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Abstract

In this paper we present a novel method to reconstruct
the 3D posture of flying bats from sparse multiple view
video. Specifically, we incorporate biomechanical and geo-
metric knowledge about bats into an articulated model. We
then estimate the bats time-varying pose by tracking a set
of known markers using a Square Root Unscented Kalman
filtering method augmented with video optical flow informa-
tion. Our method scales easily to multiple views, elegantly
handles missing and occluded markers, and has a versatility
in the type and complexity of the tracking model. To demon-
strate the performance of the reconstruction method, we ap-
ply our technique to estimate the parameters of a 52 degree
of freedom articulated model of a bat from a real-world
flight sequence. We further assess our algorithms perfor-
mance by quantifying its ability to recover model parame-
ters accurately for a realistic simulated flight sequence.

1. Introduction
Motion is ubiquitous in Biology: all living organisms ex-

hibit motions at some level from the cellular to the macro-
scopic. For animals in particular, motion determines how
they forage, migrate, mate, where they live and how they es-
cape predators. Because of the biological significance of an-
imal movement and the increased availability of high qual-
ity cameras for motion capture, there is growing interest in
quantifying animal locomotion from multiple view video.
Despite this interest, 3D motion reconstruction methods
predominantly focus on the capture and reconstruction of
human motion. As such, there are fewer sophisticated meth-
ods for analysis of animal locomotion.

In this paper, we detail a method to reconstruct the flight
kinematics of freely flying bats from multiple view video.
The genus of bats, containing 25% of all mammals [30], has
recently garnered interest from both the engineering and bi-
ological communities because of the exceptional flight char-
acteristics these animals demonstrate. Bats are adept at ma-
neuvering and at the same time are highly efficient fliers

Figure 1. We develop a model based method to track the highly
articulated flight of bats from sparse multiple view video.

[24]. These flight abilities largely stem from bats’ pre-
cise ability to control their highly articulated wings. The
study of the flying capabilities of these animals as a con-
sequence requires accurate reconstruction of their wing and
body kinematics. The biomechanics of bat wings, however,
makes their 3D motion reconstruction particularly challeng-
ing: the elaborate wing beats of bats result from the coordi-
nation of more than 24 wing joints as well as the deforma-
tion of a thin membrane covering their wing skeleton [24].

Previous investigations of bat flight kinematics have re-
lied on hand digitizing video markers and direct triangu-
lation of their 3D positions (e.g. [31, 27]). Due to the
relatively sparse camera arrays used to reconstruct these
kinematics and the large scale motions that bat wings ex-



Figure 2. A landing sequence of a fruit bat, Cynopterus Brachyotis.

hibit in-flight, the reconstructed kinematic data often con-
tain gaps where insufficient information exists to directly
triangulate marker positions. For example, in Figure 2, we
show an image sequence by [26] depicting a landing fruit
bat, Cynopterus Brachyotis. The complex wing motion re-
sults in significant self-occlusion that makes direct track-
ing of marker locations tedious and direct triangulation of
marker locations often impossible.

The wings of bats are homologous to human arms,
hands, and legs: most joints present in human appendages
are also present in the wings of bats. As such, there is
a close relationship between the tracking of flight kine-
matics for bats and the tracking of whole body kinemat-
ics for humans. We therefore build upon techniques de-
veloped for tracking whole body articulated motion of hu-
mans to track the highly articulated body and wing motion
of bats. The approaches to human motion tracking gen-
erally fall into two categories: model based methods and
model free methods [25, 23, 13]. Model free methods (e.g.
[1, 6, 8, 12, 15, 2]) generally rely upon learning associa-
tions between captured images and a large database of pre-
defined motions. In practice, these methods perform very
well: for example accurately recovering more than 50 de-
grees of freedom in real world tests [1]. For bats, however,
no kinematic database that contains a sufficient sampling
of motions exists, nor can feasibly be generated. Therefore
such methods cannot be used to track bat flight kinematics.

A significant body of work exists on model based meth-
ods to track articulated kinematics. These methods are
either bottom-up (e.g. [5, 16, 21]) and directly identify
body parts in images to infer 3D posture or top-down (e.g.
[10, 14, 7, 18]) and projected model information into the
image space to infer 3D model posture from the projec-
tion disparity. Bottom-up approaches are precluded for the
reconstruction of bat flight kinematics because the mem-
brane covering bat wings does not allow enough informa-
tion to be gained directly from images. For top-down ap-
proaches, stochastic methods such as the Kalman filtering

(e.g. [9, 29]) or particle filtering (e.g. [11, 19, 32]) are often
used to approximate the distribution of model states.

