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We present a benchmark for the evaluation and comparison of algorithms
which reconstruct a surface from point cloud data. Although a substantial
amount of effort has been dedicated to the problem of surface reconstruction,
a comprehensive means of evaluating this class of algorithms is noticeably
absent. We propose a simple pipeline for measuring surface reconstruction
algorithms, consisting of three main phases: surface modeling, sampling,
and evaluation. We use implicit surfaces for modeling shapes which are
capable of representing details of varying size and sharp features. From
these implicit surfaces, we produce point clouds by synthetically generating
range scans which resemble realistic scan data produced by an optical trian-
gulation scanner. We validate our synthetic sampling scheme by comparing
against scan data produced by a commercial optical laser scanner, where we
scan a 3D-printed version of the original surface. Last, we perform evalu-
ation by comparing the output reconstructed surface to a dense uniformly
distributed sampling of the implicit surface. We decompose our benchmark
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into two distinct sets of experiments. The first set of experiments measures
reconstruction against point clouds of complex shapes sampled under a wide
variety of conditions. Although these experiments are quite useful for com-
parison, they lack a fine-grain analysis. To complement this, the second set
of experiments measures specific properties of surface reconstruction, in
terms of sampling characteristics and surface features. Together, these ex-
periments depict a detailed examination of the state of surface reconstruction
algorithms.
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tational Geometry and Object Modeling—Curve, surface, solid, and object
representations; G.1.2 [Mathematics of Computing]: Approximaestion—
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1. INTRODUCTION

Over the past two decades there has been an immense amount of
effort dedicated to the problem of surface reconstruction. The prob-
lem of surface reconstruction may be formulated as follows: given
a sampling of points measured on a surface, recover the original
surface from which these points came. The faithful representation
of real-world objects has a long history in computer graphics
and other fields such as cultural heritage [Levoy et al. 2000;
Funkhouser et al. 2011] and urban simulation [Frueh et al. 2005].

The generality of the problem has given rise to a wide variety of
surface reconstruction algorithms. The algorithms primarily differ
by the type of input point data and output reconstructed surface.
The input may be a single depth image, a registered point cloud,
or a registered point cloud equipped with normals. Moreover, the
modality of the point data plays a major role in reconstruction,
where various modalities from the 3D vision literature include
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Fig. 1. Here we have synthetically sampled the Gargoyle model, and ran eight separate reconstruction algorithms on this point cloud. Note the differences
between the algorithms on the claw, where some algorithms oversmooth the data, while others result in spurious holes being produced. Our benchmark aims
to generate such imperfect point cloud data and study these various forms of error. The Gargoyle model is courtesy VClab, ISTI - CNR.

optical laser scanners, structured lighting, structure from motion,
and photometric stereo.

The form of output can be broken down into two main com-
ponents: surface representation and the dependency on the input
data. The surface representation may be a parametric surface, an
implicit surface, or a triangulated surface mesh. The dependency
on the input data can range from interpolating all of the input
data, interpolating a subset of the input, or approximating the
input.

The focus of this work is on the evaluation and comparison of
surface reconstruction algorithms which take as input a registered
point cloud equipped with normals and output a triangulated surface
mesh that approximates the input data. More specifically, we focus
on input data acquired through triangulation-based scanning, where
normals are absent and must be computed from the points them-
selves. This class of input is extremely broad, and quite common
in point cloud data due to the rising ubiquity of triangulation-based
scanners such as optical laser scanners. This class of output is flex-
ible for surface reconstruction, as triangle meshes are capable of
representing surfaces of arbitrary detail, while the approximation
requirement gives freedom in handling point clouds that contain
large imperfections.

Despite the vast amount of work in this class of algorithms, to
date there has been an insufficient means of evaluation. These al-
gorithms are typically run on acquired scan data. However, there
does not exist a computational representation of the surface from
which the scanned points were measured. Hence, it is not possi-
ble to compare the reconstructed surface to the original surface,
and it is quite common for such approaches to instead provide a
visual comparison. Quantitative measures are typically done using
synthetically generated data, but existing quantitative evaluation ap-
proaches contain several shortcomings, such as the representation
of the reference shape and the sampling model.

Our benchmark for surface reconstruction rectifies these defi-
ciencies in evaluation, providing the following contributions.

—Realistic data. We use a collection of both simple and complex
shapes, where an implicit surface is used as the computational
representation. We then synthetically scan the implicit surface to
provide a collection of point clouds, where our scanning simula-
tion is validated against real data.

—Accuracy. By using implicit surfaces we have a precise means of
performing evaluation, in both positional and differential mea-
sures. We use particle systems to uniformly sample both the im-
plicit surface and the reconstructed surface mesh, minimizing any
potential bias of measure from the corresponding triangulation.

—Comprehensiveness. The set of experiments demonstrates a broad
range of behavior across surface reconstruction algorithms.

Part of the difficulty in establishing a comprehensive set of experi-
ments is the large variability in point clouds. In triangulation-based
scanning, a surface may be sampled under a wide variety of con-
ditions, producing point clouds containing such characteristics as
noise, outliers, nonuniform sampling, and missing data. This vari-
ability is further enhanced when scan data is processed to produce
an oriented point cloud, where registration and normal orientation
must be performed. Considering all of these factors, it is difficult
to determine the effectiveness of a surface reconstruction algorithm
with respect to an arbitrary point cloud; see Figure 1 for an illustra-
tion. In light of this, we divide our experiments into two sets, one
giving a macro view of reconstruction, and the other giving a micro
view.

The first set of experiments samples a small number of complex
shapes under a large variety of scanner settings. A point cloud for a
given shape provides us with a number of evaluation measures. We
aggregate each measure over all point clouds to generate an error
distribution for a given shape. This serves two purposes. First, it
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provides us with an objective means to compare algorithms by
looking at their performance over a distribution, rather than a single
point cloud which may bias a certain class of algorithms. Second,
it illustrates how effective an algorithm is at reconstructing a single
shape, given that the shape may be sampled in an unbounded number
of ways.

The second set of experiments complements the first, by measur-
ing algorithmic performance in the presence of specific sampling
and shape properties. For these experiments we wish to generate
scans that contain specific properties such as different levels of
sparsity, missing data, and noise. However, complex shapes are
inappropriate to use since their complexity makes it difficult to
controllably elicit these properties. Hence we use a set of simple
shapes, some strictly smooth and others containing sharp features,
each sampled in ways to highlight specific properties for examining
surface reconstruction algorithms.

Lastly, we have made our dataset and benchmark code available
to the public (at: http://reconbench.org). We expect our ex-
periments to benefit the surface reconstruction research community
in two ways. The first set of experiments may be used to obtain an
immediate comparison across reconstruction algorithms, while the
second set of experiments should prove useful to observe specific
algorithmic behavior. Combined, our benchmark provides compre-
hensive insight into this class of surface reconstruction algorithms.

2. RELATED WORK

Surface reconstruction. Broadly speaking, we may classify
surface reconstruction algorithms by their expected input and the
type of output they produce.

One class of algorithms takes as input an unoriented point cloud
and produces an interpolating surface in the form of a triangula-
tion that uses a subset of the input points as vertices. Often these
“connect-the-dots” algorithms are filtration-based techniques; they
first build a triangulation with more elements than needed, and
then prune away triangles not near the surface. By using the De-
launay triangulation coupled with modeling the point cloud as an
ε-sample [Amenta and Bern 1999], many of these algorithms come
with provable guarantees regarding the quality of the reconstruction.
Extensive research efforts have been devoted to this model, produc-
ing the Cocone [Amenta et al. 2002] and Power Crust [Amenta et al.
2001] algorithms. Many other extensions have been compiled in a
recent survey [Cazals and Giesen 2006] and monograph [Dey 2007].

Restricting the reconstruction to have vertices only on the input
point cloud can be limiting when the data is nonuniform, incom-
plete, or noisy. Algorithms that build approximating surfaces give
a flexible alternative in these situations. Here the output is often the
triangulation of an iso-surface of a best-fit implicit function of the
input. Many of these algorithms [Hoppe et al. 1992; Boissonnat and
Cazals 2002] compute a distance field by estimating the tangent
plane at every point and computing closest distances using these
tangent planes. The method of VRIP [Curless and Levoy 1996]
takes advantage of the range scans acquired through laser triangula-
tion to construct a volumetric signed distance field that merges the
scans in a least-squares sense.

Surface approximation from point sets with oriented normals has
gained recent attention. Approaches range from computing an in-
dicator function [Kazhdan 2005; Kazhdan et al. 2006; Alliez et al.
2007; Manson et al. 2008], to locally fitting functions and mov-
ing least-squares methods [Alexa et al. 2003; Ohtake et al. 2003,
2005b; Fleishman et al. 2005]. These approaches are well-equipped
to handle various imperfections in the data, and comprise an inter-
esting class of algorithms to study for comparison and evaluation.

