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In this work, we present the concept of ‘‘Hamiltonian cycle art’’ that is based on the fact that any mesh

surface can be converted to a single closed 3D curve. These curves are constructed by connecting the

centers of every two neighboring triangles in the Hamiltonian triangle strips. We call these curves

surface covering since they follow the shape of the mesh surface by meandering over it like a river. We

show that these curves can be used to create wire sculptures and duotone (two-color painted) surfaces.

To obtain surface covering wire sculptures we have developed two methods to construct

corresponding 3D wires from surface covering curves. The first method constructs equal diameter

wires. The second method creates wires with varying diameter and can produce wires that densely

cover the mesh surface.

For duotone surfaces, we have developed a method to obtain surface covering curves that can divide

any given mesh surface into two regions that can be painted in two different colors. These curves serve

as a boundary that define two visually interlocked regions in the surface. We have implemented this

method by mapping appropriate textures to each face of the initial mesh. The resulting textured

surfaces look aesthetically pleasing since they closely resemble planar TSP (traveling salesmen

problem) art and Truchet-like curves.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

In this work, we introduce a simple approach that provides
methods to create a variety of artworks. Our approach is based on
converting any given mesh surface into a closed 3D curve that
follows the shape of the given surface. Our work is based on
Gabriel Taubin’s work on constructing Hamiltonian triangle strips
on quadrilateral meshes [1–3].

In graph theory, a Hamiltonian path is a path in an undirected
graph that visits each vertex exactly once. A Hamiltonian cycle (or
Hamiltonian circuit) is a Hamiltonian path that is a cycle. Note
that not every graph has a Hamiltonian cycle. Hamiltonian
triangle strips are defined in duals of triangular meshes. Taubin
shows that it is always possible to construct a triangular mesh
from any given quadrilateral mesh such that the dual of the
triangular mesh has an Hamiltonian cycle. Moreover, he pre-
sented simple linear time and space constructive algorithms to
construct these triangle strips. His algorithms are based on
splitting each quadrilateral face along one of its two diagonals
ll rights reserved.

un@tamu.edu (E. Akleman).
and linking the resulting triangles along the original mesh edges.
With these algorithms every connected manifold quadrilateral
mesh without boundary can be represented as a single Hamilto-
nian generalized triangle strip cycle.

Using Taubin’s algorithms to construct a closed curve in 3D is
straightforward. One can simply connect centers of triangles in
the triangle strip to obtain a control polygon in 3D. The resulting
control polygon can be turned into a smooth curve using a
parametric curve such as B-spline as shown in Fig. 1 [2]. These
curves can be used for creating artworks. Designers of these
curves have significantly large number of aesthetic possibilities.
There are two ways to control aesthetic possibilities for surface
covering curves:
�
 Designing mesh structures: The shape of any given surface can
be approximated by a wide variety of meshes. Therefore,
designers, by choosing different meshes, can obtain aestheti-
cally different curves. Examples that show the effect of the
structure of the underlying mesh on a spherical shape are
shown in Fig. 1. In this figure, the control meshes are obtained
using a variety of subdivision schemes available in TopMod3D
such as honeycomb and pentagonal subdivisions [4–6].
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Fig. 1. Examples of surface covering curves on a sphere: spherical mesh surfaces are converted into closed 3D curves which follow the shapes of the original spheres. Back-

faces in meshes and back-face parts of the curves are not drawn for cleaner images. (a1) Geodesic dome. (a2) Curve constructed from the mesh in (a1). (b1) A spherical

mesh. (b2) Curve constructed from the mesh in (b1). (c1) A spherical mesh. (c2) Curve constructed from the mesh in (c1). (d1) A spherical mesh. (d2) Curve constructed

from the mesh in (d1).
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The spherical shapes are obtained by simply moving vertices
of the meshes into a unit sphere. For the detailed discussion of
how these structures can be obtained see [7].

�
 Controlling shapes of curves: Mathematically speaking, there

are many ways to form surface covering curves for any given
mesh [1,8]. This mathematical property provides additional
aesthetic possibilities since designers can have additional
control over the shapes of the curves. We prefer wavy curves
like a meandering river since they resemble space filling
curves [9] or TSP (traveling salesmen problem) art [10]
embedded on surfaces.
1.1. Surface covering wire sculptures

To convert curves into 3D wires, we sweep a polygon or a line
along the curve. This process normally requires rotation mini-
mizing frames to avoid undesirable twists [11]. In our case since
the curves are on surfaces it is possible to avoid twists by using
surface normals to obtain Frenet frames (see [12] for details).
Therefore, it is easy to convert these curves into 3D structures
that can be shaded, rendered and even eventually 3D printed.

