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Abstract

In this chapter we address the problem of reconstructing the surface geometry,
topology, and color map of a 3D scene from a finite set of colored oriented points.
These data sets are nowadays obtained using a variety of techniques, including
multi-view stereo reconstruction methods from multiple 2D images. We describe
a novel variational method which reduces the problem to the solutions of sparse
systems of linear equations. We first use the point positions and orientation vectors
to reconstruct the geometry and topology of a watertight surface represented as
an adaptively tesselated polygon mesh. The method then smoothly extrapolates
the color information from the points to the surface. Experimental evidence is
presented to show that the resulting method produces high quality polygon meshes
with smooth color maps which accurately approximate the source colored oriented
points.

1 Introduction

This chapter addresses the problem of reconstructing the geometry and topology of a watertight
surface, and a smooth surface color map, from a finite set of colored oriented points. This problem
has a wide range of applications in industry, entertainment, virtual reality, archeology, forensics,
art, medical imaging, and many other areas. Colored oriented point clouds are nowadays obtained
using various optical measuring devices, such as laser scanners and inexpensive structured lighting
systems, by other computational means such as multi-view stereo reconstruction algorithms, and
also result from large scale simulations. We are particularly interested here in the reconstruction of
colored surfaces from multi-view image and video data captured using consumer level digital and
video cameras. The problem is particularly challenging due to the non-uniform sampling nature
of the data collection processes. Common problems to cope with include: non-uniform sampled
data due to concave surfaces, missing data due to inaccessible regions, noisy data due to sensor
incapabilities, and distorted data due to misalignment of partial scans. As well as other researchers
who have contributed to the field, we are particularly concerned with developing algorithms robust
with respect to these issues, and to develop efficient algorithms which can scale up to very large data
sets.

The prior art in surface reconstruction methods is extensive. We only discuss here some of the ex-
isting methods which reconstruct the geometry and topology of the surface from the point locations
and orientation vectors. For a more extensive description of the prior art we refer the reader to a re-
cent survey [20]. Despite the long history, the area is still active. One family of algorithms produces
interpolating polygon meshes where some of the input points become vertices of the polygons [3].
Most of these algorithms are based on constructing Voronoi diagrams and Delaunay triangulations
of the data points, and many come with guaranteed reconstruction quality [10]. Another family of al-
gorithms are based on implicit function fitting, and produce approximating surfaces which are more
desirable in the presence of noise. These methods include [2, 14–16] which reconstruct a binary in-
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Figure 1: Reconstruction of the side of a castle model: The input point cloud (top-left), Surface
reconstructed by the proposed algorithm(top-right), Two views from the surface and color map re-
constructed by the proposed algorithm (bottom).

dicator function; [4,5,9,13] which estimate a signed distance function; and [1,6,11,17,18,22] based
on local function fitting and blending. Most of these methods reduce the surface reconstruction
problem to the solution of a large scale numerical optimization problem, and use schemes based on
space partition data structures such as octrees to reduce the computational and storage complexity.

In [5] we introduced the Smooth Signed Distance Surface Reconstruction (SSD) method for recon-
structing the geometry and topology of a watertight surface. In this chapter we show how to extend
this method to the reconstruction of colored surfaces by estimating an additional continuous color
map defined on the reconstructed surface geometry. This color map approximates the colors associ-
ated with the data points at the point locations, and extrapolate with continuity those colors to areas
where the sampling rate is low. The color map estimation step extends the variational formulation in
[5] to accommodate appearance estimation over surfaces defined by implicit functions. As a result,
each problem reduces to the solution of a sparse linear system which can be solved independently
of the geometry and topology estimation by using an appropriate solver.

We devote Section 2, Section 4, and Section 5 to describe the variational formulation, the discretiza-
tion, and octree-based implementation, respectively. We present our results in Section 7. Figure 1
shows one example of surface and color map reconstructed with the proposed method. Note the
good behavior near boundaries, holes, and regions with uneven sampling.