However, normal estimation in the presence of imperfect data re-
mains a difficult problem [Mitra and Nguyen 2003; Dey et al. 2005],
and a thorough study of normal estimation is beyond the scope of
our benchmark.

Reconstruction evaluation. In the area of surface reconstruc-
tion evaluation, most of the preceding approaches employ qualita-
tive methods when comparing to other reconstruction algorithms.
This usually takes the form of a visual comparison. However, signif-
icantly less work has been devoted to obtaining quantitative mea-
sures. This is due to the common use of scan data, where there
is no longer a computational representation of the shape. For syn-
thetic data, the works of Kazhdan [2005], Manson et al. [2008],
and Süßmuth et al. [2010] take a triangle mesh as ground truth,
and randomly sample the triangles directly to obtain a point cloud.
This form of sampling, however, does not reflect the type of data
obtained from a scanner which is subsequently organized into a
point cloud. The works of Hoppe et al. [1992] and ter Haar et al.
[2005] obtain synthetic scans of a triangle mesh from ray tracing
or z-buffering the mesh. These methods can produce realistic data
under the assumption of clean data, but are insufficient for repli-
cating common scan artifacts. While our approach also generates
synthetic range data, it is more realistic since we simulate an optical
triangulation-based scanner.

A drawback of all of these approaches is the use of a triangle
mesh as ground truth. Sampling a triangle mesh, either directly
or through synthetic scans, may produce “faceted scans”, where
multiple samples lie on a single triangle. This can be misleading for
reconstruction algorithms, as the reconstruction may preserve these
faceted portions. It is also problematic to use a triangle mesh as
ground truth for comparing surfaces. METRO [Cignoni et al. 1998]
has become quite common for comparing two triangulated surface
meshes, however, for surface reconstruction we are more interested
in seeing how well a reconstructed surface compares to a real shape
that is smooth, not necessarily a faceted approximation. Moreover,
if we are interested in comparing differential quantities, we have an
ill-posed definition of surface normals when using a triangle mesh
as ground truth.

Similar benchmarks. Finally, related benchmarks exist in the
area of 3D stereo reconstruction—for binocular stereo [Scharstein
and Szeliski 2002] and multiview stereo [Seitz et al. 2006]. Both
use real-world data as input to the various acquisition methods.
Multiview stereo, in particular, applies VRIP [Curless and Levoy
1996] to each range scanned surface, and uses the resulting triangle
mesh as the gold standard for comparison. However, as pointed out
by Kazhdan et al. [2006], VRIP is certainly not free of errors, and
arguably every surface reconstruction algorithm will contain errors
in the presence of imperfections in scanned data. Thus, having a
clear understanding of these types of errors is crucial when using a
reconstructed surface as a gold standard.

3. OVERVIEW

Our benchmark is broken up into three main phases: surface mod-
eling, sampling, and evaluation. See Figure 2 for the full pipeline.

We start with an implicit surface. We model piecewise-smooth
surfaces using integrated polygonal constraints, and approximate a
triangle mesh with an implicit surface, as detailed in Section 4.

We then sample this implicit surface to obtain an oriented point
cloud. We simulate the process of an optical triangulation scanner
in order to produce range scans. We slightly overlap the range scans
and register them through a rigid-body registration algorithm. From
the registered point cloud, we then compute and orient normals
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Fig. 2. Overview of our benchmark. First we create an implicit representa-
tion of a surface mesh. We then sample this implicit surface by synthetically
scanning the shape to obtain individual range scans, and consolidate the
scans into a single oriented point cloud via registration and normal estima-
tion. We run a reconstruction algorithm on this oriented point cloud, and
compare this output to the implicit model and a dense uniform sampling
of the implicit shape to obtain quantitative results. The Gargoyle model is
courtesy VClab, ISTI - CNR.

for each point, producing an oriented point cloud suitable for the
class of algorithms under consideration. These steps are described
in more detail in Section 5.

We next run a surface reconstruction algorithm using the oriented
point cloud as input. This gives us a triangle mesh, which we eval-
uate by comparing to the implicit surface and a dense uniformly
sampled point cloud of the implicit surface. We then construct
positional and normal error metrics, demonstrated in Figure 2 as
individual distributions of point-to-point correspondences. This is
explained in detail in Section 6.

4. SURFACE MODELING

In modeling ground-truth data, care must be taken in the surface
representation, as it impacts the rest of our pipeline. Although trian-
gulated surfaces are popular and easy to work with, we use smooth
and piecewise-smooth surfaces as ground truth, as it benefits the
sampling and evaluation phases as follows.

—Sampling. Our laser-based scanning simulator requires a surface
equipped with a smooth normal field in order to best model an op-
tical laser scanner. As the normal field of a triangulated surface is

discontinuous between triangle faces, this surface representation
can adversely impact our scanning simulator.

—Evaluation. The surface reconstruction algorithms under consid-
eration assume a point cloud sampled from a smooth surface, so
using a smooth surface for quantitative evaluation respects an al-
gorithm’s assumptions. Moreover, a smooth normal field permits
us to reliably evaluate differential quantities in the reconstruction.

The implicit surfaces that we use to model piecewise-smooth objects
are defined via a novel implicit function definition from integrated
smoothness constraints. This method integrates weight functions
over polygons. It also allows us to define sharp features on object
surfaces.

4.1 Polygonal MPU

Our implicit representation is a straightforward extension of
Multilevel Partition of Unity (MPU) [Ohtake et al. 2003] applied to
a triangulated surface, with the main distinction being that we inte-
grate weight functions over polygons. We use the weight function
of Shen et al. [2004], defined for a given point x ∈ R

3 and for an
arbitrary point on a triangle t , p ∈ t .

w(x, p) = 1

(|x − p|2 + ε2)
2 (1)

Here, ε is a smoothing parameter. We may now integrate this weight
function over the entire triangle t .

w(x, t) =
∫

p∈t

w(x, p)dp (2)

For evaluating Eq. (2), Shen et al. [2004] propose a method for
numerical integration. However, we derive a closed-form solution
for this expression. This prevents potential numerical inaccuracies
caused by a quadrature scheme, which could be detrimental to hav-
ing a reliable benchmark. We outline the derivation in Appendix A.

Equipped with a mechanism for integrating weights over poly-
gons, we proceed with MPU by hierarchically fitting shape func-
tions to a triangulated surface with triangle set T = {t1, . . . , tn}. We
adaptively build an octree over T , where for each cell we associate
a sphere whose radius is the length of the cell’s diagonal. We then
gather all triangles that are contained in, or overlap the sphere, and
fit a shape function to these triangles.

In practice we use linear functions for our shape functions, where
for each cell i we associate the function gi(x) = xTni + bi . For all
triangles that belong to the sphere of cell i, Ti ⊂ T , we fit the shape
function as follows.

ni =
∑

t∈Ti
nt

∫
p∈t

w(si , p) dp∑
t∈Ti

∫
p∈t

w(si , p) dp
(3)

bi = −
〈∑

t∈Ti

∫
p∈t

p w(si , p) dp∑
t∈Ti

∫
p∈t

w(si , p) dp
, ni

〉
(4)

Here, nt is the triangle normal of t and si is the center of the
sphere for cell i. Although one may use higher-order shape functions
such as quadrics, we found the difference negligible. The main
difference was that for linear functions we required a deeper octree
to adequately approximate T .

The octree is built such that each cell is subdivided only if the
zero set of its shape function deviates sufficiently from the sphere’s
triangles. If the cell’s sphere is empty to start with, we increase the
sphere’s radius until it encompasses a sufficient number of triangles
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Fig. 3. Complex shapes created via our Polygonal MPU scheme. In our experiments these shapes are synthetically scanned under a wide variety of typical
use case scan parameters. This class of shapes contains many interesting characteristics for scanning, such as multiple scales of detail, nontrivial topology, and
sharp features. The Gargoyle model is courtesy VClab, ISTI - CNR, the Dancing Children model is courtesy AIM@SHAPE, the Anchor model is courtesy
of Dey et al. [2003], and the Daratech model is courtesy of Regli and Gaines [1997] via the INRIA Gamma database.