We have developed two methods to construct corresponding
3D ribbons and wires from given curves as extruded lines and
polygons along the curves [2]. The first method, called constant-
diameter, simply turns the curves into constant thickness ribbons
or equal diameter wires. The second method, which we call
variable-diameter, creates ribbons with varying thicknesses (or
wires with changing diameters) that can densely cover the mesh
surface. We have developed a system that converts polygonal
meshes to surface filling curves, ribbons and wires. All the images
of wire sculptures are direct screen captures from the system.

Fig. 2 shows an example obtained by using constant and
variable diameter methods. Our variable diameter method guar-
antees that the sizes are relative to the underlying triangles.
Therefore, the actual widths of ribbons are different in different
parts of the mesh. Fig. 8 shows visual effects of constant vs.
variable and ribbon vs. wire for the same spherical mesh.
1.2. Duotone surfaces

The Jordan curve theorem states that any simple closed curve
in the plane separates the plane into two regions: the part that
lies inside the curve and the part that lies outside it [13]. Although
the theorem seems to be very intuitive, the proof is complicated
since closed curves can be complicated sometimes such as fractal
curves. Many artists observed this property to create artworks
over plane by creating interesting curves such as fractal art,
traveling salesmen problem (TSP) art and Truchet-like curves.
Interestingly, Jordan’s theorem is only correct for genus-0 sur-
faces. Any single curve on a surface with positive genus does not
necessarily separate the surface into two regions.

To obtain duotone surface, we present a simple approach to
construct surface covering curves that can separate surfaces into
two regions [3] (see Figs. 1 and 3). Our method is based on a
useful property of vertex insertion schemes such as Catmull–
Clark subdivision: If such a vertex insertion scheme is applied to a
mesh, the vertices of resulting quadrilateral mesh are always two
colorable. Using this property, we can always classify vertices of
meshes that are obtained by a vertex insertion scheme into two
groups. We show that it is always possible to create a single curve
that covers the whole surface such that all vertices in the first
group are on one side of the curve while the other group of
vertices are on the other side of the same curve.

We have implemented our approach using Truchet tiles where
the boundary curve is not explicitly constructed but appears as
the boundary of two regions formed by Truchet tiles. Therefore,
our implementation can be considered as an embedding of
duotone Truchet tiles over surfaces [14]. We therefore call our
textured surfaces duotone surfaces. However, unlike duotone
Truchet tiles our duotone surfaces guarantee only two regions
separated by a single curve.



Fig. 3. Fertility and Stanford bunny as duotone surfaces.

Fig. 2. Dense covering of surfaces using ribbons with changing diameter. The parts of the curves that are occluded by original surfaces are not drawn for cleaner images.
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2. Previous work

Our surface covering wire sculptures visually resemble to
space-filling curves, discovered by Giuseppe Peano [15] by his
construction of a continuous mapping from the unit interval onto
the unit square. Space filling curves became very popular among
mathematician-artists after Benoit Mandelbrot’s seminal work on
fractal geometry [9]. In his book, he categorized space filling
curves as fractals since they can be constructed using a replace-
ment algorithm starting from a simple curve. Mathematician and
artist Douglas McKenna [16], who also created many images in
Mandelbrot’s fractal geometry of nature, enumerated over 20
million new space-filling recursive designs in plane.

Duotone coloring of plane using Jordan curve theorem is an
artistic technique to create planar art using complicated curves. In
artistic applications, the most widely used examples of such
complicated curves are also space filling fractal curves [9].
Mandelbrot created several examples of duotone art especially
using space filling curves. Mandelbrot also discovered a simple
way to treat open space filling curves as closed by assuming they
were drawn on an infinite plane (see Fig. 4). The main aesthetical
advantage of space filling curves over other fractal curves for
creating duotone art is that they result in indistinguishable inside
and outside structures as shown in Fig. 4.

Robert Bosch and Adrianne Herman [17] invented another way
to create closed curves in plane based on traveling salesman
problem (TSP) [18]. In TSP, there exists a set of cities and a
traveling salesman who resides in one of the cities. The salesman
wants to visit each of the other cities exactly once and then return
home and would like to visit the cities in an order that will
minimize the total length of his tour. Determining an optimal
itinerary for the salesman is one of the most well known
and well-studied problems in mathematics, computer science,
and operations research. Robert Bosch and Adrianne Herman
noticed that for interestingly placed city locations, the piecewise
curve showing the salesman’s itinerary looks artistic (see Fig. 5a).



Fig. 4. An example of Mandelbrot’s duotone space filling curve art. This particular sequence of images is created by Alexis Monnerot–Dumaine under the pseudo-name

Prokofiev in 24 January 2010. (a) Two iterations. (b) Three iterations.