Our method of tracking the in-flight posture of bats is
a top-down model based approach built upon the Square
Root Unscented Kalman Filter [22]. The primary contri-
bution of this work is the development of a practical and
versatile tracking framework to estimate the posture of the
highly articulated flight kinematics of bats. Tracking is ac-
complished through the extraction of a sparse set of known
image features and the Square Root Unscented Kalman Fil-
tering augmented by optical flow to recover 3D body pose.
To the best of our knowledge, this paper presents the first
use of the square root unscented Kalman filtering method
for a complex tracking application. In addition, we believe
the manner we integrate feature tracking with optical flow
with Kalman filtering is unique. The fusion of these two
methods is superior to either method alone. Our method
demonstrates the feasibility of tracking highly articulated
motions by detecting only a sparse set of image features.
Because our approach is quite general and scales to models
with a large number of degrees of freedom, we believe that
it can be widely applied to study animal and human loco-
motion.

2. Filming and Experimental Setup

The flight sequences in this paper are filmed using the
methods described in [26, 27]. The experiments were done
in an enclosed flight corridor with several species of bats.
The flight sequence that we analyze in this paper was filmed
using four calibrated Photron FASTCAM 1024 PCI cam-
eras running at 1000 frames per second. At this frame rate,
these cameras record 1024 x 1024 pixel 8-bit grayscale im-
ages. The high speed of the cameras makes experimen-
tal lighting difficult. In turn, the lack of scene lighting
makes detection of natural markers on the bats skin diffi-
cult. Therefore, to aid tracking, the wings of bats were tem-
porarily marked prior to flights. We make use of a subset
of 32 markers that are attached to the bat. Two of these
markers are placed at the center of the bats body and denote
the longitudinal axis of its body. The other 30 markers are
split evenly between the bats two wings and placed at the
bats wing joints and wing tips. The markers are shown in
the images of the bat in Fig. 1 by the blue dots and also in
Fig. 4 by the red and blue circles. The marker placement
is chosen to uniquely specify the state of the articulated bat
model in §3.1.

We note that although the capture of the bat flight se-
quences are performed in real-time, the filming equipment
necessarily restricts processing to be performed off-line.
Because the processing of these videos is not time-critical a
degree of human interaction in tracking is acceptable.



Figure 3. High-level flowchart describing tracking method.

3. Description of Method

To reconstruct the wing and body kinematics of bats, we
developed a versatile framework where known biomechani-
cal constraints can be incorporated into tracking. We antici-
pate that our tracking method will be used to reconstruct the
flight kinematics of a variety of bat species. Consequently,
our model-based tracking framework accommodates gener-
alized articulated tracking models. We only consider esti-
mating flight kinematics from multiple views. Accordingly,
we require a minimum of two cameras for tracking.

We phrase tracking as a non-linear state estimation prob-
lem. Namely, we estimate the state of an articulated bat
model by measuring the locations of visible named mark-
ers in a sequence of images from a number of calibrated
cameras. We consider a model parametrized by body posi-
tion, orientation, wing joint angles, and geometric param-
eters specifying the dimensions of the model. In what fol-
lows, we refer to model state - i.e. the stacked vector of
orientation and dimensional parameters - by the variable q.
We refer to measurements - i.e. the stacked vector of im-
age marker coordinates - by the variable x. We assume that
the systems dynamics qn+1 = f(qn, w) and the mapping
from state vector to measurement vector xn = h(qn, v) can
be approximated by a known stochastic functions f and h,
respectively. In what follows w and v are assumed to be
zero mean Gaussian random variables with known covari-
ance. To track, we estimate qn for each time-step n given
measurement xn and prior measurements.

To estimate the time-varying probability distribution
(pdf) of q, we use the infrastructure provided by the Square

Figure 4. Skeletal model of a bat with 52 degrees of freedom.

Root Unscented Kalman filtering (SRUKF) [22]. Like the
Extended Kalman (EKF) and Unscented Kalman filtering
(UKF) methods [28], the SRUKF method generalizes the
Kalman filter state estimation method to nonlinear prob-
lems. The EKF, UKF, and SRUKF all estimate the state pdf
by estimating its time-varying mean and covariance. The
EKF applies the Kalman filtering framework by directly lin-
earizing the dynamics and measurement equation about the
current state estimates. The UKF and SRUKF use a sam-
ple of generated sigma-points to statistically linearize f and
h. This latter method has been shown to produce supe-
rior accuracy in estimating state covariances to the direct
linearization methods [28]. Whereas UKF and EKF both
propagate the state pdf using a state mean and covariance
matrix, SRUKF propagates the state mean and the Cholesky
decomposition of the covariance, enhancing both the effi-
ciency and the numerical properties of the method.