(which we take to be six). This gives a covering of the space with
overlapping spheres. We may then evaluate the implicit function at
a point by blending all shape functions whose spheres contain that
point.

f (x) =
∑

i qi(x)gi(x)∑
i qi(x)

(5)

Here, qi is a quadratic b-spline function centered at si.
To preserve sharp features, we follow Ohtake et al. [2003] in de-

tecting sharp features within a leaf cell and consequently applying
CSG operations for exact feature preservation. We identify sharp
features using a threshold on dihedral angles. We then apply union
and intersection operations on overlapping shape functions to ex-
actly preserve the sharp feature. We support sharp feature curves
and corners containing a maximum degree of four.

4.2 Benchmark Shapes

Our first set of experiments consists of shapes that contain different
types of complexities; see Figure 3 for these shapes. The Gargoyle
model contains details of various feature sizes, ranging from the
bumps on the bottom to the ridges on its wings. The Dancing Chil-
dren model is of nontrivial topology, containing tunnels of different
sizes and features such as the rim of the hat on the left child and
wrinkles in the cloth. The Quasimoto model is representative of a
shape containing articulated parts, such as arms, legs, and head. The
Anchor model contains sharp features, moderately sized tunnels, as
well as a single deep concavity. Lastly, the Daratech model contains
sharp features, small tunnels, as well as thin surface sheets. We note
that the Gargoyle, Dancing Children, and Quasimoto models were
scanned from objects and subsequently reconstructed, which has
two potential consequences: every surface point is visible from
some position of the scanner, and the implicit function may inherit
smoothing from the original surface reconstruction algorithm.

The second set of experiments uses simple shapes; see Figure 4.
The Bumpy Sphere contains smooth features at varying scales. The
Spiral shape is primarily composed of a thin cylindrical feature.
Lastly, the Mailbox consists of straight and curved sharp features.

5. SAMPLING

The intent of our sampling scheme is to replicate the acquisition pro-
cess of a triangulation-based scanner, in order to produce realistic
point clouds. To this end, sampling is composed of three interme-
diate stages: synthetic range scanning, registration, and orientation.

Fig. 4. Simple shapes created via our Polygonal MPU scheme. In our
experiments these shapes are scanned in a precise a manner in order to
replicate specific scanning difficulties, such as sparsity, missing data, and
noise. The Mailbox model is courtesy of Dey et al. [2003].

(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 5. Common properties of scanned data on a sampled curve. The green
curve is the true curve, while the red points are the oriented points sampled
from the curve.

Common properties found in scanned data are illustrated in Figure 5.
See Figure 6 for an illustration of our synthetic scanner’s capability
in replicating such properties.

5.1 Synthetic Range Scans

We simulate the acquisition of range scans by modeling an optical
laser-based triangulation scanning system. Such scanning systems
suffer random error and systematic error. Random error is due to
physical constraints, such as noise in the laser, variations in the
reflectance due to surface materials, and nonlinear camera warping.
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(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 6. Common characteristics of 3D scans. These point clouds were
generated using our synthetic scanner, illustrating our capability to replicate
common scan properties. In the noise and misalignment insets we have
color mapped the points by their distance away from the implicit shape,
with yellow being far and green being close. The Dancing Children model
is courtesy AIM@SHAPE.

Systematic error is the result of imprecise range measurement due
to the peak detection algorithm. Our range scans are generated by
synthesizing random error, while reproducing systematic error by
performing standard peak detection.

Random error synthesis. We synthesize random errors by gen-
erating a series of radiance images, where each image is the result
of a single laser stripe projection onto the implicit surface. To this
end, given a pinhole camera at position c and a baseline configura-
tion, we first generate the noise-free range data by ray tracing the
implicit surface. We reject all points that are not visible from the
laser position, a function of the baseline distance. This provides us
with a set of pixels containing geometry P = {p1, p2, . . . , pn} and
their corresponding points X = {x1, x2, . . . , xn}.

We now project laser stripes onto the range geometry. We model
each laser stripe projection according to a cylindrical
projection, parameterized by laser position l, field of
view of the laser stripe α, and triangulation angle
θ . The triangulation angle is defined with respect to
an initial laser stripe plane. We may then define the
laser stripe frustum as the volume enclosed by the
two planes {l, θ − α

2 } and {l, θ + α

2 }. A point is considered to be
contained within the frustum if it is within positive distance to both
planes. The inset depicts a 2D illustration of this configuration,
where the red points of the green curve are considered to be within
the laser’s frustum.

For a single laser stripe, we gather all range geometry that is
contained within the stripe. This defines the set of “active” pixels to
which the laser stripe contributes. We then determine the noise-free
radiance at pixel pi due to a laser stripe at triangulation angle θ
by [Curless and Levoy 1995]

Lθ (pi) = |ni · ω|e
−2.0(d(xi ))2

β2 . (6)

Here, ni is the normal of the implicit surface at xi , ω is the unit
vector pointing towards the laser position from xi , d : R

3 → R

is the closest distance to the center of the laser frustum, and β is

the width of the frustum at xi . Here we assume that the surface is
purely diffuse, hence the BRDF is reduced to a constant factor that
we omit.

In practice, diffuse surfaces suffer noise in the form of laser
speckle, where surface roughness contributes to variations in the
reflectance [Baribeau and Rioux 1991]. We observe that this form
of noise is more significant further away from the center of the
laser stripe frustum. We model this as normally distributed additive
noise, where the variance is the distance away from the center of
the laser stripe.

L̃θ (pi) = Lθ (pi) + ηεσ (xi) (7)

Here, η is a user-specified noise magnitude, and ε is a random
variable normally distributed with variance σ , the distance from
the center stripe. In addition, we also allow for smoothing of the
noisy radiance image by convolving L̃θ with a Gaussian kernel of
a user-specified bandwidth.

Systematic error. For each corrupted radiance image L̃θ , we
next perform peak detection in order to find each pixel’s laser stripe
plane. From the laser stripe plane, depth is obtained by triangulation.
A common assumption in many peak detection algorithms is that the
radiance profile, either over space or time (i.e., triangulation angle),
is Gaussian [Curless and Levoy 1995]. However, in the presence of
depth discontinuities, curved surfaces, and noise, this assumption is
violated, producing systematic error.

To this end, we consider all radiance images L̃θ defined for each
triangulation angle θ ∈ {θ1, θ2, . . . θm}, where m is the number of
laser stripes. For each pixel, we consider its radiance profile as θ in-
creases. We fit a Gaussian to this radiance profile via the Levenberg-
Marquardt method. This Gaussian provides us with a mean, which
determines the stripe plane, as well as a peak magnitude and vari-
ance, both of which are used for rejecting low-confidence range
data.

Please see Appendix B for the full list of scanning parameters
and common parameter settings.

5.2 Validation

It is important to verify that the range scans we are producing
contain artifacts found in real scans. To this end, we validate our
synthetic scans by comparing them to data acquired by commercial
scanning systems. We illustrate our capability of replicating noise
and missing data artifacts, which arguably have the greatest impact
on surface reconstruction. We are not interested in exactly reproduc-
ing scans produced by commercial scanning systems. Most systems
perform postprocessing which is far beyond the scope of our scan-
ning simulation. Instead, we show that our scanning simulation is
expressive enough to generate a range of scan artifacts, while still
capable of generating artifacts of a commercial scanner with proper
scan parameters. To perform validation, we first 3D-print a given
implicit surface, then scan the printed model, and lastly register the
real scan to the implicit surface in order to compare against our
synthetic scan.

We have manufactured the Gargoyle model by 3D-printing,
through the company Shapeways [Shapeways 2011]. The minimum
detail at which models may be manufactured through Shapeways is
0.2mm. We then scan the model with an optical triangulation-based
scanner, namely the NextEngine scanner [NextEngine 2011]. The
scanner has a maximum accuracy of 0.127mm at its finest reso-
lution. For surfaces at an optimal distance from the scanner, with
normals roughly aligned to the scanner’s optical axis, we found this
to be true. However for a complex shape like the Gargoyle, as we

ACM Transactions on Graphics, Vol. 32, No. 2, Article 20, Publication date: April 2013.



A Benchmark for Surface Reconstruction • 20:7

Fig. 7. Comparison of noise profiles between our scanning simulation in
increasing noise magnitude (bottom), and a NextEngine scan (top-center).
Note that real scanner noise takes the form of bumps aligned in the direction
of the laser scan projection (top-right), and our synthetic noise is able to
capture this anisotropic noise over varying noise magnitude. The Gargoyle
model is courtesy VClab, ISTI - CNR.

will demonstrate, the accuracy can vary and the noise magnitude
becomes greater than the shape’s resolution.