Fig. 5. Two types of traveling salesman problem (TSP) art. These images are created by Robert Bosch and used in permission. (a) Curve TSP art. (b) Duotone TSP art.
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They used points on a grid to create an original artwork. This
method was simple but required large number of dots to produce
a decent picture because the dots tended to clump together. Craig
S. Kaplan [10] used weighted Voronoi stippling to create positions
of the cities. With weighted Voronoi stippling, using substantially
fewer dots, it is possible to obtain a more organic appearance.
Moreover, by distributing cities with a density that locally
approximates the darkness of a source image, and passing the
cities to a program that finds a TSP tour, they have produced TSP-
art that resembles the source image. An additional advantage of
the optimal tours is that they are guaranteed to be closed simple
curves. Therefore, Bosch also used TSP curves to create duotone
coloring of the plane [19] (see Fig. 5b).

A method that is closely related to Taubin’s work is Truchet
tiles, which was originally introduced by Sebastien Truchet as all
possible patterns formed by tilings of right triangles oriented at
the four corners of a square [20,21] in a square grid structure.
Truchet’s triangulations of a grid can be considered a special case
of triangulation of quad meshes. In Taubin’s scheme any parti-
cular triangulation of a quadrilateral mesh corresponds to a set of
cyclic triangle strips, which may not be Hamiltonian. Taubin, in
addition, showed that by re-tiling the quadrilateral mesh it is
always possible to obtain Hamiltonian strips.
An extension of Truchet tiling that is related to this work is
introduced by Clifford A. Pickover [22] as a single tile consisting of
two circular arcs of radius equal to half the tile edge length
centered at opposed corners. The two possible orientations of this
tile, and tiling the plane using tiles with random orientations
gives visually interesting curves called Truchet curves [23,24].
Truchet curves are not necessarily single curves, but they guar-
antee to separate the plane into two regions and therefore they
are also used to create duotone planar artworks [14].

In this paper, we show that it is always possible to obtain a
single closed curve that covers a surface similar to TSP art and
space filling curves. In terms of visual aesthetics, our curves
resemble the most to Truchet curves. In fact, if our method is
applied to a planar grid, the result will be a single Truchet curve.
Although our curves cover space similar to space filling curves,
they are not strictly self-similar, i.e. fractals. However, our results
exhibit similarities that are visible in our examples. These
similarities are just result of structure of underlying mesh and
initial choices. Unlike TSP art, our curves do not guarantee to
provide the shortest route, but they visually resemble random
TSP art.

Duotone surfaces can be considered as embedding duotone
plane art such as TSP or Truchet art to surfaces. Our approach is
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based on the construction of a single curve on a surface that can
separate the surface into two regions. With this property, result-
ing surfaces can always be colored by two colors. In terms of
visual aesthetics, our results in duotone surfaces more resemble
duotone Truchet planar art.
3. Surface covering curve construction

Our approach can be considered a two-step process: (1) iden-
tify an Hamiltonian cycle that connects vertices of dual of a given
mesh and (2) use the 3D positions of vertices (i.e. face-centers of
the original mesh) as control vertices of a smooth curve.
The resulting curve is guaranteed to be closed and follow the
overall shape of the surface. We point out that it is NP-hard to
find ‘‘an Hamiltonian cycle’’ for even cubic 3-connected planar
graphs [25]. It is also known that existing exponential-time
algorithms for Hamiltonian cycles are not sufficient to find single
strips for triangular meshes of more than 100 triangles [18].
Fortunately, many researchers observed that the hardness of
finding Hamiltonian cycles can be simplified by minor variations
of the problem statement. For example, by adding a few new
triangles, it is possible to significantly simplify the Hamiltonian
cycle problem without changing the input geometry and visual
quality [26].

Taubin showed that from a quadrilateral manifold mesh, it is
possible to construct a triangular mesh with an associated
Hamiltonian cycle in linear time. The construction algorithm
simply splits each quadrilateral into triangles and flips edges
until the triangles are ordered into a single strip [1].

The curve generation consists of six steps:
�

Fig.
(a) I

(f) R

colo
Initial mesh: Initial mesh can be any manifold mesh surface of
arbitrary topology. Although, we do not have any restriction, it
is better to have only convex faces for aesthetic results. See
Fig. 6(a) where the original edges are drawn in purple color.

�
 Quadrangulation: Taubin’s construction requires the quadri-

lateral mesh. Therefore, if the initial mesh is not a quadrilat-
eral, we need to convert the mesh into a quad mesh. To get
6. Visual presentation of the Hamiltonian cycle construction and curve generation alg

nitial mesh. (b) After application of dual of Simplest. (c) Triangles obtained by inserting

esulting curves. (g) A diagonal edge selected. (h) Diagonal edge flipped new control vert

r in this figure caption, the reader is referred to the web version of this article.)
initial quad mesh we apply a quad-conversion subdivision
scheme [7]. We prefer to use the dual of Simplest subdivi-
sion [7]. This subdivision can be obtained as two operations:
(1) Simplest subdivision [27] and (2) dual operation. After this
subdivision, each original edge of the initial mesh turns into a
quadrilateral (see Fig. 6(b) where newly created edges are
drawn in black color.)

