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Abstract. Visual Sensor Networks (VSNs) represent a qualitative leap
in functionality over existing sensornets. With high data rates and precise
calibration requirements, VSNs present challenges not faced by today’s
sensornets. The power and bandwidth required to transmit video data
from hundreds or thousands of cameras to a central location for process-
ing would be enormous.

A network of smart cameras should process video data in real time,
extracting features and three-dimensional geometry from the raw images
of cooperating cameras. These results should be stored and processed in
the network, near their origin. New content-routing techniques can allow
cameras to find common features—critical for calibration, search, and
tracking. We describe a novel query mechanism to mediate access to
this distributed datastore, allowing high-level features to be described as
compositions in space-time of simpler features.

1 Introduction

We propose an architecture for the construction and use of Visual Sensor Net-
works (VSNs). VSNs will handle much richer data than today’s simpler data
collection sensornets. Cameras will perform local image processing, and then
cooperate to perform higher-level tasks, such as calibration, view combination,
object detection, and tracking.

Today, these systems are monitored by a small army of security personnel.
Smart event detection based on higher level analysis of the image data can help
alleviate this burden. Combining information from multiple cameras, space-time
trajectories of individuals can be computed, and suspicious behaviors can be
identified. Today’s multi-camera systems perform some of this integration, but
do so in a centralized fashion, requiring all cameras to stream video data to a
single server. These systems will not scale easily to the large networks that could
provide more detailed and comprehensive coverage.

Although complete centralization in untenable, information from several cam-
eras must be combined to make inferences about events occurring in the 3D
world, such as detecting and tracking individuals or vehicles. In order to do so,
the location and orientation of each camera must be determined with respect
to a single coordinate system. This is the camera calibration problem. Mobile
cameras require continuous calibration.
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To meet the needs of future applications, smart cameras must process video
data in real-time, produce lower bit-rate summaries, communicate and share
data with neighboring cameras, and execute collaborative algorithms in a de-
centralized fashion.

1.1 Example Application

Consider how a potential VSN could be deployed and used in a busy metropoli-
tan airport. The network might include the hundreds of static cameras already
in use at such an airport today, augmented with thousands of additional static
cameras to gain greater coverage. Hundreds of mobile cameras attached to air-
port personnel and equipment may also play a role.

The VSN will provide security personnel with various ways to access the
camera network. The simplest is to ask for views of any area, from any direction.
Virtual views would be synthesized from overlapping views provided by the
camera network’s extensive coverage. Operators might choose to follow people
or objects that appear suspicious, or to construct a super-resolution view of a
traveler’s face. Moving beyond direct human control, such a network could be
programmed to draw attention to activity in a restricted area, or an activity
by unrecognized personnel. Finally, we envision the network detecting high-level
activities such as a traveler who has left his baggage unattended.

It is critical that operators have the tools available to assess the threats de-
tected by the network. For example, users should be able to follow a person or
object back in time or ask high-level questions about the past. How long has this
person been in the room? Which other people has he spoken with? Based on its
motion when carried, how heavy is his bag?

1.2 Requirements

In order to support applications of the type we envision, smart cameras must
capture and process image data in real-time, and cooperate to make that data
available to applications in a structured way.

Multi-Camera Calibration and Time Synchronization. Smart cameras must
share a common global coordinate system in order to combine information from
disparate cameras in 3D. Multi-camera geometric calibration is an active re-
search topic—current solutions are complex, involving cumbersome procedures
to overcome the unavoidable partial occlusions, and are based on centralized
computation, usually requiring factorization of very large matrices [1,2]. The
most common approach is based on structure from motion algorithms, in which
the pose of all cameras and the location of feature points in 3D are simultane-
ously estimated. VSNs, on the other hand, require a new robust solution based
on distributed algorithms. Furthermore, VSNs with dynamic nodes require new,
incremental approaches. Photometric calibration is also necessary to account
for inevitable differences in sensitivity to light and color between any two image
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sensors. Finally, VSNs must compensate for the lack of precise time synchroniza-
tion at the frame level.

Virtual Views. Virtual views are images created by integrating visual data from
several cameras to simulate the view of a virtual camera where none exists. These
views are generated by interpolating sample values from the light field [3,4], an
abstraction that represents the mapping of 3D rays to colors. In a VSN the
individual images that constitute the light field samples are best stored in a
distributed fashion near the smart cameras where they are observed. An image-
based routing protocol efficiently routes virtual view requests to the appropriate
smart cameras and composes their individual contributions within the network
to minimize network traffic.