2 Continuous Formulation

Given a colored oriented point cloud D= {(p1,n1,c1), . . . ,(pN ,nN ,cN)}, where pi is a surface loca-
tion sample, ni is the corresponding surface normal sample oriented towards the outside of the object,
and ci is the corresponding color sample, we are concerned with the problem of reconstructing a sur-
face S defined by an implicit equation S = {x : f (x) = 0}, where f : V → R is the implicit function
defined on a bounded volumetric domain V contained in Euclidean three dimensional space, and a
smooth color map g : V → R defined on the same domain with intensity values, so that f (pi) ≈ 0,
∇f (pi)≈ ni, and g(pi)≈ ci, for i = 1, . . . ,N.
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Figure 2: A 2D oriented point cloud (left) as samples of a 2D curve which is represented as a level
set of an indicator function (middle) (gray=1,white=0). The graph of the smooth signed distance
function (right) estimated by our algorithm from the same point cloud.

2.1 Surface Reconstruction

If the implicit function f (x) is continuous, then the surface S is watertight. Without loss of generality
we will assume that f (x)< 0 inside and f (x)> 0 outside of the object. As a reference, in both FFT
Surface Reconstruction [14] and Poisson Reconstruction [15] the implicit function is forced to be
the indicator function of the volume bounded by the surface S. This function is identically equal to
zero outside, to one inside, and discontinuous exactly on S, as shown in a 2D example in Figure 2.

Usually we are only interested in reconstructing the surface S within a bounded volume V , such
as a cube containing all the data points, which may result in an open surface at the boundaries of
the volume V , particularly when the points only sample one side of the object, there are holes in
the data, or more generally if the points are not uniformly distributed along the surface of the solid
object.

The gradient ∇f (x) of a function f (x) with first order continuous derivatives is a vector field normal
to the level sets of the function, and in particular to the surface S. We will further assume that the
gradient field on the surface S is unit length, which allows us to directly compare the gradient of
the function with the point cloud normal vectors. Since the points pi are regarded as samples of the
surface S, and the normal vectors as samples of the surface normal at the corresponding points, the
implicit function should ideally satisfy f (pi) = 0 and ∇f (pi) = ni for all the points i = 1, . . . ,N in
the data set. Since these two conditions are hard to satisfy in the presence of measurement noise,
we require that these conditions be satisfied in the least-squares sense. As a result, we consider the
problem of minimizing the following data energy

ED( f ) = ED0
( f )+λ1ED1

( f ) (1)

where

ED0
( f ) =

1

N

N

∑
i=1

f (pi)
2 ED1

( f ) =
1

N

N

∑
i=1

‖∇f (pi)−ni‖
2

and λ1 is a positive constant used to give more or less weight to the second energy term with respect
to the first term. The normalization by the number of points is introduced to make these two param-
eters independent of the total number of points. At this point this normalization has no effect, but
plays a role after we add a third regularization term.

Depending on which family F of functions f (x) is considered as the space of admissible solutions,
the problem of minimizing the energy function ED( f ) of equation (1) may or may not be well con-
ditioned. In particular, this energy function does not specify how the function should behave away
from the data points. Many parameterized families of functions have parameters highly localized
in space, and the energy function of equation (1) may not constrain all the parameters. If the un-
constrained parameters are arbitrarily set to zero, the estimated surface S may end up containing
spurious components located far away from the data points. To address this problem we add the
following regularization term to the energy function

ER( f ) =
1

|V |

∫

V
‖Hf (x)‖2 dx (2)
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where Hf (x) is the Hessian matrix of f , the 3×3 matrix of second order partial derivatives of f (x),
and the norm of the matrix is the Frobenius matrix norm, i.e., the sum of the squares of the nine
elements of the matrix. The integral is over the volume V where we are interested in reconstructing
the surface, |V |=

∫

V dx is the measure of this volume.

The total energy function in the proposed formulation is a weighted average of the data and regular-
ization terms

E( f ) = ED0
( f )+λ1ED1

( f )+λ2ER( f ) , (3)

and λ2 is another positive parameter. Increasing λ2 with respect to λ1 produces a smoother result.

