

Non-Convex Hull Surfaces

Gabriel Taubin

Brown University

Typical Surface Reconstruction Pipeline

Positions & Normals Watertight Surface -> Polygon Mesh

SA2013.SIGGRAPH.ORG

Interpolating Polygon Meshes [Combinatorial]

- Boissonnat [1984] (Natural Neighbor Interpolation)
- Edelsbrunner [1984] (Alpha Shapes)
- Amenta et al. [1998,2001] (Power Crust)
- Bernardini et al. [1999] (Ball Pivoting)
- Dey [2007] (Book)
- others

Implicit Function [Optimization]

- Hoppe et al. [1992]
- Curless et al [1996]
- Whitaker [1998]
- Carr et al.[2001] (RBFs)
- Davis et al. [2002]
- Ohtake et al. [2004] (MPI)
- Turk et al. [2004]
- Shen et al. [2004]
- Sibley-Taubin [2005]
- Calakli-Taubin [2011] (SSD)

Poisson Surface Reconstruction

Kazhdan et al. [2006]

Manson et al. [2008]

Implicit Surface Reconstruction

Oriented Points, **D** (samples from unknown surface **S**)

Computed Implicit Surface, S'

Find a scalar valued function f(p), whose zero level set S'={p:f(p)=0} is the estimate for true surface S

Smooth Signed Distance Surface Reconstruction [Calakli & Taubin 2011]

$$E(f) = \sum_{i=1}^{N} f(\mathbf{p}_i)^2 + \lambda_1 \sum_{i=1}^{N} \left\| \nabla f(\mathbf{p}_i) - \mathbf{n}_i \right\|^2 + \lambda_2 \int_{V} \left\| Hf(\mathbf{x}) \right\|^2 d\mathbf{x}$$

Particularly Good at Extrapolating Missing Data

Oriented Points as Surface Samples

- Oriented point (p,n)
- p: sample of surface location
- n: sample of surface normal vector @ p
- Initial Assumptions
- Surface is bounded, oriented, manifold, and without boundary
- Samples are dense and uniformly distributed
- Normal vectors are unit length and consistently oriented towards the "outside"
- Low Noise

Real Data Sets Present Additional Challenges

Reconstruction with an Approximate Signed Distance

Input: oriented points contained in a bounding volume V

 $D = \{ (\mathbf{p}_{i}, \mathbf{n}_{i}) i=1,...,N \}$

• Output: implicit surface

$$S = \{ \mathbf{x} \mid f(\mathbf{x}) = 0 \}$$

$$|\nabla f(\mathbf{p}_i)|=1$$

with the function defined on V, such that

 $f(\mathbf{p}_i) = 0$ and $\nabla f(\mathbf{p}_i) = \mathbf{n}_i$ for i=1,...,N

- Family of implicit functions parameterized by a finite number of parameters.
- Estimate parameters so that the conditions are satisfied, if not exactly, then in the least-squares sense.
- Partition V into a volumetric mesh M, such as a voxel grid or dual octree.
- Evaluate approximate signed distance on M-vertices, and compute isosurface.

NCH Surface Reconstruction Algorithm

- Produces interpolatory implicit surface $f(\mathbf{p}_i) = 0$ and $\nabla f(\mathbf{p}_i) = \mathbf{n}_i \quad \forall (\mathbf{p}_i, \mathbf{n}_i) \in D$
- Isosurface approximates
- Defined by one parameter per point
- Analytic, direct, non-iterative algorithms to estimate parameters and to evaluate function
- Can be implemented in a few lines of code
- Produces high quality surfaces
- Simple and Elegant
- On the negative side: $O(n^2)$ not scalable
- But of practical use

Convex Hull of a Set of Points

- Smallest convex set containing all the points
- Equal to the intersection of all the Supporting linear half-spaces

Oriented Convex Hull

Supporting Linear Half Space if $f_i(p_j) \le 0 \quad \forall j \ne i$ Not every point defines a Supporting Linear Half Space

Oriented Convex Hull Surface

Boundary of the Intersection of all Supporting Linear Half Spaces

 $S = \{x : f(x) = 0\}$ $f(x) = \max_{i} f_{i}(x)$

Non-Convex Hull

Spherical Half Space = Space outside of a Sphere Intersection of all Supporting Spherical Half Spaces

 $f(x) = \max_i f_i(x)$

But now every point has a supporting function

Geometry of the Support Functions

 $q_i = p_i + r_i n_i$ Max r_i so that $f_i(p_j) \le 0$ for all j

$$f_i(x) = \frac{1}{2r_i} \left(r_i^2 - \|x - q_i\|^2 \right) \quad f_i(x) = n_i^t (x - p_i) - \frac{1}{2r_i} \|x - p_i\|^2$$

