (z,y)
and Inax(z,y) (eq. 1) are computed through a first
fast shadow sweep over the scene (with no shadow
edge detection). That step allows to pre-compute the
threshold image Ishadow (%, %) (eq. 2) which is useful to
compute in real-time the difference image AI(x,y,1t)
(eq- 3) during the next stage: the scanning proce-
dure itself. During scanning, temporal and spatial
shadow edge detections are performed as described
in section 2.4: As a new image I(x,y,to) is acquired
at time t = tp, the corresponding difference image
Al(z,y,to) is first computed. Then, a given pixel
(z¢,y.) is selected as a pixel lying on the edge of
the shadow if AI(z.,y.,t) crosses zero between times
t =ty —1and t = ty. In order to make that deci-
sion, and then compute its corresponding sub-frame
shadow time t4(x.,y.), only the previous image dif-
ference AI(z,y,to — 1) needs to be stored in memory.
Once a pixel (x.,y.) is activated and its sub-frame
shadow time t4(z¢,y.) computed, one may directly
identify its corresponding shadow plane II by linear
interpolation between the current shadow plane II(tp)
and the previous one II(top — 1) (see sec. 2.5). There-
fore, the 3D coordinates of the point may be directly
computed by triangulation (see sec. 2.6). As a re-
sult, in that implementation, neither the shadow times
ts(x,y), nor the entire list of shadow planes II(¢) need
to be stored in memory, only the previous difference
image AI(x,y,to — 1) and the previous shadow plane
II(to — 1). In addition, scene depth map (or range
data) is computed in real-time. The final implemen-
tation that we designed also takes advantage of pos-
sible multiple passes of the shadow edge over a given
pixel in the image by integrating all the successive
depth measurements together based on their relative
reliabilities (equations 11, 12 and 13 in section 2.8).
Details of the implementation may be found in [34].

The real-time program was developed under Visual
C++ and works at 30 frames a second on images of
size 320 x 240 on a Pentium 300MHz machine: it
takes approximately 30 seconds to scan a scene with
a single shadow pass (i.e. 30 x 30 = 900 frames), and
between one and two minutes for a refined scan using
multiple shadow passes. The system uses the PCI
frame grabber PXC200 from Imagenation, a NTSC
black and white SONY XC-73/L camera (1/3 inch
CCD) with a 6mm COSMICAR lens (leading to a 45°
horizontal field of view). Source code (matlab for cal-
ibration and C for scanning) and complete hardware
references and specifications are available online at
http://www.vision.caltech.edu/bouguetj/ICCV98.
At the same location, a short demonstration movie of



the working system is also available.

3 Experimental Results

3.1 Calibration accuracy

Camera calibration. For a given setup, we ac-
quired 5 images of the checkerboard pattern (see figure
3-right), and performed independent calibrations on
them. The checkerboard, placed at different posi-
tions in each image, consisted of 187 visible corners
on a 16 x 10 grid. We computed both mean values
and standard deviations of all the parameters inde-
pendently: the focal length f., radial distortion fac-
tor k. and ground plane position II;. Regarding the
ground plane position, it is convenient to look at its
distance dp, to the camera origin O, and its normal vec-
tor 7, expressed in the camera reference frame (recall:
wp, = Tin/dp). The following table summarizes the cal-
ibration results:

Parameters Estimates Relative
errors
fe (pixels) 426.8 + 0.8 0.2%
ke —0.233 £ 0.002 1%
dp, (cm) 112.1 £0.1 0.1%
—0.0529 £+ 0.0003
Ty 0.7322 + 0.0003 0.05%
0.6790 £ 0.0003
—0.0472 £+ 0.0003
@y, (m™1) 0.653 = 0.006 0.1%
( 0.606 + 0.006 )

Lamp calibration. Similarly, we collected 10 images
of the pencil shadow (like figure 4-top-right) and per-
formed calibration of the light source on them. See
section 2.3. Notice that the points b and t, were
manually extracted from the images. Define Xg as
the coordinate vector of the light source in the cam-
era reference frame. The following table summarizes
the calibration results obtained for the setup shown in
figure 4 (refer to figure 8 for notation):

Parameters Estimates Relative
errors
. ~13.7£0.1
Xs (cm) —17.2+£0.3 ~ 2%
—2.94+0.1
hs (cm) 34.04 £0.15 0.5%
¢ (degrees) 146.0 £ 0.8 0.2%
¢ (degrees) 64.6 + 0.2 0.06%

The estimated lamp height agrees with the manual
measure (with a ruler) of 34 £ 0.5 cm.

This accuracy is sufficient for not inducing any
significant global distortion onto the final recovered
shape, as we discuss in the next section.

3.2 Scene reconstructions

Experiment 1 - Indoor scene: We took two scans
of the same scene with the desk lamp first on the right
side and then on the left side of the camera. The two
resulting meshes are shown on the top row on figure

Figure 9: Experiment 1 - Indoor scene

9. The meshes were then merged together following
the technique described in section 2.8. The bottom
figure shows the resulting mesh composed of 66,579
triangles. We estimated the surface error (oz,) to ap-
proximately .7 mm in standard deviation over 50 cm
large objects, leading to a relative reconstruction error
of 0.15%. The white holes in the mesh images corre-
spond to either occluded regions (not observed from
the camera, or not illuminated) or very low albedo ar-
eas (such as the black squares on the horizontal plane).
There was no significant global deformation in the fi-
nal structured surface: after fitting a quadratic model
through sets of points on the two planes, we only no-
ticed a decrease of approximately 5% in standard devi-
ation of the surface error. One may therefore conclude
that the calibration procedure returns sufficiently ac-
curate estimates. The original input sequences were
respectively 665 and 501 frames long, each image be-
ing 320 x 240 pixels large, captured with a grayscale
camera.

Figure 10 reports a comparison test between the
theoretical depth variances obtained from expression
(9) and that computed from the reconstructed surface.
This test was done on the first scan of the scene shown
on figure 9-top-left. In that test, we experimentally
compute the standard deviation oz, of the error on
the depth estimate Z. at 13 points p = (A, B, ... , M)
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s, THEORY (mm)
| P || vI | [wae wy}T | Ze || oz, th. | 07, exp. |
71.5 1.6591
A 18.0 0.2669 1332.4 0.19 0.37
69.0 1.7755
B 12.0 0.3762 1317.2 0.21 0.28
61.0 1.9639
C 11.0 0.3576 1355.6 0.28 0.44
52.0 2.0788
D 12.0 0.3071 1300.0 0.31 0.48
40.5 2.2454
E 14.0 0.2170 1286.2 0.40 0.52
42.0 2.3455
F 12.0 0.1606 1318.6 0.43 0.65
37.5 2.5048
G 10.0 0.1101 1363.4 0.55 0.70
46.5 1.7752
H 9.0 0.3776 1800.8 0.58 0.65
38.5 1.8700
1 9.5 0.3608 1789.6 0.72 0.70
38.0 2.0038
J 9.5 0.3491 1786.1 0.78 0.91
28.0 2.1815
K 75 0.2523 1749.7 1.08 1.08
21.5 2.2834
L 7.0 0.1953 1769.0 1.46 1.34
51.0 1.7905
M 10.0 0.3765 1495.2 0.37 0.43

Figure 10: Comparison of measured and predicted re-
construction error oz : The standard deviation oz, of the
depth estimate error are experimentally calculated at 13 points
p=(A,B,...,M) picked randomly on the horizontal plane IIj
and computed theoretically using equation 9. The experimental
estimates are reported in the last column of the table (in mm)
and the second last column reports the corresponding theoreti-
cal estimates. The terms involved in equation 9 are also given:
VI (in units of brightness per pixel), [we wy]T (in m~!) and
Z (in mm). The image noise was experimentally estimated to
o7 = 2 brightness values, and the focal value used was f. = 426
pixels. The top-left figure shows a plot is the theoretical stan-
dard deviations versus the experimental ones. Observe that the
theoretical error model captures quite faithfully the actual vari-
ations in accuracy of reconstruction within the entire scene: as
the point of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and a smaller
shadow plane vector w,; in addition, deeper areas in the scene
are more noisy mainly because of larger absolute depths Z. and
shallower shadow edges (smaller |[VI||). We conclude from that
experiment that equation 9 returns an accurate estimate for
oz,
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picked randomly on the horizontal plane II; of the
scan data shown on figure 9-top-left. Figure 10-top-
right shows the positions of those points in the scene.
The standard deviation oz, at a given point p in the
image is experimentally calculated by first taking the
9 x 9 pixel neighborhood around p resulting into a set
of 81 points in space that should lie on II,. We then
fit a plane across those 81 points (in the least squares
sense) and set oz, as the standard deviation of the
residual algebraic distances of the entire set of points
to this best fit plane. The experimental estimates for
oz. are reported in the last column of the table (in
mm). The second last column reports the correspond-
ing theoretical estimates of oz, (in mm) computed
using equation 9. The terms involved in that equation
are also given: VI (in units of brightness per pixel),
[wry wy]? (in m™!) and Z, (in mm). The image noise
was experimentally estimated to oy = 2 brightness val-
ues (calculation based on 100 acquired images of the
same scene), and the focal value used was f. = 426
pixels. See sec. 2.7 for a complete description of those
quantities. The top-left figure shows a plot of the the-
oretical standard deviations versus the experimental
ones. Observe that the theoretical error model cap-
tures quite faithfully the actual variations in accuracy
of reconstruction within the entire scene: as the point
of interest moves from the left to the right part of the
scenery, accuracy increases due to sharper edges, and
a smaller shadow plane vector wW,; in addition, deeper
areas in the scene are more noisy mainly because of
larger absolute depths Z. and shallower shadow edges
(smaller ||[VI|]). We conclude from that experiment
that equation 9 returns a valid estimate for 0.

Experiment 2 - Scanning of a textured skull:
We took one scan of a small painted skull, using a
single reference plane I1;,, with known light source po-
sition (pre-calibrated). Two images of the sequence
are shown on the top row of figure 11. The recovered
shape is presented on the second row (33,533 trian-
gles), and the last row shows three views of the mesh
textured by the top left image. Notice that the tex-
tured regions of the object are nicely reconstructed (al-
though these regions have smaller contrast Icontrast)-
Small artifacts observable at some places on the top
of the skull are due to the saturation of the pixel val-
ues to zero during shadow passage. This effect in-
duces a positive bias on the threshold Ishadow (since
Lnin is not as small as it should be). Consequently,
those pixels take on slightly too small shadow times
ts and are triangulated with shadow planes that are
shifted to the left. In effect, their final 3D location
is slightly off the surface of the object. One possible
solution to that problem consists of taking multiple
scans of the object with different camera apertures,
and retain each time the range results for the pix-
els that do not suffer from saturation. The overall



reconstruction error was estimated to approximately
0.1 mm over a 10 cm large object leading to a rela-
tive error of approximately 0.1%. In order to check
for global distortion, we measured the distances be-
tween three characteristic points on the object: the
tip of the two horns, and the top medium corner of the
mouth. The values obtained from physical measure-
ments on the object and the ones from the retrieved
model agreed within the error of measurement (on the
order of 0.5mm over distances of approximately 12 to
13cm). The sequence of images was 670 frames long,
each image being 320 x 240 pixels large (acquired with
a grayscale camera).

Experiment 3 - Textured and colored fruits:
Figure 12 shows the reconstruction results on two tex-
tured and colored fruits. The second row shows the
reconstructed shapes. The two meshes with the pixel
images textured on them are shown on the third row.
Similar reconstruction errors to the previous exper-
iment (Experiment 2) were estimated on that data
set. Notice that both textured and colored regions of
the objects were well reconstructed: the local surface
errors was estimated between 0.1 mm and 0.2 mm,
leading to relative errors of approximately 0.1%.

Experiment 4 - Outdoor scene: In this experi-
ment, the sun was the light source. See figure 13. The
final mesh is shown on the bottom figure (106, 982 tri-
angles). The reconstruction error was estimated to
1lmm in standard deviation, leading to a relative error
of approximately 0.2%. The larger reconstruction er-
ror is possibly due to the fact that the sun is not well
approximated by a point light source (as discussed in
Appendix C). Once again, there was no noticeable
global deformation induced by calibration. After fit-
ting a quadratic model to sets of points on the planes,
we only witnessed a decrease of approximately 5% on
the standard deviation of the residual error. The orig-
inal sequence was 790 images long acquired with a
consumer electronics color camcorder (at 30 Hz). Af-
ter digitization, and de-interlacing, each image was
640 x 240 pixel large. The different digitalization tech-
nique may also explain the larger reconstruction error.

Experiment 5 - Outdoor scanning of a car:
Figure 14 shows the reconstruction results on scan-
ning a car with the sun. The two planes (ground floor
and back wall) approach was used to infer the shadow
plane (without requiring the sun position). The initial
sequence was 636 frames long acquired with a con-
sumer electronics color video-camera (approximately
20 seconds long). Similarly to Experiment 4, the se-
quence was digitized resulting to 640 x 240 pixel large
non-interlaced images. Two images of the sequence
are presented on the top row, as well as two views of
the reconstructed 3D mesh after scanning. The re-
construction errors were estimated to approximately
1 cm, or 0.5% of the size of the car (approximately 3
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meters).

4 Conclusion and future work

We have presented a simple, low cost system for 3D
scanning. The system requires very little equipment (a
light source, and a straight edge to cast the shadow)
and is very simple and intuitive to use and to cali-
brate. This technique scales well to large objects and
may be used in brightly lit scenes where most active
lighting methods are impractical (expect synchronized
scanning systems [33]). In outdoor scenarios, the sun
is used as light source and is allowed to move during a
scan. The method requires very little processing and
image storage and has been implemented in real time
(30 Hz) on a Pentium 300MHz machine. The accu-
racies that we obtained on the final reconstructions
are reasonable (error at most 0.5% of the size of the
scene). In addition, the final outcome is a dense and
conveniently organized coverage of the surface (one
point in space for each pixel in the image), allowing di-
rect triangular meshing and texture mapping. We also
showed that using dual-space geometry enables us to
keep the mathematical formalism simple and compact
throughout the successive steps of the method. An er-
ror analysis was presented together with a description
of a simple technique for merging multiple 3D scans
in order to obtain a better coverage of the scene, and
reduce the estimation error. The overall calibration
procedure, even in the case of multiple scans, is intu-
itive, simple, and accurate.

Our method may be used to construct complete 3D
object models. One may take multiple scans of the
object at different locations in space, and then align
the sets of range images. For that purpose, a number
of algorithms have been explored and shown to yield
excellent results [3, 21, 40]. The final step consists of
constructing the final object surface from the aligned
views [1, 17, 40].

It is part of future work to incorporate a geometri-
cal model of extended light source to the shadow edge
detection process, in addition to developing an uncal-
ibrated (projective) version of the method. One step
towards an uncalibrated system may be found in [9].
In this paper, we study the case of 3D reconstruction
from a set of planar shadows when there is no cali-
brated background plane in the scene.

A Dual-space formalism

Let (E) = R? be the 3D Euclidean space. A plane
IT in (E) is uniquely represented by the 3-vector @ =
[wr wy w.]T such that any point P of coordinate
vector X, = [X. Y. Z.]7 (expressed in the camera
reference frame) lies on II if and only if (w, YC> =1
({.,.) is the standard scalar product operator). Notice
that @ = ©/d where 7 is the unitary normal vector
of the plane and d # 0 the plane’s distance to the
origin. Let (Q) = IR?. Since every point @ € (Q)



Figure 11: Experiment 2 - Scanning of a textured skull Figure 13: Experiment 4 - Outdoor scanning of an object

Figure 12: Experiment 3 - Textured and colored fruits

Figure 14: Experiment 5 - Outdoor scanning of a car
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Euclidean space (E)

Dual-Space (Q)

Figure 15: Proposition 1: The direction of the line connecting
two planes vectors W, and @, in dual-space (2) is precisely A,
the coordinate vector of the perspective projection A of the line
of intersection A between the two planes II, and II; in Euclidean
space (E).

corresponds to a unique plane II in (E), we refer to
() as the ‘dual-space’. Conversely, every plane II
that does not contain the origin has a valid coordinate
vector w in (2). Notice that the set of plane crossing
the origin cannot be parameterized in () space, since
the @ diverges to infinity as d gets closer to zero.

Similarly, a line A on the image plane is represented
by the 3-vector A (up to scale) such that any point p
of coordinates T. = [z. y. 1] lies on this line if and
only if ()\jc> = 0. See [20, 24, 35].

Originally, the dual-space of a given vector space
(E) is defined as the set of linear forms on (E) (lin-
ear functions of (E) into the reals R). See [4]. In
the case where (E) is the three dimensional Euclidean
space, each linear form may be interpreted as a plane
IT in space that is typically parameterized by a homo-
geneous 4-vector T = [y w2 w3 w4]l. A point P
of homogeneous coordinates X = [X Y Z 1]7 lies
on a generic plane II of coordinates 7 if and only if
(7,X) = 0 (see [12]). Our w—parameterization dif-
fers from the conventional parameterization in that it
does not allow to represent planes crossing the origin
(the correspondence between the two parameteriza-
tions is w = —[m ma m3]T/ma, therefore 74 # 0).
However, that does not constitute a limitation in our
application since none of the planes we need to param-
eterize are allowed to cross the origin (as discussed in
sections 2.2 and 2.6). Furthermore, this new repre-
sentation exhibits useful properties allowing to natu-
rally relate objects in 3D (planes, lines and points) to
their perspective projections on the image plane (lines
and points) in addition to providing very compact an-
alytical results in error sensitivity analysis.

The following proposition constitutes the major
property associated to our choice of parameterization:

Proposition 1: Consider two planes II, and II; in

space, with respective coordinate vectors w, and W
(Wq # Wy), and let A = I, NI, be the line of intersec-
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tion between them. Let A be the perspective projec-
tion of A on the image plane, and A its representative
vector. Then A is parallel to @, — @, (see figure 15).
In other words, @, — Wy is a valid coordinate vector of
the line \.

Proof: Let P € A and let p be the projection of
P on the image plane. Call X = [X Y Z]T and
T = X the respective coordinates of P and p. We
successively have:

P ¢ 11,
PeAN = {P e 1,
(@, X) = 1

= {<wb,x> =1
= (W, — Wy, T) =0.

Therefore (w, —wp) is a representative vector of A and
must be parallel to X. W

Consequently, the coordinate vector @ of any plane
IT containing the line A will lie on the line connecting
W, and @y in dual-space (2). We denote that line

by A and call it the dual image of A. The following

definition generalizes that concept of dual image:
Definition: Let A be a submanifold of (E) (e.g. a

point, line, plane, surface or curve). The dual image

A of A is defined as the set coordinates vectors @
in dual-space () representing the tangent planes to
A. Following that standard definition (see [12]), the
dual images of points, lines and planes in (E) may be
shown to be respectively planes, lines and points in
dual-space (), as illustrated in figure 16. Further
properties regarding non-linear sub-manifolds may be
observed, such as for quadric surfaces in [15].