Note that the three columns of the Hessian matrix Hf (x) are the partial derivatives of the gradient
∇f (x) with respect to the three cartesian variables:

Hf (x) =

[

∂∇f (x)

∂x1

∂∇f (x)

∂x2

∂∇f (x)

∂x3

]

As a result, by forcing the square norm of the Hessian matrix to be close to zero, the regularization
term makes the gradient of the function almost constant away from the data points. In the vicinity of
the data points the data energy terms dominate the total energy, and make the function to approximate
the signed distance function. Away from the data points the regularization energy term dominates
the total energy and tends to make the gradient vector field ∇f (x) constant.

2.2 Color Map Reconstruction

We are also interested in estimating the color map g defined on the same bounded volume V . Since
the points pi are regarded as samples of the surface S, and the colors ci as samples of the surface
color at the corresponding points, the color function should ideally satisfy g(pi) = ci for all the
points i = 1, . . . ,N in the data set. However, we again require that this condition be satisfied in the
least-squares sense. As a result, we consider the problem of minimizing the following data energy

QD(g) =
1

N

N

∑
i=1

(g(pi)− ci)
2 . (4)

Depending on which family G of functions g(x) is considered as the space of admissible solutions,
the problem of minimizing the energy function QD(g) of equation (4) may or may not be well
conditioned. In particular, this energy function does not specify how the function should behave
away from the data points. To constraint all the parameters we add the following regularization term
to the energy function

QR(g) =
1

|V |

∫

V
‖∇g(x)‖2 dx (5)

where ∇g(x) is the gradient vector of g, the 3×1 vector of first order partial derivatives of g(x), and

the norm of the vector is the L2-norm. The integral is over the same volume V where we reconstruct
the surface, and again |V | =

∫

V dx is the measure of this volume. The total energy function in the
proposed formulation is a weighted average of the data and regularization terms

Q(g) = QD(g)+µ QR(g) , (6)

and µ is a positive constant. Increasing µ produces a smoother result. In the vicinity of the data
points the data energy term dominate the total energy, and makes the function to approximate the true
appearance. Away from the data points the regularization energy term dominates the total energy
and tends to make the color function g(x) constant.

3 Linearly Parameterized Families

In this section we are concerned with the existence and uniqueness of solution for the variational
problems defined by the energy functions E( f ) and Q(g) of equations 3 and 6 respectively. We
restrict the analysis here to families of functions linearly parameterized by a finite number of pa-
rameters. Explicitly, a member of this family can be written as a linear combination of certain basis
functions

f (x) = ∑
α∈Λ

fα φα(x) (7)
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where α denotes an index which belongs to a finite set Λ, say with K elements, φα(x) is a basis
function, and fα is the corresponding coefficient. The K basis functions are chosen in advance, and
are not regarded as variables in the problem. The function can also be written as an inner product

f (x) = Φ(x)t F (8)

where F = ( fα : α ∈ Λ) and Φ(x) = (φα(x) : α ∈ Λ) are K-dimensional column vectors. Restricting
the energy energy E( f ) of equation 3 to this function results in a non-homogeneous and quadratic
function F tAF − 2btF + c in the K-dimensional parameter vector F . The matrix A is symmetric
and positive definite, and the resulting minimization problem has a unique minimum. The global
minimum is determined by solving the system of linear equations AF = b.

Similarly, when we restrict the color function g(x) to another linearly parametrized function

g(x) = Ψ(x)t G , (9)

the energy function Q(g) of equation 6 results in a non-homogeneous and quadratic energy GtBG−
2dtG+e in the K-dimensional parameter vector G. The matrix B is symmetric and positive definite,
and the resulting minimization problem has a unique minimum. The global minimum is determined
by solving the system of linear equations BG = d.

4 Discretization with Discontinuous Function

A hybrid of finite-element and finite differences scheme is presented in [5] to discretize the energy
function E( f ) of equation 3: a finite element discretization for the function f (x), and finite differ-
ences discretizations for the gradient ∇f (x) and the Hessian Hf (x). Since all these terms are written
as homogeneous linear functions of the same parameter vector F , the problem still reduces to the
solution of linear equations AF = b. As this particular discretization is applicable to adaptive grids,
we adopt a similar approach to discretize the energy function Q(g) of equation 6. We use a finite el-
ement discretization for the color function g(x), and finite differences discretization for the gradient
∇g(x).

