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Computer representations of piecewise 
smooth surfaces have become vital tech-
nologies in areas ranging from interactive 

games and feature-film production to aircraft de-
sign and medical diagnosis. One of the dominant 
surface representations is polygon meshes. Most 
computer graphics applications require simple and 
efficient geometry-processing algorithms to op-
erate on the very large polygon meshes used. In 
general, developing these algorithms involves fun-
damental concepts from pure mathematics, algo-
rithms and data structures, numerical methods, 
and software engineering. 

As an introduction to the field, this article shows 
how to formulate several geometry-processing 
operations to solve systems of equations in the 
“least-squares” sense. The equations are derived 
from local geometric relations using elementary 
concepts from analytic geometry, such as points, 
lines, planes, vectors, and polygons. Simple and 
useful tools for interactive polygon mesh editing 
result from the most basic descent strategies to 
solve these optimization problems. Throughout the 
article, I develop the mathematical formulations 
incrementally, keeping in mind that the objective 
is to implement simple software for interactive 
editing applications that works well in practice. 
You can implement higher-performance versions 
of these algorithms by replacing the simple solvers 
proposed here with more advanced ones.

Representing Polygon Meshes
We can represent polygon meshes in many 
ways; here, I use an array-based indexed face set 
representation, in which a polygon mesh P = (V, 
X, F) is composed of a finite set V of vertex indices, 
a table of 3D vertex coordinates X = {xi: I ∈ V} 
indexed by a vertex index, and a set F of polygon 
faces, in which a face f i inf=( ,..., )1  is a sequence 
of nonrepeating vertex indices. The number nf of 

vertex indices in a face can vary from face to face, 
and, of course, every face must have a minimum 
of nf ≥ 3 vertices. Two cyclical permutations of the 
same sequence of vertex indices are regarded as the 
same face, such as (0, 1, 2) and (1, 2, 0), but when 
a sequence of vertex indices results from another 
one by inverting the order, such as (0, 1, 2) and 
(2, 1, 0), we regard the two sequences as different 
faces and say that the two faces have opposite 
orientations. This representation does not support 
faces with holes, which is perfectly acceptable for 
most applications. For each face f i inf=( ,..., )1 , 
V f i inf( ) ( ,..., )= 1 is the set of vertex indices of the 
face considered as a set. 

In terms of data structures, if NV is the total 
number of vertices of the mesh, we can assume 
that the set of vertex indices is {0, …, NV – 1}, 
composed of consecutive integers starting at 0. 
The vertex coordinates are represented as a linear 
array of 3 NV floating-point numbers, and the 
set of faces F is represented as a linear array of 
integers resulting from concatenating the faces. To 
handle polygon meshes with different-sized faces 
(that is, a different number of vertex indices per 
face), we append a special marker at the end of 
each face, such as the integer –1 (which is never 
used as a vertex index) to indicate the end of the 
face. For example, [0, 1, 2, –1, 0, 2, 3, –1] would 
be the representation for the set of faces F of a 
polygon mesh composed of two triangular faces, 
f0 = (0, 1, 2) and f1 = (0, 2, 3), and V = {0, 1, 2, 3}. 
The particular order of the faces within the linear 
array is not important, but once a particular order 
is chosen, we will assume that it does not change. 
I will refer to a face’s relative location within the 
array as its face index. If NF is the total number of 
faces, then the set of face indices is {0, …, NF – 1}. 

Polygon Mesh Smoothing
Large polygon meshes are usually generated by 
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measurement processes, such as laser scanning or 
structured lighting, that result in measurement 
errors or noise in the vertex coordinates. In 
some cases, systematic errors are generated by 
algorithms that generate polygon meshes, such as 
isosurface algorithms. In general, we must remove 
the noise to reveal the hidden signal but without 
distorting it. Algorithms that attempt to solve this 
problem are referred to as smoothing or denoising 
algorithms. It is probably fair to say that the whole 
field of digital geometry processing grew out of 
early solutions to this problem.