To compare a real scan to a synthetic scan, we first register the
real scan to the implicit surface. We perform ICP under a rigid-body
deformation in order to best align the real scan to the implicit sur-
face. As the NextEngine does not provide specifics on their CCD
sensor, we take the depth image and use the camera calibration tool-
box [Bouguet 2010] to obtain the intrinsic and extrinsic camera pa-
rameters. We feed these camera parameters into our synthetic scan-
ning system to obtain a comparable range scan. We note that a small
nonrigid deformation might be preferable to a rigid-body deforma-
tion for registration due to small nonlinear camera deformation
artifacts [Brown and Rusinkiewicz 2007]. However, this adversely
impacts camera calibration and hence is unsuitable for our purposes.

Noise validation. In our scanning simulation, noise is strongly
dependent on laser stripe resolution, laser stripe field of view,
noise magnitude, and image smoothing bandwidth. As NextEngine
does not provide these parameters for their system, to compare
noise against the NextEngine scanner we have best estimated the
stripe resolution, field of view, and smoothing bandwidth, while
varying the noise magnitude. See Figure 7 for the comparison.
Note that real scanner noise is in fact anisotropic—a function of
the baseline [Abbasinejad et al. 2009]. Hence we see “bumps” that
are slightly aligned with the direction of the laser projection in the
NextEngine scan. Our synthetic scans demonstrate this anisotropy
as well. We show that by tuning the noise magnitude, we can
produce a variety of noise profiles, including something similar to
that of the NextEngine scanner.

Missing data validation. Missing data in a range scan is
typically the result of the rejection of low-confidence range data.
In our scanning simulation, this is related to the peak intensity
threshold, where a small peak may indicate a poor Gaussian fit. To
compare the missing data profile from our scanning simulation to
that of the NextEngine scanner, we vary the peak detection thresh-
old; see Figure 8. The NextEngine profile seems to correspond to
a particular threshold. Our tunable parameter for peak detection is
based on this threshold for the experiments in Section 7.

Fig. 8. A comparison of missing data between our scanning simulation
in increasing peak threshold (bottom), and a NextEngine scan (top-center).
Note the similarities in regions of missing data between our scan (bottom-
right) and the NextEngine scan, primarily due to the grazing angle at which
the laser strikes the surface, resulting in a low level of radiance. The Gargoyle
model is courtesy VClab, ISTI - CNR.

5.3 Scanning and Registration

Given that we have a means of acquiring range scans, next we
must determine where to scan. It is extremely difficult to automate
the process of positioning/orienting a scanner, as this is inherently
a manual process. We assume an ideal environment in which we
place the scanner at uniformly sampled positions over the bounding
sphere of the object, such that the camera is oriented to look at
the object’s center of mass. Note that such acquisition systems are
starting to gain popularity [Vlasic et al. 2009].

From these individual range scans, we next register them into a
single coordinate system. First we overlap the scans by a prescribed
amount. This is achieved by applying a small, random rotation to
each scan, where initially each scan is in a common global co-
ordinate frame. We then run locally weighted ICP [Brown and
Rusinkiewicz 2007] to align the scans. Note that the amount of
overlap effectively determines the quality of the alignment. Less
overlap means a poorer initialization, and the optimization process
may hit an undesirable local minimum causing misalignment.

5.4 Orientation

From the registered point cloud, we must assign an oriented normal
to each point. To estimate a point’s local tangent plane, and hence its
unoriented normal, we gather its k-nearest-neighbor points and per-
form PCA. Note that this method may produce noisy tangent planes
due to nonuniform sampling, noise, misalignment, and missing data.

We allow normal orientation to be performed using two different
methods. The first method chooses the normal direction which has
smallest angle with the vector formed from the scanner position
to the sample point. The second method is the approach of Hoppe
et al. [1992] which forms a minimum spanning tree over the point
cloud to propagate normal directions. Both methods can produce
normals oriented in the opposite direction, primarily due to noise
in the estimated tangent planes. In particular, the method of Hoppe
et al. [1992] may result in large regions of inverted normals due to
sharp features and nonuniform sampling.

6. EVALUATION

In order to evaluate the quality of a surface mesh M output by a
reconstruction algorithm against the input implicit surface 
, we
take the view of discrete differential geometry for defining error
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Fig. 9. A situation where the � mapping produces an incorrect shortest
distance correspondence. The dashed red line indicates the normal line from
α to x, giving us an inaccurate correspondence since β is closer to x than α.
So we instead take (x,β) as a correspondence.

measures. As illustrated in Hildebrandt et al. [2006], pointwise plus
normal convergence of a polyhedral surface to a smooth surface im-
plies convergence in the metric, surface area, and Laplace-Beltrami
operator. In their context, pointwise convergence is measured in
terms of Hausdorff distance and normal convergence is measured
as the supremum of the infinity norm over all normals. We take their
basic framework and expand it to include other error measures, in
order to provide a more informative evaluation.

6.1 Shortest Distance Maps

To measure error, we first construct shortest distance maps, which
defines the correspondence for a given point on one surface as its
closest point on the other surface. Let the closest point function
D : M → 
 map a point of the output polygonal surface M to its
closest point on the implicit surface 
, and define � = D−1 to be
the inverse map of D. Notice that �(α) is generally not the closest
point on M to α ∈ 
, so that �(α) may be undefined for some α
and � is not one-to-one everywhere.

We wish to sample � nearly uniformly on 
, so as to be able to
make accurate estimates of mean distance and normal error. This is
a departure from the technique of METRO [Cignoni et al. 1998],
which only requires dense sampling. We build a point sample on

 using the particle system method of Meyer et al. [2007]. We
empirically chose the uniform inter-particle distance for each shape
so as to preserve features. Denote P
 as the resulting sample set.

For each sample point α ∈ P
, we shoot a ray in the normal
direction towards M to get a candidate x = �(α) [Hildebrandt
et al. 2006]. If the closest sample point to x in P
, denoted β,
is indeed α, then we accept it as a closest point correspondence.
Otherwise we use (x,β) as the correspondence; see Figure 9 for a
2D illustration. From this process we obtain a set of closest point
correspondences.

C
 = {(x,α) | α ∈ P
, x = �(α)} (8)

We also construct a dual map � : M → 
, using the same
methodology. Instead of choosing an inter-particle distance during
the sampling, we fix the number of sample points, since M may
be arbitrarily complex. We denote PM as the resulting uniformly
spaced sample set on M . We thus obtain the following set of closest
point correspondences.

CM = {(α, x) | x ∈ PM, α = �(x)} (9)

6.2 Discrete Error Measures

Given these maps we define a variety of discrete error measures
between 
 and M . Denoting |S| = |C
|+|CM |, Hausdorff distance
is approximated by

H (
,M) = max
{

max
(x,α)∈C


|x − α|, max
(α,x)∈CM

|α − x| }
. (10)

Further, mean distance is approximated by

μ(
, M) = 1

|S|

⎛
⎝∑

(x,α)∈C


|x − α| +
∑

(α,x)∈CM

|α − x|
⎞
⎠ . (11)

These measures depict error in
very different ways, as the inset
illustrates. Here the circle is the
smooth shape, while the piecewise
linear curve is the approximating
mesh. Hausdorff distance will be
large for the pair of shapes on the
left, while mean distance will be
rather small. For the pair of shapes on the right, the mean dis-
tance will be much larger than the pair of shapes on the left, while
Hausdorff distance will be less.

From these shortest distance correspondences, we have a method
of measuring higher-order geometric properties, by comparing dif-
ferential properties at the correspondences. This is analogous to
defining pullbacks on � and �. We measure normal angle de-
viations in a similar manner to distance measures. If we denote
γ (α, x) = ∠(N
(α), NM (x)), the maximum and mean angle devia-
tion of point correspondences, respectively, are

HN (
, M) = max
{

max
(x,α)∈C


γ (α, x), max
(α,x)∈CM

γ (α, x)
}

(12)

μN (
, M) = 1

|S|

⎛
⎝∑

(x,α)∈C


γ (α, x) +
∑

(α,x)∈CM

γ (α, x)

⎞
⎠ . (13)

In practice we take NM to be triangle normals, as opposed to more
sophisticated normal estimation methods [Meyer et al. 2002]. Such
methods are sensitive to the triangulation and typically assume
smoothness in the normal field. As a result, the presence of sharp
features can result in undesirable oversmoothing.

Comparison with METRO [Cignoni et al. 1998]. An al-
ternative might have been to use METRO to compare the original
meshes with the output meshes. However, there would have been
two issues in using a mesh for both sampling and evaluation. First,
there would have been cases in which many points of a synthetic
scan all lie on one triangle, an undesirable artifact. Second, we
would have needed to estimate normals on the input triangle mesh
for comparison, introducing more error.

As an alternative, we could have used the implicit surface for
sampling and an iso-surface of the implicit surface for evaluation.
However, errors in iso-surfacing can lead to errors in the evaluation,
since a reconstruction algorithm tries to recover the implicit surface,
not its iso-surface.