B Proof of hg/d, =1 — (wh, Xs)

Since Wy, is the coordinate vector of the plane IIj,
the vector @y, = dp Wy, is the normal vector of the plane
I1j, in the camera reference frame (see figure 8). Let P
be a point in Euclidean space (E) of coordinate vector
X. The quantity d, — (ﬁh,7> is then the (algebraic)
orthogonal distance of P to IIj, (positive quantity if the
P is on the side of the camera, negative otherwise).
In particular, if P lies on II;, then <ﬁh,Y> = dp,
which is equivalent to (@, X) = 1. The orthogonal
distance of the light source S to Il is denoted hg on
figure 8. Therefore hg = dj, — <ﬁh, X>, or equivalently

1-— <wh,Y5> = hs/dh. |
C Sensitivity Analysis

This appendix presents a complete error analysis
for the whole reconstruction scheme. As first men-
tioned in section 2, the method proposes to associate
to every pixel T. the time instant ¢s(T.) at which the
shadow crosses that particular pixel. That given time
corresponds to the shadow plane II(t4(Z.)) in space (of
coordinate vector W), used at the triangulation step
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Figure 16: Duality principle: The dual images of a plane II,
aline A and a point P. Notice that the perspective projection X
of the line A is directly observable in dual-space as the direction
vector of its dual image A. Similarly, the coordinate vector T of
the projection of P is precisely the normal vector the plane p
(dual image of P).

to retrieve the coordinates of the point P in space
(see figure 2). In addition, at every time instant ¢, a
shadow plane II(¢) is estimated based on two line seg-
ments Ap(t) and A, (t) extracted from the image plane
(see section 2.4).

Therefore, one clearly identifies two possible
sources of error affecting the overall reconstruction:
errors in localizing the two edges Ay, (t) and A, (¢) lead-
ing to error in estimating the shadow plane II(¢) (or
error on the vector w(t)), and errors in finding the
shadow time t4(Z.) (at every pixel Z.) leading to an
error in shadow plane assignment.

Experimentally, we found that the error coming
from spatial processing (shadow plane localization)
was much smaller than the one coming from tempo-
ral processing (shadow time computation). In other
words, in all the experiments we carried out, the
shadow planes were localized to such a degree of accu-
racy that the errors induced by the noise on w. were
negligible compared to the errors induced by the noise
on t4(Z.). This experimental observation is reasonable
because the shadow edges A\ (t) and A, (t) are recov-
ered by fitting lines through many points on the image
plane (an order of 50 points per line) while shadow
time t4(Z.) is estimated on a basis of a single pixel.
Notice that this is experiment dependent, and may
very well not be true if fewer points were used to ex-
tract the shadow edges, or if the image were more
noisy, or more distorted. In those cases, both error
terms should be retained. In the present analysis, we
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propose to derive an expression of the variance of the
error in depth estimation 0% assuming that the main
source of noise comes from temporal processing. In the
experimental section, we verify that the final variance
expression agrees numerically with accuracies achieved
on real scan data.

C.1 Derivation of the depth variance a%c

Every pixel T, on the image sees the shadow pass-
ing at time a ts(T.), called the shadow time, that is
estimated through temporal processing (see section
2.4). This estimation is naturally subject to errors,
leading to inaccuracies in the final 3D reconstruction.
The purpose of that analysis is to study how damag-
ing those errors truly are on the final structure, and
quantify them. Assume that for a given pixel Z., an
additive temporal error dt4(Z.) is made on its shadow
time estimate: t4(T.) = ts(T.) + 6t,(T.). This typ-
ically leads the algorithm to assign to the pixel .
the “wrong” shadow plane II(t4(Z.) + 0ts(Z.)) for the
geometrical triangulation step. Equivalently, one can
think that the plane II(¢4(Z.) + 0ts) has been associ-
ated with the “wrong” pixel Z. in the image. Although
it does not change anything to the problem, that way
of centering the reasoning onto the shadow plane in-
stead of the pixel actually significantly simplifies the
whole analysis. Indeed, as we will show in the follow-
ing, if we assign the noise to the pixel location itself,
the time variable can then be omitted.

To be more precise, let us first define v(z.) =
[v:(T:)  vy(Te)]T to be the velocity vector of the
shadow at the pixel Z. that is orthogonal to the
shadow edge. Then, the closest point to Z. that has
truly been lit by the shadow plane II(ts(Z.) + 0ts(Z.))
is T, + 0ts(xT.)v(z.). Therefore, by picking T, in-
stead, we introduce an additive pixel error dz, =
—0ts(Z.)v(T.). This is the equivalent noise that can
be attributed to the pixel location x, before triangu-
lation.

One can then see that this equivalent image coor-
dinate noise is naturally related to the speed of the
shadow. Indeed, even if we assume that the time esti-
mation error dt, is identical for every pixel in the im-
age, the corresponding pixel error 6T, is generally not
uniform, neither in direction, nor in magnitude. Typ-
ically, fast moving shadow regions will be subject to
larger errors than slow moving shadow regions. Vari-
ations in apparent shadow speed can be caused by a
change in the actual speed at which the stick is moved,
a change in local surface orientation of the scene, or
both.

Before triangulation, the pixel coordinates have to
be normalized by the intrinsic parameters of the cam-
era. Let us assume, for simplicity in the notation,
that T. = [z. y. 1]7 is directly the normalized, ho-
mogeneous coordinate vector associated to the pixel.
The two coordinates z. and y. are affected by the
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Figure 17: Estimation error on the shadow time: The
shadow time ¢s(Z.) is estimated by linearly interpolating the
difference temporal brightness function AI(zc,yc,t) between
times to — 1 and tp. The pixel noise (of standard deviation
or) on Iy = AI(zc,yc,to — 1) and Iy = AI(zc,yec,to) induces

errors on the estimation of At, or equivalently ¢, (Z.). This error
2

has variance o} .
error vector 0T, whose variance-covariance matrix is
denoted ¥z (a 2 x 2 matrix). Let us derive an ex-
pression for that matrix as a function of the image
brightness noise.

Lemma: Let o; be the standard deviation of the
image brightness noise (estimated experimentally).
We can write ¥z, as a function of the image gradi-
ent VI(Z.) at pixel T, at time t = t4(Z.):

2

F2NIVIE)?

cos? ¢
€os p sin ¢

cos p sin @
e sin? o

(14)

where f. is the focal length of the camera (in pixels),
VI(Z.) is the gradient vector of the image brightness
at the shadow, and ¢ the orientation angle of that
vector (orientation of the shadow edge at pixel Z.):

S [x(ffi) = |IVI(z s
VI(@.) = [ I,(z.) } =lvil [ sin ]
where:
L) = 200
eTe) = Oox T=T.,t=t:(Tc)
_ . 0I@@,t)
Iy(zc) = dy B=T o t=t.(Tc)

Proof of lemma (eq. 14): Figure 17 shows the
principle of computing the shadow time ¢s(Z.) from
the difference image AI (refer to section 2.5). For
clarity in the notation, define Iy = Al(z.,y., to — 1)
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and I} = AI(z.,Yc,t0). Then, the shadow time t,(Z.)
is given by:

ts(T.) =to — At

where:

L
At =
I — I

Let o? be the variance of the error dts(T.) attached
to the shadow time ¢4(Z.). In normal sampling condi-
tions (if the temporal brightness is sufficiently sampled
within the shadow transition area), the same error is
on the variable At, and therefore o; may be directly
expressed as a function of oy, the variance of pixel
noise on Iy and Iy:

> _ [ (0At 2+ oA\

7 =\ \ a1, al, o1
2+ 17

of = S50l

(15)

where 61 = I; — Iy is the temporal brightness varia-
tion at the zero crossing (or equivalently at the shadow
time). One may notice from equation 15 that, as the
brightness difference §I increases, the error in shadow
time decreases. That is a very intuitive behavior given
that higher shadow contrasts should give rise to bet-
ter accuracies. Notice however that the variance o?
is not only a function of 61 but also of the absolute
brightness values Iy and I;. One may then consider
the maximum value of o7 for a fixed 61 over all Iy and
I, subject to the constraint Iy = Iy + d1:

212 + 2100 +012)
e o1

max
0<Ip<—01

2 _
Oy =

leading to the following simplified expression for o7:

2
o

2 _ 01

O

e (16)

To motivate that simplification, one may notice that
the minimum and maximum values of o7 over all val-
ues Ip and I; are quite similar anyway: o7/(281%)
(minimum) and 0%/6I? (maximum). The maximum
may be thought as an upper bound on the error. No-
tice that 61 is nothing but the first temporal derivative
of the image brightness at the pixel Z.., at the shadow
time:

_ A1, 1)

Wy 5

T=T.,t=ts (Ec)

This temporal derivative may also be expressed as
a function of the image gradient vector VI(Z.) =



[I.(Z.) I,(Z.)]" and the shadow edge velocity vec-
T =

[ve (Te) vy (@)

_vI(EC)T V(Te) = —1:(Tc) v (Te) — Iy(Te) vy (Te)

By definition, the edge velocity vector v(Z.) is or-
thogonal to the shadow edge. Therefore it may be
also written as a direct function of the gradient vector
VI(z.):

VI(z.)
IVI(@.)||

v(Te) = s [[o(z.)]|

—slo@l | ot |

sin

where s is either +1 or —1 depending on the direction
of motion of the edge. Therefore,

IVI(z.)]
01 = (=s) [[VI(Z.)]| lo(@e) |l

oI = (—s) [o(Z.)|l

(17)

Consequently, by substituting (17) into (16), we ob-
tain a new expression for the temporal variance o?:

2
2 o7

N CATREEAE

Then, the error vector dZ. transfered on the image
plane is also related to the shadow edge velocity v(Z.)
and the temporal error dt4(Z.):

0T, = —0ty(T.) ()

o7 = (=3) @) dta(@.) | |

sin ¢

Then, the variance-covariance matrix of the noise 07,
is (recall that s = 1):

2 .
— — (T2 52 cos”™ @ COS Y 81N
Yz, = |[0(Z:)||” 0} { cos @ sin g Sin2<p ]
S 07% { cos? COS(pSiH(pj|
T NI@)|IP | cospsing  sin®y

Finally, note that this relation is valid if z. is expressed
in pixel coordinates. After normalization, this vari-
ance must be scaled by the square of the inverse of
focal length f.:

cos? ¢
€os p sin ¢

cos p sin @
e sin? o

:__ﬁ__[
IV

which ends the proof of the lemma (eq. 14). B
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Notice that if the shadow edge is roughly vertical
on the image, one may assume ¢ = 0, and therefore
simplify quite significantly the variance expression:

o? 10
fRr2@:) L0 0

In that case, we reach the very intuitive result that
only the first coordinate of . is affected by noise.

Since Yz, in inversely proportional to the image
gradient, accuracy improves with shadow edge sharp-
ness. In addition, observe that ¥z  does not directly
depend upon the local shadow speed. Therefore, de-
creasing the scanning speed would not increase accu-
racy. However, for the analysis leading to equation
14 to remain valid, the temporal pixel profile must
be sufficiently sampled within the transition area of
the shadow edge (the penumbra). Therefore, if the
shadow edge were sharper, the scanning should also
be slower so that the temporal profile at every pixel
would be properly sampled. Further discussions may
be found in section 2.7. Another consequence of equa-
tion 14 is that one may experimentally compute the
variance ¥z, of the transfered error directly from the
original input sequence: VI(Z.) is the image gradient
at the shadow edge and oy is the pixel noise on the
image. In addition, assuming that the sharpness of
the shadow is approximately uniform over the entire
image, then ¥;. may also be assumed to be uniform
to a first approximation. That constitutes an addi-
tional simplification that does not have to be retained
in practice.

The final expression of the variance o3, of the error
attached to the depth estimate Z, may be written as

follows:
T
52 — 0Z, o 07,
Ze oz, )~ \ 0%

One may derive the expression for the Jacobian matrix

(g—%) from the triangulation equation 8:

Efc -

_ 1_ N 6%0 _ 2
(We, Te) 0T,

Ze

[ww wy]

where w, and w, are the two first coordinates of the
shadow plane vector w.. This allows to expand the
expression of o7 :

. 2
= + Wy SIn @
3 =27t <°" ik S ) ;o (8
A AT VTS TR A

This expression is directly computable from the orig-
inal input sequence, and used for scan merging (refer
to section 2.8). Several observations regarding that
expression may be found in section 2.7.



C.2 System Design Issues

Let us consider the scanning setup as it is presented
on figure 8 where the scan is done roughly vertically.
In that case, ¢ ~ 0, and I7(Z.) < I2(T.) (see figure
10). Then, the depth variance expression (18) may be
further simplified to:

2 wa% 2
fzfz( 0t

It appears then that the first coordinate w, of the
shadow plane vector @, carries most of the variations
in accuracy of reconstruction within a given scan.
When designing the scanning system, an important
issue is to choose the spatial configurations of the
camera and the light source that maximize the over-
all quality of reconstruction, or equivalently minimize
|wz|. In order to address this issue, it is necessary to
further expand the term w,, and study its dependence
upon the geometrical variables characterizing the sys-
tem. Since the light source position is of interest here,
let us consider the case where a single plane IIj is
used for scanning. In that case, the shadow plane vec-
tor w. appears as a function of the light source posi-
tion vector Xg, as stated by equation 6. Assume that
A= Ay A.]¥ is normalized such that A, = 1. In
addition, assume that the (O., X.) axis of the camera
is approximately parallel to the plane I, (as suggested
in figure 8). This implies that the first coordinate of
Wy, is zero. Then, the first coordinate w, of W, reduces
to:

(19)

1-— <wh775> _ hs/dh
(A, Xs) (W, Xs)

(20)

Wy =

where d;, and hg are the respective orthogonal dis-
tances of the camera center O, and the light source S
to the plane IIj.

For simplification purposes, let us assume that the
shadow edge A, appears vertically on the image plane,
and let  be its horizontal position (on the image). As
the shadow moves from left to right, « varies from
negative values to positive values, crossing zero when
the shadow is at the center of the image. In that
specific scenario, the shadow edge vector reduces to:
An=[10 — a;]T simplifying equation 20:

1 dp,

Xs—2Z
hS(s rZs)

(21)

Wz

The problem of maximizing the reconstruction qual-
ity corresponds then to maximizing |1/w,|. Since that
quantity is function of the shadow edge location z, we
may observe that the accuracy of reconstruction is not
uniform throughout the scene for a given scan (unless
the depth of the light source in the camera reference
frame is zero: Zg = 0). A better understanding of
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that relation may be achieved by expressing the light
source coordinate vector X g as a function of the an-
gular coordinates 6, ¢, and £ defining the mutual po-
sitions of the camera and the light source with respect
to the plane I}, (see figure 8):

cosE

Xs ne
Xs = { ;S } = | —hs™HIEE 4 (dy — hs) cosf
§ hs <SS 4 (dyg — hs) sinf

Following this notation, the inverse of w, may be writ-

ten as follows:
1 cos cos 0 si
— =d, ¢ - ng + iné
tan ¢ tan ¢
Since during scanning, the shadow edge coordinate z
spans a range of values going from negative to positive

values, we may consider that taking x = 0 gives us an
indication of the “average” reconstruction quality:

dp — hs
hs

T

1

We

1

W

cosé

= da tan ¢

z=0

~

average

Equation 19 may then be used to infer an expression
for the “average” depth variance:

N Z* tan’ ¢  oF
& o€ [TI(T.)

o

~
average

A next simplification step may be applied, by observ-
ing that the average depth of the scene is approxi-
mately related to the height dp, and the tilt angle 6 of
the camera through the following expression:

dp,
C|average ~ sin 6

That relation leads us to a new expression for the “av-
erage” 0z.:

tan ¢ or
" sin? 6 lcos&| fe |1z (Te)]

0Z. average ~ (22)

Notice that this quantity may be computed prior to
scanning knowing the geometrical configuration of the
system. From that expression, it is also possible to
identify optimal configurations of the camera and the
light source that maximize the overall quality of the
reconstruction. See section 2.7.
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Range images

For many structured light scanners, the range data
forms a highly regular pattern known as a range
image.

The sampling pattern is determined by the specific
scanner.

Examples of sampling patterns

Object

Sensor

Nodding mirror

silvered
mirror

Direction of travel
—_—

CCD




Range images and range surfaces

Given a range image, we can perform a preliminary
reconstruction known as a range surface.

Range image Tesellation Range surface

Tessellation threshold

To avoid “prematurely aggressive” reconstruction,
a tessellation threshold is employed:

distance >> s,
so should not

connect \

-




Point clouds vs. range images

We can view the entire set of range data as a point
cloud or as a group of overlapping range surfaces.

i,y -

£ _To i o
G o MY s

Registration

Any surface reconstruction algorithm strives to
use all of the detail in the range data.

To preserve this detail, the range data must be
precisely registered.

Accurate registration may require:
» Calibrated scanner positioning
» Software optimization
* Both




Registration as optimization

Given two overlapping range scans, we wish to
solve for the rigid transformation, T, that
minimizes the distance between them.

Q

)T?

Registration as optimization

An approximation to the distance between range

scans is: Np
E=) [Tg,-p,

Where the q; are samples from scan Q and the p, are
the corresponding points of scan P. These points

may lay on the range surface derived from P.
Q

2




Registration as optimization

If the correspondences are known a priori, then
there is a closed form solution for T.

However, the correspondences are not known in
advance.

Registration as optimization

Iterative solutions such as [Besl92] proceed in
steps:

* Identify nearest points

e Compute the optimal T

* Repeat until E is small
Q




Registration as optimization

This approach is troubled by slow convergence
when surfaces need to slide along each other.

Chen and Medioni [Chen92] describe a method
that does not penalize sliding motions.

The Chen and Medioni method was the method of
choice for pairwise alignment on the Digital
Michelangelo Project.

Global registration

Pairwise alignment leads to accumulation of errors
when walking across the surface of an object.

The optimal solution minimizes distances between
all range scans simultaneously. This is sometimes
called the global registration problem.

Finding efficient solution methods to the global
registration problem is an active area of research.




Surface reconstruction

Given a set of registered range points or images,
we want to reconstruct a 2D manifold that closely
approximates the surface of the original model.

Desirable properties

Desirable properties for surface reconstruction:

No restriction on topological type
Representation of range uncertainty
Utilization of all range data

Incremental and order independent updating
Time and space efficiency

Robustness

Ability to fill holes in the reconstruction




Reconstruction methods

Surface reconstruction from range data has been
an active area of research for many years.

A number of methods reconstruct from
unorganized points. Such methods:

e are general

* typically do not use all available information

Parametric vs. implicit

Parametric Implicit surface
Surface Fx)=0




Reconstruction from unorganized points

Methods that construct triangle meshes directly:
* Alpha shapes [Edelsbrunner92]
* Local Delaunay triangulations [Boissonat94]
e Crust algorithm [Amenta98]

Methods that construct implicit functions:
* Voxel-based signed distance functions [Hoppe92]
* Bezier-Bernstein polynomials [Baja95]

Hoppe treats his reconstruction as a topologically
correct approximation to be followed by mesh
optimization [Hoppe93].

Reconstruction from unorganized points

Even, noiscless sampling Noisy sampling: interpolation Thin surfaces

[P S Y .&...‘.‘."‘,.. '}.:c'.j

prw UR 8 ]

Uneven sampling Noisy sampling: estimation Small features and topology
ey S S X 2 ] e, .--o\.
. gyt Y
gap? orientation? 34 L
) ."‘ ’ -.-.'"!,
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Reconstruction from range images

Methods that construct triangle meshes directly:
* Re-triangulation in projection plane [Soucy92]
» Zippering in 3D [Turk94]

Methods that construct implicit functions:
» Signed distances to nearest surface [Hilton96]

» Signed distances to sensor + space carving
[Curless96]

We will focus on the two reconstruction algorithms
of [Turk94] and [Curless96].

Zippering

A number of methods combine range surfaces by
stitching polygon meshes together.

Zippering [Turk94] is one such method.

Overview:

» Tessellate range images and assign weights to
vertices

* Remove redundant triangles
» Zipper meshes together
» Extract a consensus geometry

11



Weight assignment

Final surface will be weighted combination of
range images.

