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Surveillance cameras have become a customary security equipment in buildings and streets worldwide. It is

up to the field of Computational Forensics to provide automated methods for extracting and analyzing relevant

image data captured by such equipment. In this article, we describe an effective and semi-automated method

for detecting vanishing points, with their subsequent application to the problem of computing heights in

single images. With no necessary camera calibration, our method iteratively clusters segments in the bi-

dimensional projective space, identifying all vanishing points – finite and infinite – in an image. We conduct

experiments on images of man-made environments to evaluate the output of the proposed method and we

also consider its application on a photogrammetry framework.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

By analyzing certain image properties – known object size, oc-

lusion, stereoscopic vision, focus, gradient, texture and vergence –

e can infer three-dimensional (3D) information of the geometry

ortrayed in the images. This inferred 3D data can be employed in

arious computer vision applications: image-based rendering [1,2],

utomated driving [3], object detection [4], and forensic science [5].

The process of extracting, from images, geometric properties, such

s heights, areas, and angles, is denominated by photogrammetry.

hotogrammetry methods are widely used in forensic investigations,

here it can help corroborate pieces of evidence [5]. Analysis of car

ccidents and of human height are the two main examples of forensic

ctivities that involve photogrammetry [5].

Considering images captured by surveillance cameras, for in-

tance, with the aid of photogrammetry we can estimate the height

f objects and people, useful identification characteristic when the

ace of the suspects cannot be identified or the details in their clothes

re not relevant. Conversely, the suspects are often not on the crime

cene at the time of the investigation, or the scene has changed. In

hese cases, the images themselves are the only source of information.
✩ This paper has been recommended for acceptance by Yasutaka Furukawa.
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When only one image depicting the scene is available, the essen-

ial problem is the recovery of the third dimension, given that this

nformation was not captured in the acquisition process, in which

he 3D scene was projected onto the 2D image plane. In particular,

erspective distortions also occur. For example, objects that are away

rom the camera appear smaller in the image than objects that are

loser.

To solve this problem, the first photogrammetrists assumed some

priori information: internal camera parameters (focal length, optical

enter, scale, distortions, and skew factor), and the camera position

n relation to the scene. However, this is only valid when the accu-

acy of these values is high, since any deviation can generate large

easurement errors [6].

Recent works on photogrammetry can be generally classified into

wo categories: the ones that exploit 3D information from multiple

mages and the ones that analyze geometric properties in a single

mage. The first category deals with 3D reconstruction of the scene,

rom multiple views, to estimate homography or to calibrate the cam-

ra [7–9]. Single-view based methods can only rely on the analysis of

eometric properties [10–13] but, in this scenario, they often use pre-

iously positioned markers for calibration purposes [11,12]. Although

hese methods attain high accuracy, they cannot be used in forensic

pplications, where often a previously taken image is the only source

f information.

Here we propose a single-view method that detects vanishing

oints – invariant geometric features that can aid photogrammetry. A

anishing point can be defined as an image point where the projection

f a set of real-world parallel lines converges, assuming perspective
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Fig. 1. Study for the painting Adoration of Magi, by Leonardo da Vinci showing the use

of perspective.

Fig. 2. Distance between the planes that contain points tλ and bλ . Point oλ represents

the intersection between vanishing line m and line that contains points tλ and bλ .
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projection. A vanishing line is a line that contains two vanishing

points.

The credit for discovering linear perspective is given to renaissance

artist Leon Battista Alberti and architect Filippo Brunelleschi [14].

Alberti’s treatise, De pictura [15], published in 1435, encloses the first

scientific study of perspective. By the 1470s, several artists were able

to produce their works of art demonstrating a full understanding of

the principles of linear perspective. Leonardo da Vinci, beginning in

1481, also studied and employed perspective in his earlier paintings

(Fig. 1).

In this article, we use a geometric approach to effectively estimate

the location of vanishing points – finite and infinite ones – in images

of urban and indoor spaces, with the Manhattan-world assumption.

We are assuming that the scene has a natural cartesian 3D coordinate

system, which is plausible for indoor, outdoor city, and even some

country scenes [16].

