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Figure 1: A: A 2D oriented point cloud. B: A supporting linear half space for one of the oriented points. C: The oriented convex hull (OCH)
of the point cloud. D: An outside supporting circle for one of the points. E: Inside supporting circles are obtained by inverting the orientation
vectors. F: The non-convex hull (NCH) of the oriented point cloud is the intersection of the complement of all the outside supporting circles.
G: A 3D oriented point cloud. NCH surface reconstructions based on octrees of depth 7 (H), 8 (1), and 9 (J).

Abstract

We present a new algorithm to reconstruct approximating water-
tight surfaces from finite oriented point clouds. The Convex Hull
(CH) of an arbitrary set of points, constructed as the intersection
of all the supporting linear half spaces, is a piecewise linear wa-
tertight surface, but usually a poor approximation of the sampled
surface. We introduce the Non-Convex Hull (NCH) of an oriented
point cloud as the intersection of complementary supporting spher-
ical half spaces; one per point. The boundary surface of this set is
a piecewise quadratic interpolating surface, which can also be de-
scribed as the zero level set of the NCH Signed Distance function.
We evaluate the NCH Signed Distance function on the vertices of
a volumetric mesh, regular or adaptive, and generate an approxi-
mating polygonal mesh for the NCH Surface using an isosurface
algorithm. Despite its simplicity, this simple algorithm produces
high quality polygon meshes competitive with those generated by
state-of-the-art algorithms. The relation to the Medial Axis Trans-
form is described.
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1 Introduction

In this paper we are concerned with the problem of reconstructing
an oriented watertight surface approximating a finite set of points
with associated unit length orientation vectors, consistently ori-
ented with respect to the sampled surface S. Oriented point clouds
are produced by laser scanners, structured lighting systems, multi-
view stereo algorithms, and simulation algorithms.

The prior art on surface reconstruction from point clouds is exten-
sive, spanning more than two decades. Most combinatorial algo-
rithms produce interpolating polygon meshes, and some come with
guaranteed reconstruction quality [Bernardini et al. 1999; Amenta
et al. 2001; Dey 2007].

Since implicit surfaces are watertight, most approximating surface
reconstruction methods produce implicit surfaces, and through vari-
ational formulations reduce the problem to the solution of large
sparse linear systems [Kazhdan et al. 2006; Alliez et al. 2007; Man-
son et al. 2008; Hoppe et al. 1992; Boissonnat and Cazals 2002;
Calakli and Taubin 2011; Alexa et al. 2003; Fleishman et al. 2005;
Ohtake et al. 2005]. The estimated implicit function is often evalu-
ated on a regular grid of sufficient resolution, and a polygon mesh
approximation is generated using an isosurface algorithm such as
Marching Cubes [Lorensen and Cline 1987]. Since the cost of es-
timating or evaluating the implicit function on a regular grid is of-
ten excessive, some methods perform the computations on adaptive
volumetric meshes such as octrees which require more complex
contouring algorithms [Ohtake et al. 2005; Kazhdan et al. 2006;
Manson et al. 2008; Calakli and Taubin 2011]

The method proposed in this paper falls somewhere in between
these categories. A continuous interpolating piecewise quadratic
NCH Signed Distance function is constructed as a function of the
oriented point locations and orientation vectors through a simple
and direct computation. Then the NCH Signed Distance function
is evaluated on the vertices of a volumetric mesh, such as a regular
voxel grid or octree constructed as a function of the point locations.
Finally an isosurface algorithm is also used to generate an approxi-
mating polygonal mesh. When the volumetric mesh is conforming,
the polygon mesh is guaranteed to be watertight.



Figure 2: A: An oriented point cloud with approximately 25K
points. B: The polygon mesh extracted by the naive algorithm on
a 5002 voxel grid. C: The oriented points superimposed with the
mesh. D: Detail view of the point cloud showing points and orien-
tation vectors. E: Close-up view of B. Close-up view of C. Note that
the polygon density is higher than the point cloud sampling rate.
The reconstructed polygon mesh has 556,668 vertices and 555,386
faces.

2 The Naive Algorithm

To emphasize the simplicity of the proposed method, in this section
we describe what we call the Naive NCH Surface Reconstruction
algorithm. In subsequent sections explain why it works, and varia-
tions. The Naive NCH Surface Reconstruction algorithm for a finite
set of oriented points comprises three steps: 1) estimating one NCH
Signed Distance parameter for each data point; 2) evaluating the
NCH Signed Distance function on the vertices of a volumetric mesh
such as a regular voxel grid or octree; 3) approximating the zero
level set of the NCH Signed Distance function by a polygon mesh
using an isosurface algorithm such as Marching Cubes [Lorensen
and Cline 1987].