Remark: This step can be skipped if the initial mesh is a
quad mesh.
�
 Initial triangulation: We insert edges to turn all quadrilaterals
to triangles as shown in Fig. 6(c). These newly added edges are
shown in red color. Now, every triangle has two black edges
and one red edge. Any initial triangulation is acceptable for
the algorithm.

�
 Control vertex position computation: For each triangle, we

compute a center point as a weighted average of its vertex
positions. Let p0,0 ¼ p0,1 denote the position of the vertex that
is at the intersection of two black edges, and p1,0 and p1,1

denote the positions of the other two vertices (see Fig. 9(a)).
In other words, we treat the triangle as a quadrilateral of
which two consecutive vertices share the same position (see
Fig. 7a). Based on this idea, the control vertex position is
computed as follows:

pcv ¼
p0,0þp0,1þp1,1þp0,1

4

Since p0,0 ¼ p0,1, this computation is a weighted average of
vertex positions of triangle as follows:

pcv ¼
2p0,0þp1,0þp1,1

4

These points, which serve as control vertices of surface filling
curve, are shown in Fig. 6(d).

Remark: Using weighted average helps to avoid higher
frequency components when the connections are not
supposed to create high frequencies as visually shown in
Fig. 7. Weighted average moves the control vertex to the
middle of triangle height along the curve direction.
�
 Initial curves: We construct a control polygon by connecting
center points. For this purpose, if two vertices share a
black edge, which is created by dual of Simplest subdivision,
orithm. Note that if the initial mesh is a quadrilateral, step b can be skipped.

edges. (d) Curve control and vertices. (e) Curve obtained from control vertices.

ices. (i) Combined curve. (j) Final result. (For interpretation of the references to



Fig. 7. The effect of weighted average that favors one vertex of triangle.

Fig. 8. Another example that shows the visual effects of constant vs. variable and ribbon vs. wire for the same mesh. Back-face parts of the ribbons/wires are also shown.

E. Akleman et al. / Computers & Graphics 37 (2013) 316–332 321
we connect these two vertices with an edge. After this
operation, each original face is replaced by a closed curve as
shown in Fig. 6(e) and (f).

�
 Combining curves: We, now, randomly choose a diagonal edge

(i.e. red edges in the Fig. 6) and flip it if it is between two
separate curve (see Fig. 6(g)). After the flip, we recalculate
triangle centers again and reconstruct the curve. As shown in
Fig. 6(h) this operation connects the two curves into one. We
continue this operation until we obtain one curve as shown in
Fig. 6(j).

Remark 1: Twisted edges form a spanning tree for the dual
of the initial mesh. In other words, this spanning tree
connects all faces of the initial mesh as it can be seen in
Fig. 6(j).
Remark 2: After the flip operation, each triangle still have
two black edges and one red edge.
By the curve generation algorithm, we create a single control
polygon that passes from control points in 3D space. To obtain a
smooth curve, the control polygon can be approximated
or interpolated using a parametric curve such as B-spline or
Catmull–Rom curve [28].
4. Surface covering wire sculptures

To obtain wire sculptures the curves must be converted into wires
by sweeping polygons along the curves. It is also possible to convert
them into ribbons by sweeping lines along the curves. For aesthetic
purposes, the resulting 3D structures must look smooth and must not
self-intersect. We have developed two methods for converting curves
to smooth wires and ribbons. We call these constant diameter
method and variable diameter method, respectively.



Fig. 9. Computation of the trapezoid inside of the triangle.
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Constant diameter method is simply a line or a polygon
extruded along the curve. One of our goals is to create dense
covering in such a way that the ribbons or the wires cover the
surface without leaving large gaps. Constant diameter method
provides nice thin and smooth curves but cannot densely cover
the surface without self-intersection. We have also introduced
variable diameter method to provide dense covering.

The variable diameter method consists of three steps:
�
 Create a trapezoid inside of each triangle using two size para-

meters: We again treat the triangle as a quadrilateral of which
two consecutive vertices share the same position (see
Fig. 9(a)). Based on this idea, it is easy to compute the
positions of corners of a trapezoid that is drawn inside of this
triangle simply using bilinear equation. Let v0,0, v0,1, v1,0, v1,1

denote the positions of four corners of quadrilateral drawn
inside of the triangle (see Fig. 9(b)). Then

vm,n ¼
X1

i ¼ 0

X1

j ¼ 0

ð1�ð�1ÞisÞð1�ð�1ÞjtÞ

4
piþm,jþn

where t and s are two parameters between 0 and 1, and the
summations iþm and jþn are in modulo 2.