To simplify the notation, we first consider a regular hexahedral grid partition of space. We assume
that the volume V is a unit cube V = [0,1]× [0,1]× [0,1], and that each of the three axes is split into M

equally long segments, resulting in M3 hexahedral cells and (M+1)3 vertices. In this discretization,
the indices α ∈ Λ are the grid cell multi-indices α = (i, j,k), for 0 ≤ i, j,k < M. The coefficients
gα are then the values of the color function g(x) at the grid centroids pα = ((i + 0.5)/M,( j +
0.5)/M,(k+ 0.5)/M). Determining which cell Cα each point pi falls into reduces to quantization.
If pi ∈Cα then

g(pi)≈ gα . (10)

Since the piecewise constant function leads to zero first derivatives within each cell, the square norm
of the gradient ∇g(x) is a generalized function supported on the square faces shared by neighboring
voxels (as Dirac’s δ “function”), and the integral over the volume V reduces to a finite sum over the
faces. Hence, we only need an approximation to ‖∇g(x)‖2 at the faces shared by cells. If Cα and Cβ
are two such cell that share a face, then we use finite differences

∇αβg =
1

∆αβ

(

gα −gβ

)

(11)

where ∆αβ is the Euclidean distance between the centers of the cells. As a result, the integral in the
regularization term of equation 5 becomes a sum over all the neighboring cell pairs

QR(g)≈
1

|V | ∑
(α,β )

|V |αβ

∆αβ

(

gα −gβ

)2
(12)

where |V |αβ is the area of the face shared by cells Cα and Cβ , and |V |= ∑(α,β ) |V |αβ .

5 Octree-Based Implementation

A regular grid formulation results in high storage requirements and slow algorithms which limit
its appeal. Instead, we adaptively construct an octree based on the location of the data points. In
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the recursive subdivision algorithm, a cell is split if the number of points contained is larger than
a prespecified value, and the cell depth does not exceed another prespecified value. The data set is
recursively partitioned into subsets of points Dα associated with cells Cα . For octrees the multi-
indices α = (L, i, j,k) must be augmented with a level (or depth) value L where 0 ≤ L ≤ LMAX.
The correspondence between indices α and cells is 1-1.

The finite-differences discretization presented in the previous section for regular hexahedral grids
extends in a natural way to octree grids, without any changes. There is one function value gα

associated with each leaf cell of the octree. As a result, within each cell we use gα to discretize
the function g(x), and use the discretization of the gradient ∇g(x) of equation 11, where the weight
|V |αβ of equation 12 is now the area of the common face.

We first estimate the implicit function f (x) using an iterative cascading multigrid approach described
in [5]. We start by solving the problem on a much coarser level than desired using a simple conjugate
gradient solver. Then use it to initialize the solution at the next level, which is then refined by the
conjugate gradient solver.

We then turn our focus into estimating the color function g(x) on the same level that is used to
estimate the implicit function f (x). We need to minimize the total energy of equation 6

Q(g)≈
1

N
∑
α

∑
i:pi∈Dα

(gα − ci)
2 +

µ

|V | ∑
(α,β )

wαβ

(

gα −gβ

)2
, (13)

where wαβ = |V |αβ/∆αβ . Note that this formulation still reduces to the solution of a linear system
system BG = d. After accumulating the elements of matrix B and vector d, for reasonably sized
problems one can use a direct solver. Instead, we use an iterative linear solver, namely Gauss-Seidel
method. We update one gα value at a time by using the following update equation

gα =
|V |∑i:pi∈Dα

ci +µN ∑β∈α∗ gβ wαβ

|V ||Dα |+µN ∑β∈α∗ wαβ
, (14)

where α∗ are the set of multi-indices of octree leaf cells that share a common face with cell Cα ,
and |Dα | is the total number of points in Dα . To compute an RGB color map, we repeat this
minimization procedure for each color channel independently.