By representing segments, initially in the image plane, in the bi-

dimensional projective space RP
2, our method clusters them into

groups of segments that converge to a unique vanishing point locality.

The detected features are then used to identify the ground plane and

the vertical direction of the scene. This information is finally inserted

into a photogrammetry algorithm proposed by Criminisi [10], with

the ultimate goal of measuring the height of objects and people in

single images.

This article starts by presenting, in Section 2, a background on the

measurement of heights in single images based on vanishing points.

In Section 3, we present our vanishing point detector. In Section 4,

we show how to estimate the scene vertical direction and also how

to detect the ground plane vanishing line. The experiments and their

results are provided in Section 5. Finally, Section 6 states the conclu-

sions of this work.

2. Background

The projection of a world point X ∈ R
3 into an image point x ∈ R

2,

considering perspective projection, is described by projection matrix

P ∈ R
3×4 as

x̃ = PX̃ = K[R|T]X̃ = [p1 p2 p3 p4]X̃, (1)

where X̃ and x̃ are the points X and x in homogeneous coordinates,

respectively; K is the matrix representing the intrinsic parameters of

the camera; the extrinsic parameters are R – rotation matrix – and

T – translation vector from the world to the camera system; p1, p2,

p3 and p4 are the columns of P; and the equality is up to scale.

In [17], the authors prove that p1, p2 and p3 are the orthogonal van-

ishing points corresponding to the world coordinate system, and that

p4 is the image of the world origin. Here we denote these orthogonal

vanishing points as vx, vy, vz.
Considering that vx and vy are the two vanishing points on the

anishing line, we can say that p4 must not be on the same line. If

t does, then vx, vy, and p4 are linearly dependent. Hence the fourth

olumn can be set to p4 = m/‖m‖ = m, where m is the vanishing line

6]. The final projection matrix is

= [vx vy αvz m], (2)

here α is an unknown scalar referred as metric factor. If vz and m are

vailable, then the metric factor α is the only unknown value.

To measure heights in images, we must compute the distance

etween points in two different planes. Let vz be the vanishing point

hat indicates the scene vertical direction, and m the ground vanishing

ine. Considering the projection matrix P (Eq. 2), Criminisi [18] proved

hat for an arbitrary object λ, with height Zλ and delimited by image

oints tλ and bλ (top and bottom points), it holds that

Zλ = − ‖bλ × tλ‖
(m · bλ)‖vz × tλ‖ . (3)

Fig. 2 illustrates Eq. (3). Point oλ represents the intersection be-

ween vanishing line m and the line that contains tλ and bλ. This

ntersection point helps to define a ratio of distances between planes

nd, using this value, one can compute
Zλ
Zc

, where Zc is the camera’s

istance. However, it is simpler to compute Zλ via a reference mea-

urement in the image with a known length [6].

Thus, if we want to measure height Zobj of an object obj, and Zref

s a known distance on the same image, i.e., it is a reference distance

etween points tref and bref, then Eq. (3) allows the computation of

he scale factor α and subsequently the distance Zobj between tobj and

obj. The following steps can be used to compute height Zobj:

1. Detect vanishing points in image I.

2. Identify vanishing point vz associated with the scene vertical

direction.

3. Estimate vanishing line m associated with the ground plane.

4. Compute scale factor α by applying Eq. (3) with object ref, i.e.,

λ = ref.

5. Compute Zobj by applying Eq. (3) with object obj, i.e., λ = obj,

and α.

The process of computing heights in images is illustrated in

ig. 3. According to Criminisi [10], efficient measurements in images

an be done by accurately detecting the vanishing points, and estimat-

ng vertical vanishing point vz and vanishing line m that represents

he ground plane (steps 1, 2 and 3). Therefore, we can use the output

f our detector to estimate vz and m.