Remark 1: For s¼t¼0 the bilinear equation gives weighted
average we have already used for computing control
vertices.
Remark 2: Rotation order of vertices for trapezoid is
important since it must give the same normal direction
as the triangle. The bilinear equation guarantees the con-
sistency of rotation order.
Remark 3: To create solid wires, the 2D strips shown in
Fig. 9(b) can be extruded perpendicular to the surface to
the desired slab thickness (See Fig. 11a).
�
 Connect trapezoids in two consecutive triangles using a quad-

rilateral connector: This operation simply insert two edges to
form connectors as shown in Fig. 10(b). In figure, the newly
inserted edges are colored in darker blue. This operation turns
initial triangular strip into quadrilateral strip, which is used as
a control polygon for smooth ribbons.

Remark 1: Rotation order of vertices for connectors must
also be consistent with two neighboring trapezoids. Since
we start with a manifold mesh, the original triangles
always have consistent rotation order to start with.
Remark 2: This operation also guarantees that if a part of
the original triangle strips forms a parallelogram, the same
part of the resulting quadrilateral strips also form a
parallelogram. In other words, if original data is not wavy,
the resulting ribbon is guaranteed not to be wavy.
Remark 3: To create wires, we connect trapezoidal prisms
using hexahedral connectors, which are 3D versions of
connectors in ribbon case. As a result, we obtain a general-
ized toroidal shape (See Fig. 11b), which is used as a
control polygon for smooth wires.
�
 Obtain smooth ribbons or wires with a subdivision scheme: For
smoothing resulting quadrilateral strips we use Catmull–Clark
subdivision, which gives B-spline surfaces for regular struc-
tures such as quadrilateral strips [29]. As a result, variable



Fig. 10. Connecting the trapezoids with quadrilaterals to obtain a control points for smooth ribbons. (a) Trapezoids. (b) Connections. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)

Fig. 11. Connecting the extruded trapezoids with prisms to obtain a control points for smooth wires. (a) Trapezoidal Prisms. (b) Connections.
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diameter method provides almost the same shapes for thin
ribbons. However, even for thicker ribbon it does not self-
intersect until it covers the underlying surface with almost
no gap.

Remark: To smooth wires, we simply smooth generalized
toroidal shape, which can again be smoothed using
Catmull–Clark subdivision. The result is the same as
B-spline surface since toroidal shape consists of only
quadrilaterals and valence four vertices [29].

4.1. Examples and results

We have developed a system that converts polygonal meshes
to surface filling wire and ribbons (Fig. 12). We provide s and t

parameters to control the size of trapezoids. A user can inter-
actively change the thickness of ribbons and wires by changing
the parameters s and t. A very dense covering ribbon is obtained
with value s� 1 and t� 1. Small values of s and t provide sparse
covering. All the images in this paper are direct screen captures
from our interactive system. Our variable diameter method
guarantees that the sizes are relative to the underlying triangles.
Therefore, the actual widths of ribbons are different in different
parts of the mesh.

If mesh models are created by a good quadrangulation scheme
such as Quadcover method [30], mixed-integer quadrangulation
[31], and wave-based anisotropic quadrangulation [32], then even
constant diameter method can cover the surface without signifi-
cant gaps as shown in Figs. 13 and 14. This is mainly because such
quadrangulation methods create almost-regular quadrilaterals.
Moreover, there are only limited number of non-valence four
vertices.
5. Duotone surfaces

Duotone surfaces are based on a special types of surface
covering curves that can divide the surface into two regions. We
observe that it is possible to obtain such curves if the vertices of
initial quadrilateral mesh are 2-colorable. Such 2-colorable quad-
rilateral meshes can be obtained by some subdivision schemes
such as Catmull–Clark [29] (see Fig. 15) and dual of Simplest [27]
subdivisions.

In this work, we use Catmull–Clark subdivision to obtain
2-colorable quadrilateral meshes. Fig. 15 illustrates the remeshing
scheme of Catmull–Clark subdivision, called vertex insertion. As
shown in figure, the vertex insertion scheme preserves original
vertices of the mesh, called vertex-vertices. It also subdivides
each edge by inserting a new vertex in the middle of each edge,
called edge-vertices, and inserts a vertex in the middle of each
face, called face-vertices. It also inserts edges between every face-
vertex and its edge-vertices. if edge-vertices are labeled with one
color and other vertices are labeled with another color, we obtain
2-colored quadrilateral meshes. In the figure, edge-vertices can be
labeled with dark blue color and rest of the vertices can be labeled
with yellow color.
5.1. Texture map assignment

The underlying graph of a 2-colorable quadrilateral mesh is
bipartite [33]. In other words, the vertices are now divided into
two disjoint sets U0 and U1 such that every edge connects a vertex
in U0 to one in U1. Moreover, the diagonal vertices of each
quadrilateral of the mesh are in the same set, i.e. they have the
same label as shown in Fig. 16(a).