Virtual views may also be specified in resolution or time, leading to virtual
video streams. By combining results from several overlapping cameras, a vir-
tual camera of greater frame-rate or resolution may be simulated. Generating
video streams consisting of frames defined by similar parameters can be less
taxing since the image-based routing mechanism may cache recent decisions. Of
particular interest is a virtual video stream that follows a chosen target.

Detection and Tracking. In order to track moving objects, the objects must be seg-
mented from their background. This operation requires a continually maintained
model of the background. Once foreground objects are segmented out of the back-
ground, noise removal and connectivity analysis defines blobs. Tracking 2D blobs
over time requires a significant amount of computation at the smart camera level,
but reporting their trajectories requires very little communication. Tracking in 3D
requires establishing correspondences between blobs detected in separate smart
cameras, requiring fine-grained calibration and collaborative processing.

Establishing correspondences between large blobs detected in different images
usually reduces to feature detection and matching [5,6]. Features are small blobs
which are likely to have a similar appearance in a different image. Features might
correspond to corners of buildings, or facial features of people. In general, the
feature data interchanged between cameras is not large, but the complexity of
feature matching is in principle quadratic in the number of cameras.

Compression. Transmitting high resolution images and high frame-rate video
requires a significant amount of bandwidth, and as a result, consumes a signif-
icant amount of power. However, multiple cameras capturing multiple views of
the same scene produce images and video with significant redundancies. Trans-
mitting this redundant information is a wasteful allocation of the most precious
resource of battery operated wireless sensor networks. One approach to remove
the redundant information is to reconstruct the 3D structure of the world and
transmit a 3D video stream, which can later rendered from an arbitrary point of
view. Also, surveillance applications do not require high resolution everywhere
in the field of view of the cameras, but just around the detected objects. Image
and video compression schemes that interact with object detection algorithms
have the potential to reduce the bandwidth utilization significantly.
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1.3 Challenges and Contributions

The requirements of a VSN go beyond the techniques developed for existing
sensornets for two reasons. First, the raw data is extremely bandwidth intensive.
Few sensor systems tackle this challenge. Those that do focus on data types that
can be compressed in isolation by, for example, Fourier transform. Second, the
image data is difficult to aggregate. Existing systems build collection trees in
which aggregation reduces the size of acquired data at join points.

In order to aggregate image data, extensive communication must take place
first. Nearby cameras must share image features in order to establish correspon-
dences that create a common coordinate system. Even with aggregation, we ex-
pect that in-network storage will be critical to reducing bandwidth requirements.
With in-network storage comes challenges in routing and distributed query pro-
cessing. Our contributions lie in a scheme for storage and processing of data in
the VSN, and a high-level data access mechanism for operating on that data.

3D Data-Centric Storage, Routing, and Processing. We introduce data-directed
localization to dynamically calibrate without specialized hardware. Nodes will
dynamically build ever larger Geographic Hash Tables (GHTs) in which the
nodes share a common reference frame. GHTs allow for distributed feature
matching and feature matching in smaller GHTs is used to bootstrap local-
ization.

We also introduce data-centric processing (DCP), which places processing
elements in the network, located where the data they process will be stored in
the GHT. These processing elements operate on data as it becomes available,
inserting new, higher-level items into the datastore. Further processing elements
may continue this process to produce ever more complex observations.

VSNs must support queries that seek image data for a given object from a
given direction. To support these queries that do not map easily to a hash-based
content routing scheme, we have developed Image Based Routing. IBR uses a
binmesh to succinctly represents the views of many cameras in a single summary.
Query routing follows the binmeshes down the routing tree toward cameras that
observe the target object.

Space-Time Database Abstraction. Our work is intended to simplify the devel-
opment of 3D sensornet applications in two ways. First, we use a a space-time
“cube” abstraction for declarative access to the data available in the sensornet.
This abstraction hides the raw data acquired by the cameras, providing a form
of physical data independence. Applications will “pull” data using SQL-style
declarative queries posed on top of the cube abstraction. Second, we rely on
a predicate language for specifying space-time feature patterns for search and
tracking of complex objects and events easily.

Three-Dimensional Hardware. We advocate stereo smart cameras—devices that
will include two imaging sensors. The second image sensor adds little to the cost
or complexity of the design, but enables significant 3D sensing functionality as
well as a reduction in bandwidth utilization by leveraging the 3D structure of
the data.
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2 System Model

In comparison to existing sensornet approaches, our approach concentrates heav-
ily on in-network processing and storage. Existing systems generally use two
techniques: push computation all the way to the sensors (i.e., avoid repeating
redundant observations), or thin data by aggregation along a collection tree
(i.e., by averaging reading). Our techniques are more cooperative, and less hi-
erarchal. The nodes of VSNs must share the data collected in early stages to
enable later staged. Calibration information must be shared to enable feature
detection and tracking. Features (and their importance) must be shared in order
to guide compression. Collection along a tree is insufficient. Our basic system
model is illustrated in Figure 2.