Weights are assigned at each vertex to:
* Favor views with higher sampling rates
* Encourage smooth blends between range images

Weights for sampling rates

Sampling rate over the surface is highest when
view direction is parallel to surface normal.

12



Weights for smooth blends

To assure smooth blends, weights are forced to
taper in the vicinity of boundaries:

After weighted blending

Example

Range surface Confidence rendering
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Redundancy removal and zippering

Overlapping range surfaces After removing redundant geometry

thickened boundary

Zippered surface

Thickening the mesh boundary for clipping

Example

14



Consensus geometry

7\

Zippered geometry + range surfaces
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Find vertex positions on range surfaces
by intersection with consensus normal

Compute weighted average of vertex positions

Example
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Volumetrically combining range images

Combining the meshes volumetrically can
overcome difficulties of stitching polygon meshes.

Here we describe the method of [Curless96].

Overview:
e Convert range images to signed distance functions
e Combine signed distance functions
e Carve away emply space
e Extract hole-free isosurface

Signed distance function

Range surface

Volume

4

Sensor

Distance 7‘ ; S
from \

surface Zero-crossing
(isosurface)
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Combining signed distance functions

Range surfaces

Distance
from
surface

New zero-crossing

Merging surfaces in 2D

Scan #1 Scan #2 Combination
Parametric
Surfaces
b - Isosurface
Sensor Sensor extraction

Implicit
Functions

U
~ R
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Least squares solution

Range surface #1

Range surface #2

P -

Least squares solution

Error per point

E(f)=3 [ (x, frax

Error per range surface

Finding the f(x) that minimizes E yields the optimal
surface.

This f(x) is exactly the zero-crossing of the
combined signed distance functions.

18



Hole filling

We have presented an algorithm that reconstructs the
observed surface. Unseen portions appear as holes in
the reconstruction.

A hole-free mesh is useful for:
* Fitting surfaces to meshes
e Manufacturing models (e.g., stereolithography)
* Aesthetic renderings

Hole filling

We can fill holes in the polygonal model directly,
but such methods:
* are hard to make robust

e do not use all available information

19



Space carving

- -4
Sensor Sengor
Without space carving With space carving
Carving without a backdrop
Scanning scenario Volumetric slice

Surfaces

N

OO

v Sensor
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Carving with a backdrop

Backdrg = T —
OO I I I
v

Merging 12 views of a drill bit

Scattered points Range surfaces

Zippered mesh Volumetric mesh
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Merging 12 views of a drill bit

Zippered mesh Volumetic mesh

Photograph of painted drill bit

Dragon model

Hole filling with backdrop

22



Dragon model

A/

No backdrop With backdrop Smoothed

No hole filling

Happy Buddha

Photograph of Photograph of Range surface Reconstruction Reconstruction
origihal model painted original from one scan before after
hole—filling hole—filling




Modeling appearance

When describing appearance capture, we
distinguish fixed from variable lighting.

Fixed lighting yields samples of the radiance
function over the surface.

This radiance function can be re-rendered using
methods such as lumigraph rendering or view-
dependent texture mapping.

BRDF modeling

To re-render under new lighting conditions, we
must model the BRDF.

Modeling the BRDF accurately is hard:
* BRDF is 4D in general.

* Interreflections require solving an inverse rendering
problem.

Simplifications:
* Assume no interreflections
* Assume a reflectance model with few parameters

24



BRDF modeling

[Sato97] assume no interreflections and a
Torrance-Sparrow BRDF model.

Procedure:

* Extract diffuse term where there are no specular
highlights

* Compute specular term at the specular highlights
* Interpolate specular term over the surface

BRDF modeling

Some researchers have modeled the impact of
interreflections.

[Nayar91] assumes diffuse reflectance and
extracts shape and reflectance from photometric
stereo.

More recently, [Yu99] has demonstrated a method
that computes diffuse and specular terms given
geometry, even in the presence of interreflections.
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Abstract

We describe and demonstrate an algorithm that takes as input an
unorganized set of points {xi,...,xn} C IR® on or near an un-
known manifold M, and produces as output asimplicial surface that
approximates M. Neither the topology, the presence of boundaries,
nor the geometry of M are assumed to be known in advance — all
are inferred automatically from the data. This problem naturally
arises in a variety of practical situations such as range scanning
an object from multiple view points, recovery of biological shapes
from two-dimensional dices, and interactive surface sketching.

CR Categories and Subject Descriptors:  1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensiona Shape Recovery, Range Data Analysis.

1 Introduction

Broadly speaking, the class of problems we are interested in can
be stated as follows: Given partial information of an unknown
surface, construct, to the extent possible, a compact representation
of the surface. Reconstruction problems of this sort occur in diverse
scientific and engineering application domains, including:

e Surfaces from range data: The data produced by laser range
scanning systems is typically a rectangular grid of distances
from the sensor to the object being scanned. If the sensor
and object are fixed, only objects that are “point viewable”
can be fully digitized. More sophisticated systems, such as
those produced by Cyberware Laboratory, Inc., are capable
of digitizing cylindrical objects by rotating either the sensor
or the object. However, the scanning of topologicaly more
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complex objects, including those as simple as a coffee cup
with a handle (a surface of genus 1), or the object depicted
in Figure la (a surface of genus 3), cannot be accomplished
by either of these methods. To adequately scan these objects,
multiple view points must be used. Merging the datagenerated
from multiple view points to reconstruct a polyhedral surface
representation is anon-trivial task [11].

e Surfaces from contours: In many medical studies it is com-
mon to slice biological specimens into thin layers with a mi-
crotome. The outlines of the structures of interest are then
digitized to create a stack of contours. The problem is to
reconstruct the three-dimensional structures from the stacks
of two-dimensional contours. Although this problem has re-
ceived agood deal of attention, there remain severe limitations
with current methods. Perhaps foremost among these is the
difficulty of automatically dealing with branching structures
[3,12].

e Interactive surface sketching: A number of researchers, in-
cluding Schneider [21] and Eisenman [6], have investigated
the creation of curves in IR? by tracing the path of a stylus or
mouse as the user sketches the desired shape. Sachset al. [19]
describe a system, called 3-Draw, that permits the creation of
free-formcurvesin IR® by recording the motion of astylusfitted
with a Polhemus sensor. This can be extended to the design of
free-form surfaces by ignoring the order in which positionsare
recorded, alowing the user to move the stylus arbitrarily back
and forth over the surface. The problem is then to construct
a surface representation faithful to the unordered collection of
points.

Reconstruction algorithms addressing these problems have typi-
cally been crafted on a case by case basisto exploit partial structure
in the data. For instance, algorithms solving the surface from con-
tours problem make heavy use of thefact that dataare organized into
contours (i.e., closed polygons), and that the contours lie in paral-
lel planes. Similarly, specialized algorithms to reconstruct surfaces
from multiple view point range data might exploit the adjacency
relationship of the data points within each view.

In contrast, our approach is to pose a unifying genera problem
that does not assume any structure on the data points. Thisapproach
has both theoretical and practical merit. On the theoretical side,
abstracting to ageneral problem often shedslight onthetruly critical
aspects of the problem. On the practical side, a single algorithm
that solves the general problem can be used to solve any specific
problem instance.



1.1 Terminology

By a surface we mean a “compact, connected, orientable two-
dimensional manifold, possibly with boundary, embedded in IR®
(cf. O'Neill [17]). A surface without boundary will be called a
closed surface. If we want to emphasize that a surface possesses a
non-empty boundary, wewill call it abordered surface. A piecewise
linear surface with triangular faces will bereferred to asasimplicial
surface. We use ||x|| to denote the Euclidean length of a vector x,
and we use d(X, Y) to denote the Hausdorff distance between the
setsof points X and Y (the Hausdorff distanceis simply the distance
between the two closest points of X and Y).

Let X = {x1,...,xn} be sampled data points on or near an
unknown surface M (see Figure 1b). To capture the error in most
sampling processes, we assume that each of the points x; € X is
of the form x; = yi + ej, wherey; € M isapoint on the unknown
surface and e; € IR® is an error vector. We call such a sample X
d-noisy if ||ei|| < ¢ foralli. A valuefor ¢ can be estimated in most
applications (e.g., the accuracy of the laser scanner). Features of M
that are small compared to § will obviously not be recoverable.

It is also impossible to recover features of M in regions where
insufficient sampling has occurred. In particular, if M isabordered
surface, such as a sphere with a disc removed, it is impossible to
distinguish holesin the sample from holesin the surface. To capture
the intuitive notion of sampling density we need to make ancther
definition: LetY = {y1,...,yn} C M bea(noiseless) sample of a
surface M. The sample Y is said to be p-dense if any sphere with
radius p and center in M contains at least one sample pointin Y. A
d-noisy sample {x1,...,xn} C IR® of asurface M is said to be p-
dense if there exists anoiseless p-dense sample {y1,...,yn} CM
such that x; = yi + e;, ||e.|| <é,i=1,...,n

1.2 Problem Statement

Thegoal of surface reconstruction isto determine asurface M’ (see
Figure 2f) that approximates an unknown surface M (Figure 1a),
using a sample X (Figure 1b) and information about the sampling
process, for example, bounds on the noise magnitude ¢ and the
sampling density p.

We are currently working to develop conditions on the origina
surface M and the sample X that are sufficient to allow M to be
reliably reconstructed. Asthat work is till preliminary, we are un-
able to give guarantees for the algorithm presented here. However,
the algorithm has worked well in practice where the results can be
compared to the origina surface (see Section 4).

2 Reated Work

2.1 Surface Reconstruction

Surface reconstruction methods can be classified according to the
way in which they represent the reconstructed surface.

Implicit reconstruction methods attempt to find a smooth func-
tionf : IR® — IR such that {x1,...,xn} is close to the zero set
Z(f). They differ with respect to the form of f and the measure of
closeness. Pratt [18] and Taubin [25] minimize the sum of squared
Hausdorff distances from the data points to the zero set of a poly-
nomial in three variables. Muraki [15] takesf to be alinear combi-
nation of three-dimensional Gaussian kernels with different means
and spreads. His goodness-of-fit function measures how close the
values of f at the data points are to zero, and how well the unit
normals to the zero set of f match the normals estimated from the
data. Moore and Warren [13] fit a piecewise polynomia recursively
and then enforce continuity using a technique they call free form
blending.

In contrast to implicit reconstruction techniques, parametric re-
construction techniques represent the reconstructed surface as a
topological embedding f(A) of a 2-dimensional parameter domain
A into IR3. Previous work has concentrated on domain spaces with
simple topology, i.e. the plane and the sphere. Hastie and Stuet-
zle [9] and Vemuri [26, 27] discuss reconstruction of surfaces by a
topological embedding f(A) of aplanar region A into IR®. Schudy
and Ballard [22, 23] and Brinkley [4] consider the reconstruction
of surfaces that are dightly deformed spheres, and thus choose A
to be a sphere. Sclaroff and Pentland [24] describe a hybrid im-
plicit/parametric method for fitting a deformed sphere to a set of
points using deformations of a superquadric.

Compared to the techniques mentioned above, our method has
severa advantages:

e |t requires only an unorganized collection of points on or near
the surface. No additional information is needed (such as
normal information used by Muraki’s method).

o Unlike the parametric methods mentioned above, it can recon-
struct surfaces of arbitrary topology.

e Unlike previoudy suggested implicit methods, it deals with
boundaries in a natural way, and it does not generate spurious
surface components not supported by the data.

2.2 Surface Reconstruction vs Function Recon-
struction

Terms like “surface fitting” appear in reference to two distinct
classes of problems: surface reconstruction and function recon-
struction. Thegoal of surface reconstruction was stated earlier. The
goal of function reconstruction may be stated as follows: Given a
surfaceM, aset {xi € M}, andaset {y; € IR}, determineafunction
f: M — IR, such that f (xi) = V.

The domain surface M is most commonly a plane embedded in
IR®, in which case the problem is a standard one considered in
approximation theory. The case where M is a sphere has also been
extensively treated (cf. [7]). Some recent work under the title
surfaces on surfaces addresses the case when M isageneral curved
surface such as the skin of an airplane [16].

Function reconstruction methods can be used for surface recon-
struction in simple, special cases, where the surface to be recon-
structed is, roughly speaking, the graph of a function over a known
surface M. It isimportant to recognize just how limited these spe-
cia cases are— for example, not every surface homeomorphic to a
sphereisthe graph of afunction over the sphere. The point wewant
to make is that function reconstruction must not be misconstrued to
solve the general surface reconstruction problem.

3 A Description of the Algorithm

3.1 Overview

Our surface reconstruction algorithm consists of two stages. In the
first stagewedefineafunctionf : D — IR, whereD C IR®isaregion
near the data, such that f estimates the signed geometric distance to
the unknown surface M. The zero set Z(f) is our estimate for M.
In the second stage we use a contouring algorithm to approximate
Z(f) by asimplicial surface.

Although the unsigned distance function |f| would be easier to
estimate, zeroisnot aregular valueof |f|. Zerois, however, aregular
vaue of f, and the implicit function theorem thus guarantees that
our approximation Z(f) isamanifold.

The key ingredient to defining the signed distance function is to
associate an oriented plane with each of the data points. These



tangent planes serve as local linear approximations to the surface.
Although the construction of the tangent planesisrelatively simple,
the selection of their orientations so asto define aglobally consistent
orientation for the surface is one of the mgjor obstacles facing the
algorithm. As indicated in Figure 2b, the tangent planes do not
directly definethe surface, sincetheir union may have acomplicated
non-manifold structure. Rather, we use the tangent planes to define
the signed distance function to the surface. An example of the
simplicial surface obtained by contouring the zero set of the signed
distance function is shown in Figure 2e. The next several sections
develop in more detail the successive steps of the algorithm.

3.2 Tangent Plane Estimation

The first step toward defining a signed distance function is to com-
pute an oriented tangent planefor each datapoint. Thetangent plane
T'p(xi) associated with the data point x; isrepresented asa point o,
called the center, together with aunit normal vector n;. The signed
distance of an arbitrary point p € IR® to Tp(xi) is defined to be
disti(p) = (p — 0i) - nhj. Thecenter and normal for T'p(x;) are deter-
mined by gathering together the k points of X nearest to x;; this set
isdenoted by Nbhd(xi) and iscalled the k-neighborhood of x;. (We
currently assumek to be auser-specified parameter, although in Sec-
tion 5 we propose a method for determining k automatically.) The
center and unit normal are computed so that the plane {disti(p) = 0}
isthe least squares best fitting plane to Nbhd(x;). That is, the cen-
ter o; is taken to be the centroid of Nbhd(xi), and the normal n;
is determined using principal component analysis. To compute nj,
the covariance matrix of Nbhd(x;) isformed. Thisisthe symmetric
3 x 3 positive semi-definite matrix

cv= )

yeNbhd(Xi)

(y —0i)®(y — o)

where ® denotes the outer product vector operator. If X' > A2 >
X3 denote the eigenvalues of CV associated with unit eigenvectors
Vi, ¥2,v3, respectively, we choose iy to be either v or —v¥. The
sel ection determines the orientation of the tangent plane, and it must
be done so that nearby planes are “consistently oriented”.

3.3 Consistent Tangent Plane Orientation

Suppose two datapoints xi, x; € X aregeometrically close. Ideally,
when the datais dense and the surface is smooth, the corresponding
tangent planes T'p(xi) = (oi, i) and Tp(x;) = (oj, i) are nearly
parald, i.e. nj-n; =~ +1. If the planes are consistently oriented,
then n; - nj ~ +1; otherwise, either n; or n; should be flipped.
The difficulty in finding a consistent global orientation is that this
condition should hold between all pairs of “sufficiently close” data
points.

We can model the problem as graph optimization. The graph
contains one node N; per tangent plane T’p(xi), with an edge (i, ])
between N; and N; if the tangent plane centers o; and o; are suf-
ficiently close (we will be more precise about what we mean by
sufficiently close shortly). The cost on edge (i, j) encodes the de-
gree to which N; and N; are consistently oriented and is taken to be
n; - nj. The problem is then to select orientations for the tangent
planes so as to maximize the total cost of the graph. Unfortunately,
this problem can be shown to be NP-hard via areduction to MAX-
CUT [8]. To efficiently solve the orientation problem we must
therefore resort to an approximation algorithm.

Before describing the approximation agorithm we use, we must
decide when apair of nodes are to be connected in the graph. Since

1if a and b have components & and by respectively, then the matrix
a ® b has ajbj asitsij-th entry.

the surface is assumed to consist of a single connected component,
the graph should be connected. A simple connected graph for a set
of pointsthat tends to connect neighborsis the Euclidean Minimum
Spanning Tree (EMST). However, the EM ST over the tangent plane
centers {o1, ..., on} (Figure 1c) is not sufficiently dense in edges
to serve our purposes. We therefore enrich it by adding a number
of edges to it. Specifically, we add the edge (i,]j) if either o; is
in the k-neighborhood of oj, or o; is in the k-neighborhood of o;
(where k-neighborhood is defined over {o1,...,0n} asit was for
X). The resulting graph (Figure 1d), called the Riemannian Graph,
is thus constructed to be a connected graph that encodes geometric
proximity of the tangent plane centers.

A relatively simple-minded algorithm to orient the planes would
be to arbitrarily choose an orientation for some plane, then “ propa-
gate” theorientationto neighboring planesinthe Riemannian Graph.
In practice, we found that the order in which the orientation is prop-
agated is important. Figure 3b shows what may result when prop-
agating orientation solely on the basis of geometric proximity; a
correct reconstruction is shown in Figure 3c. Intuitively, we would
like to choose an order of propagation that favors propagation from
Tp(xi) to Tp(xj) if the unoriented planes are nearly paralel. This
can be accomplished by assigning to each edge (i, j) in the Rieman-
nian Graph the cost 1 — |1 - ij|. In addition to being non-negative,
this assignment hasthe property that acostissmall if the unoriented
tangent planes are nearly parallel. A favorable propagation order
can therefore be achieved by traversing the minimal spanning tree
(MST) of theresulting graph. Thisorder is advantageous because it
tends to propagate orientation along directions of low curvature in
thedata, thereby largely avoiding ambiguous situations encountered
when trying to propagate orientation across sharp edges (as at thetip
of the cat’s earsin Figure 3b). Inthe MST shown in Figure 2a, the
edges are colored according to their cost, with the brightly colored
edges corresponding to regions of high variation (where 1 - 1 is
somewhat less than 1).

To assign orientation to an initial plane, the unit normal of the
plane whose center has the largest z coordinate is forced to point
toward the +z axis. Then, rooting the tree at this initia node,
we traverse the tree in depth-first order, assigning each plane an
orientation that is consistent with that of its parent. That is, if
during traversal, the current plane T'p(x;) has been assigned the
orientation n; and Tp(x;) isthe next plane to be visited, then ny; is
replaced with —ny; if iy - n; < 0.

This orientation algorithm has been used in all our examples
and has produced correct orientations in al the cases we have run.
The resulting oriented tangent planes are represented as shaded
rectangles in Figure 2b.

3.4 Signed Distance Function

Thesigned distancef (p) from an arbitrary point p € IR® toaknown
surface M is the distance between p and the closest point z € M,
multiplied by +1, depending on which side of the surface p lies.
In reality M is not known, but we can mimic this procedure using
the oriented tangent planes as follows. First, we find the tangent
plane T’p(xi) whose center o; is closest to p. Thistangent planeis
alocal linear approximation to M, so we take the signed distance
f(p) to M to be the signed distance between p and its projection z
onto T'p(xi); that is,

f(p) = disti(p) = (p — 0i) - fi.