My goal here is to offer a simple and intuitive 
methodology for attacking the problem in vari-
ous ways. You can expand on it with similar ap-
proaches to formulate other, more complex prob-
lems, such as large-scale deformations for interac-
tive shape design. In smoothing algorithms, noise 
removal is constrained to changes to the values of 
the vertex coordinates X. Neither the set of vertex 
indices V nor the faces F of the polygon mesh are 
allowed to change.

Perhaps the simplest and oldest method to re-
move noise from a polygon mesh is Laplacian 
smoothing. In classical signal processing, noise is 
removed from signals sampled over regular grids 
by convolution—that is, by averaging neighboring 
values. Laplacian smoothing is based on the same 
idea: each vertex coordinate xi is replaced by a 
weighted average of itself and its first-order neigh-
bors. But to properly describe this method, we first 
need to formalize a few things.

The Primal Graph of a Polygon Mesh
The graph, or more precisely, the primal graph 
(we will see the dual graph later), G = (V, E) of 
a polygon mesh P = (V, X, F) is composed of the 
set of polygon mesh vertex indices V as the graph 
vertices and the set E of mesh edges as the graph 
edges. A mesh edge is an unordered pair of vertex 
indices e = (i, j) = (j, i) that appear consecutive to 
each other, irrespective of order, in one or more 
faces of the polygon mesh.  In that case, we say that 
the face and the edge are incident to each other. 
The set of edges incident to a face f is E(f); nf is the 
number of edges in this set (equal to the number 
of vertices in the face. For example, for the face f = 
(0, 1, 2), it is E(f) = {(0, 1), (1, 2), (2, 0)}. Note that 
one or more faces might be incident to a common 
edge. The set of faces incident to a given edge e = 
(i, j) is F(e), which has ne number of incident faces. 
A boundary edge has exactly one incident face, a 
regular edge has exactly two incident faces, and a 
singular edge has three or more incident edges. 
We say that two vertices i and j are first-order 

neighbors if the pair (i, j) of vertex indices is an 
edge. For each vertex index, the set V(i) = {j: (i, j) 
∈ E} is the set of first-order neighbors of i, and ni 
is the number of elements in this set.

In terms of data structures, we can represent the 
mesh edges (i, j) as a linear array of 2NE vertex indi-
ces, where NE is the total number of polygon mesh 
edges. To make each edge’s representation unique, 
this array stores either the pair (i, j) if i < j or (j, i) 
if j < i. Although this array is constructed strictly 
as a function of the faces, and as such, does not 
add any new information, constructing and stor-
ing it as an additional data structure is beneficial: 
several of the iterative algorithms discussed here 
can be efficiently implemented as a linear traversal 
of the edge array. However, implementing the same 
algorithms by traversing the face array usually in-
creases complexity or creates special cases that 
complicate the algorithms.

To efficiently construct the array of edges from 
the array of faces, we use an additional data struc-
ture to represent a graph over the set of vertex 
indices. This graph data structure is initialized 
with the set of vertex indices and an empty set 
of edges. The graph data structure supports two 
efficient operations: get(i, j) and insert(i, j). The op-
eration get(i, j) returns the edge index assigned to 
the edge (i, j), if such an edge exists, and a unique 
identifier such as –1, which is not used as an edge 
index if the edge (i, j) does not yet belong to the 
set of edges. If the edge (i, j) does not yet exist, the 
operation insert(i, j) appends the pair of indices to 
the array of edges and assigns its location in the 
array to the edge as the unique edge index. In this 
way, the index 0 is assigned to the first edge cre-
ated, and consecutive indices are assigned to edges 
created later. An efficient implementation of this 
graph data structure can be based on a hash table.