We use the Dual Marching Cubes algorithm [19] to construct a polygonal approximation of the
isolevel zero of the implicit function f (x). Dual Marching Cubes requires values of the implicit
function defined at the centroids of the octree leaf cells. The computed implicit function is defined
at the vertices of the primal graph. An implicit function value is computed for the centroid of
each leaf cell by averaging the values associated with the eight cell corners. On the other hand,
the results of the color function are already defined at centroids of the octree leaf cells, so we can
directly transfer coefficients gα to the mesh with no further function evaluation, i.e., color per vertex
attribute on the final mesh.

6 Evaluation of Surface Reconstruction Methods

Our algorithm consists of surface reconstruction and color map estimation applied successively.
The surface reconstruction step mainly follows the variational formulation presented in Smooth
Signed Distance Surface Reconstruction (SSD) [5]. We include this section to motivate the use of
SSD against Multi-Level Partition of Unity Implicits (MPU) [17], Poisson Surface Reconstruction
(Poisson) [15], and Streaming Surface Reconstruction Using Wavelets (D4 Wavelets) [16]. We

Method Time (Sec) Memory (MB) Polygons

MPU 27 148 378925

Poisson 43 283 319989

D4 17 63 365974

SSD 72 264 346652

Table 1: The running time, the peak memory usage, and the number of triangles in the reconstructed
surface of the David’s head generated with different methods.
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Figure 3: Input point cloud the Chiquita model (top-left), and reconstructions using SSD (top-
middle and top-right), MPU (bottom-left), Poisson (bottom-middle), D4 Wavelets (bottom-right)
surface reconstruction methods.

evaluate these methods in terms of speed, memory, efficiency, and accuracy. We show that, in terms
of the quality of reconstruction, SSD outperforms these other methods even on data sets associated
with extreme complications: non-uniform sampling, sensor noise, and missing data. In addition, its
performance is still comparable to these methods.

Our initial test case is the head of Michalengelo’s David raw dataset of 1 million samples. This
dataset is assembled from many range images acquired by a laser scanner. All methods operate
on the same data set at a maximal octree depth of 8, and produce surfaces of comparable quality.
Table 1 summarizes the performance characteristics of each algorithm. Our second test case is the
Chiquita model raw dataset comprising 705,375 samples. This dataset was acquired by scanning
the real world object with an inexpensive 3D structured lighting system [8]. It is an example of
non-uniformly distributed points with many inaccurate normals. Figure 3 compares different recon-
structions at a maximal octree depth of 9. MPU produces spurious surface sheets. Although D4

Model MPU Poisson D4 SSD

Armadillo 1.0000 0.4617 0.2383 0.3514

Dragon 0.8779 1.0000 0.5301 0.6810

Horse 0.0752 0.0827 1.0000 0.0551

Igea 1.0000 0.7761 0.5701 0.4018

Table 2: Hausdorff distance between real surfaces and reconstructed surfaces. Each row is normal-
ized by the maximum error to provide relative comparison (lower is better).
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Wavelets performs much better, it can not fill in gaps reasonably. Poisson, and SSD Reconstruc-
tion both result in pleasing surfaces with subtle differences. To evaluate the numerical accuracy of
the reconstruction results we follow the same strategy as in [16]. We first sample points from a
known model, then reconstruct surfaces using each method with this point set. We then compute the
Hausdorff distance between each reconstructed model and the known model using Metro tool [7].
Table 2 summarizes the result. Note that, in all cases, SSD reconstruction recovers the surfaces with
higher degree of accuracy than the Poisson reconstruction. And in two cases (Horse, and Igea) it
also outperforms D4 Wavelets.

7 Results

Figure 4: Reconstruction of a building facade. Top row: The input point cloud, and surface geometry
reconstructed by the proposed algorithm. Middle row: Two views from the surface and color map
reconstructed by the proposed algorithm. Bottom row: 6 examples from the set of 14 images that
are used for shape acquisition.