6.3 Algorithms

We have chosen a wide variety of publicly available surface re-
construction algorithms to test our benchmark. For the sake of fair
comparison, we have only used algorithms that take an oriented
point cloud as input, and output an approximating surface. Here,
we provide a categorization and brief description of each algorithm
along with an abbreviation. This abbreviation is used to identify the
algorithms in the experiments.

Indicator function. This class of algorithms reconstructs a
three-dimensional solid O by finding the scalar function χ , known
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as the indicator function, defined in R
3 such that

χ (x) =
{

1 x ∈ O

0 x /∈ O
. (14)

Here the surface 
 is then defined by ∂O. In practice, these ap-
proaches approximate χ by operating on a regular grid or an octree,
and generate 
 by iso-surfacing the grid.

Poisson surface reconstruction (abbr. Poisson) [Kazhdan et al.
2006] solves for χ by noticing that ∇χ should agree with the normal
field N at ∂O. This amounts to inverting the gradient operator.
Hence, χ is found by solving the Poisson equation.

∇ · ∇χ = ∇ · V (15)

Here, V is the smoothed normal field defined throughout the volume.
The Poisson equation is efficiently solved only near the surface by
using an adaptive multigrid solver defined on the octree built on
the point cloud. Note that use of an octree may result in low grid
resolution in regions of missing data.

An alternative method of constructing the indicator function is
to solve for it indirectly by projecting χ onto a basis, and then
performing an inverse transform to obtain χ . By invoking the Stokes
theorem, this projection need only be performed on ∂O.∫

O

∇ · F(p)dp =
∫

∂O

〈F(p), N(p)〉 dp (16)

Here, F is a vector-valued function whose divergence ∇ · F defines
the basis. Note that these methods are equivalent to solving Eq. (15),
where properties of the basis functions are used to simplify the
original problem.

Fourier surface reconstruction (abbr. Fourier) [Kazhdan 2005]
employs the Fourier basis as part of their solution. For efficiency
they use the Fast Fourier Transform (FFT), hence requiring a regular
grid and the grid resolution being a power of two.

Wavelet surface reconstruction (abbr. Wavelet) [Manson et al.
2008] employs a Wavelet basis for the solution of Eq. (16). In
our experiments we use the 4-tap Daubechies basis. Due to the
multiresolution structure of wavelets, they use an octree for the
basis projection. Hence, similar to Poisson, this method may result
in limited grid resolution over regions of missing data.

Point set surfaces. Point Set Surfaces (PSS) are defined based
on Moving Least-Squares (MLS), where a projection operator is
used to define a surface by its collection of stationary points. A point
is considered stationary when its projection is the identity map.
Originally defined for unoriented points, its definition is greatly
simplified when considering points equipped with normals, and
may be used for surface reconstruction by considering its implicit
surface definition, rather than its projection operator.

Basic PSS methods use a weighted combination of linear func-
tions to locally define the surface at every point. Borrowing ter-
minology from Guennebaud and Gross [2007], we use two dif-
ferent definitions in our experiments: Simple Point Set Surfaces
(abbr. SPSS) [Adamson and Alexa 2003] and Implicit Moving
Least-Squares (abbr. IMLS) [Kolluri 2005]. The implicit surface
definition of SPSS is

f (x) = n(x)T (x − c(x)). (17)

Here, n is a weighted average of normals in a neighborhood of x,
and c is the weighted centroid in a neighborhood of x. The weights
used in computing the normal and the centroid are derived from a
smooth, positive function wx defined with respect to x, which gives

points closer to x larger influence. IMLS is defined as the implicit
function

f (x) =
∑

i wx(pi)(x − pi)T ni∑
i wx(pi)

. (18)

We note that IMLS is a weighted average of linear functions,
whereas SPSS is a single linear function, whose centroid and normal
is a weighted average of points and normals, respectively.

Algebraic Point Set Surfaces (abbr. APSS) [Guennebaud and
Gross 2007] uses spheres defined algebraically as the shape func-
tion. Rather than directly obtaining the implicit function at a point,
APSS fits a sphere to a neighborhood of points, requiring the so-
lution of a linear least-squares system for every point. By using a
higher-order function, the method can be more robust to sparse data
than SPSS and IMLS.

For our experiments, the software package provided by Gaël
Guennebaud contains implementations of SPSS, IMLS, and APSS.
Each PSS is evaluated over a regular grid, and the reconstructed sur-
face is obtained by iso-surfacing the zero level set. In the software,
neighborhoods used to locally fit functions are estimated at each
point based on the density of the input point cloud. In the presence
of missing data this may produce holes in the output due to empty
neighborhoods. This has an impact on evaluation, which we discuss
in the experiments sections.

Multilevel partition of unity. In our own implicit surface def-
inition we use a variant of Multilevel Partition of Unity (MPU)
applied to polygon soup, and so we refer to Section 4.1 for details
about the overall approach, noting that the construction of MPU
with points is quite similar to that of polygons. In our experiments
we use three variants. First we use the original approach of Ohtake
et al. [2003] (abbr. MPU), where linear functions are used as low-
order implicits. We opted not to use the fitting of sharp features, as
we found its sharp feature detection to be rather sensitive and fre-
quently produces erroneous fits. We also use the approach of Nagai
et al. [2009] (abbr. MPUSm), which defines differential operators
directly on the MPU function, though restricted to linear functions.
In doing so, diffusion of the MPU function becomes possible, re-
sulting in a more robust reconstruction method. Lastly, we also use
the method by Ohtake et al. [2005b] (abbr. RBF), which uses com-
pactly supported radial basis functions for locally defined implicit
functions in the MPU construction. For all MPU methods a surface
mesh is generated by first evaluating the MPU function over a reg-
ular grid, and iso-surfacing the zero level set to obtain the surface.

Scattered point meshing. The method of Ohtake et al. [2005a]
(abbr. Scattered) is a departure from the aforesaid approaches. This
method grows weighted spheres around points in order to deter-
mine the connectivity in the output triangle mesh. Quadric error
functions [Garland and Heckbert 1997] are used to position points
in the output mesh, which can result in a small amount of simplifi-
cation in the output. Similar to the PSS methods, regions empty of
data may produce holes in the output.

6.4 Algorithm Parameters

We provide a brief description of the most relevant parameters for
each algorithm.

Resolution. As all the algorithms, except Scattered, contour a
grid to obtain the surface they must contain sufficient grid resolution
to adequately preserve all surface details. Our goal is to provide each
algorithm with such a resolution, while maintaining fairness across
algorithms which may use and define grids differently. To achieve
this, for each implicit surface we first determine the resolution
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which is necessary to extract the surface with minimal error. We find
that across all shapes, a resolution of 3503 provides for sufficient
resolution to preserve surface details, hence for the PSS and MPU
methods we set their resolution to 350.

For Fourier, Poisson, and Wavelet, grid resolution serves two
purposes: iso-surface precision, and the accuracy and convergence
of the Poisson solver (see Eqs. (15) and (16)). We experimentally
found that sufficient resolution for iso-surfacing does not imply
sufficient resolution for the solution to the Poisson equation. Hence
for Fourier we set the grid resolution to 512, in order to reduce
any smoothing resulting from the FFT. For Poisson and Wavelet,
although an octree depth of 9 may appear most reasonable, we set
it to 10. We find that this additional resolution in regions of high
sampling density produces a more accurate iso-value for contouring,
which makes a significant difference in contouring low-resolution
regions of the octree.

Noise. Algorithms tend to handle noise according to their cat-
egorization. For indicator functions, noise may be combated by
splatting the points into the grid using a large splat radius, as well as
through lowering the grid resolution, effectively serving as a low-
pass filter. PSS methods all contain a bandwidth which determines
the extent of neighborhood influence. A large bandwidth results in
more points for consideration in shape fitting and hence larger data
smoothing. MPU methods and Scattered all contain error thresholds
that determine the quality of a shape fit. In the presence of noise
the tolerance may be increased to avoid overfitting. MPUSm also
provide parameters specific to their diffusion method, for which we
use author-suggested settings.

Discussion. In practice we set an algorithm’s parameters based
on the characteristics of the input point cloud, namely the noise level.
As the point clouds of experiments 7.1–7.3 contain a constant level
of noise, we have kept all algorithm parameters fixed throughout
these experiments. The parameters were empirically determined
by measuring each method’s performance on a subset of the point
clouds. Though one may fine-tune an algorithm’s parameters to
improve its performance with respect to a particular error metric,
parameter insensitivity is an important indication of algorithmic
robustness. Only in experiment 7.4, where noise varies, do we set
algorithm parameters in accordance with the noise level.