The high level flow chart for the tracking of bat flight
kinematics is shown in Figure 3. We explain the compo-
nents of of methods in §3.1 – §3.7.

3.1. Tracking Model

Our tracking method is generalized to work with a vari-
ety of articulated models. For the results presented in this
paper, we use the bat model shown in Fig. 4. The “generic”
bat is modeled with a combined 52 degrees of freedom (dof)
and optional equality and inequality constraints on joint an-
gles. We model the bat’s body as rigid with 6 dofs. The
wing skeleton is modeled as 13 bones connected by 13
joints. Each bone’s coordinate frame is specified relative
to the previous bone with the rotational dofs specified in
Fig. 4. We do not explicitly model the bats wrist, which is
very small, and instead attach the fingers directly to the bats
forearm. In addition to the above state variables, our model
contains geometric parameters that specify the lengths of
the bat bones and geometry of the body. The geometry of
the model is thus determined during tracking.

The bat’s pose is specified using a kinematic chain spec-



ified by an exponential map formulation [7, 5]. The trans-
formation matrix, gi, specifying the orientation of bone i
relative to the body is therefore formed recursively by

gi =
∏
j∈λ(i)

gj (1)

where gj’s are the transformation matrices of bones further
up the kinematic chain specified by λ(j). The form of the
exponential map we use makes the wing bone angles, and
body orientation angles equivalent to Euler angles.

To integrate with our framework, our tracking model
also specifies: 1. The process noise and nonlinear measure-
ment noise covariance matrices; 2. A - possibly nonlinear
- function that specifies how the model state evolves be-
tween time-steps; and 3. A - possibly nonlinear - function
that specifies the mapping from the model state to measure-
ments, which are in this case the markers detected in each
video frame. These are discussed in §3.3.1.

3.2. Initialization Step

Model initialization is performed interactively. Through
a graphical interface the user estimates initial marker loca-
tions. The best estimate of each marker location is specified
by clicking its corresponding image location. These user
estimates are then refined by the algorithm by: 1. Constrain-
ing corresponding measurements between different camera
views to lie along epipoles 2. Refining user click locations
to the nearest SURF or Harris image feature [3, 17]. The
user can optionally adjust the covariance matrix for un-
certain measurements by dragging an ellipse around the
specified marker mean to define the estimated measurement
spread, though this is not required. This interaction results
in a vector of initial image coordinates x and a correspond-
ing (diagonal) covariance matrix Mx. We use x and Mx to
numerically solve the constrained minimization

argmin
q̃

Ẽ(q̃, x) ≡ argmin
q,λ

(
E(q, x) + λTC(q)

)
(2)

for the most probable model state vector q. In the above
equation λ is the vector of Lagrange multipliers, q̃ =
[qT , λT ]T is the augmented state vector, and C(q) is the
vector function of model state constraints. For the bat model
described in §3.1, C(q) is the single quaternion normaliza-
tion constraint for the bats body degrees of freedom, while
the energy function

E(q, x) = (x− P (q))TM−1x (x− P (q)), (3)

is the Mahalanobis distance between the estimated distri-
bution of marker locations and the image space projection
P (q) of the model marker locations for a particular config-
uration q.

Once the minimization has converged to a particular
model state q∗, we propagate the uncertainty from the ini-
tial image marker coordinates to state space. We treat the
minimization in Eq. 2 as an implicit function

f(x) = q, (4)

that maps from image marker space to state space. Then we
propagate uncertainty using the linearized approximation

Mq ≈ ∇qfTMx∇qf |q=q∗ (5)

where we evaluate the Jacobian∇qf implicitly

∇q̃f = −Hq̃(E(q̃, x))−1∇q̃∇xE(q̃, x), (6)

using the hessian Hq̃E with respect to the augmented state,
and the cross-derivative∇q̃∇xE.

3.3. Prediction Step

To determine the apriori state estimate q−n+1, correspond-
ing apriori measurement x−n+1, and corresponding covari-
ance matrices from the posteriori state estimate q+n at time-
step n we perform two distinct forms of predictions. The
first prediction is the standard SRUKF prediction step and
is described in §3.3.1. The second prediction is formed from
a Lukas Kanade feature tracker and is described in §3.3.1.
The latter method only results in predictions for x−n+1. In
§3.3.3 we describe how these predictions are combined to
form an improved state estimate.