For some algorithms, it is useful to have an 
efficient method to determine the number ne of 
incident faces per edge, as well as to access those 
faces’ indices. The graph data structure can also 
be extended to support this functionality. We can 
represent number ne as an additional field in the 
record used to represent the edge e in the graph 
data structure or as an external variable-length 
integer array. Each value is initialized to 1 via 
the insert(i, j) operation during the graph data 
structure’s construction and incremented during 
face array traversal every time the get(i, j) operation 
returns a valid face index. We can represent the 
sets of faces F(e) incident to the edges as an array 
of variable-length arrays indexed by the edge index 
and construct them as well during the graph data 
structure’s construction.
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Vertex Evolution Algorithms
A large family of polygon mesh-editing algorithms 
follow three steps. First, for each vertex index i 
of the polygon mesh, compute a vertex displace-
ment vector ∆xi. Second, after all the vertex dis-
placement vectors are computed, apply the vertex 
displacement vectors to the vertex coordinates, 
′= + ∆x x xi i iλ , where λ is a fixed-scale parameter 

(either user defined or computed from the polygon 
mesh data). Finally, replace the original vertex co-
ordinates X with the new vertex coordinates X′. 
These three steps are repeated for a certain num-
ber of times specified in advance by the user or 
until a certain stopping criterion is met.

All the algorithms discussed here belong to this 
family. In terms of storage, these algorithms re-
quire an additional linear array of 3Nv floating-
point numbers to represent the vertex displace-
ment. The vertex coordinates are updated using 
this procedure in linear time as a function of the 
number of vertices. Of course, the time and storage 
complexity of evaluating the vertex displacements 
(to determine the scale parameter or whether the 
stopping criterion is met) must be added to the 
algorithm’s overall complexity. In general, algo-
rithms with linear time and storage complexity as 
a function of polygon mesh size are the only al-
gorithms that scale properly for practical use with 
very large polygon meshes.   

Laplacian Smoothing
As I mentioned earlier, Laplacian smoothing 
replaces each vertex coordinate xi with a weighted 
average of itself and its first-order neighbors. More 
precisely, for each vertex index i, we compute a 
vertex displacement vector

∆ = −( )
∈ ( )
∑x n x xi

i
j i

j V i

1

as the average over the first-order neighbors j of 
vertex i (of vectors xj − xi). After we compute all 
these displacement vectors as functions of the 
original vertex coordinates X, we apply the vertex 
displacement to the vertex coordinates with a scale 
parameter in the range 0 < λ < 1 (λ = 1/2 is usually 
a good choice). 

To compute vertex displacement vectors, we need 
an efficient way of finding all the first-order neigh-
bors of each vertex index, particularly the number 
of elements in the sets of first-order neighbors. 
Unfortunately, the data structures introduced so 
far do not provide such methods. However, be-
cause each edge (i, j) contributes a term to the 
sums defining both displacement vectors ∆xi and 

∆xj, we can accumulate all the displacement vec-
tors together while linearly traversing the array 
of edges. During the same traversal, we also ac-
cumulate the number of each vertex’s first-order 
neighbors, so that we can normalize the vertex 
displacement vectors.

Descent Algorithms
Let us consider the sum of the squares of the edge 
lengths ||xi − xj|| as a function of a polygon mesh’s 
vertex coordinates:

E x x x
ij E

j i( )= −
( )∈
∑ ! !
,

2 ,

where x is the table of vertex coordinates X re-
garded as a column vector of dimension 3NV, re-
sulting from concatenating all the NV 3D vertex 
coordinates xi. Note that as a function of x, this 
function is quadratic, homogeneous, and non-
negative definite. Consequently, it attains the 
global minimum 0 when all the edges have zero 
length or, equivalently, when all the vertex coor-
dinates have the same value. As a result, start-
ing from noisy vertex coordinates X, computing 
the global minimum of this function does not 
constitute a smoothing algorithm, but taking a 
small step along a descent direction toward a lo-
cal minimum (which in this case, is the global 
minimum) is still a valid heuristic. Gradient de-
scent is the simplest iterative algorithm to locally 
minimize a function such as this one. The nega-
tive of the gradient of the function E(x) is the 
direction of steepest descent. We can look at the 
gradient of E(x) as the concatenation of the NV 
3D derivatives of E(x) with respect to the vertex 
coordinates xi:

∂
∂
= −( )=− −( )
∈ ( ) ∈ ( )
∑ ∑E

x x x x x
i

i j
j V i

j i
j V i

.