In the subsequent sections, we describe our method to detect van-

shing points and how to estimate, from them, vertical vanishing point

z, and ground vanishing line, m.
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Fig. 3. Measuring the height of a real object depicted in an image. Height Zobj can be

estimated with the aid of known height Zref of a reference object.
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. Estimating vanishing points in single images

The problem of locating vanishing points in 2D perspective pro-

ection images has been studied since the 80s. This task is generally

een as the computation of line intersections but, due to quantiza-

ion errors, lines that correspond to a single vanishing point intersect

nside an area denominated vanishing region.

To confront the vanishing region problem, methods often divide the

anishing point detection in three main stages: detection of segments

n the image, clustering of the these segments in groups that converge

o a vanishing point, and vanishing point estimation for each cluster.

The first stage can be accomplished using an edge detector sub-

equently grouping the edges to form segments, e.g., Canny operator

19] and Hough transform [20]. Methods can perform the other stages

n two ways: using accumulator spaces [21–25] or using the image

lane directly [26,27].

Since Barnard’s seminal work on the detection of vanishing points

21], methods have been employing different Hough transform tech-

iques in quantized Gaussian spheres [22]. The problem in such
ig. 4. Illustration of the three steps to detect vanishing points in an image. Each color (red,

ot shown, because it lies at infinity. (For interpretation of the references to colour in this fig
ethods are the artifacts often present in digital images, producing

rroneous maxima on the quantized space [23].

The methods that use the image plane directly do not need accu-

ulator techniques [26,27]. In this case, the accuracy of the vanish-

ng point location is not limited by the space and the distances are

reserved. However, it may be necessary to incorporate additional

riteria to work with the infinite vanishing points.

Against these works, our method uses the bi-dimensional projec-

ive space RP
2, or projective plane, transformed directly from the

mage space, to cluster the segments and detect all vanishing points,

ncluding the infinite ones, without additional criteria. Moreover, the

pace is not bounded, meaning it does no limit the location accuracy.

The proposed detector also has three stages:

1. Extracting line segments from the input image.

2. Clustering of the segments that converge to the same vanishing

point (repeated until convergence):

2.1. Selection of seeds.

2.2. Grouping of segments based on the seeds and the intersection

points.

3. Detection of a vanishing point for each final cluster.

Fig. 4 illustrates the three steps to estimate the vanishing points,

umerated as shown above. Each one of the steps is described in a

ollowing subsection.

.1. Line segment detection

We start by extracting line segments from the input image using

method proposed by Desolneaux et al. [28,29]. They deal with the

xtracting problem by exploring the Helmholtz Principle [29]. Besides

ine segments, their method also produce, for each segment, its num-

er of false alarms, which will be used to compute the quality of this

egment.

The Helmholtz principle declares that if, in an image, the expec-

ation of a certain observed configuration is small, then this grouping

s a Gestalt, i.e, it is meaningful [29].

efinition 1 (ε-meaningful configuration). A configuration is ε-

eaningful if it occurs in an image in a number less than ε.

Let I be a N × N image, and A � I a segment formed by a set of

ixels {xi}, i = 1, . . . , l. Consider a random variable Xi where Xi = 1
green and blue) represents a different cluster. In step 3, the vertical vanishing point is

ure legend, the reader is referred to the web version of this article).
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if the direction of pixel1 xi is aligned to the direction of A, and Xi = 0

otherwise. Therefore, Xi has the following distribution with precision

level p:

P[Xi = 1] = p and P[Xi = 0] = 1 − p. (4)

The direction of xi is aligned to the direction of A with precision p

when

Dang(dir(xi), dir(A)) ≤ πp, (5)

where function dir(α) outputs the direction of a pixel or segment α,

and Dang outputs the smallest angle between the two directions.

The number of aligned pixels in segment A is represented by ran-

dom variable Sl = X1 + X2 + . . . + Xl. Because random variables Xi are

independent, Sl has the following binomial distribution:

P[Sl = k] =
(

l

k

)
pk(1 − p)l−k. (6)

To consider segment A as a primitive for our method, we need to

know if A is ε-meaningful among all segments in I.

Definition 2 (ε-meaningful segment). A l-length segment A is ε-

meaningful if it contains a minimum of k(l) aligned pixels, where

k(l) = min
{

k ∈ N, P[Sl ≥ k] ≤ ε

N4

}
. (7)

The value N4 is the number of oriented segments (defined by their

initial and end pixels) in a N × N image.