Fig. 12. An example that shows the visual effects of constant vs. variable and ribbon vs. wire for the same mesh. Back-face parts of the ribbons/wires are also shown.

Fig. 13. Buddha model covered with sparse and dense ribbons. These images are obtained by using variable diameter method. Back-face parts of the ribbon are not drawn

for cleaner images. The original quadrilateral mesh is obtained by wave-based anisotropic quadrangulation.
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Our goal is to cover this mesh with a texture in such a way that
vertices in U0 will be colored yellow and vertices in U1 will be
colored blue. For every quadrilateral, there are two possible ways
to assign a texture: there can be a connection either between two
Fig. 14. Examples of quadrilateral meshes covered with constant diameter wires. Note t

constant diameter method can densely cover the surface without significant self inters

bunny is obtained by Quadcover method. The original quadrilateral mesh of fertility is

Fig. 15. Conversion of a given mesh into a 2-colorable quadrilateral mesh by using

interpretation of the references to color in this figure caption, the reader is referred to
yellow vertices or two blue vertices. These two possible cases can
be conceptualized as two possible triangulations of a quadrilat-
eral as shown in Fig. 16(b) and (c). The choice of triangulation of a
given quadrilateral uniquely defines how to texture map that
hat if all faces of the original mesh are approximately same size as in this example

ection. Back-face parts of the wires are shown. The original quadrilateral mesh of

obtained by mixed-integer quadrangulation.

Catmull–Clark subdivision. (a) Initial mesh. (b) Two colored quad mesh. (For

the web version of this article.)
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particular quadrilateral by using textures such as the ones shown
in Fig. 17.

If we randomly triangulate all quadrilaterals and apply tex-
tures based on triangulations, we most likely obtain a 2-colored
surface that consists of disconnected regions (see some examples
in Fig. 18). Such random triangulations correspond to the embed-
ding of duotone Truchet planar art to surfaces. Our goal in
duotone surfaces is to connect all disconnected regions in the
Fig. 16. Triangulations of a quad face. (a) A quad. (b) Triangulation 1. (c) Triangulation

referred to the web version of this article.)

Fig. 17. Texture maps that can cover vertices as defined in triangulations 1 and 2. These p

Fig. 18. Duotone surfaces with disconnected regions.
same color. The next section presents how to obtain such duotone
surfaces.

5.2. Combining disconnected regions

It is possible to view the triangulated mesh as a graph that
consists of three subgraphs: (1) the original bipartite graph,
(2) the yellow graph that connects all vertices in U0, e.g. the
2. (For interpretation of the references to color in this figure caption, the reader is

articular textures are called Truchet tiles which are used to create duotone planar art.

Our goal is to make all regions to be connected.



Fig. 19. Two duotone surfaces that exhibits completely different behavior. In (a) yellow graph is completely connected, therefore yellow region is connected. On the other

hand, blue graph consists of only disconnected vertices, therefore it produces individual circles on surface. In (b) both yellow and blue graphs are trees resulting two

connected regions. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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graph that consists of only yellow edges, and (3) the blue graph
that connects all vertices in U1, e.g. the graph that consists of only
blue edges. If both blue and yellow graphs are connected, the
corresponding texture map will consists of two completely con-
nected regions as we want. On the other hand, if only one of them
is connected, there will be disconnected regions in the other one.
For instance, Fig. 19(a) illustrates an extreme case in which the
yellow graph is connected allowing the yellow region to be
connected, but the blue graph consists of isolated vertices which
resulted in isolated blue regions.

For the surface of a 2-colorable quadrilateral mesh to have
only two regions, we require both blue and yellow graphs to be
completely connected. In a sphere, this means that neither of
these graphs can have a cycle since a cycle in one graph makes the
other one disconnected. Thus, both graphs must be trees covering
all yellow and blue vertices, respectively. If one of these graphs is
a tree, the other one is also a tree [1]. Therefore, it is straightfor-
ward to obtain duotone surfaces as shown in Fig. 19(b).
Lemma 1. For an embedded bipartite graph on a genus-0 surface,
say U0 and U1 are the two edge disjoint vertex sets and Y and B are

yellow and blue graphs, respectively. If one of the Y/B graph is a tree,
then the other is also a tree.
Proof. Assume B is not a tree when given that Y is a tree. Then B

has at least one cycle and/or B is a forest. It is impossible that B is
a forest when Y is a tree, since in that case we can find a cycle in Y

surrounding a tree in B, which contradicts Y being a tree. It is also
impossible that B contains cycles. A cycle in B implies that a set of
connected edges in E(Y) are isolated, which contradicts our given
hypothesis that Y is a tree spanning all vertices of Y. &