To construct a descent algorithm, we still need 
to choose a positive scale parameter λ so that the 
vertex-coordinates update rule 

′= − ∂
∂

x x E
xi i
i

λ

actually results in the value of the function to de-
crease: E(x′) < E(x). Even though the negative of 
the gradient is the steepest descent direction, se-
lecting too large a value of λ (called overshooting) 
usually results in the function’s value actually in-
creasing. In this case, an iterative algorithm based 
on an improper rule to choose λ might result in 
oscillatory behavior or even divergence. 



 IEEE Computer Graphics and Applications 91

After we choose a descent direction v, to find 
the optimal value for λ, we can look at the 1D 
problem of minimizing E(x + λv) with respect to λ. 
In our case, because the function E(x) is quadratic, 
this is a simple 1D quadratic optimization problem 
that we can solve in closed form. Explicitly, we can 
compute the optimal value for λ by solving the 
linear equation

λ ! !v v v v x xi j t

ij E
i j

t
i j−

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
+ −( ) −(

( )∈
∑
,

))
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
=

( )∈
∑
ij E,

0 .

Because a second traversal of the list of edges is 
necessary to accumulate the two coefficients of 
this linear equation, for long meshes, this step is 
usually avoided and replaced with user-specified 
values for λ.

Although we can already observe a close connec-
tion between this method and Laplacian smooth-
ing, the descent directions chosen in both cases 
are not identical. Why is that so?

The Jacobi Iteration
The Jacobi iteration is the simplest iterative method 
to solve large square diagonally dominant systems 
of linear equations Ax = b, where the ith equation is 
solved independently for the ith variable, keeping 
the other variables fixed and resulting in a new 
value for the ith variable. After we use this method 
to determine the new values for all the variables, 
the old variables are replaced by—or displaced 
in the direction of—the new variables, and the 
process repeats for a fixed number of iterations or 
until convergence. Under certain conditions, the 
method converges to the solution of the system 
of equations.

In the context of optimizing a quadratic func-
tion E(x), the system of equations to be solved cor-
responds to making the function’s gradient equal 
to zero. Even when the performance function is 
not a quadratic function of the variables, we can 
use this method to construct a properly scaled 
descent algorithm. This generalized Jacobi itera-
tion is equivalent to minimizing the function E(x) 
with respect to the ith variable independently. If 
we write the new value for the variable xi as the 
old value plus a displacement, xi + ∆xi, in the case 
of the sum of square edge lengths function, de-
termining the displacement ∆xi reduces to solving 
the equation

 
0 1= ∂
∂

… +∆ …( )

= ∆ + −( )=
∈ ( )
∑

E
x x x x x

x x x n
i

i i N

i i j
j V i
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ii i j i
j V i

x x x∆ − −( )
∈ ( )
∑ ,

which results in the Laplacian-smoothing dis-
placement vector. We can determine the optimal 
value for the parameter λ by minimizing E(x + λ∆x) 
with respect to λ, as described earlier, although λ = 
1/2 usually works well in practice.

How to Fix Laplacian Smoothing
Laplacian smoothing is a simple, easy-to-implement 
algorithm. It produces smoothing, but when too 
many iterations are applied, the shape of the poly-
gon mesh undergoes significant and undesirable 
deformations. As I mentioned, this is because the 
function E(x) being minimized has a global mini-
mum (actually, infinitely many, but unique mod-
ulo a 3D translation) that does not correspond 
to the result of removing noise from the original 
vertex coordinates. Any converging descent algo-
rithm will approach that minimum, which is why 
we observe significant deformations in practice. In 
our case, in Laplacian smoothing, all the vertex 
coordinates of the polygon mesh to converge to 
their centroid:

1

1N x
V

i
i

N V

=
∑ .