Consider the ith segment, with length li, and the event ei meaning

“the ith segment is ε-meaningful”. Let χei
denote the characteristic

function of this event, so that

P[χei
= 1] = P[Sli ≥ k(li)] =

li∑
k=k(li)

(
li
k

)
pk(1 − p)li−k. (8)

Then the total of ε-meaningful segments is represented by vari-

able R = χe1
+ χe2

+ · · · + χe
N4

, and expectation E(R) relates to the

number of false alarms.

Definition 3 (number of false alarms in a segment). Considering a

l0-length segment A with at least k0 aligned pixels, the number of

false alarms of A is

F(k0, l0) = N4P[Sl0 ≥ k0] = N4
l0∑

k=k0

(
l0

k

)
pk(1 − p)l0−k. (9)

If we take into account all ε-meaningful segments as primitives

for our method, we will have several low quality segments. To avoid

these equivocal segments, we finally take into account only some of

the ε-meaningful segments, the maximal ones.

Definition 4 (Maximal segment). A segment A is maximal if:

1. �B, B � A ⇒ F(B) � F(A).

2. �B, B � A ⇒ F(B) > F(A).

The two parameters of the method by Desolneux et al. [29], thresh-

old ε and precision level p, are not critical. Values ε = 1 and p = 1
16

work well for all images [24].

We group the detected maximal segments in a set S =
{s1, . . . , s|S|}, and each maximal segment si ∈ S has a number of false

alarms denoted by Fi.

Consider the end points (x1, y1) and (x2, y2), in the image plane

R
2, that specify an arbitrary maximal segment. If we represent these

points in RP
2, we get (x1, y1, 1) and (x2, y2, 1), respectively, using

homogeneous coordinates. Here we are also interested in the lines
1 The direction of a pixel is defined by Desolneux et al. [29] as the direction orthogonal

to the direction of the gradient at the pixel.

w

S

hat correspond to the maximal segments, (x1, y1, 1) × (x2, y2, 1).

o, for each maximal segment si, we compute the correspondent line

s shown above, resulting in li. The computed lines form a set L =
l1, . . . , l|S|}.

.2. Segment clustering

The clustering process consists in assigning each segment si ∈ S
o a cluster h. Each cluster h is a set formed by line segments assigned

o it.

The clustering process has three main steps: determination of the

rst seeds, assignment of segments to clusters, and update of the

eeds.

.2.1. First seeds

The selection of the first seeds is done by considering a quality

alue for segments. The quality value qi of segment si is defined as

i = 1 −
(

Fi − minF

maxF − minF

)
, (10)

here maxF and minF are the maximum and minimum numbers of

alse alarms among segments in S, respectively. Note that the quality

alue of a segment is inversely proportional to its number of false

larms, i.e., the lower the number of false alarms, higher its quality.

The number of clusters, H, is chosen by the user. The 2H higher

quality segments are randomly selected, in pairs, to be the seeds for

the H clusters. The two segment seeds of cluster h are denoted by αh

nd βh.

The method converges in fewer steps when the first seeds are

elected based on the quality of the segments. If random segments

re chosen as the first seeds instead, the method yields the same

esults, except that it takes more steps.

.2.2. Assignment step

The assignment step is responsible for selecting a cluster for

ach segment in S . This is done by computing the distance between

seudo-centroids ch = lαh
× lβh

, defined for each cluster h = 1, . . . , H,

nd lines in L.

The distance between an arbitrary point c and an arbitrary line l

in RP
2 can be computed as

proj(c, l) = |c · l|
‖ c ‖‖ l ‖ . (11)

The formula for distance Dproj is obtained by considering the angle

etween the line that corresponds to c and the plane that corresponds

o l in RP
3. Distance Dproj only measures the symmetry between points

nd lines, because it is not a complete metric. Note that Dproj can be

sed arbitrarily also between two points in RP
2.