For a finite set of points P = {pi,...,pn}, with associated unit
length orientation vectors n1,...,ny we define the value of the
NCH Signed Distance function at a 3D point = as the maximum
over IV basis functions,

f(z) = max fi(z) (1

1<i<N

where for each oriented point (p;, n;), we have one basis function

fi(z) = ni(x —pi) — pillz — il (2)

The parameter p; is set equal to zero if the set J; of indices j =
1,..., N such that n}(p; — p;) > 0 is empty, and otherwise

Tl o,
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Figure 2 shows one result obtained with exactly this algorithm.

The main advantage of the Naive NCH Surface Reconstruction al-
gorithm is its simplicity, since it can be implemented literally with
only a few lines of code. The main disadvantage of the method is
that its complexity is quadratic in the number of points. We ad-
dress this issue through an adaptive subsampling approach which
yields NCH Surfaces which interpolate only a subset of the input

Figure 3: The geometry of the spherical support functions fp(x).

points, and approximates the remaining points under user-specified
maximum error.

Even though large areas of missing data points and holes are filled
because the output mesh is watertight (except for its intersection
with boundaries of the bounding box), the algorithm not always fills
holes in an intuitive manner, as can be observed in the teaser figure.
Some of the surface reconstruction algorithms based on variational
principles mentioned in the introduction tend to fill holes in a more
intuitive and predictable fashion. However, since it is not iterative,
this algorithm is robust, and in many cases it can deal gracefully
with uneven sampling, as shown in figure 5.

3 Non-Convex Hull

In this paper we refer to a half space as aset H = {z : f(z) < 0}
of points satisfying an inequality constraint for a continuous real-
valued function f(z) defined for every point z in a certain domain
U contained in the ambient space (2D or 3D here). A linear half
space is defined by a linear function f(x). Given a set of points
‘P, finite or infinite, and not necessarily oriented, the half space H
defined above (with f(x) linear or non-linear) is said to be a sup-
porting half space for P if the following two conditions are satis-
fied: 1) the set P is contained in H, i.e., P C H; and 2) there is
at least one point p in P where the function attains the value zero
f(p) = 0. The Convex Hull CH(P) of the set P can be defined as
the intersection of all the supporting linear half spaces for P. Since
a linear half space is a convex set, and convexity is preserved by
intersection, CH(P) is also a convex set.

For the finite set of points {p1, . . ., p~ }, with associated unit length
orientation vectors ni,...,ny we adopt a more restricted defini-
tion which takes into account the point orientations. Each oriented
point p; defines a linear half space H; = {z : f;(z) < 0} for the
linear function f;(x) = n!(z — p;). We define the Oriented Con-
vex Hull of the set of points OCH(/P) as the intersection of all the
supporting linear half spaces H;. Note that if the orientation of the
points is reversed, a completely different result is usually obtained,
since the family of supporting linear half spaces is different, and
often even empty.

Since the Oriented Convex Hull is a convex set, it cannot approx-
imate the boundary surface of an object with concavities. To be
able to approximate these surfaces we need to augment the family
of supporting half spaces. It is necessary for this family to include
non-convex half spaces, so that their intersection can represent solid
objects with concavities. For each point p; in the data set P with
associated orientation vector n;, and every positive value of » > 0,
we consider the function

- 1
fi(@) = o {r® = llz = (i + 7o) I°} @
defined for x in the domain U. This function is positive inside a

sphere of radius r centered at the point ¢ = p; + r n;, negative out-
side the sphere, attains its maximum value /2 at the center point



Figure 4: Results on evenly sampled low noise surfaces. Left:
Oriented points. Center: Reconstruction with an octree of depth 9.
Right: Reconstruction with an octree of depth 10.

¢, and has unit slope | Vf{ (z)|| = 1 at every point = where f{ (z)
is equal to zero.

As shown in figure 3, the point ¢ = p; + rn; is located on the
ray defined by the point p; and vector n; at distance r from p;. In
addition, f{ (p) = 0, and Vf] (p) = n; for all values of r. Now
we define r; as the largest value of r so that f7 (p;) < O for ev-
ery other point p; € P. For finite sets of oriented points we have
r; > 0 for each data point p; € P. As aresult, the half space H; de-
fined by the function f;(z) = f;*(x) of equation 2 is supporting,
where p; = 1/(2r;) > 0. We refer to these sets H; as comple-
mentary spherical supporting half spaces. For the linear support-
ing half spaces to be included as special cases, we need to allow
pi = 0, or r; = co. Note that, as opposed to the Oriented Convex
Hull case, here every oriented point p; in the data set has an asso-
ciated supporting half space H;, and if the orientations are reversed
(ni — —n;), completely different half spaces are obtained.