We apply our algorithm to colored oriented point clouds retrieved using the well-known multiview
stereo (MVS) pipeline consisting of two publicly available algorithms Bundler [23], and the Patch-
based MVS (PMVS) [12]. The goal of multiview stereo is to reconstruct a 3D model from images
taken from known camera viewpoints. To learn the viewpoints, we use Bundler which takes a set
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of images as input and accurately estimates the camera viewpoint per each image. We then use the
Patch-based MVS (PMVS) algorithm which takes the same set of images and the estimated camera
parameters as input and produces 3D models represented as colored point clouds with accuracy
nearly comparable with laser scanners [21]. PMVS is based on the idea of correlating measurements
from several images at once to derive globally consistent 3D surface samples. We use a standard
digital camera for all the data sets except for the face dataset. In this case, we have to use a set of
synchronized cameras as the person could move during data collection procedure. In addition, each
camera is calibrated with respect to a common coordinate system.

Figure 5: Reconstruction of a human frontal view. Top row: the input point cloud (top-left), surface
geometry (top-middle), and color map (top-right) reconstructed by the proposed algorithm. Bottom
row: 6 images that are used for shape acquisition.

Our initial test case is the facade of the Applied Mathematics building of Brown University raw
dataset of 66,935 points retrieved from 14 photographs. Each image is captured at resolution 1282×
854 with a standard digital camera. The proposed method results in a model consisting of 77,603
polygons when a maximal octree of depth 10 is used. Fig. 4 shows the reconstruction of the model,
and the input point cloud. Our second test case is the frontal view of a human raw dataset of
12,346 points retrived from 6 photographs.Each image is captured at resolution 1024× 768 with
a time-synchronized camera system consisting of 6 cameras. The proposed method results in a
model consisting of 64,909 polygons when a maximal octree of depth 9 is used. Fig. 5 shows
the reconstruction of the model, and the input point cloud. Our third test case is the brick with
Mesopotamian cuneiform inscriptions raw dataset of 333,401 points retrieved from 21 photographs.
Each image is captured at resolution 3072× 2304 with a standard digital camera. The proposed
method results in a model consisting of 1,034,663 polygons when a maximal octree of depth 11 is
used. Fig. 6 shows the reconstruction of the model, and the input point cloud. Our last test case is
the footprint of a human wearing a boot raw dataset of 180,885 points. This dataset is retrieved from
11 photographs. Each image is captured at resolution 4272×2848. The proposed method results in
a model consisting of 897,273 polygons when a maximal octree of depth 11 is used. Fig. 7 shows
the reconstruction of the model, and the input point cloud.

All the experiments are conducted on a PC with a Intel Core 2 Duo 2.26 GHz processor and a 4GB
ram. A non-threaded in-core CPU implementation takes 3-15 minutes depending on the maximum
depth of the tree that will be used for reconstruction. It consumes %90 of the time for surface recon-
struction, and the rest %10 for color map reconstruction. We demonstrate that this method produces
watertight surfaces with pleasing smooth color maps even on data sets with various complications:
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Figure 6: Reconstruction of a brick with cuneiform, Mesopotamian, 859-840 BCE, clay, Overall
35 x 35 x 11 cm, Williams College Museum of Art, Williamstown, MA, Gift of Professor Edgar J.
Banks and Dr. John Henry Haynes, Class of 1876,(20.1.33.A). Top row: the input point cloud (left),
and surface geometry (right) reconstructed by the proposed algorithm. Middle row: Two views from
surface and color map reconstructed by the proposed algorithm. Bottom row: 6 examples from the
set of 21 images that are used for shape acquisition.

non-uniform sampling, sensor noise, and missing regions. In addition, we observe that it is quite in
terms of time and memory usage.

8 Conclusion

This chapter presented a complete solution to the problem of reconstructing a 3D scene’s surface and
color map from a finite set of colored oriented points. We used an existing variational formulation
for the problem of reconstructing a watertight surface defined by an implicit equation. We then
extended this by introducing a new variational formulation for the problem of estimating a smooth
appearance defined over the surface. We showed that a simple hybrid FE/FD discretization still
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Figure 7: Reconstruction of a shoe print. Top row: the input point cloud (left), and surface geometry
(right) reconstructed by the proposed algorithm. Middle row: Two views from surface and color
map reconstructed by the proposed algorithm. Bottom row: 6 examples from the set of 11 images
that are used for shape acquisition.

reduced the problem to the solutions of sparse linear systems. A proof-of-concept implementation
has been shown to produce high-quality polygon meshes with smooth color-per-vertex function.
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