In the literature, this problem is referred to as 
shrinkage. Many algorithms, based on different 
mathematical formulations ranging from signal 
processing to partial differential equations, have 
been proposed over the past 15 or more years to 
deal with, and solve, the shrinkage problem, but I 
will not survey these algorithms here.

For the sake of simplicity, I take the viewpoint 
that the shrinkage problem is a direct result of the 
“wrong” performance function being minimized. 
Consequently, I address the shrinkage problem by 
modifying the performance function being mini-
mized. However, after constructing each new per-
formance function, I follow the same simple steps 
described earlier, of minimizing the function with 
respect to each variable independently to obtain a 
properly scaled descent vector and then updating 
the variables as in Laplacian smoothing by displac-
ing the vertex coordinates in the direction of this 
descent vector. Finally, I repeat the process for a 
predetermined number of steps or until conver-
gence based on an error-tolerance stop test.

Vertex Position Constraints
The most obvious way to prevent shrinkage is to 
update all the vertex coordinates. More formally, 
we partition the set of vertex indices V into two 
disjoint sets: a set VC of constrained vertex indi-
ces and a set VU of unconstrained vertex indices. 
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We also partition the vector of vertex coordinates 
x into a vector of constrained vertex coordinates 
xC and a vector of unconstrained vertex coordi-
nates xU. We keep the same sum of squares of edge 
lengths function E(x) = E(xU, xV), but we regard it 
as a function of only the unconstrained vertex co-
ordinates xU, with the constrained vertex coordi-
nates xV regarded as constants. As such, this func-
tion is still quadratic and nonnegative definite, but 
it is no longer homogeneous.

Generally, this function still has a unique mini-
mum (modulo a translation in this case) that has 
a closed-form expression, and the minimum does 
not correspond to placing all the vertices at a sin-
gle point in space. If we apply the same approach 
I described earlier to compute a descent direction 
by minimizing E(xU) with respect to each uncon-
strained variable independently, we end up with 
the same descent vectors as in Laplacian smooth-
ing and the same descent algorithm, but here, only 
the unconstrained vertex coordinates. So, this al-
gorithm’s computational cost is roughly the same 
as that for Laplacian smoothing.

Unfortunately, we still see shrinkage. In general, 
it is not clear which vertices should be constrained 
and which should be free to move, but within an 
interactive modeling system that allows for inter-
active vertex selection, this effectively smoothes 
out selected portions of a polygon mesh, which is 
useful in practice.

Rather than keeping the constrained vertices at 
their original positions, we can assign them new tar-
get positions, in which case the constrained vertices 
can be updated first and then kept fixed during the al-
gorithm iterations. Unfortunately, if the constrained 
vertex displacements are large compared with the 
average edge length, this algorithm might produce 
noticeable shape artifacts during the iterations.

An alternative is to switch to a soft-constraints 
strategy, in which all the variables are free to move 
again and the constraints are satisfied in the least-
squares sense by adding one or more terms to the 
function being minimized. For example, in our 
case, we consider this function

E x x x x xj i
ij E

i i
i VC

( )= − + −
( )∈ ∈
∑ ∑! ! ! !2 0 2

,
µ ,

where µ is a positive constant, the second sum is 
over the constrained vertices, and xi

0 is a target 
constrained-vertex position provided as input data 
to the algorithm. By minimizing each variable in-
dependently, we obtain the same expression as in 
Laplacian smoothing for the displacements ∆xi cor-
responding to the unconstrained vertices, and

∆ =
+

−( )+ −( )
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
∈ ( )
∑x n x x x xi

i
j i i i

j V i

1 0
µ

µ
⎟⎟

for the displacement ∆xi corresponding to the con-
strained vertices.