7. RESULTS

Our results are broken down into two main sets of experiments: one
in which complex shapes are sampled with a variety of sampling
settings, and another in which simple shapes are sampled with
specific sampling settings. Please see Appendix B for reference to
the types of units used throughout the results.

We have not used the maximum angle deviation as an error mea-
sure in our experiments. By using triangle normals as the normal
field over a surface mesh, this measure can be quite high even when
the mesh contains low error in all other measures. Since it did not
distinguish between the algorithms, we omitted it.

Note that it is possible for these algorithms to produce surfaces
containing multiple connected components. We extracted the largest
connected component, in terms of surface area, as the surface for
evaluation rather than all components. Unfortunately, this favors
algorithms in which connected components are created far from the
ground-truth surface over algorithms which create additional com-
ponents near the surface. Hence, in addition to the error metrics, we
have provided additional information on the algorithms including
the number of connected components, the length of the boundary

Table I. Range of Scanning Parameters for Error Distribution
Experiments

shape res scans camera dist peak variance

Gargoyle 250–350 7–11 75–115 0.2–0.4 0.5–0.75

DC 250–350 7–11 75–115 0.2–0.4 0.5–0.75

Quasimoto 250–350 7–11 75–115 0.2–0.4 0.5–0.75

Anchor 175–225 8–12 60–100 0.2–0.4 0.5–0.75

Daratech 250–350 8–12 75–115 0.2–0.4 0.5–0.75

The range of scanning parameters used in the error distribution experiments. Here,
res represents the image resolution of a single range scan, scans is the number of
scans taken, camera dist is the camera distance away from the center of the object,
peak is the radiance threshold at which to reject depth, and variance is the variance
threshold at which to reject depth.

components, whether or not the surface is manifold, deviation from
the true genus, and computation time.

7.1 Error Distributions

Our first set of experiments focuses on the performance of surface
reconstruction algorithms restricted to a single shape. Given an
input we sample it across a variety of scanner parameter settings and
run all reconstruction algorithms across all point clouds. We then
compute error metrics for each point cloud. For each algorithm, we
aggregate the error metrics across all point clouds to obtain what
we term error distributions.

We argue that error distributions are more effective for bench-
marking reconstruction algorithms, rather than comparing algo-
rithms with respect to a single point cloud. Each algorithm has its
strengths and flaws for particular forms of data, and to sample a
shape in such a way that it favors the strengths of certain algorithms
provides an incomplete picture in the comparison of reconstruction
algorithms.

To this end we generate samples by varying scanning parameters
across typical use case settings. Namely, we vary sampling resolu-
tion, the number of range scans, the distance the camera resides from
the object, peak threshold, and variance threshold. Please see Table I
for the full range of parameters over all shapes. We have adapted
certain parameter ranges to specific shapes in order to ensure ade-
quate coverage in the point clouds, and to sufficiently capture shape
details. To reproduce small imperfections commonly found in range
data, we introduce a constant, modest amount of noise into the laser
signal. We also slightly overlap the scans and register them, causing
small misalignment errors. For each point cloud we randomly dis-
tribute camera positions uniformly on the bounding sphere of the
object, rather than keeping their positions fixed.

See Figure 10 for the results of this experiment across all shapes,
where the distributions take the form of box plots. The three error
measures, mean distance, Hausdorff distance, and mean angle de-
viation, demonstrate the various strengths and weaknesses of the
algorithms.

Smooth surfaces. The Gargoyle, Dancing Children, and Quasi-
moto shapes represent our class of shapes containing entirely
smooth surface features. We find that the algorithms generally per-
form quite well on these shapes. However, the different error metrics
point to subtle differences in performance. For instance, Wavelet
tends to produce nonsmooth, rather bumpy surfaces, yet the recon-
structed surface tends to stay close to ground truth, which is likely
due to the use of wavelet bases in the presence of nonuniform or
missing data. This nonsmoothness is depicted in the mean distance
and angle deviation plots, yet its Hausdorff distance performance
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Fig. 10. Plots for all of the error distribution experiments. Each bar plot represents the distribution of a particular error measure for a given shape, sampled
with a wide variety of scan parameters. The median provides a good indication of overall algorithmic performance for a given error measure, while the quartiles
give an indication of algorithmic robustness.

is quite competitive, indicating it never strays too far from ground
truth.

It is well-known that Poisson and Fourier tend to oversmooth the
data, and in our experiments this is reflected in their rather large
error in mean distance. However, in terms of Hausdorff distance
and mean angle deviation they perform rather well, and are fairly
consistent in their performance. This indicates that these algorithms
are reliable in producing surfaces which remain close to the original,
while also remaining close in differential quantities. We note that
Fourier is more consistent than Poisson, as Poisson suffers a lack
of resolution in regions of missing data.

While RBF performed well on the Dancing Children and Quasi-
moto models, on the Gargoyle model we see that it performed poorly
across all metrics. The Gargoyle model is particularly difficult to
sample as it has many concavities, where an undersampled concav-
ity caused RBF to produce a thin crust throughout the interior of
the shape rather than fill the hole.

We observe that for MPUSm its mean and Hausdorff distance
is quite stable over all of the shapes. However, its normal error
tends to not be consistent with the distance measures compared
across different algorithms. We find that MPUSm produces slightly
oversmoothed surfaces, and as such it can fail to capture fine-scale
details. Hence, its normal error is comparatively larger. On the other
hand, its smoothing of the MPU parameters can correct erroneous
MPU shape fits, which likely explains its better performance over
MPU in Hausdorff distance.

Sharp features. The Anchor and Daratech shapes are particu-
larly difficult to reconstruct. As these are shapes with sharp features,

algorithms that only model smooth surfaces have difficulty with
them. Additionally, these shapes have small topological features
which are difficult to adequately scan due to occlusion. Hence
we do not necessarily expect these algorithms to perform as well
on these shapes as the others, and instead we use these shapes to
measure robustness.

In observing MPU and MPUSm, we find instability in the pres-
ence of the Anchor and Daratech point clouds, where large spurious
surface sheets are produced as a result of improperly fitting smooth
shape functions to sharp features. However, note that the PSS meth-
ods perform much better, despite also using smooth shape functions.
PSS methods fit shape functions at every point, hence the error will
be contained locally if there exists a poor fit. MPU and MPUSm
hierarchically fit a set of shape functions according to an error cri-
terion, which can result in unbounded error if a poor fit exists.
Interestingly, RBF performs quite well in distance, yet has rather
large error in normals. The RBF interpolant tends to remain quite
close to the surface, but produces spurious high-frequency details,
hence the large normal deviations.

Topology. Overall, we find that the PSS methods and Scattered
tend to perform quite well in the error metrics. However, these are
also methods that produce holes in the presence of insufficient data.
To demonstrate the performance of these algorithms in terms of
topology, we also show how these algorithms behave in their number
of connected components, total length of boundary components,
whether or not the reconstructed mesh is manifold, and the deviation
from the true genus, averaged over all point clouds, and shapes;
see Table II. As shown, Fourier and Poisson tend to outperform
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Table II. Summary of Error Distribution Experiments

algorithm comps bndry manifold genus time

apss 47.37 140.86 0.50 1.82 36.02

fourier 1.54 0.00 1.00 0.49 28.70

imls 38.48 194.65 0.74 1.66 34.11

mpu 100.69 9.71 0.49 0.79 12.83

mpusmooth 2.88 2.93 0.91 0.67 17.83

poisson 1.54 0.44 1.00 0.63 36.83

rbf 51.73 6.30 0.82 13.55 34.78

scattered 1.90 214.21 1.00 7.47 4.48

spss 174.53 143.14 0.26 3.98 33.53

wavelet 1.35 0.04 1.00 0.71 2.13

Additional information for experiment 1, averaged across all point clouds and
shapes. Here, comps refers to number of connected components, bndry is the
length of boundary components, manifold is whether or not a mesh is manifold,
1 being manifold and 0 otherwise, genus refers to the amount which deviates
from the actual genus, and time is in seconds.

these methods in all categories. With respect to the PSS methods,
this demonstrates that they tend not to produce topologically clean
implicit functions, likely due to their local nature. However, note
that their genus remains relatively close to ground truth, whereas
the local method Scattered performs poorly in genus.

7.2 Sparse Sampling

It is common in range scan data for certain areas of the surface
to be sampled less densely than others. Here we investigate how
reconstruction algorithms behave as data sparsity varies, where we
treat sparsity as a controllable parameter. We are interested in ob-
serving how these algorithms infer the surface between the given
input points.