3.3.1 Kalman Filter Prediction

We estimate the dynamics of the bat’s state by an accelera-
tion level model

q−n+1 = q+n + u+n∆t+ a
(∆t)2

2

u−n+1 = u+n + a∆t, (7)

similar to [9]. We thus estimate the articulated model’s ve-
locity in addition to the state. We model the acceleration a
of joint angles a as a zero-mean gaussian random variable
with covariance matrixMa that is estimated from 135 flight
sequences published in [27]. We have also generalized Eq.
7 to include higher derivatives at the cost of additional state
variables. To estimate dimensional parameters of the model,
which remain constant in time, we use q−n+1 = q+n +nwhere
n is a small variance gaussian random variable [28].

To map from model state to projected image space mea-
surements, we first compute the 3D locations of the labeled
marker positions (red and blue dots in Fig. 4) using the kine-
matic chain transformation matrices in Eq. 1. We then use
the camera projection matrices to project 3D marker loca-
tions to image space (see §3.3.1). Specifically we imple-
ment this method using the function h

x−n+1 = h(q−n+1, v
(1)
n ) + v(2)n , (8)



where h(q) is the noise free projection of a model state to
image markers, and v(1)n , v(2)n are modeled nonlinear and
additive noise terms, respectively. The additive noise term
is used to model uncertainty of locating the image space lo-
cations of markers. During the prediction step, these are es-
timated from the covariance matrix of measurements in the
previous time-step. During the update step they are recom-
puted using the current state covariance. Additional mea-
surement uncertainty, for example directly modeling the
movement of markers relative to the bat, can be modeled
using the nonlinear noise term.

3.3.2 Optical Flow Prediction

To complement the Kalman prediction step, we use the
Lukas Kanade feature tracker [4] to provide a separate es-
timate of the movement of feature points in the image. To
predict the location of features at timestep n + 1, we first
initialize the Lukas Kanade tracker with the location of de-
fined feature points at time-step n and apply the algorithm.
Broadly, this algorithm uses the optical flow in the image
to predict the movement of specified feature points. For
features that are successfully found at timestep n + 1 we
set the prediction mean µ to be the recovered location. We
assign µ a diagonal covariance Mµ with a pre-configured
variance. The value of Mµ determines the relative weight
of the Kalman prediction and the optical flow prediction in
the combined prediction.

3.3.3 Combining Estimators

Our algorithm contains two different measurement predic-
tions: the Kalman prediction step (see §3.3.1) and the Lukas
Kanade feature tracker (see §3.3.2). To combine these two
predictions, we treat them as unbiased estimators and prop-
agate their optimal linear combination [28]. This is equiv-
alent to convolving the pdf of the two predictions. Specif-
ically, for the two estimators with respective mean and co-
variance µ1,M1 and µ2,M2 their linear combination yields

µ∗ = M2M
−1
1+2µ1 +M1M

−1
1+2µ2

M∗ = M1 −M1M
−1
1+2M1, (9)

where µ∗ and M∗ are the mean and covariance of the com-
bined estimator, and M1+2 = M1 + M2. When either the
Kalman measurement prediction or the optical flow predic-
tion contain missing values, we treat these columns as hav-
ing infinite covariance. In effect this means that if an ele-
ment is missing in either measurement vector µ1 or µ2 then
the combined estimate yields the value of the other. When
an element is missing in both µ1 and µ2 it is also missing in
their combined estimate.

3.4. Managing Marker Visibility

After the prediction step the estimated image space po-
sitions of markers are ensured to be visible. This is done
by directly checking whether the markers fall within view
of the cameras, as well as checking whether the ray com-
ing from the camera to the marker intersects a simple mesh
model of the bat at any other position other than the marker.
When the estimated position of a marker is determined not
to be visible it is marked as such.

3.5. Measurement and Refine Step

For the refine step an automated form of marker mea-
surement is performed. For each image space marker lo-
cation that is predicted to be visible in a camera view we
determine the closest SURF [3] or Harris corner [17] fea-
ture. In practice, we find that Harris features generally work
well and are the features used for this presentation. When
features are not found sufficiently close to the prediction,
or two features are too close together they are marked as
missing. When features are found, we assign the feature lo-
cation as the mean of the feature distribution and assign a
user specified covariance to it.

3.6. User Interaction

Once a prediction and refinement step is complete, the
user is presented a view of the current frames from the cal-
ibrated camera sequence. Markers are shown as ellipsoids
with the estimated mean and covariance each marker distri-
bution. Markers that are missing are not shown. The user is
then able to edit the location and estimated distribution by
selecting which marker to edit and clicking on a specific im-
age. We rerun the refinement step on user specified markers
to estimate the nearest corners. The level of interaction de-
pends heavily on bat wing motions and camera placement,
however, interaction on average interaction is necessary ev-
ery 5 or more frames and often no interaction is necessary
for dozens of consecutive frames.