Face-Centroid Constraints
To produce acceptable results, we must constrain 
many of the vertices. Rather than imposing con-
straints on vertex positions, we impose similar 
constraints on some or all of the face centroids. 
The intuition here is that the face centroids are 
weighted averages of the face vertex coordinates 
because of the smoothing process, so the problem 
is how to transfer that smooth-shape informa-
tion back from the face centroids to the vertex 
coordinates. Continuing with a soft constraints 
approach, we can consider the following perfor-
mance function, which looks very similar to the 
one used to impose soft vertex constraints:

E x x x x xj i
ij E

f f
f FC

( )= − + −
( )∈ ∈
∑ ∑! ! ! !2 0 2

,
µ ,

where FC is the subset of constrained faces (it could 
be all the faces). For each f, we express the centroid 
xf as the average of the face vertex coordinates:

x n x xf
f

i inf
= +…+( )1

1 ,

so that we can regard the overall function as a 
function of only the vertex coordinates, and xf0  
as the target 3D point value for the face centroid. 
For example, xf0  could be the face centroid’s initial 
value before we apply any smoothing. Even though 
we would start the algorithm with the term of the 
performance function corresponding to the face-
centroid constraints identical to zero, it could 
become nonzero after one or more iterations while 
the overall function decreases.

By applying the generalized Jacobi strategy of 
minimizing with respect to each variable indepen-
dently, we obtain the following expression for each 
displacement ∆xi:

∆ =
+ ∑

−( )+ −( )

∈

∈

x
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i
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⎟⎟⎟⎟⎟⎟j V i
,

where FC(i) is the subset of constrained faces f 
containing vertex index i. These displacements 
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and normalization factors can be accumulated 
as in previous algorithms by initializing to zero, 
traversing the array of edges, traversing the array 
of constrained faces, and then normalizing. Once 
we compute the displacements, we can update the 
vertex coordinates as in Laplacian smoothing.

Face-Normal Constraints
None of the constraints discussed so far allow 
for direct control of local surface orientation. A 
smoothing algorithm that can selectively control 
this orientation is a useful tool in an interactive 
polygon-mesh-editing system, and yet another 
possible way to prevent the shrinkage problem of 
Laplacian smoothing. To control surface orienta-
tion, we must introduce surface-normal vectors 
into the performance function to be minimized. 
As we have done for the face centroids, one pos-
sibility is to derive an expression for a face-normal 
vector as a function of the face vertex coordinates 
and then add an error term to the performance 
function for all or some of the faces. Because do-
ing so results in nonlinear equations to solve for 
the displacement vectors, we propose a simpler al-
ternative. We consider the following performance 
function,

E x x x u x xj i
ij E

f
t j i

ij E f
( )= − + −( )( )

( )∈ ( )∈ ( )
∑ ∑! !2

2

, ,
µ
ff FN∈
∑ ,

where the first term is the sum of square edge 
lengths as in all the previous performance func-
tions, and the second term is a sum over a sub-
set FN of faces in which we want to impose the 
face-normal constraint. For each such face-edge 
pair, we impose as a soft constraint that the face-
normal vector uf be orthogonal to the face bound-
ary vector xj − xi. The user provides face normal 
vectors uf as additional input to the algorithm.

However, our polygon mesh representation does 
not force faces to be planar. For this to happen, 
the soft constraint must be satisfied for all the face 
boundary vectors of each face. Note that with the 
constrained face-normal vectors regarded as con-
stants, this performance function is also quadratic 
and homogeneous in the vertex coordinates. In 
this case, the displacement vectors satisfy the fol-
lowing linear equations:

n I n n x
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i f f
t

j V fif F i
i
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N

−( )+ −( )
∈ ( ) ∈ ( )∈ ( )
∑ ∑∑µ

,
,

where I is the 3 × 3 identity matrix and V(f, i) = 
V(f) ∩ V(i) is the set of vertices that belong to face 
f and are first-order neighbors of vertex i (there are 
exactly two such vertices when the face is known 
to contain vertex i). The 3 × 3 matrix on the 
left side multiplies ∆xi, which is symmetric and 
positive definite and can be accumulated during 
the mesh traversal along with the other sums. We 
can easily invert it using Cholesky decomposition.