The cluster selected for line segment si is the one with the closest

seudo-centroid, i.e,

luster(si) = argmin
j∈[1,H]

Dproj(cj, li). (12)

.2.3. Update step

In this step, the method selects new seeds αh and βh for each

luster h = 1, . . . , H.

New seed αh is chosen as the segment in cluster h with closest

rientation to the weighted circular mean [30] orientation θh of the

luster, computed as

h = arctan

(
Sh

Ch

)
, (13)

here Sh and Ch correspond to

h =
∑

si∈ cluster h

qi sin(2θi), (14)
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Fig. 5. Illustration of a cluster h with seeds αh and βh , and pseudo-centroid ch =
lαh

× lβh
. The dots represent all possible pseudo-centroids prior to the selection of βh .

The dashed segments are the candidates for seed βh prior to its selection. Seed βh is

chosen based on the distance between the possible pseudo-centroids.
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Fig. 6. Illustration of two possible clusters. The mean orientation of each cluster is

represented by a dashed line.

c

g

l

w

m

σ

w

R

w

z

w

σ

c

c

f

n

5

5

Y

o

o

t

G

s

l

o

a

s

h =
∑

si∈ cluster h

qi cos(2θi). (15)

n Eqs. (14) and (15), θ i is the orientation of segment si.

Formally,

h = argmin
si∈ cluster h

Dang(θh, θi), (16)

here Dang gives the minimum angle between the orientations.

By selecting αh, the possible new pseudo-centroids for cluster h

re the points lαh
× li, with si � cluster h. New seed βh is selected as

he one that permits new pseudo-centroid ch to be the closest point

o all other possible pseudo-centroids of the cluster. Formally,

h = argmin
si∈ cluster h

∑
sj∈ cluster h

i �=j

Dproj(lαh
× lj, lαh

× li). (17)

Fig. 5 illustrates a cluster h with its new seeds αh and βh. The

ashed segments are the candidates prior to the selection of βh.

The method converges when pseudo-centroids are the same in

wo consecutive steps.

.3. Vanishing point detection

After the convergence, the possible vanishing points associated

ith cluster h are all intersection points in the cluster: li × lj, with si,

j � cluster h. The vanishing point vh is the closest intersection point

o all segments in the cluster, i.e.,

h = argmin
li×lj

si,sj∈ cluster h

∑
sk∈ cluster h

Dproj(lk, li × lj). (18)

. Estimating vertical vanishing point and ground vanishing line

According to [31], vertical vanishing points have two

haracteristics:

1. They usually are observed near the image y-axis, considering typ-

ical camera positions;

2. They are well separated from non-vertical vanishing points.

By considering these two characteristics as our premise, we can

etermine the vertical vanishing vz, and the ground vanishing line m.

Regarding the first characteristic studied by [31], vz should be

elated to the cluster that has the closest mean orientation (Eq. (13))

o the y-axis of the image. But this condition alone does not suffice.

Fig. 6 shows two possible clusters with their mean orientation

epresented by a dashed line. Note that the mean orientation in both

lusters has no deviation from the y-axis. Nonetheless, a cluster asso-

iated with a vertical direction should have all segments with similar

rientation, eliminating the possibility of choosing the first cluster.

Consequently, another characteristic that has to be analyzed is the

istribution of the segments orientation in a cluster. For example,
onsidering the segments orientation in Fig. 6, the first cluster has

reater standard deviation than the second cluster. This observation

eads us to the second necessary condition for associating a cluster

ith the vertical direction: the segments orientation in the cluster

ust have low circular standard deviation [30], defined as

h =
√

−2ln(Rh)

2
, (19)

here Rh corresponds to

h =
√

Sh
2 + Ch

2

∑
si∈ cluster h qi

. (20)

Combining these two conditions, we can select cluster z associated

ith the vertical direction. Formally,

= argmin
h∈[1,H]

Dang

(
θh,

π

2

)
+ σh, (21)

here θh is the circular mean orientation of cluster h (Eq. (13)) and

h is the circular standard deviation of cluster h (Eq. (19)).

Then vertical vanishing point vz is the one associated with

luster z.