The value of p; for an oriented point p; is computed as the minimum
over all the positive values

t
n;(pj — pi)
pij = s)
Y s = pill?
over all j # 4. Note that if p;; < 0 for all j # ¢, then we should
set p; = 0, because in this case the linear half space H; = {z :
nt(x — p;)} is supporting for the set P.

We define the Non-Convex Hull of the oriented point set P, denoted
NCH(P), as the intersection of all the complementary spherical
supporting half spaces H;, as defined above. This is the same as
saying that the complement of NCH(P) is a union of balls. Note
that NCH(P) is also a half space. Namely, the half space defined
by the continuous signed distance function f(z) shown in equation
1. This function is well defined when the data set P is bounded,
and in particular when it is finite.

Figure 5: Results on unevenly sampled surfaces. Left: Oriented
points. Center: Reconstruction with an octree of depth 9. Right:
Reconstruction with an octree of depth 10.

4 Relation to the Medial Axis Transform

In this section we assume that the set of points P is a sampling of
the boundary surface .S of a bounded solid object O, and that the
object O is an open set in 3D. As a result, the surface S is bounded,
orientable (separates the inside from the outside of O), closed, and
it has no boundary (i.e., no holes). Furthermore we assume that it is
smooth, has a continuous unit length normal field pointing towards
the inside of O, and has continuous curvatures.

The Medial Axis Transform (MAT) is a representation of the object
O as a union of balls. A ball B = B(q,r) = {z : |z —q|| <r}
is an open sphere with a center ¢ and a radius » > (0. Being an
open set, the solid object O is equal to the union of all the balls B
contained in O. But this representation is too redundant to be used
in a practical surface reconstruction algorithm. Since the set of all
balls contained in O is partially ordered by inclusion, the Medial
Axis Transform of O can be defined as the family MAT(O) of balls
B contained in O which are maximal with respect to inclusion. The
balls that belong to the MAT(O) are called medial balls. Obviously,
the solid object O is also equal to the union of all the medial balls.
This definition differs from the one given for example in [Amenta
et al. 2001], which also includes the maximal balls contained in the
outside of the object (complement of S U O), but this definition
is more appropriate for our purposes. To be more precise we can
refer to the Inside Medial Axis Transform, the Outside Medial Axis
Transform, and the Symmetric Medial Axis Transform whenever
necessary.

We define the Medial Axis MA(O) of O as the set of centers of
medial balls. Since two different medial balls cannot have the same
center, the mapping MA(O) — MAT(O) which assigns each me-
dial ball center to the corresponding medial ball is well defined, 1-1
and onto. Another way of describing the Medial Axis Transform is
as a set of points called Medial Axis Set, augmented with a non-
negative radius function which assigns to each medial ball center
the corresponding medial ball radius. These radii are, of course,
not independent of each other.



In this paper we present an alternative description of the Medial
Axis Transform, where each medial ball is not described by its cen-
ter and radius, but by one of its boundary points and the radius. If
B is a medial ball of center q and radius r, p is a point in the inter-
section of the boundary of B and .S, and n,, is the surface normal to
S at p pointing towards the interior of O, since the boundary of B
and S are tangent, the ball center ¢ must lie on the normal ray de-
fined by p and n, in which case we have ¢ = p + rn,. In addition,
because of the maximality of the ball B, the radius r is uniquely
determined: it must be equal to the maximum of radii ' > 0 of
balls centered at points ¢’ = p+r'n lying on the ray defined by the
point p and the vector n, fully contained in O. On the other hand, if
p is a point on the surface S, since O is the union of all the medial
balls, and S is the boundary of this set, a medial ball B must exists
so that p belongs to the intersection of the boundary of B and S.

In summary, every medial ball can be written as B(p + rpnp, 7p)
for at least one surface point p, where

rp = max{r’' >0: B(p+r'ny,r’)CO}. (6)

Note that in the mapping S — MAT(O) so defined, two or more
surface points may map onto the same medial ball. But this is not
a problem, and in fact it is an unusual event; what is important is
that every medial ball is accounted for, so that the surface .S can be
reconstructed as the boundary of the union of balls

O =U{B(p+rpnp,p) :p€S}. N

The surface S can is approximated as the boundary of the Non-
Convex Hull NCH(P) defined as a half space of the NCH Signed
Distance f(x). The Local Feature Size LFS(p) at a surface point
p € S is usually defined as the distance from p to the nearest point
in the Symmetric Medial Axis [Amenta et al. 2001; Dey 2007]. A
finite set P C S is defined as an e-sample of S if the distance from
any point p € S to its closest sample in P is at most € LFS(p).
Several authors have shown that for sufficiently small e the surface
reconstructed as the boundary of MAT(P) is a geometrically accu-
rate approximation of S [Amenta et al. 2001; Dey 2007], and our
experiments validate these theoretical results.