1. “Interesting” data is identified using complex query and event specifications
over a space-time database (Sect. 5).

2. Queries and event specifications on application-level features (e.g., a mov-
ing person) are translated into an execution plan. The constituent feature-
oriented query operators are deployed to allow data centric processing.

3. Image features are extracted locally at each camera. They are then propa-
gated in a neighborhood, using a GHT-based model, to perform localization
and calibration in a distributed, collaborative fashion. Furthermore, features
are composed to form higher-level features using the data centric execution
plan.

4. Raw camera data is acquired, compressed, and stored locally (not necessarily
on the source camera). The compression is enhanced because of calibration
and feature detection as image redundancies and unimportant data are elim-
inated. Most sensor networks seek only to produce output for external con-
sumption. VSN nodes must share their computation (here, calibration data
and features) in order to function more efficiently (here, compress better).

5. Camera data is retrieved either as direct output from queries, or in a raw
form, but identified by the queries (e.g., “here is the trajectory of the car
you asked about” or “here is the face of the person who left his bag in the
atrium”). To meet potential resource constraints, raw data is compressed

2. Feature-oriented 
queries & event specs

5. Raw video &
image requests

3. Collaborative in-network 
feature extraction, storage, 
and matching (GHT-based)

4. Raw data storage & retrieval
compressed (Image-tree based)

features
raw data

6. Archival storage
(low resolution)

UI
1. Time-space 
database
abstraction

Fig. 1. High level Visual Sensor Network Model
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such that interesting features are kept at a higher resolution at the expense
of other features.

6. For applications that require it, all data is extracted in compressed, low-
resolution format and archived for forensic/historical analysis and legal com-
pliance. Network capacity will limit the fidelity of this data, but calibration
and feature knowledge will greatly improve upon the fidelity that might be
obtained by individual video streams from each camera.

3 Related Work

Visual Sensor Networks operate at the intersection of many fields, including
image processing, traditional wireless networking, and distributed data
management.

3.1 Centralized Image Processing

Most existing multi-camera systems are centralized, with all cameras streaming
video to a central server where the data is analyzed and visualized [7]. Most early
systems focused on the data management benefits resulting from the transition
from analog to digital and use the networking infrastructure only as a transport
layer [7]. They do no collaborative processing [1,2]. These approaches do not scale
to systems with large numbers of video sensors. To address scalability, most of
the data intensive processing must be performed at the source, with low-bitrate,
highly compressed descriptions of the data transmitted off node. As described
above, collaborative processing may result in higher levels of data compression
and additional savings in power and bandwidth utilization.

3.2 Routing in Sensornets

A wide variety of protocols have been developed for ad-hoc wireless routing
[8,9,10]. These protocols attempt to produce a traditional network-layer, allow-
ing hop-by-hop communication between named end-points. As such, they are
not appropriate for the needs of sensornets in which node identity is rarely
important.

Instead, specialized protocols have been developed with sensornets in mind.
Trickle [11] supports the dissemination of code to a sensornet while minimizing
communication costs. Data Centric Storage, in the form of a Geographic Hash
Tables [12] (GHTs), has been proposed to allow the storage and retrieval of
named data items within the network. A GHT stores a data item by hashing
its name to a geographic coordinate and then storing the item (or a pointer) at
the node closest to that coordinate. A modified version of GPSR [13] is used to
route the item to the nearby node and several replicas. In this work, we extend
GHTs in a number of ways adding new support for features that are important
to processing data in-network.
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3.3 Abstractions for Wireless Sensornets

High-level interfaces for application development in sensor networks have re-
ceived significant recent attention. Most work in this direction focused on basic
operating system and communication support [14], neighborhood and abstract
regions [15,16], data-centric event dissemination [17,18], and multi-resolution
data storage [19].

Closest to our work are those that take a database-centric approach to sensor
network data access, such as TinyDB [20] and Cougar [21]. Recent work [22] has
addressed space-time queries in sensornets. These systems focus on aggregation
style queries over scalar numerical values, whereas our proposal focuses on a
richer space-time database over multi-dimensional image/video data, requiring
major changes in the way queries are expressed and executed in the network.
In addition, these systems were designed to deal with low-rate data whereas
VSNs must handle significantly higher data rates, which we address with novel
in-network computation and 3D compression.