If M is known not to have boundaries, this simple rule works
well. However, the rule must be extended to accommodate surfaces
that might have boundaries. Recall that the set X = {x1,...,xn}
is assumed to be a p-dense, §-noisy sample of M. If there was no
noise, we could deduce that a point z with d(z, X) > p cannot be



apoint of M since that would violate X being p-dense. Intuitively,
the sample points do not leave holes of radius larger than p. If
the sample is §-noisy, the radius of the holes may increase, but by
no more than §. We therefore conclude that a point z cannot be
a point of M if d(z,X) > p + 4. If the projection z of p onto
the closest tangent plane has d(z, X) > p + ¢, we take f(p) to be
undefined. Undefined values are used by the contouring algorithm
of Section 3.5 to identify boundaries.

Stated procedurally, our signed distance function is defined as:

i « index of tangent plane whose center is closest to p

{ Compute z as the projection of p onto Tp(xi) }
Z < O — ((p—oi)~ﬁi)fli

if d(z,X)<p+d then

f(p)  (p —0i) - N {==£llp —=ll}
else

f(p) « undefined
endif

The simple approach outlined above creates a zero set Z(f) that
is piecewise linear but contains discontinuities. The discontinuities
result from the implicit partitioning of space into regions within
which a single tangent plane is used to define the signed distance
function. (These regions are in fact the Voronoi regions associated
withthecenterso;.) Fortunately, thediscontinuitiesdo not adversely
affect our agorithm. The contouring algorithm discussed in the
next section will discretely sample the function f over a portion
of a 3-dimensional grid near the data and reconstruct a continuous
piecewise linear approximation to Z(f).

3.5 Contour Tracing

Contour tracing, the extraction of an isosurface from a scalar func-
tion, is awell-studied problem [1, 5, 28]. We chose to implement
a variation of the marching cubes algorithm (cf. [1]) that samples
the function at the vertices of a cubical lattice and finds the contour
intersections within tetrahedral decompositions of the cubical cells.

To accurately estimate boundaries, the cube size should be set so
that edges are of length less than p + §. In practice we have often
found it convenient to set the cube size somewhat larger than this
value, simply to increase the speed of execution and to reduce the
number of triangular facets generated.

Thealgorithm only visits cubesthat intersect the zero set by push-
ing onto aqueue only the appropriate neighboring cubes (Figure 2c).
Inthisway, the signed distance function f isevaluated only at points
close to the data. Figure 2d illustrates the signed distance function
by showing line segments between the query points p (at the cube
vertices) and their associated projected points z. As suggested in
Section 3.4, no intersection is reported within a cube if the signed
distance function is undefined at any vertex of the cube, thereby
giving rise to boundaries in the simplicia surface.

The resulting simplicial surface can contain triangles with ar-
bitrarily poor aspect ratio (Figure 2€). We aleviate this problem
using a post-processing procedure that collapses edges in the sur-
face using an aspect ratio criterion.? The final result is shown in
Figure 2f. Alternatively, other contouring methods exist that can
guarantee bounds on the triangle aspect ratio [14].

°The edges are kept in a priority queue; the criterion to minimize is
the product of the edge length times the minimum inscribed radius of its
two adjacent faces. Tests are also performed to ensure that edge collapses
preserve the topological type of the surface.

4 Results

We have experimented with the reconstruction method on data sets
obtained from severa different sources. In all cases, any structure
(including ordering) that might have been present in the point sets
was discarded.

Meshes : Pointswererandomly sampled from anumber of existing
simplicial surfaces®. For instance, the mesh of Figure 3awas
randomly sampled to yield 1000 unorganized points, and these
in turn were used to reconstruct the surface in Figure 3c. This
particular case illustrates the behavior of the method on a bor-
dered surface (the cat has no base and is thus homeomorphic
to adisc). The reconstructed knot (origina mesh from Rob
Scharein) of Figure 3d is an example of a surface with smple
topology yet complex geometrical embedding.

Ray Traced Points : To simulate laser range imaging from mul-
tiple view points, CSG models were ray traced from multiple
eye points. The ray tracer recorded the point of first intersec-
tion along each ray. Eight eye points (the vertices of a large
cube centered at the object) were used to generate the point set
of Figure 1b from the CSG object shown in Figure 1a. This
is the point set used in Section 3 to illustrate the steps of the
algorithm (Figures 1a-2f).

Range Images : The bust of Spock (Figure 3€) was reconstructed
from pointstaken from an actual cylindrical range image (gen-

erated by Cyberware Laboratory, Inc.). Only 25% of the orig-
inal points were used.

Contours : Points from 39 planar (horizontal) slices of the CT
scan of afemur were combined together to obtain the surface
of Figure 3f.

The algorithm’s parameters are shown in the next table for each
of the examples. The execution times were obtained on a 20 MIPS
workstation. The parameter p + ¢ and the marching cube cell size
are both expressed as a fraction of the object’s size. The parameter
p+4issettoinfinity for those surfaces that are known to be closed.

Object n k| p+td | cdlsize time

(seconds)
cat 1000 | 15 .06 1/30 19
knot 10000 | 20 00 1/50 137
mechpart | 4102 | 12 00 1/40 54
spock 21760 | 8 .08 1/80 514
femur 18224 | 40 .06 1/50 2135

5 Discussion

5.1 Tangent Plane Approximation

The neighborhood Nbhd(xi) of adata point x; is defined to consist
of itsk nearest neighbors, where k is currently assumed to be anin-
put parameter. |n the case where the data contains little or no noise,
k is not a critical parameter since the output has been empirically
observed to be stable over a wide range of settings. However, it
would be best if k could be selected automatically. Furthermore, al-
lowing k to adapt locally would make | ess stringent the requirement
that the data be uniformly distributed over the surface. To select
and adapt k, the algorithm could incrementally gather points while
monitoring the changing eigenvalues of the covariance matrix (see
Section 3.2). For small values of k, data noise tends to dominate,
the eigenvalues are similar, and the eigenvectors do not reveal the
surface's true tangent plane. At the other extreme, as k becomes

3Discrete inverse transform sampling [ 10, page 469] on triangle areawas
used to select face indices from the mesh, and uniform sampling was used
within the faces.



large, the k-neighborhoods become less localized and the surface
curvature tends to increase the “thickness’ \? of the neighborhood.
Another possible criterion is to compare A? to some local or global
estimate of data noise. Although we have done some initial exper-
imentation in this direction, we have not yet fully examined these
options.

If the data is obtained from range images, there exists some
knowledge of surface orientation at each data point. Indeed, each
datapoint isknown to be visiblefrom aparticular viewing direction,
so that, unlessthe surface incident angleislarge, the point’s tangent
plane orientation can be inferred from that viewing direction. Our
method could expl oit thisadditional informationinthetangent plane
orientation step (Section 3.3) by augmenting the Riemannian Graph
with an additional pseudo-node and n additional edges.

5.2 Algorithm Complexity

A spatia partitioning Abstract Data Type greatly improves per-
formance of many of the subproblems discussed previously. The
critical subproblems are (with their standard time complexity):

e EMST graph (O(n?))
e k-nearest neighbors to a given point (O(n + klogn))
e nearest tangent plane origin to a given point (O(n))

Hierarchical spatia partitioning schemes such as octrees [20]
and k-D trees [2] can be used to solve these problems more ef-
ficiently. However, the uniform sampling density assumed in our
dataallowssimplespatia cubic partitioning to work efficiently. The
axis-aligned bounding box of the pointsis partitioned by a cubical
grid. Pointsare entered into sets corresponding to the cube to which
they belong, and these sets are accessed through a hash table in-
dexed by the cube indices. It is difficult to analyze the resulting
improvements analytically, but, empirically, the time complexity of
the above problems is effectively reduced by a factor of n, except
for the k-nearest neighbors problem which becomes O(k).

Asaresult of the spatia partitioning, the Riemannian Graph can
be constructed in O(nk) time. Because the Riemannian Graph has
O(n) edges (at most n+nk), theMST computation used in finding the
best path on which to propagate orientation requires only O(nlog n)
time. Traversal of the MST is of course O(n).

The time complexity of the contouring algorithm depends only
on the number of cubes visited, since the evaluation of the signed
distance function f at a point p can be done in constant time (the
closest tangent plane origin o; to p and the closest data point x; to
the projected point z can both be found in constant time with spatial
partitioning).

6 Conclusionsand Future Work

We have developed an algorithm to reconstruct a surface in three-
dimensiona space with or without boundary from a set of unorga-
nized points scattered on or near the surface. The agorithm, based
on the idea of determining the zero set of an estimated signed dis-
tance function, was demonstrated on data gathered from a variety
of sources. It is capable of automatically inferring the topol ogical
type of the surface, including the presence of boundary curves.

The algorithm can, in principle, be extended to reconstruct mani-
folds of co-dimension onein spaces of arbitrary dimension; that is,
to reconstruct d — 1 dimensional manifoldsin d dimensional space.
Thus, essentially the same algorithm can be used to reconstruct
curves in the plane or volumes in four-dimensional space.

The output of our reconstruction method produced the correct
topology in al the examples. We are trying to develop formal
guaranteesonthecorrectnessof thereconstruction, given constraints

on the sample and the original surface. To further improve the
geometric accuracy of the fit, and to reduce the space required
to store the reconstruction, we envision using the output of our
algorithm as the starting point for asubsequent spline surfacefitting
procedure. We are currently investigating such a method based on
anonlinear least squares approach using triangular Bézier surfaces.
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(a) Traversal order of orientation propagation

(c) Cubes visited during contouring

(e) Output of modified marching cubes (f) Final surface after edge collapses
Figure 2: Reconstruction of ray-traced CSG object (continued).




(a) Origina mesh (b) Result of naive orientation propagation

(c) Reconstructed bordered surface (d) Reconstructed surface with complex geometry

(e) Recongtruction from cylindrical range data (f) Reconstruction from contour data
Figure 3: Reconstruction examples.
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Abstract

We present amethod for solving the following problem: Given aset
of data points scattered in three dimensions and an initial triangular
mesh Mo, produceamesh M, of thesametopol ogical typeasMy, that
fitsthe datawell and hasasmall number of vertices. Our approachis
to minimize an energy function that explicitly model s the competing
desires of conciseness of representation and fidelity to the data. We
show that mesh optimization can be effectively used in at least two
applications: surface reconstruction from unorganized points, and
mesh simplification (the reduction of the number of verticesin an
initially dense mesh of triangles).

CR Categories and Subject Descriptors:  1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis, Model
Simplification.

1 Introduction

The mesh optimization problem considered in this paper can be
roughly stated as follows: Given acollection of datapoints X in R®
and aninitial triangular mesh Mg near the data, find amesh M of the
same topological type as Mo that fits the data well and has a small
number of vertices.

Asan example, Figure 7b shows a set of 4102 data points sampled
from the object shown in Figure 7a. Theinput to the mesh optimiza-
tion algorithm consists of the points together with the initial mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h.
Notice that the sharp edges and corners indicated by the data have
been faithfully recovered and that the number of vertices has been
significantly reduced (from 1572 to 163).
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To solve the mesh optimization problem we minimize an energy
function that captures the competing desires of tight geometric fit
and compact representation. Thetradeoff between geometric fit and
compact representation is controlled via a user-sel ectabl e parameter
Crep. A large value of e indicates that a sparse representation is
to be strongly preferred over adense one, usually at the expense of
degrading the fit.

We use the input mesh Mg as a starting point for a non-linear
optimization process. During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
give no guarantee of finding a global minimum, we have run the
method on a wide variety of data sets; the method has produced
good resultsin all cases (see Figure 1).

We see at least two applications of mesh optimization: surface
reconstruction and mesh simplification.

The problem of surface reconstruction from sampled data occurs
in many scientific and engineering applications. In [2], we outlined
a two phase procedure for reconstructing a surface from a set of
unorganized data points. The goal of phase one is to determine
the topological type of the unknown surface and to obtain a crude
estimate of itsgeometry. An agorithm for phase one was described
in [5]. The goal of phase two is to improve the fit and reduce the
number of faces. Mesh optimization can be used for this purpose.

Although we were originally led to consider the mesh optimiza-
tion problem by our research on surface reconstruction, the algo-
rithm we have devel oped can also be applied to the problem of mesh
simplification. Mesh simplification, as considered by Turk [15] and
Schroeder et a. [10], refers to the problem of reducing the num-
ber of faces in a dense mesh while minimally perturbing the shape.
Mesh optimization can be used to solve this problem as follows:
sample data points X from the initial mesh and use the initial mesh
asthe starting point Mo of the optimization procedure. For instance,
Figure 7q shows a triangular approximation of a minimal surface
with 2032 vertices. Application of our mesh optimization algorithm
to asample of 6752 points (Figure 7r) from this mesh produces the
meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
The mesh of Figure 7s corresponds to a relatively small value of
Crep, and therefore has more vertices than the mesh of Figure 7t
which corresponds to a somewhat larger value of Crep.

The principal contributions of this paper are:

e |t presents an algorithm for fitting a mesh of arbitrary topolog-
ical type to a set of data points (as opposed to volume data,
etc.). During the fitting process, the number and connectivity
of the vertices, aswell astheir positions, are allowed to vary.

e |t casts mesh simplification as an optimization problem with
an energy function that directly measures deviation of the final
mesh from the original. As a consequence, the final mesh
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes Mo; the meshes in the bottom row are the
corresponding optimized meshes. Thefirst 3 columns are reconstructions; the last 2 columns are simplifications.

Simplicial compleX

verticesf 1}, {2}, {3}
edges: {1,2}, {2, 3},{1, 3}
faces: {1 2 3}

Topological realizatiofK|  Geometric realizatiofV)

Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

e |t demonstrates how the agorithm'’s ability to recover sharp
edges and corners can be exploited to automatically segment
the final mesh into smooth connected components (see Fig-
ure 7i).

2 Mesh Representation

Intuitively, a mesh is a piecewise linear surface, consisting of tri-
angular faces pasted together along their edges. For our purposes
it isimportant to maintain the distinction between the connectivity
of the vertices and their geometric positions. Formally, a mesh M
isapair (K, V), where: K isasimplicial complex representing the
connectivity of the vertices, edges, and faces, thus determining the
topological typeof themesh; V = {v1,...,vm}, vi € R®isaset of
vertex positions defining the shape of the meshin R® (its geometric
realization).

A simplicial complex K consists of a set of vertices {1,...,m},
together with a set of non-empty subsets of the vertices, called the

simplices of K, such that any set consisting of exactly one vertex
isasimplex in K, and every non-empty subset of asimplex in K is
again asimplex in K (cf. Spanier [14]). The O-simplices {i} € K
are called vertices, the 1-simplices {i, j} € K are called edges, and
the 2-simplices {i, j, k} € K are called faces.

A geometric realization of a mesh as a surface in R® can be ob-
tained asfollows. For agiven simplicia complex K, form its topo-
logical realization |[K| in R™ by identifying the vertices {1, ..., m}
with the standard basis vectors {e, . . . ,em} of R™. For each sim-
plex s € K let |s| denote the convex hull of its verticesin R™, and
let |K| = Usek |§]. Let ¢ : R™ — R? bethe linear map that sends
thei-th standard basis vector e; € R™to vi € R? (see Figure 2).

The geometric realization of M is the image ¢v(|K|), where we
write the map as ¢v to emphasize that it is fully specified by the
set of vertex positions V = {vi,...,vm}. The map ¢v is called
an embedding if itis 1-1, that isif ¢v(|K|) is not self-intersecting.
Only a restricted set of vertex positions V result in ¢v being an
embedding.

If ¢v isan embedding, any point p € ¢v(|K|) can be parameter-
ized by finding its unique pre-image on |K|. The vector b € |K]|
with p = ¢v(b) is called the barycentric coordinate vector of p
(with respect to the simplicial complex K). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-
tors e; € R™ corresponding to the vertices of a face of K. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero entries if it lies on an edge of |K|, and only
oneif itisavertex.

3 Definition of the Energy Function

Recall that the goal of mesh optimization is to obtain a mesh that
provides a good fit to the point set X and has a small number
of vertices. We find a simplicial complex K and a set of vertex
positions V defining amesh M = (K, V) that minimizes the energy
function

E(K, V) = Eas(K, V) + Erep(K) + Espring(K, V).

Thefirst two terms correspond to the two stated goals; the third term
is motivated bel ow.

The distance energy Egis isequal to the sum of squared distances



from the points X = {xz, ..., xn} to the mesh,

Eas(K, V) = ) d(xi, ¢v(IK])).

i=1

The representation energy Erep penalizes meshes with a large
number of vertices. It is set to be proportional to the number of
vertices mof K:

Erep(K) = Crepm.

The optimization alows vertices to be both added to and removed
from the mesh. When a vertex is added, the distance energy Eqi
is likely to be reduced; the term E;ep makes this operation incur a
penalty so that vertices are not added indefinitely. Similarly, one
wants to remove vertices from a dense mesh even if Egg increases
slightly; in this case E. acts to encourage the vertex removal.
The user-specified parameter ciep provides a controllable trade-off
between fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [8], that minimizing
Eqis + Erep does not produce the desired results. Asan illustration of
what can go wrong, Figure 7d shows the result of minimizing Eqi«
alone. The estimated surface has several spikes in regions where
thereisno data. These spikes are amanifestation of thefundamental
problem that a minimum of Egig + Erep May not exist.

To guarantee the existence of a minimum [6], we add the third
term, the spring energy Egying. It places on each edge of the mesh a
spring of rest length zero and spring constant «:

Esring(K,V) = D wllvi —wi?

{i,k}eK

It is worthwhile emphasizing that the spring energy is not a
smoothness penalty. Our intent is not to penalize sharp dihedra
angles in the mesh, since such features may be present in the un-
derlying surface and should be recovered. We view Egying @ @
regularizing term that helps guide the optimization to a desirable
local minimum. As the optimization converges to the solution, the
magnitude of Egxing can be gradually reduced. We return to this
issuein Section 4.4.

For some applications we want the procedure to be scale-
invariant, which is equivalent to defining a unitless energy function
E. To achieve invariance under Euclidean motion and uniform scal-
ing, the points X and the initial mesh Mo are pre-scaled uniformly
to fit in aunit cube. After optimization, a post-processing step can
undo thisinitial transformation.

4 Minimization of the Energy Function

Our goal isto minimize the energy function
E(K,V) = Eas(K, V) + Eren(K) + Egring(K, V)

over the set IC of simplicia complexes K homeomorphic to the
initial smplicial complex Ko, and the vertex positions V defining
the embedding. We now present an outline of our optimization
algorithm, a pseudo-code version of which appearsin Figure 3. The
details are deferred to the next two subsections.

Tominimize E(K, V) over both K and V, we partition the problem
into two nested subproblems: aninner minimization over V for fixed
simplicial complex K, and an outer minimization over K.

In Section 4.1 we describe an agorithm that solves the inner
minimization problem. It finds E(K) = miny E(K, V), the energy
of the best possible embedding of the fixed ssimplicial complex K,
and the corresponding vertex positions V, given an initial guess for

OptimizeMesh(Ko,Vo) {

K :=Ko

V := OptimizeVertexPositions(Ko, Vo)

— Solve the outer minimization problem.

repest {
(K',V") := GenerateLegalMove(K,V)
V' = OptimizeVertexPositions(K’,V')
if E(K', V') < E(K, V) then

(K\V) =K'V
endif
} until convergence
return (K,V)

}

— Solve the inner optimization problem
—  E(K) =miny E(K, V)
—for fixed simplicial complex K.
OptimizeVertexPositions(K,V) {
repeat {
— Compute barycentric coordinates by projection.
B := ProjectPoints(K,V)
—Minimize E(K, V, B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)
} until convergence
return vV

}

GenerateLegalMove(K,V) {
Select alegal move K = K'.
Locally modify V to obtain V' appropriate for K'.
return (K',V')

Figure 3: An idealized pseudo-code version of the minimization
algorithm.