In this experiment we only vary the sampling resolution. We fix
the number of scans and camera positions such that the shape is
sufficiently covered, that is, no missing data. We use the analytical
normals of the surface, and no noise or misalignment. We use such
clean input in order to restrict the problem to only data inference.
We use the bumpy sphere as the test shape, as the coarse-scale
features of the surface make data inference plausible.

See Figure 11 for plots of the experiment. MPUSm was unable
to smooth its spherical covering on half of the point clouds due to
the extreme sparsity, so we have omitted it from this experiment.
From the distance measures we immediately see a partitioning of
the algorithms: IMLS, Poisson, SPSS, and Wavelet all tend to be-
have rather poorly, while the other algorithms perform well. This is
expected for Poisson and Wavelet, as the resolution of the output is
proportional to the input size. However, it is interesting to observe
the significant improvement of APSS over IMLS and SPSS, indi-
cating that fitting spheres to sparse data is more advantageous than
trying to fit planes to the data.

We also see that Fourier demonstrates remarkable robustness to
sparse data. Fourier performs best among all algorithms when the
data is very sparse, whereas APSS, MPU, RBF, and Scattered per-
form rather poorly on such data, though they perform better as
resolution increases. However, observe that as the sampling resolu-
tion becomes somewhat dense, the distance error in APSS, MPU,
and RBF steadily decreases while Fourier remains stagnant. This is
a consequence of Fourier’s inherent data smoothing. The algorithms
that fit shape functions to the data comparatively improve their fits
when the resolution increases.

7.3 Missing Data

Missing data will almost always be present in scanned data, sim-
ply due to concavities in the shape which can not be reached by
the scanner or insufficient scanning due to physical restraints of
the scanner. Here we generate incomplete point clouds by treating
missing data as a controllable parameter, where we vary the peak
threshold at which range is rejected. We note that this is quite com-
mon for scanners, since the accuracy of the scanner suffers when
the angle at which the optical axis and the normal becomes large,
and the preferred option may be to reject unacceptably noisy points.

Similar to the previous experiment, here we fix the number of
scans and camera positions, and use no additive noise, in order to
isolate missing data as the primary challenge in the input. We then
vary the peak threshold at which to reject samples from 0.8 to 0.4,
where 1 is the expected peak. We have used the bumpy sphere and
Mailbox shapes, in order to observe the behavior of these algorithms
in the presence of missing data on both smooth and sharp features.

See Figure 12 for plots of the experiment. We find that all of the
indicator function methods perform quite well across both shapes
with the notable exception of Wavelet, which fails to converge to the
limit surface as missing data decreases. We credit the robustness of
indicator function methods to the fact that they are global methods
that do not attempt to fit shape functions.

Indeed, methods that fit shape functions have rather erratic be-
havior, particularly in the Mailbox shape. MPU, MPUSm, and RBF
are quite unstable, producing spurious surface sheets as missing
data is introduced. When the neighborhood of an edge is sampled
on one side but not the other, extraneous surfaces may appear.

Scattered and the PSS methods tend to produce holes in surface
regions where there are no samples. Similar to MPU, MPUSm, and
RBF, the PSS methods can produce poor local shape fits in the
presence of sharp features and missing data. However, the error is
contained locally, for similar reasons discussed in Section 7.1.

7.4 Noise

Finally we consider how robust reconstruction algorithms are to
noise in the range data. We consider two scan parameters that have
a significant impact on noise, noise magnitude and laser frustum
field of view. The effect of noise magnitude is fairly clear, however,
we note that the thickness of the laser has a significant impact. The
thicker the laser, the more difficult peak detection becomes at depth
discontinuities, resulting in samples being detected where there is
no surface.

To this end, we have taken the Spiral shape and sampled it with
varying noise magnitudes and varying laser thickness. We suffi-
ciently sample it so that missing data or sparsity is not an issue, and
compute normals directly from the points, allowing for improper
orientation if direction propagation is incorrect. For each algorithm
and each point cloud we also manually set the parameters to perform
best, considering the scale of the noise. For the PSS and indicator
function methods, such parameter settings are quite intuitive as
they are based on sampling density bandwidths. However, for all
other methods a maximum error tolerance effectively determines
the amount of smoothing performed, which can be quite sensitive.

See Figure 13 for plots of the noise experiments. Note that Fourier
and Poisson, in terms of all error metrics, are quite robust in the
presence of noise. This is likely due to the global nature of these
methods, where smoothing the data is a natural consequence. As
observed by its large variance, RBF performs rather poorly in the
presence of noise. Indeed, the necessity to produce dipoles for
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Fig. 11. Plots for the sparsity experiment, where we have sampled the bumpy sphere in increasing image resolution. The bottom row depicts a subset of these
point clouds in decreasing sparsity. This experiment demonstrates how well these algorithms infer the surface from a sparse sampling.
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Fig. 12. Plots for the missing data experiments on the bumpy sphere (top row) and Mailbox (bottom row). We generate missing data by varying the peak
intensity threshold at which the range is rejected. Note the differences in performance between the shape with smooth features and the shape with sharp
features, as missing data is varied. The Mailbox model is courtesy of Dey et al. [2003].

RBF becomes especially problematic in the presence of noise and
outliers.

We observe that MPU and MPUsm are somewhat robust in the
presence of noise given their small variance in Hausdorff distance,

though interestingly we see significant differences between
them in the two different distance measures. The smoothing
performed via MPUSm tends to expand the surface outward,
resulting in poor mean distance, yet it never strays too far from
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Fig. 13. Noise experiments for the Spiral shape. Here we vary noise level and laser thickness, and aggregate this into distributions. A small variance in a
distribution is a good indication of robustness to noise.

Table III. Noisy Spiral Statistics

algorithm comps bndry manifold genus time

apss 221.60 0.71 1.00 0.00 50.59

fourier 1.00 0.00 1.00 0.00 27.24

imls 193.16 4.76 1.00 0.00 48.62

mpu 1.20 0.00 1.00 0.00 7.13

mpusmooth 1.08 0.06 1.00 0.00 23.08

poisson 1.00 0.00 1.00 0.00 30.90

rbf 12.48 4.69 0.92 0.30 18.90

scattered 1.08 0.00 1.00 0.44 3.11

spss 257.20 1.13 1.00 0.00 48.18

wavelet 1.00 0.00 1.00 0.00 2.26

Additional information for the noisy Spiral experiments, averaged across all
point clouds.

ground truth, hence its good behavior in terms of Hausdorff
distance.

The PSS methods all tend to smooth out noise and remain robust
to outliers. However, far away from the surface their behavior tends
to be quite poor; see Table III. They tend to produce many extra-
neous connected components, as well as boundary components.

7.5 Discussion

Our small-scale experiments tend to correlate well with the results
of the error distribution experiments. For instance, the unstable be-
havior of RBF in the presence of sparse and missing data manifests
in its unstable behavior across the Gargoyle model, which is difficult
to adequately sample due its numerous concavities. Likewise, the
behavior of MPU and to a lesser extent MPUSm in the presence of
missing data on the Mailbox correlates with their large variance in
the Anchor and Daratech, indicative of the fact that they have trou-
ble reconstructing sharp features. Observe that the stable behavior
of Fourier in the small-scale experiments correlates well with its
relatively small variance in the distribution plots.

Our experiments point toward a number of deficiencies in the
state of surface reconstruction. Our results demonstrate the remark-
able robustness of methods based on computation of the indicator
functions, yet these methods tend to oversmooth the data, reflected
in their poor performance in mean distance across complex shapes.
Developing an algorithm based on the indicator function, which
does not oversmooth the data, would be very useful. Conversely,
although MLS methods perform rather well in terms of mean and

Hausdorff distance across the complex shapes, they demonstrate
poor far-field behavior. We think that combining MLS methods
with global constraints of some nature may rectify these issues.

Our benchmark should also prove useful for recent meth-
ods which resample point clouds with large missing data
[Tagliasacchi et al. 2009; Cao et al. 2010; Shalom et al. 2010].
Although we have produced such point clouds in order to test
robustness, it would be interesting to see how well these more
recent resampling methods perform quantitatively.

All told, our benchmark consists of 351 point clouds across eight
shapes, providing rich data for surface reconstruction developers.
For our first set of experiments, we have 48 point clouds for each
shape. Over 10 algorithms, this amounts to a total of 2400 different
reconstruction outputs, and over both distance and normal corre-
spondences we have a total of 4800 correspondence mappings. We
think that this construction of a distribution of point clouds for
a given shape could be used in other areas, for instance, poten-
tially learning surface reconstruction, by using the point clouds and
ground-truth data as training data.

