Fast Non-Convex Hull Computation

Julián Bayardo Spadafora ${ }^{1}$ Francisco Gómez-Fernandez ${ }^{1}$ Gabriel Taubin ${ }^{2}$
${ }^{1}$ Universidad de Buenos Aires
${ }^{2}$ Brown University

International Conference on 3D Vision, 2019

Who am I?

Problem Statement

- 3D surface reconstruction from an unstructured point cloud $\mathcal{P}=\left\{\mathbf{p}_{\mathbf{1}}, \ldots, \mathbf{p}_{\mathbf{N}}\right\}$ with corresponding inwards-pointing normal vectors $\mathcal{N}=\left\{\mathbf{n}_{1}, \ldots, \mathbf{n}_{\mathbf{N}}\right\},\left\|\mathbf{n}_{\mathbf{i}}\right\|_{2}=1$
- The sampled surface \mathcal{S} is assumed to be:
- Watertight (i.e. bounded and closed)
- Smooth
- Orientable

Medial Axis Transform (MAT, Blum [2])

- Surface representation as a union of balls
- Skeleton
- Points with more than one shortest path to a surface
- Maximally contained balls with respect to inclusion

Figure: Example surface and its medial axis transform. By Zhu, Sun, Choi, et al. [1]

Non-Convex Hull (NCH, Taubin [3])

- Surface representation as the intersection between complements of balls and linear half-spaces
- Dependant on the surface normal at a given point
- Equivalent to the MAT (Inner NCH) when normals point inwards
- Different object (Outer NCH) when normals point outwards

Geometric Intuition: Tangent Balls

If $\mathbf{p}_{\mathbf{i}}$ and $\mathbf{p}_{\mathbf{j}}$ are two points in the cloud, with corresponding normals. Then:

- The maximal ball $B_{i j}=\mathcal{B}_{r_{i j}}\left(\mathbf{c}_{\mathbf{i j}}\right)$ tangent to both points, with matching normal $\mathbf{n}_{\mathbf{i}}$ at $\mathbf{p}_{\mathbf{i}}$, is uniquely determined:

$$
\mathbf{c}_{\mathbf{i j}}=\mathbf{p}_{\mathbf{i}}+\mathbf{n}_{\mathbf{i}} r_{i j}
$$

$$
r_{i j}=\frac{\left\|\mathbf{p}_{\mathbf{j}}-\mathbf{p}_{\mathbf{i}}\right\|_{2}^{2}}{2\left\langle\mathbf{n}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}-\mathbf{p}_{\mathbf{i}}\right\rangle}
$$

Geometric Intuition: Maximal Balls

- $r_{i}=\min _{1 \leq j \leq N, i \neq j} \max \left\{+\infty, r_{i j}\right\}$ is the minimum of the maximal radiuses, with negative values turned into $+\infty$
- B_{i} is tangent to $\mathbf{p}_{\mathbf{i}}$ and its normal at $\mathbf{p}_{\mathbf{i}}$ matches $\mathbf{n}_{\mathbf{i}}$
- $r_{i k} \neq+\infty$ sets the minimum iff:
- B_{i} is tangent to $\mathbf{p}_{\mathbf{k}}$
- Other points are either outside or tangent to B_{i}
- $r_{i}=+\infty$ iff $\mathbf{p}_{\mathbf{j}} \neq \mathbf{p}_{\mathbf{i}}$ either lie on the plane or the other side of the normal

Geometric Intuition: NCH Fits

Two different NCH fits:

- Normals pointing inwards, or Inner NCH
- Any sufficiently dense sample will always find $r_{i}>0$
- Equivalent to the MAT
- Normals pointing outwards ($-\mathbf{n}_{\mathbf{i}}$), or Outer NCH
- Points in flat areas and sharp features will have $r_{i}=+\infty$
- $r_{i}=+\infty$ means that the ball found is a plane

NCH Surface Representation

- Need to combine information from all points together
- One approach is to give a Signed Distance Function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined such that:

$$
f(\mathbf{x})= \begin{cases}d(\mathbf{x}, \partial \mathcal{S}) & \text { if } \mathbf{x} \in \mathcal{S} \\ -d(\mathbf{x}, \partial \mathcal{S}) & \text { if } \mathbf{x} \in \mathcal{S}^{c}\end{cases}
$$

- Concretely, f 's 0 -level set should represent the border of \mathcal{S}.
- We can then use Marching Cubes [4] or similar isoextraction algorithms to obtain a mesh

NCH Basis Functions

- Define the NCH basis functions as:

$$
f_{i}^{+}(\mathbf{x})=\left\langle\mathbf{n}_{\mathbf{i}}, \mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\rangle-\frac{1}{2 r_{i}^{+}}\left\|\mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\|_{2}^{2}
$$

These are:

- 0 at the sphere/plane's border
- Positive inside, achieving the maximum at $\mathbf{c}_{\mathbf{i}}$
- Negative outside
- Gradient matches $\mathbf{n}_{\mathbf{i}}$ at $\mathbf{p}_{\mathbf{i}}$
- $f_{i}^{-}(\mathbf{x})$ equivalently, with the normal pointing outwards
- We call $f_{i}(\mathbf{x})=\frac{1}{2}\left(f_{i}^{+}(\mathbf{x})-f_{i}^{-}(\mathbf{x})\right)$ the Symmetric NCH SDF

NCH Signed Distance Function (SDF)

- For each variant, its NCH SDF is:

$$
f(\mathbf{x})=\max _{1 \leq i \leq N} f_{i}(\mathbf{x})
$$

- Intersection of complements of half-spaces and balls
- Fits the surface at every point
- Respects the normal vectors
- Isoextraction on its 0-level set outputs the reconstruction.

