Fast Non-Convex Hull Computation

Julián Bayardo Spadafora ¹ Francisco Gómez-Fernandez ¹ Gabriel Taubin ²

¹Universidad de Buenos Aires

²Brown University

International Conference on 3D Vision, 2019

Who am I?

Problem Statement

- ▶ 3D surface reconstruction from an *unstructured* point cloud $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_N\}$ with corresponding *inwards-pointing normal* vectors $\mathcal{N} = \{\mathbf{n}_1, \dots, \mathbf{n}_N\}, ||\mathbf{n}_i||_2 = 1$
- ► The sampled surface S is assumed to be:
 - Watertight (i.e. bounded and closed)
 - Smooth
 - Orientable

Medial Axis Transform (MAT, Blum [2])

- Surface representation as a union of balls
- Skeleton
- Points with more than one shortest path to a surface
- Maximally contained balls with respect to inclusion

Figure: Example surface and its medial axis transform. By Zhu, Sun, Choi, *et al.* [1]

Non-Convex Hull (NCH, Taubin [3])

- Surface representation as the intersection between complements of balls and linear half-spaces
- Dependant on the surface normal at a given point
 - Equivalent to the MAT (Inner NCH) when normals point inwards
 - Different object (Outer NCH) when normals point outwards

Geometric Intuition: Tangent Balls

If \boldsymbol{p}_i and \boldsymbol{p}_j are two points in the cloud, with corresponding normals. Then:

► The maximal ball B_{ij} = B_{rij}(c_{ij}) tangent to both points, with matching normal n_i at p_i, is uniquely determined:

$$\mathbf{c}_{ij} = \mathbf{p}_i + \mathbf{n}_i r_{ij} \qquad \qquad r_{ij} = \frac{||\mathbf{p}_j - \mathbf{p}_i||_2^2}{2\langle \mathbf{n}_i, \mathbf{p}_j - \mathbf{p}_i \rangle}$$

Geometric Intuition: Maximal Balls

- r_i = min_{1≤j≤N,i≠j} max{+∞, r_{ij}} is the minimum of the maximal radiuses, with negative values turned into +∞
- B_i is tangent to p_i and its normal at p_i matches n_i
- $r_{ik} \neq +\infty$ sets the minimum iff:
 - B_i is tangent to **p**_k
 - Other points are either outside or tangent to B_i
- r_i = +∞ iff p_j ≠ p_i either lie on the plane or the other side of the normal

Geometric Intuition: NCH Fits

Two different NCH fits:

- Normals pointing *inwards*, or Inner NCH
 - Any sufficiently dense sample will always find $r_i > 0$
 - Equivalent to the MAT
- ▶ Normals pointing *outwards* (-**n**_i), or Outer NCH
 - Points in flat areas and sharp features will have $r_i = +\infty$
 - $r_i = +\infty$ means that the ball found is a plane

NCH Surface Representation

- Need to combine information from all points together
- One approach is to give a Signed Distance Function
 f : ℝ³ → ℝ defined such that:

$$f(\mathbf{x}) = \begin{cases} d(\mathbf{x}, \partial S) & \text{if } \mathbf{x} \in S \\ -d(\mathbf{x}, \partial S) & \text{if } \mathbf{x} \in S^c \end{cases}$$

- Concretely, f's 0-level set should represent the border of S.
- We can then use Marching Cubes [4] or similar isoextraction algorithms to obtain a mesh

NCH Basis Functions

Define the NCH basis functions as:

$$f_i^+(\mathbf{x}) = \langle \mathbf{n_i}, \mathbf{x} - \mathbf{p_i} \rangle - \frac{1}{2r_i^+} ||\mathbf{x} - \mathbf{p_i}||_2^2$$

These are:

- 0 at the sphere/plane's border
- Positive inside, achieving the maximum at c_i
- Negative outside
- Gradient matches n_i at p_i
- $f_i^-(\mathbf{x})$ equivalently, with the normal pointing outwards
- We call $f_i(\mathbf{x}) = \frac{1}{2}(f_i^+(\mathbf{x}) f_i^-(\mathbf{x}))$ the Symmetric NCH SDF

NCH Signed Distance Function (SDF)

For each variant, its NCH SDF is:

$$f(\mathbf{x}) = \max_{1 \le i \le N} f_i(\mathbf{x})$$

- Intersection of complements of half-spaces and balls
- Fits the surface at every point
- Respects the normal vectors
- Isoextraction on its 0-level set outputs the reconstruction.