Limitations. While the surfaces in our benchmark cover a broad
range of shapes, they are by no means exhaustive. As surface re-
construction becomes more specialized, such as the reconstruction
of large-scale architectural buildings [Nan et al. 2010], we envision
our benchmark to expand to these specific forms of surfaces. Our
implicit shape representation should easily be able to accommodate
other types of shapes.

Although we have generated a large variety of point cloud data
with our sampling scheme, we are keeping fixed certain settings
which may be worth further exploration. For instance, we assume
a diffuse BRDF in the scanning simulation, where it may be inter-
esting to consider different forms of surface reflectance, and even
spatially varying BRDFs. Though laser-based optical triangulation
scanners are quite popular, other forms of scanning may be worth
simulating in order to replicate different acquisition artifacts, such
as time-of-flight scanners.

8. CONCLUSIONS

We have presented a benchmark for the evaluation and comparison
of surface reconstruction algorithms, restricted to the class of algo-
rithms that take an oriented point cloud as input and produce an ap-
proximating surface as output. Central to our benchmark is a mech-
anism for simulating point cloud data acquired from laser-based
scanners. We use a broad class of implicit surfaces as reference
shapes to sample, which allows us to obtain accurate quantitative
measurements.
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Our extensive experiments enable us to observe a wide range of
behaviors across existing algorithms. For instance, global methods
such as those which reconstruct the indicator function are very
robust in the presence of noise, while more local methods such as
MPU and MLS methods produce highly accurate reconstructions in
the presence of clean data. The experiments point towards potential
future work in surface reconstruction by illustrating the specific
advantages and disadvantages in existing approaches.

By publicly releasing our data and code, researchers will now
be able to benchmark their algorithms against existing algorithms
and see where they stand. Additionally, our modeling and sampling
methods will allow researchers to generate surfaces and point clouds
tailored towards their interests. Hence we envision our benchmark
to grow over time, continually incorporating data provided by the
surface reconstruction community.

APPENDIX

A. CLOSED-FORM SOLUTION OF POLYGONAL
WEIGHT FUNCTIONS

In this section, we detail the closed-form solution for Eq. (2) that
is used in the formation of our implicit functions. The basic idea is
to cast the integral into the local coordinate system of the triangle,
and perform integration in terms of polar coordinates, analogous to
the construction of Green coordinates [Lipman and Levin 2010].

For a given evaluation point x and triangle t composed of the
vertices p1 , p2, and p3, and normal n, we project x onto the plane
of t .

x̃ = x + 〈
p1 − x, n

〉
n (19)

Now, for a given p ∈ t , |x − p|2 + ε2 = |x̃ − p|2 + |x − x̃|2 + ε2 =
|x̃ − p|2 + λ1, where λ1 = |x − x̃|2 + ε2 and is constant throughout
the integration. We can now rewrite the integral as

∫
p∈t

w(x, p)dp =
∑

ti

sgn(ti)
∫

p∈ti

dp
(|x̃ − p|2 + λ1)2

, (20)

where t is broken up into t1, t2, t3, formed from the triangles com-
posed of x̃ and p1, p2, p3, and sgn represents the orientation of the
triangle: positive if oriented properly, and negative otherwise. See
the left image of Figure 14 for an illustration of this decomposition.

Without loss of generality we consider a single triangle t1. We
now convert this integral into polar coordinates.

∫
p∈t1

dp
(|x̃ − p|2 + λ1)2

=
∫ θ=β

θ=0

∫ R(θ)

r=0

r dr dθ

(r2 + λ1)2

= −1

2

∫ β

0

dθ

R(θ )2 + λ1
+ β

2λ1

The integration is centered with respect to x̃, where β is the angle
in t1 opposite x̃, and R(θ ) is the length parameterized by θ . See the
middle image of Figure 14.

In order to have a clean parameterization of the length R(θ ), we
break up the integral into two parts by considering the orthogonal
projection of the point x̃ onto its opposing edge, x̂, and breaking
t1 into: t1

1 =< x̃, p2, x̂ > and t2
1 =< x̃, x̂, p3 >. Without loss of

generality we consider t1
1 , and we obtain: R(θ ) = |x̃−x̂|

cos(θ) ; see the

Fig. 14. We illustrate the decomposition of the integration of polygonal
weight functions. We first decompose integration into three separate triangles
(left), for such a single triangle perform integration in polar coordinates
(middle), followed by breaking up the integration into simpler components
through orthogonal projection onto the opposing edge (right).

right image of Figure 14. Hence the integral becomes∫ β1

0

dθ

R2(θ ) + λ1
= sgn(t1

1 )
∫ β1

0

cos2(θ )

|x̃ − x̂|2 + λ1 cos2(θ )

= sgn
(
t1
1

)(β1

λ1
− |x̃ − x̂|2

λ1

∫ β1

0

dθ

|x̃ − x̂|2 + λ1 cos2(θ )

)
,

where sgn(t1
1 ) is the sign of the orientation of the triangle, which

may be negative if x̂ projects outside of t1. Applying the double
angle formula to the preceding integral we obtain

=
∫ β1

0

dθ(|x̃ − x̂|2 + λ1
2

) + λ1
2 cos

(
2θ

) ,

Setting b = |x̃ − x̂|2 + λ1
2 and c = λ1

2 , we may apply the relevant
antiderivative [Abramowitz and Stegun 1964] to obtain∫

dθ

b + c cos(2θ)
= 1√

b2 − c2
tan−1

{√
b − c

b + c
tan θ

}
+ C.

B. DESCRIPTION OF SYNTHETIC SCANNER

Here we provide additional details on our synthetic scanner, as
described in Section 5.1. To clarify the following discussion, we
note that for each shape in our benchmark we have set its maximum
dimension to be 70mm. Hence any scanning parameter based on
distance is defined with respect to the bound of 70mm. Additionally,
we place an upper bound on the radiance to be 1.

Our synthetic scanner is controlled by the following parameters.

—Image resolution. The image resolution, in conjunction with the
number of scans used, effectively defines the resolution of the
point cloud.

—Baseline distance. A small baseline distance magnifies depth
errors in triangulation, while a large baseline results in greater
occlusion. We have fixed our baseline to be with respect to the
x-axis of the camera, though this may easily be adjusted to the
y-axis by changing the laser sweep direction. We found that
baseline distances ranging from 10mm to 150mm provide good
variety in triangulation accuracy and occlusions.

—Stripe frustum field of view. The thickness of the laser stripe has
an impact on peak detection, in appropriately fitting a Gaussian.
By default, we set the field of view such that the number of pixels
visible within a distance of 50mm from the camera is roughly 10,
which is a function of the image resolution.

—Stripe resolution. The number of laser stripes to project impacts
the resolution of the depth. By default, we set this to be the x
resolution of the camera, in order to obtain sufficient coverage.
Setting the stripe resolution to be lower than the x resolution
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may result in some points not being affected by the laser stripes.
By assigning a sufficiently large stripe frustum field of view, one
may be able to obtain sufficient coverage.

—Noise magnitude. The magnitude of the noise corrupts the laser
projection, making peak detection imprecise. Typical noise mag-
nitudes we have used range from 0, or no noise, to 0.6, which can
greatly corrupt the radiance signal.

—Radiance smoothing bandwidth. Smoothing the radiance image
reduces noise, though at the potential cost of sacrificing the ex-
pected Gaussian laser profile. The bandwidth to use is largely
dependent on the stripe frustum field of view and noise level. For
instance, a thick laser with large noise magnitude will require a
fairly large bandwidth to sufficiently smooth out the noise. We
note that smoothing, in conjunction with additive noise, may re-
sult in a radiance signal with smaller peak magnitudes, which can
impact the peak magnitude threshold.

—Peak magnitude threshold. For large thresholds this will reject
parts of the surface whose radiance signal is determined weak
by a pixel’s corresponding Gaussian fit. This is a major cause
of missing data. For a laser containing little or no noise, typical
thresholds range from 0.8, which will result in only highly con-
fident range data, to 0.1, which will result in the rejection of few
points. Under noise and radiance smoothing, the peak threshold
must be adjusted to account for an expected reduction in peak
magnitude.

—Variance threshold. Range at depth discontinuities are likely to
be rejected with this threshold. We set the variance with respect
to the width of the laser, where by default we only reject range
whose variance in the Gaussian fit is larger than twice that of the
laser width. Similar to the peak magnitude threshold, the vari-
ance threshold is sensitive to the noise magnitude and smoothing
bandwidth.

We note that in our experiments, although we have generated quite
a large number of point clouds, we have hardly explored the full
parameter space of our scanner. By publicly releasing our synthetic
scanner software, surface reconstruction researchers and practition-
ers will be able to replicate specific scanning conditions of interest.
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