To estimate the ground vanishing line m, we recall the second

haracteristic studied by [31]: all vanishing points are well separated

rom vz. So, there are three cases to be considered, depending on the

umber of clusters chosen by the user:

• Two: the ground vanishing line is the one that contains the non-

vertical vanishing point, and with orientation given by the mean

orientation of its cluster.
• Three: the ground vanishing line is the one that connects the two

non-vertical vanishing points.
• Four or more: in this case, it is not clear through which two vanish-

ing points the ground vanishing line passes. By graphically show-

ing the possible vanishing lines, the user can select the one that

corresponds to the ground plane.

. Experiments

.1. Vanishing point detector

We tested the effectiveness of the vanishing point detector in the

ork Urban database [32], an image database with a hundred images

f man-made environments. Together with the images, the authors

f the database also provided the intrinsic camera parameters, and

he vanishing points computed with hand-detected segments and a

aussian sphere method.

In Fig. 7, we provide some visual examples of the obtained re-

ults. The first column presents the input images together with the

ine segments in black, detected as shown in Section 3.1. The sec-

nd column presents the results of the segment clustering algorithm

ssociated with each input image of the first column, computed as

hown in Section 3.2. Each cluster is represented in a different color
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Fig. 7. The first column presents three input images together with the detected segments in black. The second column shows the correspondent final segment clusters and colored

squares representing the detected finite vanishing points. Red parallel segments represent a cluster associated with an infinite vanishing point. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article).

Fig. 8. Orthogonality error cumulative histogram computed in the York Urban

Database, with the most orthogonal vanishing point triplet in each image. Point (x,

y) represents y% of images with orthogonality error lower than x.

Fig. 9. Focal length error cumulative histogram computed in the York Urban Database,

with the most orthogonal vanishing point triplet in each image. Point (x, y) represents

y% of images with focal length error lower than x.

Fig. 10. Range of 1% · |tobjbobj| around tobj .
(red, green, and blue) and the colored squares represent the finite

vanishing points, detected as shown in Section 3.3.

Note that we are considering the Manhattan-world assumption,

i.e., the images must depict scenes with a cartesian 3D coordinate

system. Scenes with few parallel lines or lines not aligned with the

coordinate system axis cannot be considered here.

Besides the visual inspection of the results, we conducted two

experiments. First, we computed the orthogonality error to quantify

the deviation of the most orthogonal vanishing points2 from the actual

orthogonality.
2 The most orthogonal vanishing points are the ones with the lowest orthogonality

error (Eq. (25)).

c

t

t

The second experiment measured the focal length error using the

amera intrinsic parameters, provided by the database. We compared

he focal length computed with the most orthogonal vanishing points

o the real expected one.
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Fig. 11. Measuring the height of a person. The first column contains the input image with the segment clustering result. The second column presents a crop with the computed

height.
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.1.1. Orthogonality error

The authors of the database provided the intrinsic parameters of

he camera: focal length f, pixel dimension (mx, my), principal point

px, py), and skew factor ς . With this information, we can construct

he camera intrinsic matrix:

=
⎡
⎣f/mx ς px

0 f/my py

0 0 1

⎤
⎦ , (22)

Given that we have matrix K, it is trivial to obtain the Image of the

bsolute Conic ω:

= K−TK−1. (23)

Considering two arbitrary orthogonal vanishing points vp and vq,

t is true that

pωvq = 0. (24)

Therefore, to find the most orthogonal vanishing points among all

etected vanishing points vi, i = 1, . . . , H, we select the triplet (vp, vq,

r) that minimizes the orthogonality error

p,q,r = (vpωvq)
2 + (vqωvr)

2 + (vrωvp)
2. (25)

For each image on the York Urban database, we selected the most

rthogonal vanishing point triplet. We then constructed a histogram

f the cumulative orthogonality error for these triplets, shown in

ig. 8. We compared our method with the one provided in the

atabase [32], named here as York Urban method, where the seg-

ents are hand detected and the computation is done by considering

cumulative space represented in a Gaussian Sphere.