Smoothing Face-Normal Vectors
Assume that we have a face-normal vector uf for 
every face of the polygon mesh. We concatenate 
these face-normal vectors to form a vector u of 
dimension 3NF, which we consider not a user-
provided constant but a new variable. Of course the 
variables u and x are not independent. But rather 
than imposing their relations as hard constraints, 
we regard them as independent variables and 
represent their relations as soft constraints, as in 
the case of face-normal constraints.

To remove noise from the face-normal vector, 
we consider the performance function

E u u uf
f g E

g( )= −
( )∈
∑ ! !
, *

2 ,

which is the sum over the dual-mesh edges of the 
square differences of face-normal vectors. The set 
of dual-mesh edges E* consists of pairs (f, g) of 
faces sharing a regular edge (one that has exactly 
two incident faces). Formally, a mesh’s dual graph 
has the mesh’s faces as dual-graph vertices and 
the dual-mesh edges as dual-graph edges. It is 
important to note the similarity between this 
performance function and the sum of square edge 
lengths.

If we initialize the face-normal vectors from 
the vertex coordinates, we can use this perfor-
mance function to first remove noise from the 
face-normal vectors and then use the smoothed 
face normal as face-normal constraints in a sec-
ond smoothing process applied to the vertex co-
ordinates. This second process of smoothing the 
vertex coordinates with face-normal constraints 
is an integration of smoothed face normals. Ap-
plying our strategy to this performance function, 
we can compute a displacement vector ∆uf for the 
face-normal vectors. Because after we apply these 
face-normal displacements the face-normal vec-
tors are no longer unit length, we normalize the 
updated face-normal vectors to unit length and 
then perform the face-normal integration step.

An alternative is to consider the following per-
formance function,
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and apply our minimization strategy to the vari-
ables x and u together. In this way, we can deter-

mine displacement vectors ∆xi and ∆uf as func-
tions of x and u and then update both variables 
at once, followed by face-normal unit length nor-
malization. I leave the details of these derivations 
to you.

Note that the two approaches discussed here 
allow for hard constraints to be applied to a subset 
of face-normal vectors. As in the case of hard 
vertex-coordinate constraints, the constrained 
values are just not updated. Also, we can impose 
soft face-normal constraints by adding yet another 
term to the last performance function (the sum 
over a subset of faces of square errors between face-
normal vectors and target face-normal vectors).

We have considered a number of ways to add 
constraints to Laplacian smoothing. All 

these strategies can be combined into a single 
general polygon-mesh-smoothing that allows 
for hard and soft vertex position constraints on 
disjoint subsets, vertices and soft face-centroid 
constraints on a subset of faces, and hard and 
soft face-normal constraints on a disjointed 
subset of faces.

Overall, the performance function has six 
terms, and the contribution of each can be con-
trolled through six corresponding weights. An 
implementation of what I described in this ar-
ticle, written in Java, appears in Figure 1. You can 
download the software at http://mesh.brown.
edu/optimization, along with a more detailed 
description of its operation. By selectively set-
ting the weights of some of the six terms of the 
performance function to zero, and by constrain-
ing all the vertex positions or all the face-normal 
vectors not to change, you can implement all the 
algorithms discussed in this article, including La-
placian smoothing.  

Gabriel Taubin is a professor in Brown University’s School 
of Engineering and the editor in chief of this magazine. Con-
tact him at taubin@brown.edu.

Selected CS articles and columns are also available 
for free at http://ComputingNow.computer.org.
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Figure 1. Example. A sample application implements 
all concepts described in this article, including  
(a) smoothing, (b) applying an algorithm to the 
mesh in Figure 1a without constraints, and (c) using a 
selection panel to specify multiple subsets of vertices 
and faces.