3.4 Visual Sensor Networks

The importance of Visual Sensor Networks has been recognized in the broad Sen-
sor Networks literature [23,24], but only relatively small testbed systems, most
often wired, have been constructed [25,26]. Similar systems have been proposed
for surveillance and security applications, urban traffic control [27], and many
more for military applications (refer to [28] for various references). A number
of systems for image-based-rendering applications have been proposed including
a moderate number of cameras arranged in a regular fashion [29], which can
produce super-resolution in time [30]. All of these algorithms are centralized.
They require the frames of all cameras to reside in a single place. Attention has
not been paid to distributed algorithms applicable to the VSN framework. The
same is true for stereo and multi-camera calibration algorithms [1]. Establishing
feature correspondences can be done in a pairwise fashion, but it is prone to
errors. Robust algorithms such as RANSAC [31] have proven reliable.

4 Network Protocols and Coordination

Visual Sensor Networks have several unusual requirement as compared to tradi-
tional wireless networks, or even existing sensornets. Camera networks require
fine-grained calibration, distributed feature matching and search, and image ori-
ented routing techniques.

4.1 Data-Directed Localization and Synchronization

We are not the first to observe that sensor networks are data-oriented [32]. In
existing sensor networks, requests are routed to the sensors best able to make
a specific observation by geographic routing techniques. For example, to find
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the average temperature in a room, a request is routed toward the room, and
then to all nearby sensors. In a static network, this routing might be based on
the known locations of immobile sensors. In a mobile network, dynamic routing
protocols determine the set of nodes in the target area, usually with the aid of
localization hardware such as Cricket [33] or GPS.

In visual sensor networks, the need for localization must be generalized to
include orientation and field of view. Small angular errors in orientation may be
unacceptable when a distant object’s location is estimated, or the views of two
cameras are to be integrated.

We propose data-directed localization in which smart cameras will localize
with respect to each other based on observed image data. Existing localization
techniques are not accurate enough to allow for image aggregation. Even the best
localizers have only centimeter scale accuracy which is insufficient for accurately
determining the orientation of a small sensor node.

In data-directed localization, sensors nodes will detect local features and then
cooperate to find common features observed by multiple cameras. When nodes
share multiple features, they will orient themselves in a shared coordinate sys-
tem. Additional cameras will orient themselves in this system by finding features
in the shared space. Time synchronization may be accomplished in the same way
by the shared observation of temporal events.

Local Feature Detection. Feature detection begins as a local level 2D operation.
Next, 3D features can be calculated locally from 2D features by using two image
sensors separated by a known baseline. The inter-camera search for correspon-
dences is drastically reduced by using 3D features. Sublinear geometric matching
techniques exists for spatial configurations of small groups of features in 3D [34].
These advantages motivate the use of 3D features to reduce bandwidth and
power utilization and explain why we advocate the use of smart cameras with
two image sensors.

Distributed Feature Matching. Distributed feature matching can be built on
top of the idea of a Geographic Hash Table [12]. After detecting local features,
each camera using geometric (not geographic) hashing [34], to bin them into
similar categories. Once categorized, these features are inserted into the GHT,
keyed by category. Similar features will therefore be placed at the same location.
Prospective matches can be determined at that location, and the nodes with
shared features can be notified, allowing them to directly confirm the match and
calculate their relative transformation matrix.

Unfortunately, GHTs rely on a preexisting localization scheme to enable ge-
ographic forwarding. In order to forward objects to their hashed locations, the
nodes must know their own locations and the locations of their neighbors. But
we intend to use feature matching in order to determine node locations!

Bootstrapping GHTs. We address this difficulty by bootstrapping localization in
small GHTs and extending GHTs to allow merges. Nodes will first organize in
small GHTs in which features may be advertised by scoped flooding over n hops.
Any two nodes that are within n hops of one another and share features will
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Fig. 2. The feature X is observed by the two distant camera nodes. The feature is cat-
egorized through a geometric hash function, g(), and then a storage location is selected
with a geographic hash, h(). Each camera routes the feature toward the designated
location, where the closest node, N, stores the feature, detects matches, and informs
the observers.

detect their overlap and orient themselves in a mutually agreed upon coordinate
system. When nodes in separate GHTs detect overlap, the GHTs merge using
a single coordinate system. Previous sensornets are incapable of bootstrapping
localization in this way because they do not sense distant features in sufficient
detail to determine precise relative positions.