For a surface with a positive genus, constructing Hamiltonian
triangle strips on quadrilateral meshes is sufficient to construct
two connected components, which are consists of yellow and
blue edges, respectively. Taubin [1] presents a simple linear
time and space constructive algorithm, where each quadrilateral
face is split along one of its two diagonals and the result-
ing triangles are linked along the original mesh edges. The
triangles are flipped until we obtain a Hamiltonian strip. The
Hamiltonian strip is actually the representation of the curve that
serves as the boundary of blue and yellow regions. The diagonal
edges in the resulting triangulation consist of two connected
components. Then we can immediately have the following
theorem.
Theorem 1. For a bipartite graph, say U0 and U1 are the two edge

disjoint vertex sets and Y and B are yellow and blue graphs,

respectively. Then, we can make Y and B connected, respectively.
5.3. Algorithm

Based on this discussion, for generating duotone surfaces we
need an algorithm to make Y and B graphs connected. Our earlier
algorithm to obtain surface covering curves is used for generating
duotone surfaces with minor modifications as follows:
�
 Conversion to 2-colorable quad mesh: Convert the input
mesh to a 2-colorable quadrilateral mesh using a subdivision
scheme such as Catmull–Clark [29] and dual of Simplest [27]
subdivisions. We convert the input mesh into a 2-colorable
quadrilateral mesh using Catmull–Clark subdivision. Let
M¼ ðV ,E,Q Þ denote the final quadrilateral mesh, where V ,E
and Q denote the set of all vertices, edges and quadrilateral,
respectively.
Remark: If the mesh already two-colorable, we skip this step.

�
 Vertex coloring: Color the vertices of quadrilateral mesh with

two colors. As seen in Fig. 16, we color the vertices in V to
either blue or yellow such that no edge exists in E whose end
vertices have same color. Say, U0 ¼ fvAV and color¼ Blueg and
U1 ¼ fvAV and color¼ Blueg.

�
 Initial triangulation: Create an initial triangulation by inserting

‘‘diagonal’’ edges between either two yellow vertices or two
blue vertices of each quadrilateral as seen in Fig. 16(b) and (c),
respectively. This will result a yellow graph and a blue graph.
This triangulation defines a set of curves as discussed earlier in
surface filling curves algorithm.
Remark: We assign Truchet tile (texture) to each quadrilateral
face of M such that the texture placement is consistent with
colors of diagonal edges as shown in Fig. 17. This texturing
results in a two colored surface that consists of disconnected
regions as shown in Fig. 18.

�
 Connecting the disconnected regions: Choose an diagonal edge

and flip it if it is between two separate curves. After the flip,
reconstruct the curve. As discussed in Section 3, this operation
connects the two curves into one. In this case, the flip
operation also changes the color of the diagonal edge. As a
result both yellow and blue graphs changes.

�
 Obtaining only two regions: We continue edge flipping opera-

tion until we obtain one single curve. One side of this single
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curve consists of only yellow vertices and edges; and the other
side of this single curve consists of blue vertices and edges
only. In each step, we map Truchet tile (texture) to each
quadrilateral face of M consistent with colors of diagonal
edges as discussed earlier.
Fig. 20. Buddha as a duotone surface.
Note that for a surface with a positive genus, there exist solutions
in which both Y and B are connected and neither is a tree. This

particular algorithm does not guarantee to make either Y and B a tree.
On the other hand, it is always possible to make at least one of them a
tree. An algorithm to guarantee that Y is a tree, as suggested by one of
the anonymous reviewers, would be the following:
(1)
 Select the set of all quad diagonals which connect yellow vertices,
which forms a connected graph containing all yellow vertices.
(2)
 Compute any spanning tree of this graph, which becomes
final yellow graph.
(3)
 For any quad not spanned by the tree, add its blue edge into blue
graph. This algorithm guarantees to produce a connected blue
graph following an argument similar to Lemma 1 as there are no
yellow cycles. Moreover, yellow graph is guaranteed to be a tree.
5.4. Conversion to subdivision surface

One final issue is that direct texture mapping of polygonal meshes
results in G1 discontinuities since a polygonal mesh is not G1

continuous across the edges. We simply turn the polygonal mesh
into a subdivision surface. Note that Catmull–Clark subdivision
surfaces are already G2 continuous everywhere except extraordinary
vertices. As our texture maps have same color around vertices,
discontinuous regions around extraordinary vertices cannot be visi-
ble. On the other hand, the original Truchet textures are only G1

continuous in edge boundaries, i.e. the two circles boundaries meet in
the same point with the same tangent, but the centers of the circles
are not the same (see Fig. 17). Thus, we obtain only G1 continuous
texture map although the surface itself is G2 continuous in edge
boundaries. As shown in Figs. 20 and 21, it can be seen that G1

continuity is sufficient to obtain good looking results.