5 Octrees and Isosurfaces

Since typically the NCH Signed Distance function has constant sign
in large regions, one way to potentially reduce the computational
cost of the naive algorithm is to detect those areas and not to eval-
uate the function there. Following a standard recursive space parti-
tion approach, we build an octree as a function of the point locations
and the orientation vectors, we evaluate the NCH Signed Distance
function at the vertices of the volumetric mesh, and use the Dual
Marching Cubes (MC) algorithm [Schaefer and Warren 2005] to
generate an output polygon mesh. Since the dual mesh of an octree
is a conforming volumetric polyhedral mesh, the polygon meshes
produced by DMC are adaptive, but have no cracks. The results
shown in figures 4 and 5 have been computed using our implemen-
tation of DMC. Although the results presented are very good, we
regard them as preliminary work. Due to lack of space, the details
of this process as well as extensive experimental results will be pre-
sented in a future extended publication.

6 Conclusion

We have introduced an extremely simple algorithm to reconstruct
watertight surfaces from finite sets of oriented points. The formula-
tion generalizes the Convex Hull in such a way that concavities can

be represented and approximated. We have also proposed prelimi-
nary strategies to reduce the computational cost by generating adap-
tive polygon meshes and by subsampling. Despite its simplicity, the
proposed algorithm produces high quality polygon meshes com-
petitive with those produced by state-of-the-art algorithms. Since
the algorithm is massively paralellizable, and we plan to produce a
GPU implementation in the near future.

This material is based upon work supported by the National Sci-
ence Foundation under grants CCF-0729126, 1IS-0808718, CCF-
0915661, and I1P-1215308.

References

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SiLvA, C. 2003. Computing and rendering point
set surfaces. IEEE Transactions on Visualization and Computer
Graphics, 3-15.

ALLIEZ, P., COHEN-STEINER, D., TONG, Y., AND DESBRUN,
M. 2007. Voronoi-based variational reconstruction of unoriented
point sets. In Proceedings of the fifth Eurographics symposium
on Geometry processing, Eurographics Association, 39—48.

AMENTA, N., CHoOI, S., AND KOLLURI, R. 2001. The Power
Crust, Unions of Balls, and the Medial Axis Transform. Compu-
tational Geometry Theory and Applications 19, 2-3 (jul), 127-
153.

BERNARDINI, F., MITTLEMAN, J., RUSHMEIER, H., SILVA, C.,
AND TAUBIN, G. 1999. The Ball-Pivoting Algorithm for Sur-
face Reconstruction. IEEE Transactions on Visualization and
Computer Graphics 5, 4, 349-359.

BOISSONNAT, J., AND CAZALS, F. 2002. Smooth surface recon-
struction via natural neighbour interpolation of distance func-
tions. Computational Geometry 22, 1, 185-203.

CALAKLI, F., AND TAUBIN, G. 2011. SSD: Smooth Signed Dis-
tance Surface Reconstruction. Computer Graphics Forum 30, 7.
http://mesh.brown.edu/ssd.

DEY, T. 2007. Curve and surface reconstruction: algorithms with
mathematical analysis. Cambridge University Press.

FLEISHMAN, S., COHEN-OR, D., AND SiLvVA, C. T. 2005. Robust
moving least-squares fitting with sharp features. ACM Transac-
tions on Graphics 24 (July), 544-552.

HoprPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface Reconstruction from Unorganized
Points. In Proceedings of ACM Siggraph, Citeseer.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the fourth Eurograph-
ics symposium on Geometry processing, Eurographics Associa-
tion, 61-70.

LORENSEN, W., AND CLINE, H. 1987. Marching Cubes: A High
Resolution 3d Surface Construction Algorithm. 163-169.

MANSON, J., PETROVA, G., AND SCHAEFER, S. 2008. Streaming
surface reconstruction using wavelets. In Computer Graphics
Forum, vol. 27, Wiley Online Library, 1411-1420.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H. 2005. Multi-level partition of unity implicits. In ACM
SIGGRAPH 2005 Courses, ACM, 173.

SCHAEFER, S., AND WARREN, J. 2005. Dual Marching Cubes:
primal contouring of dual grids. In Computer Graphics Forum,
vol. 24, Wiley Online Library, 195-201.


http://mesh.brown.edu/ssd