.1.2. Focal length error

For this experiment, consider that the focal length f is unknown,

ut instead we have the most orthogonal vanishing point triplet for

ach image. With this information, we can estimate the unknown f

nd compare it with the real value. In order to do this, it is necessary

o retrieve matrix K by decomposing matrix ω.
For each image of the database, we selected the most orthogonal

anishing point triplet, and estimated a focal length from them. We

hen constructed a histogram of the cumulative focal length, shown in

ig. 9. We compared our obtained focal length with the one obtained

y York Urban method and two other detectors:

• Almansa et al. [24] considers the Helmholtz principle to detect

segments and estimate vanishing regions. We selected the center

of these regions to locate the vanishing points. This extension is

named here as Almansa et al. + vpe.
• Tardif [27] considers a Canny edge detector and a flood fill al-

gorithm to extract segments. Vanishing points are detected by a

J-Linkage algorithm.

Note that York Urban method [32] provides in general a better

stimation of the focal length. This is justified by the fact that, in this

ethod, the segments are hand detected, eliminating a major source

f errors.

.2. Measuring heights

With the knowledge of the vanishing points locality, we can select

hich one is vanishing direction vz and also determine the ground

ine m, as detailed in Section 4. This information can be inputed into

riminisi’s photogrammetry framework [6], as described in 2, to make

eight measurements in single images.

Because we are dealing only with a single view of the scenes,

t is necessary to obtain the height of reference objects in order to

ompute absolute values. This cannot be done with images of scenes

e don’t have access to make reference measurements. Therefore

e constructed a database of twenty images (750 × 563 pixels) with

eference objects in the real world. The vanishing points detected on

hese images generate focal length errors of less than 25 pixels.

In order to measure the real height of an object obj depicted in the

mage, the user must inform its top and bottom points, tobj and bobj,

nd the top and bottom points of a reference ref, tref and bref, with

nown height Zref.
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Fig. 12. Measuring the height of a person. The first column contains the input image with the segment clustering result. The second column presents a crop the computed height.
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In an error-free case, the points tα and bα , α = obj, ref, have to be

aligned with vz [6]. Therefore, to compute height Zobj, we replace the

location of the selected points bobj and bref with their perpendicular

projection onto lines
←−→
vztobj and

←−→
vztref , respectively, generating the

scenario depicted in Fig. 3.

The errors associated with the choice of points tobj, bobj, tref and

bref were considered by computing the height using all possible com-

binations of points inside a range of 1% · |tαbα| around each point, for

α = obj, ref. For example, Fig. 10 shows the considered range around

tobj (top of object obj). Each point inside the depicted range was con-

sidered once as tobj. The final height is the average between every

obtained height.

The height of a person was measured comparatively to a known

reference height in twenty images taken in urban environments. The

ground truth height is 171.5 cm and the mean observed error across

all images was ±0.58 cm. Some of the results are shown in Figs. 11,

12, and 13. In each one of these figures, the first column contains

the input image with the segment clustering result, where each color

represents a cluster associated with a vanishing point. The second

column shows a zoomed crop with the vanishing line in green, the

reference object height, and the computed height.

6. Conclusion

In this article, we described a method to detect vanishing points in

an image and showed how to apply it to make efficient height mea-
urements. The proposed method works with uncalibrated cameras,

nd can detect all vanishing points. Since it is performed in a bi-

imensional projective space, the detected points have accurate loca-

ions with no loss of information in transformations between spaces.

However, the method is only effective when applied to images of

an-made environments, in which it is possible to extract straight

egments corresponding to different 3D orientations.

Several applications can benefit from the proposed method. In

orensic investigations, for example, images from CCTV cameras –

losed-circuit television – can be used to estimate the height of sus-

ects. CCTV cameras are widely employed in streets of major cities

ike New York and London.

The results show visually and experimentally the effectiveness

f the method and its application to a photogrammetry framework,

llowing the estimation of heights in images.

The presented method is useful in computing the height of rigid

bjects or people standing in a straight position. However, the height

f animated objects tend to change while they move. This study will

e included in a future work.
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Fig. 13. Measuring the height of a person. The first column contains the input image with the segment clustering result. The second column presents a crop the computed height.
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