V. This corresponds to the procedure OptimizeVertexPositions in
Figure 3.

Wheress the inner minimization is a continuous optimization
problem, the outer minimization of E(K) over the simplicial com-
plexesK € IC (procedure OptimizeMesh) is a discrete optimization
problem. An agorithm for its solution is presented in Section 4.2.

The energy function E(K, V) depends on two parameters ¢ and
k. Theparameter ;¢ controls the tradeoff between conciseness and
fidelity to the data and should be set by the user. The parameter &,
on the other hand, is a regularizing parameter that, ideally, would
be chosen automatically. Our method of setting « is described in
Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex
positions V that minimizes the energy function E(K, V) for a given
simplicial complex K. As E(K) does not depend on V, this
amounts to minimizing Eaist(K, V) + Egring(K, V).

To evaluate the distance energy Egs(K, V), it is necessary to
compute the distance of each datapoint x; toM = ¢v(|K|). Each of
these distances isitself the solution to the minimization problem

&G, gv(IKD) = min [l — vl

i €1K]

in which the unknown is the barycentric coordinate vector b; €
K| € R™ of the projection of x; onto M. Thus, minimizing



E(K, V) for fixed K is equivalent to minimizing the new objective
function

E(K,V,B)

> Ixi = (i) + Esing(K, V)

i=1

Dl —ov®)IP+ > sllvi — vl

i=1 {i,k}eK

over the vertex positions V. = {vi1,...,vm},vi € R® and the
barycentric coordinates B = {b1, ..., bn},b;i € |[K| C R™.

To solve this optimization problem (procedure OptimizeVertex-
Positions), our method alternates between two subproblems:

1. For fixed vertex positions V, find optimal barycentric coordi-
nate vectors B by projection (procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex
positions V by solving alinear least squares problem (proce-
dure ImproveVertexPositions).

Because we find optimal solutions to both of these subproblems,
E(K, V, B) can never increase, and since it is bounded from below,
it must converge. In principle, one could iterate until some formal
convergence criterion is met. Instead, as is common, we perform
a fixed number of iterations. As an example, Figure 7e shows the
result of optimizing the mesh of Figure 7c over the vertex positions
while holding the simplicial complex fixed.

Itisconceivable that procedure OptimizeVertexPositions returns a
set V of verticesfor whichthe meshisself-intersecting, i.e. ¢v isnot
an embedding. Whileitispossibleto check a posteriori whether ¢v
isan embedding, constraining the optimization to always produce an
embedding appearsto be difficult. Thishas not presented aproblem
in the examples we have run.

411 Projection Subproblem
(Procedure ProjectPoints)

The problem of optimizing E(K, V, B) over the barycentric coordi-
nate vectors B = {by, ..., bn}, while holding the vertex positions
V = {v1,...,vm} and the simplicial complex K constant, decom-
pOoses into n separate optimization problems:

bi = argmin||xi — ¢v(b)]|
belk|

Inother words, b; isthe barycentric coordinate vector corresponding
to the point p € ¢v(|K|) closest to x;.

A naive approach to computing b; isto project x; onto all of the
faces of M, and then find the projection with minimal distance. To
speed up the projection, we first enter the faces of the mesh into a
spatial partitioning data structure (similar to the one used in [16]).
Then for each point x; only a nearby subset of the faces needs to
be considered, and the projection step takes expected time O(n).
For additional speedup we exploit coherence between iterations.
Instead of projecting each point globally onto the mesh, we assume
that a point’s projection lies in a neighborhood of its projection in
the previous iteration. Specifically, we project the point onto all
faces that share a vertex with the previous face. Although thisisa
heuristic that can fail, it has performed well in practice.

412 Linear Least Squares Subproblem
(Procedure ImproveVertexPositions)

Minimizing E(K, V, B) over the vertex positions V while holding B
and K fixed is a linear least squares problem. It decomposes into

threeindependent subproblems, onefor each of thethree coordinates
of the vertex positions. We will write down the problem for thefirst
coordinate.

Let e be the number of edges (1-simplices) in K; note that e
is O(m). Let v! be the mvector whose i-th element is the first
coordinate of v;. Let d* bethe (n+ €)-vector whose first n elements
are the first coordinates of the data points x;, and whose last e
elements are zero. With these definitions we can express the least
squares problem for thefirst coordinate asminimizing ||Av' — d*||?
over v1. The design matrix Aisan (n+€) x m matrix of scalars.
Thefirst nrows of A arethe barycentric coordinate vectors b;. Each
of the trailing e rows contains 2 non-zero entries with vaues /k
and —+/k in the columns corresponding to the indices of the edge’s
endpoints. Thefirst n rows of the least squares problem correspond
to Egiz(K, V), while the last e rows correspond to Egying(K, V). An
important feature of the matrix Aisthat it containsat most 3 non-zero
entriesin each row, for atotal of O(n + m) non-zero entries.

To solvetheleast squares problem, we use the conjugate gradient
method (cf. [3]). Thisisan iterative method guaranteed to find the
exact solution in as many iterations as there are distinct singular
vauesof A i.e. inat most miterations. Usually far fewer iterations
arerequired to get aresult with acceptable precision. For example,
we find that for m as large as 10*, as few as 200 iterations are
sufficient.

The two time-consuming operations in each iteration of the con-
jugate gradient algorithm are the multiplication of A by an (n + €)-
vector and the multiplication of AT by an m-vector. Because A is
sparse, these two operations can be executed in O(n + m) time. We
store A in a sparse form that requires only O(n + m) space. Thus,
an acceptable solution to the least squares problem is obtained in
O(n+m) time. In contrast, atypical noniterative method for solving
dense least squares problems, such as QR decomposition, would
require O((n + mm?) time to find an exact solution.

4.2 Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K,
we define a set of three elementary transformations, edge collapse,
edge split, and edge swap, taking asimplicial complex K to another
simplicial complex K’ (see Figure 4).

We define alegal move to be the application of one of these ele-
mentary transformations to an edge of K that |eaves the topol ogical
type of K unchanged. Theset of elementary transformationsiscom-
plete in the sense that any simplicial complex in K can be obtained
from Ko through a sequence of legal movest.

Our goal then isto find such a sequence taking us from Ko to a
minimum of E(K). We do this using a variant of random descent:
we randomly select alegal move, K = K'. If E(K') < E(K), we
accept the move, otherwise we try again. If alarge number of trials
fails to produce an acceptable move, we terminate the search.

More elaborate selection strategies, such as steepest descent or
simulated annealing, are possible. As we have obtained good re-
sults with the simple strategy of random descent, we have not yet
implemented the other strategies.

Identifying Legal Moves An edge split transformation is always
alegal move, asit can never change the topological type of K. The
other two transformations, on the other hand, can cause a change
of topological type, so tests must be performed to determine if they
arelegal moves.

Linfact, weprovein[6] that edge collapse and edge split aresufficient; we
include edge swap to alow the optimization procedure to “tunnel” through
small hillsin the energy function.
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Figure 4: Local smplicial complex transformations

Wedefineanedge{i,j} € Ktobeaboundary edgeif itisasubset
of only one face {i,j,k} € K, and a vertex {i} to be a boundary
vertex if there exists aboundary edge {i,j} € K.

An edge collapse transformation K = K’ that collapses the edge
{i,j} € Kisalegal moveif and only if thefollowing conditions are
satisfied (proof in [6]):

e For all vertices {k} adjacent to both {i} and {j} ({i,k} € K
and {j,k} € K), {i,]j,k} isaface of K.

e If {i} and {j} are both boundary vertices, {i,]} isaboundary
edge.

e K has more than 4 verticesif neither {i} nor {j} are boundary
vertices, or K has more than 3 verticesif either {i} or {j} are
boundary vertices.

An edge swap transformation K = K’ that replaces the edge
{i,j} € Kwith{k, 1} € K" isalegal moveif and only if {k, |} & K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of
practica use. In this section, we describe some heuristics which
dramatically reduce the running time. These heuristics capitalize
onthefact that alocal changein the structure of the mesh leavesthe
optimal positions of distant vertices essentially unchanged.

4.3.1 Heuristicsfor Evaluating the Effect of Legal M oves

Our strategy for selecting lega moves requires evaluation of
E(K") = miny E(K', V) for asimplicial complex K’ obtained from
K through a legal move. ldeally, we would use procedure Opti-
mizeVertexPositions of Section 4.1 for this purpose, as indicated in
Figure 3. In practice, however, thisistoo slow. Instead, we use fast
local heuristics to estimate the effect of alegal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the
neighborhood of thetransformation, along withthe subset of thedata
points projecting onto the submesh. The changein overall energy is
estimated by only considering the contribution of the submesh and
the corresponding point set. This estimate is always pessmistic, as
full optimization would only further reduce the energy. Therefore,
theheuristicsnever suggest changesthat will increasethetrueenergy
of the mesh.

K/
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Figure 5: Neighborhood subsets of K.

j

Figure 6: Two local optimizations to evauate edge swap

Definition of neighborhoodsin asimplicial complex Torefer to
neighborhoods in asimplicial complex, we need to introduce some
further notation. We write ' < s to denote that simplex g is a
non-empty subset of smplex s. For simplex s € K, star(s;K) =
{d €K : s< ¢} (Figureb).

Evaluation of Edge Collapse To evaluate atransformation K =
K’ collapsing an edge {i,j} into asingle vertex {h} (Figure 4), we
take the submesh to be star({i }; K) Ustar({j }; K), and optimize over
the single vertex position v, while holding all other vertex positions
constant.

Becauseweperformonly asmall number of iterations (for reasons
of efficiency), theinitial choice of v greatly influencesthe accuracy
of the result. Therefore, we attempt three optimizations, with vi
starting at vi, vj, and %(vi + vj), and accept the best one.

Theedge collapse should beallowed only if the new mesh does not
intersect itself. Checking for thiswould be costly; instead we settle
for aless expensive heuristic check. If, after the local optimization,
the maximum dihedral angle of the edgesin star({h}; K') is greater
than some threshold, the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge
collapse, except that the submesh is defined to be star({i, j }; K), and
theinitial value of the new vertex vy is chosen to be £ (vi +vj).

Evaluation of Edge Swap To evaluate an edge swap transforma-
tion K = K’ that replaces an edge {i,j} € K with {k, 1} € K’, we
consider two local optimizations, one with submesh star({k}; K'),
varying vertex v, and one with submesh star({1}; K), varying ver-
tex vy (Figure 6). The change in energy is taken to best of these.
Asisthe casein evaluating an edge collapse, we reject the transfor-
mation if the maximum dihedral angle after the local optimization
exceeds a threshold.



4.3.2 Legal Move Selection Strategy
(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Sec-
tion 4.2 can beimproved by explaiting locality. Instead of selecting
edges completely at random, edges are sel ected from acandidate set.
This candidate set consists of al edges that may lead to beneficia
moves, and initially contains all edges.

To generate a legal move, we randomly remove an edge from
the candidate set. We first consider collapsing the edge, accepting
the move if it is legal and reduces the tota energy. If the edge
collapseis not accepted, we then consider edge swap and edge split
in that order. If one of the transformations is accepted, we update
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the
fraction of beneficial moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energy Egxing as a regularizing term that helps
guide the optimization process to a good minimum. The spring
constant x determines the contribution of this term to the total
energy. We have obtained good results by making successive callsto
procedure OptimizeMesh, each with adifferent value of «, according
to a schedule that gradually decreases k.

Asan example, to obtain the final mesh in Figure 7h starting from
the mesh in Figure 7c, we successively set « to 1072, 1072, 1074,
and 1078 (see Figures 7f—7h). This same schedule was used in all
the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 78). Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

Figures 7i—7k,7m—70 show two examples of surface reconstruc-
tion from actual laser range data (courtesy of Technical Arts, Red-
mond, WA). Figures 7j and 7n show sets of points obtained by
sampling two physical objects (a distributor cap and a golf club
head) with alaser range finder. The outputs of phase one are shown
in Figures 7k and 70. The holes present in the surface of Figure 7k
are artifacts of the data, as self-shadowing prevented some regions
of the surface from being scanned. Adaptive selection of scanning
paths preventing such shadowing is an interesting area of future
research. In this case, we manually filled the holes, leaving a sin-
gle boundary at the bottom. Figures 71 and 7p show the optimized
meshes obtained with our agorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly
from the original mesh using uniform random sampling over area.
Next, we add the vertices of the mesh to this point set. Finaly,
to more faithfully preserve the boundaries of the mesh, we sample
additional points from boundary edges.

As an example of mesh simplification, we start with the mesh
containing 2032 vertices shown in Figure 7g. From it, we obtain
a sample of 6752 points shown in Figure 7r (4000 random points,
2032 vertex points, and 720 boundary points). Mesh optimization,
with crep = 102, reduces the mesh down to 487 vertices (Figure 7s).

Fig.|#vert.|#faces| #data| Parameters Resulting energies time
m n Cep | K Egig | E (min.)
7c [ 1572] 3152 4102 - -18.57x10~2 - -
7e | 1572| 3152| 4102|10~3| 10-2|8.04x104|4.84x1072| 1.5
7f | 508| 1024| 4102|10~°| 10~2|6.84x10~4|3.62x10~2| (+3.0)
79 | 270| 548| 4102|10-5| 10-3|6.08 x10~*|6.94x10—3| (+2.2)
7h | 163| 334| 4102|10—°|varied|4.86x10~%4|2.12x10~3| 17.0
7k | 9220|18272|12745 - 6.41x10~2 - -
7 690| 1348|12745|105|varied|4.23x1073|1.18x10~2| 47.0

70 | 4059| 8073|16864 - -[2.20x10-2 - -
7p | 262| 515|16864|10~5|varied|2.19x10~3]4.95x10~3| 44.5
7q | 2032| 3832 -

7s | 487| 916| 6752|10 °|varied|1.86x10~3|8.05x1073| 9.9
7t | 239 432| 6752|10~4|varied|9.19x10-3|4.39x10~2| 10.2

Table 1: Performance statistics for meshes shown in Figure 7.

By setting Crep = 107, we obtain a coarser mesh of 239 vertices
(Figure 7t).

As these examples illustrate, basing mesh simplification on a
measure of distance between the simplified mesh and the original
has a number of benefits:

e Vertices are dense in regions of high Gaussian curvature,
whereas afew large faces span the flat regions.

e Long edges are aligned in directions of low curvature, and the
aspect ratios of the triangles adjust to local curvature.

e Edgesand verticesof the simplified mesh are placed near sharp
features of the original mesh.

5.3 Segmentation

Mesh optimization enables usto detect sharp featuresin the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components. To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are adja-
cent and their dihedral angle is smaller than a given threshold. The
connected components of this graph identify the desired smooth
segments. Asan example, Figure 7i shows the segmentation of the
optimized mesh into 11 components. After segmentation, vertex
normal s can be estimated from neighboring faces within each com-
ponent, and a smoothly shaded surface can be created (Figure 7m).

5.4 Parameter Settingsand Performance Statistics

Table 1 lists the specific parameter values of Creg and x used to
generate the meshes in the examples, along with other performance
statistics. In all these examples, the table entry “ varied” refers to
a spring constant schedule of {1072,1073,107*,1078}. In fact,
all meshes in Figure 1 are also created using the same parameters
(except that crep Was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

6 Reated Work

Surface Fitting Thereisalarge body of literature on fitting em-
beddings of a rectangular domain; see Bolle and Vemuri [1] for a
review. Schudy and Ballard [11, 12] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and
tori. Sclaroff and Pentland [13] consider embeddings of adeformed
superquadric. Miller et a. [9] approximate an isosurface of volume
data by fitting a mesh homeomorphic to a sphere. While it appears
that their method could be extended to finding isosurfaces of arbi-
trary topological type, it it less obvious how it could be modified to



handle point instead of volume data. Mallet [7] discussesinterpola
tion of functions over simplicial complexes of arbitrary topological
type.

Our method alows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensiona points. In [2], we
sketched an algorithm for fitting amesh of fixed vertex connectivity
tothedata. Thealgorithm presented hereisan extension of thisidea
inwhich we also alow the number of verticesand their connectivity
tovary. Tothe best of our knowledge, thishas not been done before.

Mesh Simplification Two notable papers discussing the mesh
simplification problem are Schroeder et a. [10] and Turk [15].

The motivation of Schroeder et a. isto simplify meshes gener-
ated by “marching cubes’ that may consist of more than a million
triangles. Intheir iterative approach, the basic operation is removal
of avertex and re-triangulation of the hole thus created. The crite-
rion for vertex removal in the simplest case (interior vertex not on
edge or corner) is the distance from the vertex to the plane approx-
imating its surrounding vertices. It is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previous iteration; deviation from the original mesh
does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while
remaining faithful to the original topology and geometry. Hisbasic
ideais to distribute points on the existing mesh that are to become
the new vertices. Hethen creates atriangulation containing both old
and new vertices, and finally removes the old vertices. The density
of the new verticesis chosen to be higher in areas of high curvature.

The principa advantage of our mesh simplification method com-
pared to the techniques mentioned above is that we cast mesh sim-
plification asan optimization problem: we find anew mesh of lower
complexity that is as close as possible to the original mesh. This
is recognized as a desirable property by Turk (Section 8, p. 63):
“Another topic is finding measures of how closely matched a given
re-tilingistotheoriginal model. Can such aquality measure beused
to guide the re-tiling process?’. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that
are elongated along directions of low curvature, another property
recognized as desirable by Turk.

7 Summary and Future Work

We have described an energy minimization approach to solving the
mesh optimization problem. The energy function we use consists of
three terms: a distance energy that measures the closeness of fit, a
representation energy that penalizes meshes with alarge number of
vertices, and aregularizing term that conceptually places springs of
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the starting
mesh.

Mesh optimization has proven effective as the second phase of
our method for surface reconstruction from unorganized points, as
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the number of vertices of the mesh produced
in phase one.)

Our method has & so performed well for mesh simplification, that
is, thereduction of the number of verticesin adensetriangular mesh.
It produces meshes whose edges align themselves along directions
of low curvature, and whose vertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges and
corners.

A number of areas of future research still remain, including:

e Investigate the use of more sophisticated optimization meth-
ods, such as simulated annealing for discrete optimization and
quadratic methods for non-linear |east squares optimization, in
order to avoid undesirable local minima in the energy and to
accel erate convergence.

e Gain more insight into the use of the spring energy as aregu-
larizing term, especially in the presence of appreciable noise.

¢ Improve the speed of the algorithm and investigate implemen-
tations on parallel architectures.

e Develop methods for fitting higher order splines to more accu-
rately and concisely model curved surfaces.

o Experiment with sparse, non-uniform, and noisy data.

e Extendthecurrent algorithmto other distance measuressuch as
maximum error (L° norm) or average error (L norm), instead
of the current L? norm.
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Zippered Polygon M eshes from Range | mages

Greg Turk and Marc Levoy
Computer Science Department
Stanford University

Abstract

Range imaging offers an inexpensive and accurate means for
digitizing the shape of three-dimensional objects. Because most
objects self occlude, no single range image suffices to describe the
entire object. We present a method for combining a collection of
rangeimagesinto asingle polygona meshthat completely describes
an object to the extent that it is visible from the outside.