Naïve Non-Convex Hull

- Finds $r_i = \frac{1}{2\rho_i}$ for each point as explained above
- $\mathcal{O}(N^2)$, where N is the number of points in the cloud
- Extremely slow for large point clouds

Fitting AlgorithmSDF Evaluation1: for
$$i \in 1 \dots N$$
 do2: $\rho_i \leftarrow 0$ 3: for $j \in 1 \dots N$ do4: if $i \neq j$ then5: $a \leftarrow \langle \mathbf{n_i}, \mathbf{p_j} - \mathbf{p_i} \rangle$ 6: $b \leftarrow ||\mathbf{p_j} - \mathbf{p_i}||^2$ 5: $if a > \rho_i b$ then6: $b \leftarrow ||\mathbf{p_j} - \mathbf{p_i}||^2$ 6: $p_i \leftarrow \frac{a}{b}$ 9: return $\{\rho_1, \dots, \rho_N\}$

Shrinking Ball (Ma, Bae, and Choi [5])

- Computes *r_i* via iterative refinement:
 - Begin with a heuristic estimate for r_i
 - Find the nearest neighbor p_t of c_i with the current estimate
 - Attempt to shrink the ball further by using p_t
 - Repeat until convergence
- Expected worst case O(N log N) using a Kd-Tree, as the number of shrinking steps are bounded
 - 1: for $i \in 1 \dots N$ do
 - 2: $r_i \leftarrow \text{InitialRadius}(i)$
 - 3: for $t \in 1 \dots t_{\max}$ do
 - 4: $j \leftarrow \text{NearestNeighbor}(\mathbf{p_i} + r_i \mathbf{n_i}, \mathbf{p_i}) \{\text{Search excludes } \mathbf{p_i}\}$
 - 5: $r'_i \leftarrow \text{TangentSphereRadius}(\mathbf{p_i}, \mathbf{p_j})$
 - 6: $\operatorname{swap}(r_i, r'_i)$
 - 7: **if** $|r_i r'_i| < \delta$ then
 - 8: **break** {Algorithm has converged}
 - 9: AdjustRadiusHeuristic(i)
 - 10: return $\{r_1, \ldots, r_N\}$

Shrinking Ball: Intuition

Shrinking Ball: Issues for NCH Estimation

- Shrinking Ball is meant for MAT approximation, not NCH
- Suffers from false convergence issues
- Needs to use exact Kd-Trees, approximates wreak havoc on estimation

Contribution: Adapting for NCH Approximation

Contribution: Allowing Approximate Kd-Trees

Contribution: Fixing False Convergence

Examples

Performance Comparison

Conclusions

- Addressed issues with the Shrinking Ball (SB) algorithm that prevented it from being used for surface reconstruction
- ▶ Improved the complexity of fitting the Non-Convex Hull from $\mathcal{O}(N^2)$ to $\mathcal{O}(N \log N)$
- Proposed accuracy improvements to the algorithm, which we call Shrinking Planes (SP)
- Evaluated the changes and found a sizable improvement in the approximation quality of SP with respect to SB.

Future Work

- Isoextraction speed
 - O(N) to evaluate SDF
 - ▶ We have some unpublished improvements, but not asymptotic
- Noise robustness
 - Currently extremely sensitive
 - Noise in the normal vectors are a challenge
- Radius initialization functions
 - Published ones are wrong, don't parallelize, or are a non-solution
- GPU implementation
- Convergence properties

Bibliography I

- Y. Zhu, F. Sun, Y.-K. Choi, B. Jüttler, and W. Wang, "Computing a compact spline representation of the medial axis transform of a 2d shape", *Graph. Models*, vol. 76, no. 5, pp. 252–262, Sep. 2014, ISSN: 1524-0703. DOI: 10.1016/j.gmod.2014.03.007.

- H. Blum, "A Transformation for Extracting New Descriptors of Shape", *Models for the Perception of Speech and Visual Form*, W. Wathen-Dunn, Ed., pp. 362–380, 1967.
- G. Taubin, "Non-convex hull surfaces", in *SIGGRAPH Asia 2013 Technical Briefs*, ser. SA '13, Hong Kong, Hong Kong: ACM, 2013, 2:1–2:4, ISBN: 978-1-4503-2629-2. DOI: 10.1145/2542355.2542358.

W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3d surface construction algorithm", *SIGGRAPH Comput. Graph.*, vol. 21, no. 4, pp. 163–169, Aug. 1987, ISSN: 0097-8930. DOI: 10.1145/37402.37422.

J. Ma, S. W. Bae, and S. Choi, "3d medial axis point approximation using nearest neighbors and the normal field", *The Visual Computer*, vol. 28, no. 1, pp. 7–19, Jan. 2012, ISSN: 1432-2315. DOI: 10.1007/s00371-011-0594-7.