Properties of Non-Convex Hull Function

$$f(x) = \max_{i} f_{i}(x)$$

$$f_{i}(x) = n_{i}^{t}(x - p_{i}) - \frac{1}{2r_{i}} ||x - p_{i}||^{2}$$

Max r_i so that $f_i(p_j) \le 0$ for all j

$$\begin{split} f_i(p_i) &= 0 \qquad \nabla f_i(p_i) = n_i \\ f_j(p_i) &\leq 0 = f_i(p_i) \Rightarrow f(p_i) = f_i(p_i) = 0 \\ p_i &\in F_i = \{x : f_i(x) > f_j(x) \forall j \neq i\} \text{ is open} \\ \Rightarrow \nabla f(p_i) &= \nabla f_i(p_i) = n_i \end{split}$$

 $F_i = \{x : f_i(x) > f_j(x) \ \forall j \neq i\}$

NCH Surface Reconstruction

$$f_i(x) = n_i^t (x - p_i) - \rho_i ||x - p_i||^2 \qquad \rho_i = \frac{1}{2r_i} \qquad 0 \le \rho_i < \infty$$

$$\rho_{i} = \min\left\{\frac{n_{i}^{t}(p_{j} - p_{i})}{\left\|p_{j} - p_{i}\right\|^{2}} : j \in J_{i}\right\} \quad J_{i} = \left\{j : n_{i}^{t}(p_{j} - p_{i}) > 0\right\}$$

But
$$\rho_i = 0$$
 if $J_i = \emptyset$

procedure estimateNCH () {
for
$$i = 1$$
 to $i = N$ step 1 do {
 $\rho_i = 0$
for $j = 1$ to $j = N$ step 1 do {
if $j = i$ continue
 $a = n_i^t(p_j - p_i)$
 $b = ||p_j - p_i||^2$
if $(a - \rho_i b > 0) \rho_i = a/b$
}
O(n^2) but O(n) with O(n) processors

procedure evaluateNCH(x) { $f_x = -\infty$ for i = 1 to i = N step 1 do { $a = n_i^t (x - p_i)$ $b = ||x - p_i||^2$ $c = a - \rho_i b$ $f_i(x)$ if $(c > f_x) f_x = c$ return f_x $f(x) = \max_{i} f_{i}(x)$

Another 2D Result

$$C = \left\{ x : f(x) = 0 \right\}$$

Function evaluated on pixel grid and isocurve computed

A 3D Example [Regular Voxel Grid 500^3]

Symmetric Non-Convex Hull

- If orientation of normal vectors is reversed, a different NCH Function results.
- Compute $f_i^+(x)$ from $\{(p_i, n_i): i = 1, ..., N\}$
- Compute $f_i^-(x)$ from $\{(p_i, -n_i): i = 1, ..., N\}$
- Define $f(x) = \{f_i^+(x) f_i^-(x)\}/2$

NCH Surface Representation

Set of oriented points with two additional scalar attributes

$$\{(p_i, n_i, \rho_i^+, \rho_i^-): i = 1, \dots, N\}$$

- Can be saved as a PLY file
- Evaluate on tet-mesh vertices and compute piece-wise-linear isosurface
- Evaluate on dual vertices of octree and run Dual Marching Cubes

3D Results: evenly sampled low noise

3D Results: evenly sampled low noise

SA2013.SIGGRAPH.ORG

3D Results: unevenly sampled low noise

3D Results: unevenly sample and noise

- The finite set of oriented points is replaced by the continuous boundary surface S of a bounded solid object O, which is an open set in 3D
- The surface S is smooth, with a continuous unit length normal field pointing towards the inside of O, and continuous curvatures.

- A medial ball of O is an open ball contained in O which is maximal with respect to inclusion
- The Medial Axis Transform of O is the family MAT(O) of medial balls of O.

- The Medial Axis of O, denoted MA(O), is the set of centers of medial balls
- Since for each medial axis point there is a unique medial ball, the MAT(O) can also be represented as a set of center-radius pairs (q,r)

 Our construction is an alternative representation of MAT(O) as a list of center-vector-radius tuples (p,n,r), where each medial ball is specified by one of its boundary points, the unit length vector that points to the center of the ball, and the radius.

Questions?

This material is based upon work supported by the National Science Foundation under Grants CCF-0729126, IIS-0808718, CCF-0915661, and IIP-1215308.