In order to merge adjacent GHTs into a single unified coordinate space, shared
features must be discovered. However, these features may be shared among nodes
that are too far from each other to find each other with scoped broadcast. How-
ever, now that small GHTs have been established, they can be used to find more
distant matches. A GHT member may be in radio contact with nodes in another
GHT. Border nodes from one GHT may place features into the adjacent GHT
with knowing the relative transform between the GHTs. Since the GHT will
now contain its own features and the features of the adjacent GHT, matches can
occur between members of both GHTs.

Feature matching is a useful primitive for tasks beyond localization. To im-
plement tracking, adjacent cameras must realize they are observing the same
object. To generate virtual views, multiple views of the same object must be ag-
gregated. Further, we expect most searches in a three dimensional object space
to be example based. Such searches can be viewed as feature matching between
an abstract target and features detected in the environment. We turn to the
task of these general searches in the next section, using feature matching as an
important primitive.

We have developed a novel auto-calibration algorithm to estimate the relative
position and orientation of several camera pods, each consisting of four rigidly
mounted network cameras. A processing engine simulated in a computer cluster
converted each pod into a multi-sensor smart camera. In addition, basic 3D track-
ing was demonstrated using the estimated camera parameters. Figure 3 shows
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Fig. 3. Preliminary results using proposed 3D feature matching approach: (A) Camera
pod; only two of the four cameras used in the calibration algorithm; (B) Experimental
setup with three camera pods; (C) features extracted in each image independently;
(D) 2D short baseline feature matching within each camera pod results in 3D fea-
tures; (E) 3D feature matching between camera pods reduces matching complexity;
(F) calibration results.
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Fig. 4. Simulation results for distributed matching using incrementally built GHTs
shows that the GHT scheme exhibits convergence performance comparable to com-
plete feature flooding, but uses little more bandwidth than a simple 2-hop feature
propagation protocol. In both graphs, low numbers are better. On the left, they reflect
convergence into fewer individual coordinate systems. On the right, the reflect lower
network utilization

the pods mounted in the laboratory, and illustrates the steps of the algorithms.
Each pod performed small baseline feature matching and stereo reconstruction
to construct 3D features. Next, these 3D features were matched between pods.
Using a minimum of three correspondences, the pods calculate the rotation and
translation necessary to bring themselves into a common reference frame.

In parallel to this exploration of a centralized stereo matching technique,
we have simulated the performance of a distributed matching protocol, Light-
house [35]. Lighthouse attempts to converge an uncalibrated camera network
into a single coordinate space using the GHT matching techniques described
above. These simulations show that Lighthouse finds distributed matches nearly
as well as complete feature exchanges, yet uses less bandwidth than exchanges
among 2-hop neighbors. In these simulations of 100 camera networks, complete
feature exchange uses approximately five times the bandwidth of Lighthouse.
This advantage grows as the network increases in size.
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4.2 Feature-Oriented Search and Computation

Visual sensor networks will gather vast amounts of data that must be searched,
processed, and acquired by users and applications. GHTs were proposed in tradi-
tional sensornets as a compromise between moving all acquired data to a central
site, and leaving data at its point of acquisition. Centralizing data requires enor-
mous network capacity and power for transmission, regardless of whether the
data is ever queried. Leaving data unindexed at the acquisition site is costly
because queries must conduct exhaustive search to locate a data item.

The hash function of a GHT can be thought of as an index on arbitrary data.
If data is stored using names that correspond to the needs of queries, retrieval
and processing are efficient. For example, if cameras detect and measure the
heights of people they observe, they might store these observations (or pointers
to them) keyed by those heights, binned in one inch increments. A query can
find all individuals greater than six feet tall by examining the hash locations
associated with each potential observation above six feet. Sect. 5 presents a
relational database abstraction to sensor data, and just as in an RDBMS, we
will support arbitrary indexes by storing data according to hash functions that
correspond to expected queries.

Data indexed in this way is first hashed into a category, or bin. Next the GHT
applies a hash function to select a location for the category. Significant query
performance may be lost due to the random locations selected, even for keys
that will be queried sequentially. For example, suppose that an application seeks
observations of faces in a room—a specific geographic area. These observations
might have been inserted into the GHT with keys like, 〈face, x, y〉, where x
and y are the geographic coordinates of the observation, rounded to categorize
the observations. The query must lookup each possible value for x and y for
coordinates in the room. Hashing each such key results in the storage of these
observations arbitrarily throughout the sensornet.