The stepsin our method are: 1) align the mesheswith each other
using amodified iterated closest-point algorithm, 2) zipper together
adjacent meshesto form acontinuous surface that correctly captures
the topology of the object, and 3) compute local weighted averages
of surface positions on al meshes to form a consensus surface
geometry.

Our system differs from previous approaches in that it is incre-
mental; scans are acquired and combined one at a time. This
approach allows us to acquire and combine large numbers of scans
with minimal storage overhead. Our largest models contain up to
360,000 triangles. All the steps needed to digitize an object that
requiresupto 10 range scanscan be performed using our systemwith
fiveminutesof user interactionand afew hoursof computetime. We
show two models created using our method with range data from a
commercial rangefinder that employs laser stripe technology.

CR Categories: 1.3.5[Computer Graphics]: Computational Geom-
etry and Object Modelling.

Additional Key Words: Surface reconstruction, surface fitting,
polygon mesh, range images, structured light range scanner.

1 Introduction

This paper presents amethod of combining multiple views of an
object, captured by arange scanner, and assembling these viewsinto
one unbroken polygonal surface. Applications for such a method
include:

« Digitizing complex objectsfor animationandvisual simulation.

« Digitizing the shape of afound object such asan archaeol ogical
artifact for measurement and for dissemination to the scientific
community.

E-mail: turk@redclay.stanford.edu, levoy@cs.stanford.edu
Web site: www-graphics.stanford.edu

 Digitizing human external anatomy for surgical planning,
remote consultation or the compilation of anatomical atlases.

« Digitizing the shape of a damaged machine part to help create
areplacement.

There is currently no procedure that will allow a user to easily
capture a digital description of a physical object. The dream tool
would alow one to set an industrial part or a clay figure onto a
platform, press a button, and have a complete digital description of
that object returned in a few minutes. The redlity is that much
digitization is done by a user painstakingly touching a 3D sensing
probe to hundreds or thousands of positions on the object, then
manually specifying the connectivity of these points. Fortunately
range scanners offer promise in replacing this tedious operation.

A range scanner is any device that senses 3D positions on an
object’s surface and returns an array of distance values. A range
image is an mxn grid of distances (range points) that describe a
surface either in Cartesian coordinates (a height field) or cylindrical
coordinates, with two of the coordinates being implicitly defined by
theindices of the grid. Quite anumber of measurement techniques
can be used to create a range image, including structured light,
time-of-flight lasers, radar, sonar, and several methods from the
computer vision literature such as depth from stereo, shading, tex-
ture, motion and focus. Therange images used to create the models
in this paper were captured using structured light (described later),
but our techniques can be used with any range images where the
uncertainties of the distance values are smaller than the spacing
between the samples.

Range scanners seem like a natural solution to the problem of
capturing a digital description of physical objects. Unfortunately,
few objects are simple enough that they can be fully described by a
single range image. For instance, a coffee cup handle will obscure
a portion of the cup’s surface even using a cylindrical scan. To
capturethe full geometry of amoderately complicated object (e.g. a
clay model of acat) may require as many as a dozen range images.

Therearetwomainissuesin creating asinglemodel frommultiple
range images: registration and integration. Registration refers to
computing arigid transformation that brings the points of onerange
imageinto alignment with the portionsof asurfacethat isshareswith
another rangeimage. Integration isthe process of creating asingle
surface representation from the sample points from two or more
range images.

Our approach to registration usesan iterative processto minimize
the distance between two triangle meshesthat were created from the
rangeimages. We accelerate registration by performing the match-
ing on a hierarchy of increasingly more detailed meshes. This
method allows an object to be scanned from any orientation without
the need for a six-degree-of-freedom motion device.



We separate the task of integration into two steps: 1) creating a
mesh that reflects the topology of the object, and 2) refining the
vertex positions of the mesh by averaging the geometric detail that is
presentinall scans. We capturethetopology of an object by merging
pairs of triangle meshes that are each created from a single range
image. Merging begins by converting two meshes that may have
considerable overlap into a pair of meshes that just barely overlap
along portions of their boundaries. Thisis done by simultaneously
eating back the boundariesof each mesh that liedirectly ontop of the
other mesh. Next, the meshes are zippered together: the triangl es of
one mesh are clipped to the boundary of the other mesh and the
vertices on the boundary are shared. Onceall the meshes have been
combined, weallow all of the scansto contributeto the surface detail
by finding the consensus geometry. Thefinal position of avertex is
found by taking an average of nearby positions from each of the
original rangeimages. Theorder inwhichwe perform zippering and
consensus geometry is important. We deliberately postpone the
refinement of surface geometry until after the overall shape of the
object hasbeen determined. Thiseliminatesdiscontinuitiesthat may
be introduced during zippering.

The remainder of this paper is organized as follows. Section 2
describes previous work on combining range images. Section 3
covers the basic principles of a structured light range scanner.
Section 4 presents the automatic registration process. Section 5
describes zippering meshesinto one continuous surface. Section 6
describes how surface detail is captured through consensus geom-
etry. Section 7 shows examples of digitized models and compares
our approach to other methods of combining range data. Section 8
concludes this paper by discussing future work.

2 Previous Work

There is a great deal of published work on registration and
integration of depth information, particularly inthevision literature.
Our literaturereview only coverswork on registration or integration
of dense range data captured by an active range scanner, and where
the product of the integration is a polygon mesh.

2.1 Registration

Twothemesdominatework inrangeimageregistration: matching
of “created” featuresin theimagesto be matched, and minimization
of distancesbetween all points on the surface represented by thetwo
images. In the first category, Wada and co-authors performed six
degree of freedom registration by matching distinctive facets from
the convex hulls of range images [Wada 93]. They computed a
rotation matrix from corresponding facetsusing aleast squaresfit of
the normal vectors of the facets.

Inthesecond category, Champleboux and co-workersused adata
structure called an octree-spline that is a sampled representation of
distancesto an object’ s surface [Champleboux 92]. Thisgavethem
arapid way to determine distances from a surface (and the distance
gradient) with a low overhead in storage. Chen and Medioni
establish acorrespondence between pointson onesurfaceand nearby
tangent planes on the other surface [Chen 92]. They find arigid
motion that minimizes the point-to-tangent collection directly and
theniterate. Besl and McKay use an approach they call theiterated
closest-point agorithm [Besl 92]. This method finds the nearest
positionson one surfaceto acollection of pointson the other surface
and then transforms one surface so as to minimize the collective
distance. They iterate this procedure until convergence.

Our registration method fallsinto the general category of direct
distance minimization algorithms, and is an adaptation of [Bedl 92].
It differsin that we do not require that one surface be a strict subset
of the other. It is described in Section 4.

2.2 Integration

Integration of multiple range scans can be classified into struc-
tured and unstructured methods. Unstructured integration presumes

that one has a procedure that creates a polygonal surface from an
arbitrary collection of pointsin 3-space. Integration inthiscaseis
performed by collecting together al the range points from multiple
scans and presenting them to the polygonal reconstruction proce-
dure. The Delaunay triangulation of a set of pointsin 3-space has
been proposed as the basis of one such reconstruction method
[Boissonnat 84]. Another candidate for surface reconstruction is a
generalization of the convex hull of a point set known as the alpha
shape [Edel sbrunner 92]. Hoppe and co-authors use graph traversal
techniques to help construct a signed distance function from a
collection of unorganized points [Hoppe 92]. Anisosurface extrac-
tion technique produces apolygon mesh from thisdistance function.

Structured integration methods make use of information about
how each point was obtained, such asusing error boundsonapoint’s
position or adjacency information between points within one range
image. Soucy and L aurendeau useastructured i ntegration technique
to combine multiple range images [Soucy 92] that is similar in
several respectsto our algorithm. Given nrangeimagesof an object,
they first partition the points into a number of sets that are called
common surface sets. The range points in one set are then used to
create agrid of triangles whose positions are guided by a weighted
average of the pointsin the set. Subsets of these grids are stitched
together by aconstrained Delaunay triangulationin one of n projec-
tionsonto aplane. We compare our method to Soucy’ sin Section 7.

3 Structured Light Range Scanners

In this section we describe the operating principles of range
scanners based on structured light. We do thisbecause it highlights
issues common to many range scanners and also because the range
images used in this article were created by such a scanner.

3.1 Triangulation

Structured light scanners operate on the principle of triangulation
(see Figure 1, left). One portion of the scanner projects a specific
pattern of light onto the object being scanned. This pattern of light
isobserved by thesensor of the scanner along aviewing directionthat
is off-axis from the source of light. The position of theilluminated
part of the object is determined by finding the intersection of the
light’s projected direction and the viewing direction of the sensor.
Positionscanbeaccumul ated acrossthelength of theobject whilethe
object is moved across the path of the projected light. Some of the
patternsthat have been used in such scannersinclude aspot, acircle,
aline, and several linesat once. Typically thesensorisaCCD array
or alateral effect photodiode.

The scanner used for the examples in this paper is a Cyberware
Model 3030 MS. It projectsavertical sheet of He-Nelaser light onto
thesurfaceof anobject. Thelaser sheetiscreated by spreadingalaser
beam using acylindrical lensinto asheet roughly 2 mmwideand 30
cm high. The sensor of the Cyberware scanner isa 768 x 486 pixel
CCD array. A typical CCD image shows a ribbon of laser light
running from the top to the bottom (see Figure 2). A range point is
created by looking across a scanline for the peak intensity of this
ribbon. A range point’s distance from the scanner (the “depth”) is
given by thehorizontal position of this peak and thevertical position
of therange point isgiven by the number of the scanline. Findingthe
peaksfor each scanlinein oneframe givesan entire column of range
points, and combining the columns from multiple frames as the
object is moved through the |laser sheet gives the full range image.

3.2 Sourcesof Error

Any approach to combining range scans should attempt to take
into account the possible sourcesof error inherent inagiven scanner.
Two sources of error are particularly relevant to integration. Oneis
aresult of light falling on the object at a grazing angle. When the
projected light falls on a portion of the object that is nearly parallel
tothelight’ spath, the sensor seesadim and stretched-out version of
the pattern. Finding the center of the laser sheet when it grazes the
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Figure 1. Structured light triangulation (left) and false edge extension in the presence of a partially illuminated edge (right).

object becomes difficult, and this adds uncertainty to the position of
therangepoints. Thedegreeof uncertainty at agiven rangepoint can
be quantified, and we make use of suchinformation at several stages
in our approach to combining range images.

A second source of inaccuracy occurswhen only aportion of the
laser sheet hits an object, such as when the laser sheet falls off the
edge of abook that is perpendicular to the laser sheet (see Figure 1,
right). Thisresultsinafal seposition becausethe peak-detectionand
triangulation method assumes that the entire width of the sheet is
visible. Such an assumption resultsin edges of objectsthat are both
curled and extended beyond their correct position. This false
extension of asurfaceat edgesisanissuethat needsto be specifically
addressed when combining range images.

3.3 Creating Triangle M eshes from Range | mages

Weuseamesh of trianglesto represent therangeimage dataat all
stagesof our integration method. Each samplepointinthemxnrange
imageisapotential vertex inthetrianglemesh. Wetake special care
toavoidinadvertently joining portionsof thesurfacetogether that are
separated by depth discontinuities (see Figure 3).

To build amesh, we create zero, one or two triangles from four
points of arange image that are in adjacent rows and columns. We
find the shortest of the two diagonal s between the pointsand usethis
toidentify thetwo tripletsof pointsthat may becometriangles. Each
of these point triplesis made into atriangle if the edge lengths fall
below adistancethreshold. Let sbethe maximum distance between
adjacent range pointswhen we flatten the rangeimage, that is, when
we don’t include the depth information (see Figure 3). Wetake the
distance threshold be a small multiple of this sampling distance,
typically 4s. Although having such adistancethreshold may prevent
joining some range points that should in fact be connected, we can
rely on other rangeimages (those with better views of thelocationin
question) to give the correct adjacency information.

Ribbon of light
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Image of light ribbon
Light Sheet geot i

Laser and Lens
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Figure2: Light-stripe projected on vase (left) and
corresponding CCD image (right).

Thiswillingnessto discard questionable datais representative of
adeliberate overall strategy: to acquire and process|arge amounts of
data rather than draw hypotheses (possibly erroneous) from sparse
data. Thisstrategy appearsin severa placesin our algorithm.

4 Registration of Range Il mages

Once atriangle mesh is created for each range image, we turn to
thetask of bringing corresponding portionsof different rangeimages
into alignment with one another. If al range images are captured
using a six-degree of freedom precision motion device then the
information needed to register them is available from the motion
control software. This is the case when the object or scanner is
mounted on arobot arm or themotion platform of aprecisionmilling
machine. Inexpensive motion platforms are often limited to one or
two degrees of freedom, typically trandationin asingle direction or
rotation about an axis. One of our goalsisto create an inexpensive
system. Consequently, we employ aregistration method that does
not depend on measured position and orientation. With our scanner,
which offers translation and rotation around one axis, we typically
takeonecylindrical andfour translational scansby movingtheobject
with the motion device. To capture the top or the underside of the
object, we pick it up by hand and place it on its side. Now the
orientation of subsequent scans cannot be matched with those taken
earlier, and using a registration method becomes mandatory.

4.1 Iterated Closest-Point Algorithm

This section describes a modified iterated closest-point (ICP)
algorithmfor quickly registering apair of meshescreated from range
images. Thismethod allowsauser to crudely align onerangeimage
with another on-screen and then invoke an algorithm that snaps the
position of one range image into accurate alignment with the other.

The iterated closest-point of [Besl 92] cannot be used to register
rangeimagesbecauseit requiresthat every point on onesurfacehave
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Figure 3: Building triangle mesh from range points.



Figure4: Finding corresponding pointsfor meshregistration.
Dotted arrows show matches that should be avoided because
they will cause mesh B to be erroneously dragged up and | eft.

a corresponding point on the other surface. Since our scans are
overlapping, we seldom produce data that satisfiesthisrequirement.
Thuswe have developed our own variant of thisalgorithm. Itssteps
are:

1) Find the nearest position on mesh A to each vertex of mesh B.

2) Discard pairs of points that are too far apart.

3) Eliminate pairsin which either pointsis on a mesh boundary.

4) Find the rigid transformation that minimizes a weighted
least-squared distance between the pairs of points.

5) Iterate until convergence.

6) Perform ICP on a more detailed mesh in the hierarchy.

Instep 1, itisimportant to notethat we arelooking for the 3-space
position A on the surface of mesh Athat is closest to agiven vertex
B, of mesh B (seeFigure 4). The nearest point A may be avertex of
A may be a point within atriangle, or may lie on atriangle’ s edge.
Allowing these points A to be anywhere on a C° continuous surface
means that the registration between surfaces can have greater accu-
racy than the spacing s between range points.

4.2 Constraintson |CP

Our ICP agorithm differsfrom Besl’ sin several ways. First, we
have added a distance threshold to the basic iterated closest-point
method to avoid matching any vertex B, of one meshto aremote part
of another mesh that islikely to not correspond to B, Such avertex
B, from mesh B might befromaportion of the scanned object that was
not captured inthemesh A, and thus no pairing should bemadeto any
pointonA. Wehavefoundthat excellent registrationwill result when
this distance threshold is set to twice the spacing s between range
points. Limiting the distance between pairs of corresponding points
allows us to perform step 2 (eliminating remote pairs) during the
nearest points search in step 1.

The nearest points search can be accelerated considerably by
placing the mesh verticesin auniform subdivision of space based on
the distance threshold. Because the triangle size is limited in the
mesh creation step, we can search over al triangles within a fixed
distanceand guaranteethat wemissno nearby portionof any triangle.
Becausewewill usethisconstrained nearest-point search again|ater,
itisworthgivinganametothisquery. Letnearest_on_mesh(P,d,M)
be aroutine that returns the nearest position on amesh M to agiven
point P, or that returns nothing if there is no such point within the
distance d.

Second, we have added the restriction that we never allow
boundary points to be part of a match between surfaces. Boundary
pointsarethose pointsthat lieonthe edge of atriangleand wherethat
edgeisnot shared by another triangle. Figure4 illustrates how such
matchescan drag ameshinacontrary directiontothemajority of the
point correspondences.

4.3 Best Rigid Mation

Theheart of theiterated closest-point approachisinfindingarigid
transformation that minimizes the least-squared distance between

the point pairs. Berthold Horn describes a closed-form solution to
this problem [Horn 87] that is linear in time with respect to the
number of point pairs. Horn'smethod finds the translation vector T
and the rotation R such that:

n

E=) |A-R(B;i-Bo-TP

i=1

is minimized, where A and B, are given pairs of posmons in
3-spaceand B, isthecentroid of the B.. Hornshowed that Tisjust the
differencebetweenthecentroid of the pointsA andthecentroid of the
points B. R is found by constructing a cross-covariance matrix
between centroid-adjusted pairsof points. Thefinal rotationisgiven
by a unit quaternion that is the eigenvector corresponding to the
largest eigenvalue of amatrix constructed from the elements of this
cross-covariance matrix. Detailscan befoundinboth [Horn 87] and
[Besl 92].

Aswediscussed earlier, not al range points have the same error
bounds on their position. We can take advantage of an optional
weighting termin Horn’ s minimization to incorporate the positional
uncertainties into the registration process. Let avauein the range
from O to 1 called confidence be a measure of how certain we are of
a given range point’s position. For the case of structured light
scanners, we take the confidence of apoint P on amesh to be the dot
product of the mesh normal N at P and the vector L that points from
P to the light source of the scanner. (We takethe normal at P to be
the average of the normals of thetrianglesthat meet at P.) Addition-
ally, we lower the confidence of vertices near the mesh boundaries
to take into account possible error due to false edge extension and
curl. Wetakethe confidence of apair of corresponding pointsA and
B, fromtwomeshesto betheproduct of their confidences, andwewill
usew to represent thisvalue. The problemisnow tofind aweighted
|east-squares minimum:

E:i WilAi-R(B;-Bo)-T 2
B

The weighted minimization problem is solved in much the same
way asbefore. Thetranglation factor Tisjust thedifference between
theweighted centroids of the corresponding points. Thesolutionfor
R is described by Horn.

4.4 Alignment in Practice

The above registration method can be made faster by matching
increasingly more detailed meshes from a hierarchy. We typically
use amesh hierarchy in which each mesh uses one-forth the number
of range points that are used in the next higher level. The less-
detailed meshesinthishierarchy areconstructed by sub-samplingthe
rangeimages. Registrationbeginsby running constrained |ICPonthe
lowest-level mesh and then using the resulting transformation asthe
initial position for the next level up in the hierarchy. The matching
distance threshold d is halved with each move up the hierarchy.

Besl and M cK ay describehow to uselinear and quadratic extrapo-
lation of the registration parameters to accelerate the alignment
process. We usethistechniquefor our alignment at each level inthe
hierarchy, and find it workswell in practice. Details of this method
can be found in their paper.

The constrained ICP algorithm registers only two meshes at a
time, and thereisno obviousextensionthat will register threeor more
meshes simultaneously. This is the case with al the registration
algorithms we know. |f we have meshes A, B, C and D, should we
register A with B, then B with C and finally C with D, perhaps
compounding registration errors? \We can minimizethis problem by
registering al meshes to a single mesh that is created from a
cylindrical rangeimage. Inthisway thecylindrical rangeimage acts
as a common anchor for al of the other meshes. Note that if a
cylindrical scan covers an object from top to bottom, it captures all
thesurfacesthat lieonthe convex hull of theobject. Thismeansthat,



for almost all objects, there will be some common portions between
the cylindrical scan and all linear scans, although the degree of this
overlap depends on the extent of the concavities of the object. We
used such a cylindrical scan for alignment when constructing the
models shown in this paper.