Naïve Non-Convex Hull

- Finds $r_{i}=\frac{1}{2 \rho_{i}}$ for each point as explained above
- $\mathcal{O}\left(N^{2}\right)$, where N is the number of points in the cloud
- Extremely slow for large point clouds

Fitting Algorithm
SDF Evaluation

1: for $i \in 1 \ldots N$ do

2:	$\rho_{i} \leftarrow 0$	$1: f_{x} \leftarrow-\infty$		
3:	for $j \in 1 \ldots N$ do	2: for $i \in 1 \ldots N$ do		
4:	if $i \neq j$ then	$3: \quad a \leftarrow\left\langle\mathbf{n}_{\mathbf{i}}, \mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\rangle-\rho_{i}\left\\|\mathbf{x}-\mathbf{p}_{\mathbf{i}}\right\\|^{2}$		
5:	$a \leftarrow\left\langle\mathbf{n}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}-\mathbf{p}_{\mathbf{i}}\right\rangle$	4: if $a>f_{x}$ then		
6:	$b \leftarrow\left\\|\mathbf{p}_{\mathbf{j}}-\mathbf{p}_{\mathbf{i}}\right\\|^{2}$	5: $\quad f_{x} \leftarrow a$		
7:	if $a>\rho_{i} b$ then	6: return f_{x}		
8:	$\rho_{i} \leftarrow \frac{a}{b}$			
9: return $\left\{\rho_{1}, \ldots, \rho_{N}\right\}$				

Shrinking Ball (Ma, Bae, and Choi [5])

- Computes r_{i} via iterative refinement:
- Begin with a heuristic estimate for r_{i}
- Find the nearest neighbor p_{t} of c_{i} with the current estimate
- Attempt to shrink the ball further by using p_{t}
- Repeat until convergence
- Expected worst case $\mathcal{O}(N \log N)$ using a Kd-Tree, as the number of shrinking steps are bounded

```
1: for \(i \in 1 \ldots N\) do
2: \(\quad r_{i} \leftarrow\) InitialRadius \((i)\)
3: for \(t \in 1 \ldots t_{\text {max }}\) do
4: \(\quad j \leftarrow\) NearestNeighbor \(\left(\mathbf{p}_{\mathbf{i}}+r_{i} \mathbf{n}_{\mathbf{i}}, \mathbf{p}_{\mathbf{i}}\right)\left\{\right.\) Search excludes \(\left.\mathbf{p}_{\mathbf{i}}\right\}\)
5: \(\quad r_{i}^{\prime} \leftarrow\) TangentSphereRadius \(\left(\mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}\right)\)
6: \(\quad \operatorname{swap}\left(r_{i}, r_{i}^{\prime}\right)\)
7: \(\quad\) if \(\left|r_{i}-r_{i}^{\prime}\right|<\delta\) then
8: break \(\{\) Algorithm has converged \(\}\)
9: AdjustRadiusHeuristic \((i)\)
10: return \(\left\{r_{1}, \ldots, r_{N}\right\}\)
```


Shrinking Ball: Intuition

Shrinking Ball: Issues for NCH Estimation

- Shrinking Ball is meant for MAT approximation, not NCH
- Suffers from false convergence issues
- Needs to use exact Kd-Trees, approximates wreak havoc on estimation

Contribution: Adapting for NCH Approximation

Contribution: Allowing Approximate Kd-Trees

Contribution: Fixing False Convergence

Examples

Performance Comparison

Conclusions

- Addressed issues with the Shrinking Ball (SB) algorithm that prevented it from being used for surface reconstruction
- Improved the complexity of fitting the Non-Convex Hull from $\mathcal{O}\left(N^{2}\right)$ to $\mathcal{O}(N \log N)$
- Proposed accuracy improvements to the algorithm, which we call Shrinking Planes (SP)
- Evaluated the changes and found a sizable improvement in the approximation quality of $S P$ with respect to $S B$.

Future Work

- Isoextraction speed
- $O(N)$ to evaluate SDF
- We have some unpublished improvements, but not asymptotic
- Noise robustness
- Currently extremely sensitive
- Noise in the normal vectors are a challenge
- Radius initialization functions
- Published ones are wrong, don't parallelize, or are a non-solution
- GPU implementation
- Convergence properties

Bibliography I

B
Y．Zhu，F．Sun，Y．－K．Choi，B．Jüttler，and W．Wang，＂Computing a compact spline representation of the medial axis transform of a 2 d shape＂，Graph．Models，vol．76，no．5，pp．252－262，Sep．2014，ISSN： 1524－0703．DOI： $10.1016 / \mathrm{j} . \operatorname{gmod} .2014 .03 .007$ ．

H．Blum，＂A Transformation for Extracting New Descriptors of Shape＂， Models for the Perception of Speech and Visual Form，W．Wathen－Dunn， Ed．，pp．362－380， 1967.
國 G．Taubin，＂Non－convex hull surfaces＂，in SIGGRAPH Asia 2013 Technical Briefs，ser．SA＇13，Hong Kong，Hong Kong：ACM，2013， 2：1－2：4，ISBN：978－1－4503－2629－2．DOI：10．1145／2542355． 2542358.

W．E．Lorensen and H．E．Cline，＂Marching cubes：A high resolution 3d surface construction algorithm＂，SIGGRAPH Comput．Graph．，vol．21， no．4，pp．163－169，Aug．1987，ISSN：0097－8930．DOI： 10．1145／37402．37422．
國 J．Ma，S．W．Bae，and S．Choi，＂3d medial axis point approximation using nearest neighbors and the normal field＂，The Visual Computer，vol． 28，no．1，pp．7－19，Jan．2012，ISSN：1432－2315．DOI：
10．1007／s00371－011－0594－7．