Locality Preserving Hints. We propose widening the interface to the GHT’s inser-
tion operation to include an optional coordinate “hint.” The GHT hash function
will use the supplied coordinate to directly set the high bits of the coordinate at
which the data will be stored. In the common case of observations with spatial
locality that will be accessed by location, geographic hints will preserve spatial
locality and allow queries that access the observations sequentially to operate at
a small set of nearby locations. In the example above, observations with similar
x and y coordinates will be stored near each other.

Generalizing, we will also allow hints containing a small number of arbitrary
scalar values. By taking these values into account during hashing, a set of linear
values can be hashed along a line in geographic space. Multiple values can be
hashed to a two dimensional patch. Suppose facial observations of faces are
stored with hints describing the distance between eyes and the width of mouth.
The hinted hash of these observations will map them to a single quadrilateral in
the sensornet. Queries that must process a range of values will exhibit spacial
locality as they retrieve and process observations in the network.
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Feature Aggregation with Data-Centric Processing. The detection of high-level
features is generally accomplished by detecting simpler features in a partic-
ular arrangement. Primitive feature detectors place a record of their finding
in the GHT by inserting the feature under a well-defined name, such as eye.
To detect higher level features, a second level of feature detectors can be lo-
cated on the nodes that will receive the individual subfeatures. For example, at
hash(mouth), a face detector notes the location of the mouth and inserts a partial
face observation in the GHT. A similar aggregator creates partial observations
for eyes and noses. These observations are all inserted under the well-known
name partial-face at the same location. When enough observations agree, a
face has been detected, and the composite event is inserted at hash(face). We
consider these operators, placed in the GHT to process values at their insertion
point, to be the natural computational analogue to data-centric routing and
storage—data-centric processing.

Scoped GHTs. The GHT abstraction provides precise insertion and lookup op-
erations. That is, if any node inserts data under a given key, a lookup from any
other node will find the given item. However, feature matching and aggregation
do not require this strong guarantee. There is no need for partial-face obser-
vations associated with eyes observed hundreds of meters apart to be stored at
a single point. We propose Scoped GHTs that perform insertions nearby in the
case that the observation need not be accessible from afar.

We will explore a geographic hashing scheme, inspired by our previous work
on GLS [10], that enable this relaxation. We will divide the world with a fixed
sized grid, and store features only in those squares where accessibility is needed.
If the feature is used only in queries that require it to be observed within two
feet of another feature, then the feature is inserted only in those squares that are
within two feet of the feature’s location. Scoped insertions require constant power
and bandwidth, dependent on square size, rather than the O(

√
(n)) power and

bandwidth required to traverse a sensor field of n nodes to a random location.
Figure 5 shows how DCP, using scoped insertions is improved. On the left,

observation are sent to a central base station in order to perform complex event
detection. On the right, features are are sent only to local base stations. On
average, features are tranmitted shorter distances, and the load is spread among
many stations. Nonetheless, all complex features are still found, since subfeatures
that may be a part of the same larger feature are collected at the same base
station.

4.3 Structured Routing and Aggregation

Until now, we have discussed techniques that allow the VSN to perform tasks,
such as calibration, feature detection, and tracking, without transmitting large
amounts of visual data. Howevere, the VSN must also return visual data effi-
ciently when requested.

Image Based Routing. A sensor network must support data directed queries
such as, “Show me the view of the Atrium, from the North.” The querier does
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Fig. 5. Network transmissions are plotted as “heat map.” On the left, transmission to
a centralized base station overwhelm the nearby nodes. On the right, DCP with scoped
insertions balances the load to provent hotspots.

Fig. 6. To build binmeshes, the observable geometry is divided into tiles. A faceted
hemisphere is placed on each tile. A binmesh describes the set of facets observable by
a camera or set of cameras.

not know or care which sensors are involved in answering the query. In a visual
sensor network, queries must be routed to the sensors that can observe an area,
rather than the sensors in the specific area.

We are integrating our work on Image Based Routing into our VSN frame-
work. The IBR protocol is used when a query is seeking data for a specific
location as seen from a specified direction. Image Based Routing resembles a
traditional distance-vector routing protocol with route aggregation, rather than
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hash-based content routing. Image Based Routing is tree based. The leaves of the
tree pass descriptions of their fields of view to their parent. As the descriptions
work their way toward the root, nodes aggregate multiple view descriptions into
a single description that describes their own view and the views of their descen-
dants. A query for any particular view can be routed from the root by choosing
the child(ren) that has advertised a view description matching the query. Re-
sponses to the query are aggregated from partial responses as they flow back
toward the root from the various responding cameras.