5.5. Examples and results

To obtain duotone surfaces, we have only implemented tex-
ture mapping as a stand alone software using Cþþ. The initial
Catmull–Clark subdivision is done using publicly available soft-
ware. The resulting mesh is exported as a non-textured.obj file.
Our texture mapping software reads this.obj file and assigns
appropriate texture and texture coordinates to each quadrilateral
of the 2-colorable quadrilateral mesh. Now the textured mesh is
exported as.obj file. We then import this textured mesh into Maya
[34] and turn it to a subdivision surface since Maya provides good
quality subdivision surface [35]. All images in this paper are
rendered in Maya as subdivision surface using default lighting.
Fig. 22 shows several examples of duotone surfaces that are
obtained by this process and rendered by Maya. To obtain higher
frequency images, we simply obtain denser polygonal meshes
using subdivision as shown in Fig. 22. We assume that the meshes
do not have high aspect-ratio or concave quadrilaterals. Such
quadrilaterals might result in visually uninteresting results. Since
we could not find references to any methods doing similar work,
we could not compare the results against existing standards.

Strict Truchet tiles are not the only one that can be used for
texturing duotone surfaces. It is in fact possible to create a wide
variety of aesthetic results using more colorfully designed tiles
such as the ones shown in Fig. 21.

6. Discussion and future work

In this paper, we demonstrated that Hamiltonian triangle
strips can be used to create artworks. We show that any given



Fig. 21. The top row shows four possible tiles that can be used to obtain more colorful versions of duotone surfaces. Duotone surfaces in each column are created using these tiles.
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mesh can be converted into a single closed 3D curve. We use
these curves to create artworks, namely virtual wire sculptures
and two-color textured (duotone) surfaces. We hope that more
artists will be interested in experimenting with surface covering
curves to develop other types of artworks.
Our wire sculptures and duotone surfaces are mostly related to
sculpture and these virtual sculptures can be eventually turned to
physical sculptures by using 3D printers. Printing the wire
sculpture can be more economical than 3D printing original
models since the major cost of the printing is the material.



Fig. 22. Positive-genus duotone surfaces.
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For instance, Carlo Sequin used similar approach to reduce
printing costs of dissecting puzzles [36].

One issue is that virtual wire sculptures consists of signifi-
cantly more faces than the faces of original meshes. If the
original mesh consists of only triangles, each original triangle
turns into minimum 48 quadrilaterals as a control shapes for
smooth wires. Therefore, even the control shapes of our wire
sculptures consist of more than several million polygons.
Unfortunately, the internet based 3D printing services currently
do not allow uploading models with such large polygon counts.
These polygon counts are really a minimum to have nice results.
Therefore, unless internet 3D printing services increase their
limits it is not possible to print these models using commercial
services.

Another issue is that printed sculptures may not have enough
stability to hold their shape. In other words, the weight of
sculpture may not be supported by 3D printed wires. Since we
have not printed any wire sculptures it is hard to evaluate
stability issues. We are planning to print some of these wire
sculptures and observe the stability issues in construction of
physical sculptures.

One constraint of the method is that the results depend on the
mesh structures. We think this is an advantage for the people who
like to manipulate mesh structures. However, this can be a
problem for others, in particular when they want to get fat wires
or large duotone regions with fine-resolution meshes. In such
cases, they can always decimate the mesh, but decimation may
not necessarily provide desired meshes. It is, therefore, possible
that some people can be frustrated from lack of full control
resulting from mesh dependency. As a future work, it can be
interesting to compute surface covering curves independent of
mesh structures and provide good interfaces to control resulting
curves.

One advantage of our method for people who wants to create
similar artworks is that the Hamiltonian strip is not unique and
there exists many possible solutions [8]. Using this property, it
can theoretically be possible to control the resulting wires and
surface coloring by altering the number of branches. We prefer
high branch count for both yellow and blue trees which result in
more wavy/meandering boundary between two regions [1].
In our current implementation, this is hard-coded in our program
and we do not provide an interface for sculptors to control the
amount of waviness. On the other hand it is possible to develop a
simple interface by controlling the number of branches with a
slider. For further applications to be used for novice users, there is
also a need for simple user interface that allow them to design
surface curves directly.

The duotone surfaces can also provide sculpting opportunities.
For instance, the two regions on the duotone surface can be
obtained by cutting the surface into two 2-manifolds with



Fig. 23. Examples of duotone surfaces that are produced from triangular meshes that includes skinny and small triangles.
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boundaries. To create a sculpture, these two manifold with
boundaries can be turned to solid shapes which can be inter-
locked together to form the original shape. One future application
can be to use this idea to design dissection puzzles [36].

We used to think that it can be possible to produce bad results
from bad quality meshes. Based on the suggestion of one
reviewer, we tested our hypothesis by creating duotone surfaces
from ‘‘bad-quality-meshes’’. Unexpectedly the resulting duotone
surfaces did not turn out as bad as we predicted. Of course, our
reaction is subjective and some people may not like these results
(see Fig. 23 for comparison).
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