5 Integration: Mesh Zippering

The central step in combining range images is the integration of
multipleviewsintoasinglemodel. Thegoal of integrationistoarrive
at adescription of the overall topology of the object being scanned.
Inthi ssectionweexaminehow twotriangle meshes can be combined
into asingle surface. The full topology of a surface is realized by
Zippering new range scans one by oneinto the final triangle mesh.

Zippering two triangle meshes consists of three steps, each of
which we will consider in detail below:

1) Remove overlapping portions of the meshes.
2) Clip one mesh against another.
3) Remove the small triangles introduced during clipping.

5.1 Removing Redundant Surfaces

Before attempting to join a pair of meshes, we eat away at the
boundaries of both meshes until they just meet. We remove those
trianglesin each mesh that arein some sense“ redundant,” in that the
other mesh includes an unbroken surface at that same position in
space. Although thisstep removestrianglesfromthemeshes, weare
not discarding data since all range points eventually will be used to
find the consensusgeometry (Section 6). Giventwo triangle meshes
A and B, hereisthe process that removes their redundant portions:

Repeat until both meshes remain unchanged:
Remove redundant triangles on the boundary of mesh A
Remove redundant triangles on the boundary of mesh B

Before we can remove a given triangle T from mesh A, we need
to determine whether the triangleis redundant. We accomplish this
by querying mesh B usingthenearest_on_mesh() routinethat was
introduced earlier. In particular, we ask for the nearest positionson
mesh B to the vertices V,, V, and V, of T. We will declare T to be
redundant if the three queries return positions on B that are within a
tolerancedistanced andif noneof thesepositionsareontheboundary
of B. Figure 7 shows two overlapping surfaces before and after
removing their redundant triangles. In some cases this particular
decision procedurefor removing triangleswill leavetiny gapswhere
themeshesmeet. Theresulting holesarenolarger thanthemaximum
trianglesizeandwecurrently fill theminanautomati c post-processing
step to zippering. Using the fast triangle redundancy check was an
implementation decision for the sake of efficiency, not a necessary
characteristic of our zippering approach, and it could easily be
replaced by a more cautious redundancy check that leaves no gaps.
We have not found this necessary in practice.

If we have ameasure of confidence of the vertex positions (aswe
do for structured light scanners), then the above method can be
altered to preserve the more confident vertices. When checking to
seeif theverticesV,, V, and V, of T lie within the distance tolerance
of mesh B, we also determine whether at |east two of these vertices
have alower confidence measurethan the nearby pointsonB. If this
is the case, we alow the triangle to be removed. When no more
trianglescan beremoved fromtheboundariesof either mesh, wedrop
this confidence value restriction and continue the process until no
morechangescanbemade. Thisprocedureresultsinapair of meshes
that meet along boundaries of nearly equal confidences.

5.2 Mesh Clipping

We now describe how triangle clipping can be used to smoothly
join two meshes that slightly overlap. The left portion of Figure 5
showstwo overlapping meshesand theright portion showstheresult
of clipping. Let usexaminetheclipping processingreater detail, and

for the time being make the assumption that we are operating on two
meshes that lie in acommon plane.

Toclipmesh Aagainst theboundary of meshBwefirst needtoadd
new vertices to the boundary of B. Specifically, we place a new
vertex wherever an edge of a triangle from mesh A intersects the
boundary of mesh B. Let Q be the set of al such new vertices.
Together, thenew verticesin Q and theold boundary verticesof mesh
B will form acommon boundary that the triangles from both meshes
will share. Oncethisnew boundary isformed weneedtoincorporate
the vertices Q into the triangles that share this boundary. Triangles
from mesh B need only to be split once for each new vertex to be
incorporated (showninFigure5, right). Thenweneedtodivideeach
border triangle from A into two parts, one part that lies inside the
boundary of B that should be discarded and the other part that lies
outside of this boundary and should be retained (See Figure 5,
middle). The vertices of the retained portions of the triangle are
passed to a constrained triangulation routine that returns a set of
trianglesthat incorporatesall the necessary vertices(Figure5, right).

The only modification needed to extend this clipping step to
3-spaceisto determine precisely how to find the points of intersec-
tion Q. In 3-space the edges of mesh A might very well pass above
or below the boundary of B instead of exactly intersecting the
boundary. To correct for thiswe“thicken” the boundary of mesh B.
In essence we create awall that runs around the boundary of B and
that is roughly perpendicular to B at any given location along the
boundary. The portion of thewall at any given edge Eisacollection
of four triangles, asshownin Figure6. Tofind theintersection points
with the edges of A, we only need to note where these edges pass
through the wall of triangles. We then move this intersection point
down to the nearest position on the edge E to which the intersected
portion of the wall belongs. Therest of the clipping can proceed as
described above.

5.3 Removing Small Triangles

The clipping process can introduce arbitrarily small or thin
trianglesinto amesh. For many applicationsthis does matter, butin
situations where such triangles are undesirable they can easily be
removed. Weusevertex deletiontoremovesmall triangles: if any of
atriangle saltitudesfall below auser-specified threshold we delete
one of the triangle's vertices and al the triangles that shared this
vertex. We then use constrained triangulation to fill the holethat is
left by deleting these triangles (see [Bern 92]). We preferentially
delete vertices that were introduced as new vertices during the
clipping process. If al of atriangle's vertices are original range
points then the vertex opposite the longest side is del eted.

Mesh A Mesh B Retain

clip boundary Final triangles

Discard

Figure5: Mesh Aisclipped against the boundary of mesh B.
Circles (left) show intersection between edges of A and B's
boundary. Portionsof trianglesfrom Aarediscarded (middie)
and then both meshes incorporate the points of intersection

(right).
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Figure 6: Thickened boundary for clipping in 3-space.

5.4 False Edge Extension

As described in Section 3.2, range points from a structured light
scanner that are near an object’s silhouette are extended and curled
away from thetrue geometry. These extended edgestypically occur
at corners. If thereis at least one scan that spans both sides of the
corner, then our method will correctly reconstruct the surface at the
corner. Since we lower the confidence of a surface near the mesh
boundaries, triangles at the fal se edge extensionswill be eliminated
during redundant surfaceremoval becausethereare nearby triangles
with higher confidencein the scan that spansthe corner. For correct
integration at acorner, itistheuser’ sresponsibility to provideascan
that spans both sides of the corner. Figure 7 illustrates correct
integration at a corner in the presence of false edge extension.
Unfortunately, no disambiguating scan can be found when an object
ishighly curved such as athin cylinder.

Although the problem of false edge extension is discussed in the
structured light literature [Businski 92], we know of no paper on
surface integration from such range images that addresses or even
mentions thisissue. We are also unaware of any other integration
methods that will correctly determine the geometry of a surface at
locationswheretherearefa seextensions. Our group hasdeveloped

amethod of reducing fal se edge extensions when creating the range
images (to appear in a forthcoming paper) and we are exploring
algorithms that will lessen the effect of such errors during integra-
tion. Itisour hopethat by emphasizing thisissuewewill encourage
others to address this topic in future research on range image
integration.

6 Consensus Geometry

When we have zippered the meshes of al the range images
together, the resulting triangle mesh captures the topology of the
scanned object. Thismesh may be sufficient for some applications.
If surface detail is important, however, we need to fine-tune the
geometry of the mesh.

The final model of an object should incorporate all the informa-
tion available about surface detail from each range image of the
object. Some of thisinformation may have been discarded whenwe
removed redundant trianglesduring mesh zippering. Were-introduce
the information about surface detail by moving each vertex of our
zippered mesh to a consensus position given by aweighted average
of positionsfromtheoriginal rangeimages. Verticesaremoved only
in the direction of the surface normal so that features are not blurred
by lateral motion. This isin contrast to unstructured techniques
which tend to blur small featuresisotropically. Our preference for
averaging only in the direction of the surface normal isbased on the
observation that most pointsin range scans are generally accurately
placed with respect to other points in the same scan, but may differ
between scans due to alignment errors such as uncorrected optical
distortion in the camera. Let M, M,,..., M_ refer to the original
triangle meshes created from the rangeimages. Then thethree steps
for finding the consensus surface are:

1) Find alocal approximation to the surface normal.

2) Intersect aline oriented along this normal with each original
range image.

3) Form aweighted average of the points of intersection.

Figure7: Left (top and bottom): Meshes created from two rangeimages of atelephone. Red denotes|ocationsof high confidence
and blue showslow confidence. Notethelow confidence at the edgesto account for false edge extensions. Top middle: Thetwo
meshes(colored red and white) after alignment. Bottommiddle: Close-up of aligned meshesthat showsajagged ridgeof triangles
that isthe false edge extension of the white mesh at acorner. Top right: The meshes after redundant surface removal. Bottom

right: The meshes after zippering.
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Figure8: Photograph of aplastic dinosaur model (left) and apolygon mesh created by registering and zippering together 14 range
images that were taken of the model (right). The mesh consists of more than 360,000 polygons.

Figure9: Left: Thismodel of atelephone handset was created by zippering together meshes from ten rangeimages. The mesh
consists of more than 160,000 triangles. Right: Thefinal positions of the verticesin the mesh have been moved to an average
of nearby positionsin the original range images. We call this the consensus geometry.



We approximate the surface normal N at a given vertex V by
taking an average over al vertex normalsfromtheverticesin al the
meshes M, that fall within a small sphere centered at V. We then
intersect each of the meshes M, with theline passing through V along
thedirection N. Let P be the set of al intersections that are near V.
Wetakethe consensusposition of Vto betheaverageof all the points
inP. If we haveameasure of confidencefor positionson ameshwe
use this to weight the average.

7 Resultsand Discussion

Thedinosaur model shownin Figure 8 was created from 14 range
images and contains more than 360,000 triangles. Our integration
method correctly joined together the meshes at all locations except
onthehead wheresomeholesduetofal seedgeextensionswerefilled
manually. Such holes should not occur once we eliminate the false
extensionsin therangeimages. The dinosaur model was assembled
from alarger quantity of range data (measured either in number of
scansor number of range points) than any published model knownto
us. Naturally, we planto explorethe use of automatic simplification
methods with our models [Schroeder 92] [Turk 92] [Hoppe 93].
Figure 9 shows amodel of a phone that was created from ten range
images and contains over 160,000 triangles. The mesh on theright
demonstrates that the consensus geometry both reduces noise from
the rangeimages without blurring the model’ sfeatures and al so that
it eliminates discontinuities at zippered regions.

A key factor that distinguishes our approach from those using
unstructured integration ([Hoppe 92] and others) isthat our method
attemptsto retain as much of the triangle connectivity asis possible
from the meshes created from the origina range images. Our
integration process concentrates on aone-dimensional portion of the
mesh (the boundary) instead of across an entire two-dimensional
surface, and this makes for rapid integration.

Our algorithm shares several characteristicswith the approach of
Soucy and Laurendeau, whichisal so astructured integration method
[Soucy 92]. The most important differenceisthe order in whichthe
two methods perform integration and geometry averaging. Soucy’s
method first creates the final vertex positions by averaging between
rangeimagesand then stitchestogether the common surface sets. By
determining geometry before connectivity, their approach may be
sensitive to artifacts of the stitching process. This is particularly
undesirable becausetheir method can create seamsbetween as many
as 2" common surface sets from n range images. Such artifacts are
minimized in our approach by performing geometry averaging after
Zippering.

In summary, we use zippering of triangle meshes followed by
refinement of surface geometry to build detailed modelsfrom range
scans. Weexpect that inthe near future rangeimage technol ogy will
replace manual digitization of modelsin several application areas.

8 FutureWork

Thereareseveral open problemsrelated to integration of multiple
range images. Oneissue is how an algorithm might automatically
determine the next best view to capture more of an object’ s surface.
Another important issueismerging reflectanceinformation (includ-
ing color) with the geometry of an object. Maybe the biggest
outstanding issueis how to create higher-order surface descriptions
such as Bezier patches or NURBS from range data, perhaps guided
by a polygon model.
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A Volumetric Method for Building Complex Models from Range I mages

Brian Curless and Marc Levoy
Stanford University

Abstract

A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable set
of propertiesfor such algorithmsincludes: incremental updating, rep-
resentation of directional uncertainty, the ability to fill gapsin the re-
construction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possessesall of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at atime,
we first scan-convertit to adistance function, then combine this with
the data already acquired using a simple additive scheme. To achieve
space efficiency, we employ arun-length encoding of the volume. To
achievetime efficiency, we resampletherangeimageto align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
faceis optimal in theleast squaressense. To fill gapsin the model, we
tessellate over the boundaries between regions seen to be empty and
regions never observed.

Using thismethod, we are able to integrate alarge number of range
images (asmany as 70) yielding seamless, high-detail modelsof up to
2.6 million triangles.

CR Categories: 1.3.5 [Computer Graphics] Computational Geome-
try and Object Modeling

Additional keywords: Surface fitting, three-dimensional shape re-
covery, range image integration, isosurface extraction

1 Introduction

Recent yearshave witnessed arise in the availability of fast, accurate
range scanners. Theserange scannershave provided datafor applica-
tions such as medicine, reverse engineering, and digital film-making.
Many of thesedevicesgeneraterangeimages, i.e., they producedepth
values on a regular sampling lattice. Figure 1 illustrates how an op-
tical triangulation scanner can be used to acquire arange image. By
connecting nearest neighbors with triangular elements, one can con-
struct arange surface as shownin Figure 1d. Rangeimages are typi-
cally formed by sweepinga 1D or 2D sensor linearly acrossan object
or circularly around it, and generally do not contain enoughinforma-
tion to reconstruct the entire object being scanned. Accordingly, we
require algorithms that can merge multiple range imagesinto a sin-
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gle description of the surface. A set of desirable properties for sucha
surface reconstruction algorithm includes:

¢ Representation of range uncertainty. The datain range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, asillustrated for optical tri-
angulationin Figure 1a. Themethod of rangeintegration should
reflect this fact.

¢ Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can re-
duce sensor noise.

¢ Incremental and order independent updating. Incremental up-
datesallow usto obtain areconstruction after each scan or small
set of scansand allow us to choose the next best orientation for
scanning. Order independenceis desirable to ensurethat results
arenot biased by earlier scans. Together, they allow for straight-
forward parallelization.

¢ Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

¢ Robustness. Outliers and systematic rangedistortions can create
challenging situations for reconstruction algorithms. A robust
algorithm needs to handle these situations without catastrophic
failures such as holesin surfaces and self-intersecting surfaces.

¢ No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful resultsin only arestricted class of problems.

¢ Ability to fill holesin the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessibleto the sensor. In these
cases, we desire an algorithm that can automatically fill these
holeswith plausible surfaces, yielding amodel that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present avolumetric method for integrating range
images that possessesall of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gapsin the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
so asto keep time and space costs reasonable. In section 6, we show
theresults of surface reconstruction from many rangeimages of com-
plex objects. Finally, in section 7 we conclude and discusslimitations
and future directions.

2 Previouswork

Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along
two basic directions: reconstruction from unorganized points, and
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Figure 1. From optical triangulation to arange surface. (a) In 2D, anarrow laser beam illuminates a surface, and alinear sensor images the reflection from an
object. The center of theimage pulse mapsto the center of the laser, yielding arange value. The uncertainty, o, in determining the center of the pulse results
in range uncertainty, o, along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines of
sight of the CCD. (b) In 3D, alaser stripe triangulation scanner first spreadsthe laser beam into a sheet of light with acylindrical lens. The CCD observesthe
reflected stripefrom which adepth profileis computed. The object sweepsthroughthefield of view, yieldingarangeimage. Other scanner configurationsrotate
the object to obtain a cylindrical scan or sweep alaser beam or stripe over astationary object. (c) A rangeimage obtained from the scanner in (b) isa collection
of points with regular spacing. (d) By connecting nearest neighborswith triangles, we create a piecewise linear range surface.

reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfacesor by re-
constructing an implicit function.

A major advantage of the unorganized points algorithms is the fact
that they do not make any prior assumptions about connectivity of
points. In the absenceof rangeimagesor contoursto provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Mucke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et al [16] for generating asigned distance
function followed by an isosurface extraction. More recently, Bajaj,
et a [1] used alpha-shapesto construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range im-
ages in a polygonal domain. Soucy and Laurendeau [25] describe
a method using Venn diagrams to identify overlapping data regions,
followed by re-parameterization and merging of regions. Turk and
Levoy [30] devised an incremental algorithm that updates a recon-
struction by eroding redundant geometry, followed by zippering along
the remaining boundaries, and finally a consensus step that rein-
troduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] useerrors along the sensor’slines of sight to es-
tablish consensus surface positions followed by a re-tessellation that
incorporates redundant data. Thesealgorithmstypically perform bet-
ter than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplifiedin Figure 9.

Several algorithms have been proposed for integrating structured
datato generateimplicit functions. Thesealgorithms can beclassified
as to whether voxels are assigned one of two (or three) states or are
samples of acontinuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] castsraysfrom arangeimage accessedas
aquad-tree into avoxel grid stored as an octree, and generates results
for synthetic data. Chien, et a [3] efficiently generate octree models
under the severe assumption that all views are taken from the direc-
tions corresponding to the 6 faces of acube. Li and Crebbin [19] and

Tarbox and Gottschlich [28] also describe methodsfor generating bi-
nary voxel grids from rangeimages. None of these methods has been
used to generate surfaces. Further, without an underlying continuous
function, there are no mechanism for representing range uncertainty
or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method fallsinto this category. Previouseffortsinthis
areainclude the work of Grosso, et al [12], who generate depth maps
from stereo and average theminto avolume with occupancy ramps of
varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et a [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using astraight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or spaceoptimizations, and thefinal modelsare of low resolution. Re-
cently, Hilton, et a [14] have developed a method similar to oursin
that it uses weighted signed distance functionsfor merging range im-
ages, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
spacefor potential holefilling, al of which we believe are crucial for
the successof this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
spaceis a scalar probability field which they update using a Bayesian
formulation. The results have been used for robot navigation, but not
for surface extraction. A difficulty with this techniqueis the fact that
thebest description of the surfaceliesat the peak or ridge of the proba-
bility function, and the problem of ridge-finding isnot onewith robust
solutions[8]. Thisisoneof our primary motivationsfor taking aniso-
surface approach in the next section: it leveragesoff of well-behaved
surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdropsto
help carve out the emptiness of spaceis one we demonstrate in sec-
tion 4.

3 Volumetricintegration

Our algorithm employs a continuousimplicit function, D(x), repre-
sented by samples. The function we represent is the weighted signed
distance of each point x to the nearest range surface along the line of
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Figure 2. Unweighted signed distance functionsin 3D. (a) A range sen-
sor looking down the x-axis observes a range image, shown hereas are-
constructed range surface. Following one line of sight down the x-axis,
we can generate a signed distance function as shown. The zero crossing
of this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing processresultsin a
slightly different range surface. In general, the second surface would inter-
penetrate the first, but we have shown it as an offset from the first surface
for purposesof illustration. Following the sameline of sight as before, we
obtain another signed distance function. By summing these functions, we
arrive at a cumulative function with a new zero crossing positioned mid-
way between the original range measurements.

sight to the sensor. We construct this function by combining signed
distance functions di1(x), d2(x), ... dn(x) and weight functions
w1(x), w2(x), ... wn(x) obtained from rangeimages1 ... n. Our
combining rules give us for each voxel a cumulative signed distance
function, D(x), and acumulative weight W (x). We represent these
functions on a discrete voxel grid and extract an isosurface corre-
spondingto D(x) = 0. Under a certain set of assumptions, this iso-
surface is optimal in the least squares sense. A full proof of this op-
timality is beyond the scope of this paper, but a sketch appearsin ap-
pendix A.