View Representation. We have developed the binmesh, a datastructure which
represents the angles from which a given camera observes a given geometry. Ag-
gregating these binmeshes is, approximately, a bitwise OR. Once aggregated,
accuracy remains high. An aggregated binmesh does not represent any new im-
possible views that its constituent binmeshes did not declare. Figure 6 is neat.

5 Data Access and Querying

An important goal of our proposal is to simplify VSN application development.
To this end, we will allow users and applications to ask questions about the
network in a high-level language that specifies what data to gather from the
network without specifying how the query should be executed. The system must
adpatively plan in order to execute the query efficiently, taking into account other
simultaneous queries, and the fidelity needs that may influence compression.

5.1 Space-Time Database

Our primary abstraction is a space-time 4-dimensional view of the underlying
data, consisting of a 3-D volume (x,y,z) representing geographic space and the
fourth dimension t representing time. Conceptually, this abstraction captures
the data produced by all sensors in a sequence of frozen time frames, where
each frame is a 3-dimensional cube that provides a logical model of the world of
interest. This abstraction allows users to easily query the system based on spatial
attributes on a combination of live and historical data. This view is virtual and
not materialized. The implication is that whenever a query is asked on this view,
the execution involves accessing the base data stored in a distributed manner in
the network. Similar virtual view (but non space-time) abstractions have been
used by Cougar [21] and TinyDB [20].

Multi-Level Data Representation. Our framework is based on a two-level repre-
sentation of sensor data: The raw data layer and the view layer. The raw data
layer is the physical layer that continuously acquires and stores camera data.
The view layer is the logical layer that transforms raw sensor data into the cube
abstraction. User queries are executed on this abstraction. This layering provides
physical data independence, a key concept borrowed from traditional relational
database systems, which shields users and applications from the details of our
data-centric protocols.
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User queries can be one time or continuous and can be saved as named views
that can be reused once defined. This style of cascading is similar to the way
that views are cascaded in traditional database systems. In simplified terms, the
semantics of cascading of a query q and a view v is that the output resulting
from the execution of v will be fed into q. Cascading simplifies the expression
of complicated queries and allows the same underlying query to be used concur-
rently by multiple others, facilitating resource and result sharing. Furthermore,
multiple cascading queries allows for interesting cross-query optimizations (e.g.,
pushing decimation operations present in the high-level query to the underlying
query during execution).

Data Access Methods. The basic data access and querying interface will be a lin-
ear, SQL-like notation from declarative queries. Consider the following example
query:

SELECT from CUBE
WHERE location = [(50,50,50), (100, 100, 100)]
VIEWPOINT = (100, 100, 100)
WITH RESOLUTION 20 fps
SAVE AS VIEW ‘‘Atrium NE’’

This continuous query selects a volume of space specified by two corners of a
sub-cube and asks for an image stream that corresponds to the target volume as
observed from a specific viewpoint. The data are to be acquired with a temporal
resolution of 20 frames per second. If the viewpoint cannot be presented due
to lack of data, the system might offer an alternative but similar viewpoint for
which data is available. The query is saved as view “Atrium NE” as it provides
a view of the room named Atrium from the North-East direction. On top of
this view, we can define another query that returns images containing bag-like
shapes with a resolution of ten frame per second:

SELECT from ‘‘ATRIUM NE’’
WHERE object = ‘‘bag’’
RESOLUTION 10 fps

We envision moving beyong a textual language to a graphical tool to allow
incremental visualization of the sensornet data. The interface of the tool will
resemble the familiar mapping software in that it will allow users to graphically
select geographical spaces, zoom in and out, pan in different directions, as well
as provide more advanced features such as selecting arbitrary viewpoints, and
looking back in time. The operations specified through the visualizer will be
translated into queries and submitted for execution to query the sensornet.

Space-Time Feature Predicates. Any interesting VSN will require search and
detection of objects and activities (events) based on images. A user might be
interested in finding where a specific person was at a specific point in time, locat-
ing all bags of a certain color, size, and shape, or even ask to see the people that
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are currently running. In general, there is a clear need for an extensible program-
ming framework that will facilitate the specification of objects and activities of
interest.

Our framework will give the users the ability to specify spatial and temporal
features on image data. We uniformly represent both objects and activities using
features. Spatial features are defined based on relationships of data over space.
For example, a head can be described using a spatial relationship among other
(lower-level) features such as eye, nose, ear, mouth, etc. Such relationships are
models that represent a feature using the relative spatial orientation of one or
more lower-level features (e.g., a nose is below the eyes and above the mouth).
Users will register predicates that evaluate both primitive features (e.g., a nose
or an eye) and composite features (e.g., head, body, person). Temporal features
will be defined in a similar manner although, in this case, one is interested in
the position of features over time. For example, the activity of “moving” can be
expressed as a specific feature changing its location over time.