3.7. Update Step

We perform the standard SRUKF update step by first re-
generating apriori measurement estimates using the process
noise specified by measurement covariances of the current
measurement step. This ensures that the Kalman update
is performed with the proper weight afforded to measure-
ments. Missing measurements are treated as having infi-
nite covariance along the unknown measurement direction.
Once apriori state and measurement estimates are available,
we update the apriori state q−n+1 using the Kalman update to
generate the posteriori state estimate q+n+1. Constraints are
then enforced by projection [20].



Figure 6. Real-world tracking of bats performing complex aerial rotations analyzed using the 52 degree of freedom articulated bat model.



Figure 5. Evaluation of tracker performance on a simulated wing
beat for the right wing elbow and distal joint of the third finger.

4. Results

No database of ground truth bat flight kinematics exists.
Therefore our tracking method cannot be evaluated in com-
parison to known ground truth. Furthermore, previous at-
tempts at tracking and analyzing the complex motions of
these animals have focused on directly working with image
space or 3D marker positions. Therefore, comparisons to
previous work are not applicable for this study. To evaluate
the performance of our tracking method given these restric-
tions, we show the results of applying the method to both
real world and simulated bat.

To evaluate the algorithm’s performance on simulated
wing beat kinematics, we first simulate a 200 time-step re-
alistic bat wing-beat on the articulated bat model shown in
Fig. 4. We then compute 3D marker locations and project
these locations into image space. The motion of the simu-
lated bat is then reconstructed using our tracking algorithm
from these image space markers. In Fig. 5 we show a com-
parison of the simulated (black line) and the reconstructed
(red area) joint angle kinematics for the elbow and the distal
finger joint. The area around the wing angle kinematic rep-
resent the standard deviation of the recovered wing angle
kinematics as propagated through our algorithm. We find
that the wing angle kinematics of both proximal and distal
joint angles are recovered to better than 3◦ with only slight
degradation in the tracking quality of the distal joint com-
pared to the proximal one. Because the simulated kinemat-
ics represent - an admittedly very idealized, ground truth

- these results demonstrate given high enough quality mea-
surements, tracking converges to a true representation of the
wing kinematics.

To evaluate the algorithms on real world performance
wing kinematics we have tracked more than a dozen of
flight sequences of 500 or more frames each using mod-
els of varying complexity. We show the results of tracking
three complex flight sequences in Fig. 6. Five representative
frames are chosen from each flight sequence. The quality of
posture recovery is evaluated by first mapping the posture
onto an articulated model of the bat, and then rendering
this model from a similar view as the original frame. We
find that although there is significant marker occlusion in
all cameras throughout the tracking sequence, the algorithm
can reconstruct the complex aerial rotations and highly ar-
ticulated wing movements of these bats so that the rendered
view compares favorably with the original frames. Videos
of these, and other, flight sequence tracking example can be
found in the supplementary materials.

5. Future Work

Our current implementation of the bat tracking system is
based on a Kalman filtering formalism. As such, we implic-
itly demand that the probability distribution describing the
state of our system is unimodal and can be approximated as
a gaussian. Both of these assumptions can be violated dur-
ing the tracking of an articulated model. In practice, viola-
tion of distribution unimodality has the largest potential to
cause tracking errors. Namely, when the motions of the bats
are highly occluded in the different camera views there may
be a multiple model states that are equally likely. In this
case, the Kalman filter will converge to one of the state and
information is lost about the distribution. As such, a fruitful
extension to this tracking system is to transition state prop-
agation to a more sophisticated method based on particle
filtering such as Condensation [19].

We are also currently working on extending the current
marker based tracking system to allow for the detection and
incorporation of additional features. The most promising
line of inquiry is the incorporation of silhouettes into track-
ing. With this addition tracking is anticipated to become
more robust during highly occluded portions of flight se-
quences as the shadows significantly restrict the possible
joint angle configurations.

6. Conclusions

This paper presents a novel method to track the highly ar-
ticulated kinematics of bats from multiple view video. We
show that using a Square Root Unscented Kalman Filter-
ing method augmented with a Lucas Kanade optical feature
tracker, we are able to use a sparse set of robust feature
points to accurately reconstruct the 3D posture of bats. Al-



though we gear our method towards the tracking of bat flight
kinematics, our methods are not tightly coupled to the type
of model being tracked and should therefore be widely ap-
plicable. Adding to the versatility of the method is its ability
to easily base tracking off of any number of cameras.
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eney, and C. Schunk for help with experiments and valu-
able discussions. This work was supported by the AFOSR
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