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Who am I?
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Problem Statement

I 3D surface reconstruction from an unstructured point cloud
P = {p1, . . . ,pN} with corresponding inwards-pointing normal
vectors N = {n1, . . . ,nN}, ||ni||2 = 1

I The sampled surface S is assumed to be:

I Watertight (i.e. bounded and closed)
I Smooth
I Orientable
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Medial Axis Transform (MAT, Blum [2])

I Surface representation as a union of balls

I Skeleton

I Points with more than one shortest path to a surface

I Maximally contained balls with respect to inclusion

Figure: Example surface and its medial axis transform. By Zhu, Sun,
Choi, et al. [1]
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Non-Convex Hull (NCH, Taubin [3])

I Surface representation as the intersection between
complements of balls and linear half-spaces

I Dependant on the surface normal at a given point

I Equivalent to the MAT (Inner NCH) when normals point
inwards

I Different object (Outer NCH) when normals point outwards

.
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Geometric Intuition: Tangent Balls

If pi and pj are two points in the cloud, with corresponding
normals. Then:

I The maximal ball Bij = Brij (cij) tangent to both points, with
matching normal ni at pi, is uniquely determined:

cij = pi + nirij rij =
||pj − pi||22

2〈ni,pj − pi〉

pi

nipj

cij
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Geometric Intuition: Maximal Balls

I ri = min1≤j≤N,i 6=j max{+∞, rij} is the minimum of the
maximal radiuses, with negative values turned into +∞

I Bi is tangent to pi and its normal at pi matches ni
I rik 6= +∞ sets the minimum iff:

I Bi is tangent to pk
I Other points are either outside or tangent to Bi

I ri = +∞ iff pj 6= pi either lie on the plane or the other side of
the normal
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Geometric Intuition: NCH Fits

Two different NCH fits:

I Normals pointing inwards, or Inner NCH
I Any sufficiently dense sample will always find ri > 0
I Equivalent to the MAT

I Normals pointing outwards (−ni), or Outer NCH
I Points in flat areas and sharp features will have ri = +∞
I ri = +∞ means that the ball found is a plane
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NCH Surface Representation

I Need to combine information from all points together

I One approach is to give a Signed Distance Function
f : R3 → R defined such that:

f (x) =

{
d(x, ∂S) if x ∈ S
−d(x, ∂S) if x ∈ Sc

I Concretely, f ’s 0-level set should represent the border of S.

I We can then use Marching Cubes [4] or similar isoextraction
algorithms to obtain a mesh
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NCH Basis Functions

I Define the NCH basis functions as:

f +i (x) = 〈ni, x− pi〉 −
1

2r+i
||x− pi||22

These are:
I 0 at the sphere/plane’s border
I Positive inside, achieving the maximum at ci
I Negative outside
I Gradient matches ni at pi

I f −i (x) equivalently, with the normal pointing outwards

I We call fi (x) = 1
2(f +i (x)− f −i (x)) the Symmetric NCH SDF
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NCH Signed Distance Function (SDF)

I For each variant, its NCH SDF is:

f (x) = max
1≤i≤N

fi (x)

I Intersection of complements of half-spaces and balls

I Fits the surface at every point

I Respects the normal vectors

I Isoextraction on its 0-level set outputs the reconstruction.
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Näıve Non-Convex Hull

I Finds ri = 1
2ρi

for each point as explained above

I O(N2), where N is the number of points in the cloud

I Extremely slow for large point clouds

Fitting Algorithm SDF Evaluation
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Shrinking Ball (Ma, Bae, and Choi [5])
I Computes ri via iterative refinement:

I Begin with a heuristic estimate for ri
I Find the nearest neighbor pt of ci with the current estimate
I Attempt to shrink the ball further by using pt
I Repeat until convergence

I Expected worst case O(N logN) using a Kd-Tree, as the
number of shrinking steps are bounded



14/23

Shrinking Ball: Intuition

pi pic0i c1i
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Shrinking Ball: Issues for NCH Estimation

I Shrinking Ball is meant for MAT approximation, not NCH

I Suffers from false convergence issues

I Needs to use exact Kd-Trees, approximates wreak havoc on
estimation
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Contribution: Adapting for NCH Approximation
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Contribution: Allowing Approximate Kd-Trees
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Contribution: Fixing False Convergence
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Examples
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Performance Comparison
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Conclusions

I Addressed issues with the Shrinking Ball (SB) algorithm that
prevented it from being used for surface reconstruction

I Improved the complexity of fitting the Non-Convex Hull from
O(N2) to O(N logN)

I Proposed accuracy improvements to the algorithm, which we
call Shrinking Planes (SP)

I Evaluated the changes and found a sizable improvement in
the approximation quality of SP with respect to SB.
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Future Work

I Isoextraction speed
I O(N) to evaluate SDF
I We have some unpublished improvements, but not asymptotic

I Noise robustness
I Currently extremely sensitive
I Noise in the normal vectors are a challenge

I Radius initialization functions
I Published ones are wrong, don’t parallelize, or are a

non-solution

I GPU implementation

I Convergence properties
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