Clearly spatial and temporal predicates can be intermixed to express arbi-
trarily complex objects and activities: a running person can be identified by
evaluating the spatial predicate that detects a person in a given time snapshot
and then a temporal predicate that checks whether that person is moving faster
than a given threshold. Once defined, the predicates will be sent to the network
locations where they will be evaluated with data centric processing. Defining
objects and events using feature predicates will allow us to use the feature-based
routing and matching techniques outlined in Sec. 4.1 as the uniform underlying
in-network query execution mechanism.

We have built a space-time database layer that facilitates queries over the loca-
tion and trajectory ofmoving objects.Object positions acquiredusing cameras and
Cricket nodes are stored in a centralized database and organized in multiple orders
to facilitate efficient space-time queries. This work is explores sophisticated inter-
actions with people and various artifacts in a large museum setting. This Smart
Museum project will continue to serve as a target application for our work.

Adaptive Query Execution. Once the user submits a query to the system, the
query will be translated into an execution plan. The planning phase must de-
cide, based on the query specification, which routing indexes (spatial, temporal,
feature-based, or a combination) and feature detectors to use. The query plan
will be sent to the network and executed collectively by the appropriate nodes
(as described earlier in this section) in a distributed fashion, after which results
are sent back to the user. This is a distributed query optimization problem and
is one of the main challenges that we will tackle.

Query execution must also adapt to dynamically changing workload and net-
work characteristics. Our primary tool for adaptation will be application-aware
compression where the novel compression techniques discussed earlier will be
applied to camera data selectively based on their utility to the existing queries
and the availability (or lack of) resources. The issues we will address include
how to extract utility information from the existing workload and how to use
this information to guide compression decisions.
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5.2 Image and Video Stream Compression

We regard 3D reconstruction as a mechanism to compress the data captured from
multiple video streams, resulting in lower power consumption. Polygon Meshes
and oriented point clouds are popular representations for 3D surfaces in com-
puter graphics. Polygon meshes are highly compressible [36,37,38,39,40,41,42,43]
, and point clouds are error resilient. In the context of VSNs a representation
with the two properties is needed. We propose a new surface representation com-
posed of time-dependent overlapping parameterized surface patches, or 3D video
streams.

3D video streams as compression of multiple 2D video streams. Traditional video
standards such as MPEG-4 support the transmission of a dynamic 3D scene as a
set of multiplexed video streams, one per camera. As the number of video streams
grows under constant channel capacity, the overall image quality decreases. We
advocate the generation of a compressed representation of all possible views,
exploiting the correlation between multiple views of the same scene. Desired
views are rendered at the terminal. More computation may be required both at
the encoder and decoder, but overall distortion will be minimized, and power
consumption due to data transfer will be significantly reduced.

Adaptive 3D stream and Video Sampling. Figure 7 illustrates the way our com-
pression may leverage feature knowledge obtained by the VSN. This will extend
the work of Balmelli, Taubin, and Bernardini [44] from static textured polygon
meshes to 3D video streams. A smart camera captures a high resolution video
stream. In cooperation with other cameras, queries detect and track objects, such
as faces or suitcases, resulting in a monochromatic alpha channel which assigns
importance values to different pixels. The smooth alpha channel can be down-
sampled quite aggressively. Each of these decimated frames is used to generate
a 2D warping function used to resample the frames of the source video stream
adaptively on a pixel grid of the same dimensions as the downsampled alpha
channel. The result is transmitted as an RGBA video stream of low resolution
and normal frame rate, which can be further compressed using standard meth-
ods. These low resolution images preserve the details of the regions of interest
at the captured resolution. In the decoder, the inverse warping function is com-
puted from the alpha channel, and the unwarped image is recovered at the full

Fig. 7. Video Compression for Surveillance will use adaptive sampling and downsam-
pling



148 M. Akdere et al.

resolution in the important regions. Again, by sharing the results of prior stages
(feature detection) greater efficiencies can be obtained later (in compression).

6 Conclusions

VSNs represent an opportunity and challenges. Smart cameras offer far richer
capabilities than simpler sensors, but require far greater effort to coordinate
effectively. We have outlined a vision for using camera networks effectively, from
the initial problem of self-calibration, through feature and image retrieval, to an
expressive and efficient query language for application interaction.
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