Figure 2 illustrates the principle of combining unweighted signed
distancesfor the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’'s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, refl ecting greater uncertainty whenthe
illumination is at grazing anglesto the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemesfor our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and hastaken two mea-
surements, r1 and r». The signed distance profiles, d1 (z) and d2 ()
may extend indefinitely in either direction, but the weight functions,
w1 (z) and wa(z), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:

D(x) = =Ll &

W(x) = Lwi(x) @

D(x) .
W(x)

Sensor

@ (b)

Figure 3. Signed distance and weight functionsin one dimension. (a) The
sensor looks down the x-axis and takes two measurements, »; and rs.
d1(z) and dx () are the signed distance profiles, and w, (z) and wo ()
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to
be of different magnitudeheretoillustrate how the profiles combinein the
general case. (b) D(xz) is aweighted combination of d; (z) and da (),
and W (=) isthe sum of the weight functions. Given thisformulation, the
zero-crossing, R, becomestheweighted combinationof r; andr, andrep-
resentsour best guessof thelocation of thesurface. In practice, wetruncate
the distance ramps and weights to the vicinity of the range points.

where, d;(x) and w;(x) are the signed distance and weight functions
from the ith range image.
Expressed as an incremental calculation, the rules are:

Wi(x)Di(x) + wiy1(X)dit1 (%)
Wi(x) + wiy1(x)

Dz‘+1(X) = (3)

Wit1(x) = Wi(x) + wit1(x) (4)

where D;(x) and W;(x) are the cumulative signed distance and
weight functions after integrating the :th range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at arange, R given by:

YTy
R= Yw; ®)
i.e.,, aweighted combination of the acquired range values, which is
what one would expect for aleast squares minimization.

In principle, the distanceand weighting functions should extendin-
definitely in either direction. However, to prevent surfaces on oppo-
site sides of the object from interfering with each other, we force the
weighting function to taper off behind the surface. Thereisatrade-off
involved in choosing where the weight function tapers off. It should
persist far enough behind the surface to ensurethat all distanceramps
will contributein the vicinity of thefinal zero crossing, but, it should
alsobeasnarrow aspossibleto avoidinfluencing surfaceson the other
side. To meet these requirements, we force the weightsto fall off at a
distance equal to half the maximum uncertainty interval of the range
measurements. Similarly, the signed distance and weight functions
need not extend far in front of the surface. Restricting the functions
to the vicinity of the surfaceyieldsamore compact representation and
reduces the computational expense of updating the volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to rangeimagein-
tegration include errors in alignment between meshes as well as er-
rorsinherent in the scanning technology. A number of algorithmsfor
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional casefor arange curve de-
rived from a single scan containing a row of range samples. In prac-
tice, we use a fixed point representation for the signed distance func-
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Figure 4. Combination of signed distance and weight functionsin two di-
mensions. (a) and (d) are the signed distanceand weight functions, respec-
tively, generated for a range image viewed from the sensor line of sight
shown in (d). The signed distance functions are chosen to vary between
Dpnin @nd Dimaz, @ shownin (8). The weighting falls off with increas-
ing obliquity to the sensor and at the edgesof the meshesasindicated by the
darker regionsin (€). Thenormals, n; andns shownin (€), areoriented at
agrazing angle and facing the sensor, respectively. Note how the weight-
ing islower (darker) for the grazing normal. (b) and (€) arethe signed dis-
tance and weight functionsfor a rangeimage of the same object taken at a
60 degree rotation. (c) is the signed distance function D(x) correspond-
ing to the per voxel weighted combination of (a) and (b) constructed using
equations3 and 4. (f) isthe sum of the weightsat each voxel, W (x). The
dotted green curvein (c) isthe isosurface that represents our current esti-
mate of the shape of the object.

tion, which bounds the values to lie between D, and Diar @S
showninthefigure. Thevaluesof D,,;» and D4, must be negative
and positive, respectively, as they are on opposite sides of a signed
distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute aweight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near therange surfaceand then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the rangeimages, we can extract
the zero-crossing isosurfacefrom the volumetric grid. Werestrict this
extraction procedureto skip sampleswith zero weight, generating tri-
anglesonly in the regions of observed data. We will relax thisrestric-
tion in the next section.

4 Holefilling

The algorithm described in the previous section is designed to recon-
struct the observed portions of the surface. Unseen portions of the
surface will appear as holes in the reconstruction. While this result
is an accurate representation of the known surface, the holes are es-
thetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,
the authors describe a method for parameterizing patchesthat entails

Volume

Range surface

Sensor

Figure 5. Sampling the range surface to update the volume. We compute
theweight, w, and signed distance, d, needed to update the voxel by cast-
ing a ray from the sensor, through the voxel onto the range surface. We
obtain the weight, w, by linearly interpolating the weights (w , w, and
w,) stored at neighboringrange vertices. Note that for atranslating sensor
(like our Cyberware scanner), the sensor pointis different for each column
of range points.

generating evenly spaced grid lines by walking across the edges of a
mesh. Gapsin the mesh prevent the algorithm from creating afair pa-
rameterization. As another example, rapid prototyping technologies
suchasstereolithography typically require a“ watertight” model in or-
der to construct asolid replica[7].

Oneoptionfor filling holesisto operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnected components. Instead, we offer aholefilling ap-
proach that operates on our volume, which containsmore information
than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
umeasbeingin oneof threestates: unseen, empty, or near the surface.
Holesin the surface areindicated by frontiers between unseenregions
and empty regions (see Figure 6). Surfaces placed at these frontiers
offer a plausible way to plug these holes (dotted in Figure 6). Ob-
taining this classification and generating these hole fillers leads to a
straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel spaceto the “unseen” state.

2. Update the voxels near the surface as described in the previous
section. As before, these voxelstake on continuous signed dis-
tance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the correspondingvoxelsas“ empty”. Werefer to thisstep
as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regionsthat remain unseen.

In practice, we represent the unseen and empty states using the
function andweight fieldsstored onthevoxel lattice. We representthe
unseen state with thefunction values D (x) = D a0, W(x) = 0 and
the empty state with the function values D (x) = Dimin, W(x) =0,
as shown in Figure 6b. The key advantage of this representation is
that we can use the same isosurface extraction algorithm we used in
the previous section without the restriction on interpolating voxels of
zero weight. This extraction finds both the signed distance and hole
fill isosurfaces and connects them naturally where they meet, i.e., at
the corners in Figure 6a where the dotted red line meets the dashed
greenline. Notethat the trianglesthat arise from interpolations across
voxelsof zeroweight aredistinct from the others: they are holefillers.
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Figure 6. Volumetric grid with space carving and holefilling. (a) There-
gionsin front of the surface are seen as empty, regionsin the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segmentsare holefillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

We take advantage of this distinction when smoothing surfacesas de-
scribed below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derivefrom observed data. In particular,
they correspond to a boundary that confineswhere the surface could
plausibly exist. In practice, we find that many of these holefiller sur-
faces are generated in crevicesthat are hard for the sensor to reach.

Becausethe transition between unseen and empty is discontinuous
and holefill triangles are generated as an i sosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Sincewe know which triangles correspond to holefillers,
we need only concentrate the surfacefiltering on the these portions of
the mesh. Thislocalized filtering preservesthe detail in the observed
surface reconstruction. To achieve a smooth blend between filtered
hole fill vertices and the neighboring “real” surface, we allow the fil-
ter weightsto extend beyond and taper off into the vicinity of the hole
fill boundaries.

We havejust seen how “ spacecarving” isauseful operation: it tells
us much about the structure of free space, allowing usto fill holesin
anintelligent way. However, our algorithm only carvesback from ob-
served surfaces. There are numerous situations where more carving
would be useful. For example, the interior walls of ahollow cylinder
may elude digitization, but by seeing through the hollow portion of
the cylinder to a surface placed behind it, we can better approximate
its geometry. We can extend the carving paradigm to cover these situ-
ations by placing such abackdrop behind the surfacesbeing scanned.
By placing the backdrop outside of the voxel grid, we utilize it purely
for carving spacewithout introducing its geometry into the model.

5 Implementation

51 Hardware

The examples in this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser

light while the reflections are triangulated into depth profiles through
aCCD camerapositioned off axis. Toimprovethe quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysisimplemented in hard-
ware in our Cyberware scanner, the uncertainty in triangulation for
our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software

The creation of detailed, complex models requires a large amount of
input data to be merged into high resolution voxel grids. The exam-
plesin the next section include models generated from as many as 70
scanscontaining up to 12 million input verticeswith volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space opti-
mizations are critical for merging this data and managing these grids.

5.2.1 Run-length encoding

The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh asalist of vertices and
triangle indices.

5.2.2 Fast volumetraversal

Updating the volume from a range image may be likened to inverse
volumerendering: instead of reading from avolume and writing to an
image, we read from a range image and write to avolume. Asare-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of arange image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors’ to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through
the voxel scanlinesin order while stepping through the corresponding
scanlinesin the resampled rangeimage. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resampletherange datato yield adistance from the range sur-
face. Using the combination rules given by equations 3 and 4, we up-
date the run-length encoded structure. To preserve the linear mem-
ory structure of the RLE volume (and thus avoid using linked lists of
runsscattered through the memory space), weread thevoxel scanlines
from the current volume and write the updated scanlinesto a second
RLE volume; i.e., we double-buffer thevoxel grid. Note that depend-
ing on the scanner geometry, the mapping from voxelsto rangeimage
pixelsmay not be linear, in which case care must be taken to resample
appropriately [5].

For the case of merging range data only in the vicinity of the sur-
face, we try to avoid processing voxels distant from the surface. To
that end, we construct abinary tree of minimum and maximum depths
for every adjacent pair of resampled range image scanlines. Before
processing each voxel scanline, we query the binary tree to decide
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Figure 7. Range image resampling and scanline order voxel updates. () Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the rangeimage, we can obtain the desired range scanline orientation. (c) Casting raysfrom the pixelson
the rangeimage meanscutting across scanlines of thevoxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels, mapping

them to the correct positions on the resampled range image.

which voxels, if any, are near the range surface. In thisway, only rel-
evant pieces of the scanline are processed. In a similar fashion, the
space carving steps can be designed to avoid processing voxels that
are not seento beempty for agivenrangeimage. Theresulting speed-
ups from the binary tree are typically a factor of 15 without carving,
and a factor of 5 with carving. We did not implement a brute-force
volume update method, however we would expect the overall algo-
rithm described here would be much faster by comparison.

5.2.3 Fast surfaceextraction

To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with alookup table that resolvesambiguous cases[22]. To
reduce computational costs, we only processvoxelsthat havevarying
data or are at the boundary between empty and unseen.

6 Resaults

We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gapsin the reconstruction,
and its attainable level of detail. To explore robustness, we scanned a
thin drill bit using thetraditional method of optical triangulation. Due
to the false edge extensionsinherent in data from triangulation scan-
ners [6], this particular object poses a formidable challenge, yet the
volumetric method behavesrobustly wherethe zippering method [30]
fails catastrophically. Thedragonsequencein Figure 11 demonstrates
the effectiveness of carving spacefor holefilling. The use of a back-
drop hereisparticularly effectiveinfilling the gapsinthemodel. Note
that we do not use the backdrop at all times, in part becausethe range
images are much denser and more expensiveto process, and also be-
causethe backdrop tendsto obstruct the path of the object when auto-
matically repositioning it with our motion control platform. Finally,
the “Happy Buddha’ sequence in Figure 12 shows that our method
can be used to generate very detailed, hole-free models suitable for
rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddhamodels
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the executiontimes are still in the rangeof 3-5 hours, lessthan the
time spent acquiring and registering the rangeimages. For both mod-
els, the RM S distancebetween pointsin the original rangeimagesand
points on the reconstructed surfaces is approximately 0.1 mm. This
figureisroughly the sameasthe accuracy of the scanningtechnology,
indicating a nearly optimal surface reconstruction.

7 Discussion and futurework

We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The

algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustnessin the presence of sensor errors, and
the ability to fill gapsin the reconstruction by carving space. Our use
of arun-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled rangeimage scanlinesmake
the algorithm efficient. Thisin turn allows usto acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scansinto a high resolution voxel grid to
generate million polygon modelsin a few hours. These models are
free of holes, making them suitable for surfacefitting, rapid prototyp-
ing, and rendering.

There are anumber of limitations that prevent us from generating
modelsfrom an arbitrary object. Some of theselimitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp cornersif no scan spans both surfaces meeting
at the corner. Thisislessof a problem when applying our hole-filling
algorithm, but we are also exploring methods that will work without
hole filling. Thin surfaces are also problematic. As described in sec-
tion 3, the influences of observed surfaces extend behind their esti-
mated positions for each range image and can interfere with distance
functionsoriginating from scansof the oppositeside of athin surface.
In this respect, the apexes of sharp corners also behavelike thin sur-
faces. While we have limited this influence as much as possible, it
still places alower limit on the thickness of surface that we can reli-
ably reconstruct without causing artifacts such as thickening of sur-
faces or rounding of sharp corners. We are currently working to lift
this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technol ogiesthemselves.
Optical methods such as the one we use in this paper can only pro-
vide datafor external surfaces; internal cavities are not seen. Further,
very complicated objects may require an enormous amount of scan-
ning to cover the surface. Optical triangulation scanning has the ad-
ditional problem that both the laser and the sensor must observe each
point on the surface, further restricting the class of objectsthat can be
scanned completely. The reflectance properties of objects are also a
factor. Optical methodsgenerally operate by casting light onto an ob-
ject, but shiny surfaces can deflect this illumination, dark objects can
absorbit, and bright surfacescan lead to interreflections. Tominimize
these effects, we often paint our objects with aflat, gray paint.

Straightforward extensionsto our algorithm includeimproving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,
more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hopeto apply our methodsto other scanning technologiesandto large
scale objects such asterrain and architectural scenes.



Voxel Exec.
Input i Volume : Output
Model Scans triangles (ﬁﬁﬁ) dimensions (tr'gi'r% triangles Holes
Dragon 61 15M 0.35 712x501x322| 56 1.7M 324

Dragon + fill 71 24 M 0.35 712x501x324 257 1.8M 0

Buddha 48 5M 0.25 | 407x957x407| 47 24M 670

Buddha + fill 58 9M 0.25 407x957x407] 197 26 M 0

Figure 8. Statistics for the reconstruction of the dragon and Buddhamod-
els, with and without space carving.
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A Isosurface asleast squares minimizer

It is possible to show that the isosurface of the weighted signed dis-
tancefunction isequivalent to aleast squaresminimization of squared
distances between points on the range surfaces and points on the de-
sired reconstruction. The key assumptionsare that the range sensor is
orthographic and that the range errors are independently distributed
along sensor lines of sight. A full proof is beyond the scope of this
paper, but we provide a sketch here. See[5] for details.

Consider aregion, R, on the desired surface, f, which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
thereconstructed surface. These distancesare taken along the lines of
sight of the sensor, commensuratewith the predominant directions of
uncertainty (see Figure 10). Thetotal error isthe sum of the integrals
for the n range images:

z=f(z,y) mhﬁ
A }. N,

xr

Figure 10. Two range surfaces, f1 and f-, are tessellated range images
acquired from directions v; and v. The possible range surface, = =
f(z,y), isevaluatedin terms of the weighted squared distancesto points
on the range surfaces taken along the lines of sight to the sensor. A point,
(z,v, #), is shown here being evaluated to find its corresponding signed
distances, d; and d», and weights, w; and w,.

E(f) = Z// wi(s, t, f)di(s,t, £)*dsdt (6)

=1

where each (s, ¢) correspondsto a particular sensor line of sight for
each range image, A; is the domain of integration for the :'th range
image, and w;(s, t, f) andd;(s, ¢, f) are the weights and signed dis-
tancestaken along the ¢'th range image’s lines of sight.

Now, consider acanonical domain, A, onaparameter plane, («, y),
over which R isafunctionz = f(=z,y). Thetota error can bere-
written as an integration over the canonical domain:

E(z) = > [wile,y, 2)di(w,y, 2)°] w(a—z,%,—n dzdy
A oz’ Oy

=1

(7
where v; is the sensing direction of the :'th range image, and the
weights and distances are evaluated at each point, (z, y, z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areasin A to differential areasin A;. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the =
that minimizesthisintegral. Solving thisequationwearrive at thefol-
lowing relation:

> Oulwir,y, =)y, 2] = 0 ®)
=1
where 9y, isthe directional derivative along v;i. Sincethe weight as-
sociated with aline of sight doesnot vary along that line of sight, and
the signed distance hasa derivative of unity along the line of sight, we
can simplify this equation to:

Zw,‘(x,y,z)d,'(x,y,z) =0 9)
=1
Thisweighted sum of signed distancesisthe same aswhat we com-
pute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is aways positive, the isosurface we
extract in section 3is exactly the least squaresminimizing surface de-
scribed here.
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Figure 11. Reconstruction of adragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (€) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to holefill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green linein (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holesin the belly. The dlice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leadsto a holein the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data asin (a). While some holesare
filled in areasonable manner, some large regions of space are left untouched and create extraneoustessellations. The dlice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regionswill be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “ backdrop” surfacesto effect more carving. Notice how the extraneousholefill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the holefill regions of the belly in (g) correspondsto aliasing artifacts from tessellating
over the discontinuoustransition between unseen and empty regions. (d)(h) Reconstruction asin (c)(g) with filtering of the hole fill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regionswhile preserving the detail in the rest of the model. Careful examination of (h) reveals
afaint ridgein the vicinity of the smoothed holefill. Thisridgeis actual geometry present in all of the renderings, (€)-(h). The final model contains1.8 million
polygonsand is watertight.

(k)
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Figure 12. Reconstruction and 3D hardcopy of the “Happy Buddha’. The original is a plastic and rosewood statuette that stands 20 cm tall. Note that the camera parameters for each of these imagesis
different, creating a slightly different perspectivein each case. (a) Photograph of the original after spray painting it matte gray to simplify scanning. (b) Gouraud-shaded rendering of one range image of the
statuette. Scanswere acquired using a Cyberware scanner, modified to permit spacetime triangulation [6]. Thisfigureillustrates the limited and fragmentary nature of the information available from asingle
rangeimage. (c) Gouraud-shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling. Notice that the reconstructed mesh has at least as much detail as the singlerange
image, but is less noisy; thisis most apparent around the belly. The hole in the base of the model correspondsto regions that were not observed directly by the range sensor. (d) RenderMan rendering of an
800,000 polygon decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop behind the model and taking 10 additional scans, we were able to see through the space
between the baseand the Buddha' sgarments, allowing usto carve spaceandfill the holesin the base. (e) Photograph of ahardcopy of the 3D model, manufacured by 3D Systems, Inc., using stereolithography.
The computer model was sliced into 500 layers, 150 microns apart, and the hardcopy was built up layer by layer by selectively hardening aliquid resin. The process took about 10 hours. Afterwards, the
model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered manufacturing.
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Artificial surface reflectance
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Single scan of David’s cornea
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Mesh constructed from several scans
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Sample image from center slab
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Michelangelo’s Pieta
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