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ANALYTIC RINGS

by Eduardo DUBUC and Gabriel TAUBIN

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE

Vol. XXIV- 3 (1983)

INTRODUCTION.

The C-algebras that are considered in the practice of analytic geo-

metry (meaning the theory of several complex variables) all carry a richer

structure. We develop here the concept of analytic ring, which takes into

account explicitly this extra structure. On the other hand, analytic rings
will be essential for the construction of models of Synthetic Differential

Geometry well adapted to the study of complex manifolds and analytic var-

ieties. Thus, we study here a class of C-algebras with the richer structure

given by operations associated not only to polynomials but also to all holo-

morphic functions. If a holomorphic function is defined only in an open

set U ~ C’ , the corresponding operation will be a partial operation.
An analytic ring in a category &#x26; is defined as a functors ~ E,

defined over the category C of open subsets of Cn, n c N , and holomor-

phic functions. This functor is required to preserve all transversal pull-
backs that may exist in C.

Examples of analytic rings are the following: rings of holomorphic
functions on an open set of Cn , or more generally, on any complex mani-

fold. Local rings of germs of holomorphic functions, as well as analytic

algebras in the sense of Malgrange [7]. In particular, all complex Well

algebras. Rings of sections of any analytic space. The sheaf of continuous

complex valued functions on any topological space X is an analytic ring
in the topos of sheaves over X. As well as the structure sheaf of any ana-

lytic space. Also, the inclusion from C into the category of analytic spa-
ces is an analytic ring in this category.

This article is divided in three parts. In the first we give the def-

inition of analytic rings and some of their basic properties, and we treat

the local analytic rings. In the second we consider the analytic spaces.
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Finally, in the third, we construct the generic analytic ring in a category
with finite limits. That is, the (algebraic) theory of analytic rings. We in-

clude a Section 0 with some background material. Also, we include a sum-

mary preceding the text.

SUMMARY.

D EF INITION 1.1. An analytic ring in a category &#x26; is a functor F : C ~ &#x26;

defined on the category of open subsets of complex euclidean spaces
and holomorphic functions. This functor is required to preserve the terminal

object and all transversal pullbacks. Morphisms of analytic rings are nat-

ural transformations.

It follows that the underlying functor F 1-* F ( C ) is faithful and

that F ( C ) is a C-algebra. By abuse of notation we write F for F (C ) ;

then, for each open U C Cn , there is a well distinguished subobject of

n-tuples F ( U ) C Fn where the partial «( U-ary,) operations corresponding
to holomorphic functions U - C are defined.

EXAMPLES. The following is a list of C-algebras which are (the under-

lying C-algebras of) analytic rings. First, in the category &#x26;n6. of sets:

(1)0 f U ) = holomorphic functions U ~ C , for any open U C C’ .
( 2 ) On,p = germs of holomorphic functions in n variables at P f Cn .
( 3) Analytic algebras in the sense of Malgrange, i. e. quotients

On,p /I, where I is any ideal.

In the category Sh ( X ) of sheaves on a topological space X :

( 4 ) Cx = sheaf of germs of continuous complex-valued functions on X.

( 5) (9U = sheaf of germs of holomorphic functions on an open set

X =U ~ Cn.

( 6 ) OX = structure sheaf of any analytic space X .

In the category of analytic spaces, or the more general A-ringed spaces
defined below :

( 7 ) (C, OC ) = the complex numbers with the sheaf of germs of holo-
morphic functions.
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Let E be a category with finite limits and commuting filtered co-

limits, and let On( E ) be the category of analytic rings in E.

PROPOSITION 1.3. The category On ( E ) ,has finite limits and commuting

filtered colimits, and they are computed pointwise.

Note that Example ( 1 ) is the representable functor C ( U, - ) , and

Example ( 2 ) follows from it as a filtered colimit in On( Ens).

DE FINIT ION 1.8. Given any two functors F, G: e -+ E, a natural trans-

formation G + F is local if for each open inclusion U c V in (2,

is a pullback in 0.

EXAMPLE 1. 12. If ~ : F ~ C is local in On( Ens), then the (C-{0})-ary
operation 1/z is defined at f f F iff 0(f) # 0 in C. Thus F is in par-

ticular a local C-algebra.

MAIN TH EOREM 1. 10. With the notations of 1.8, if G is product preserving
and F is an analytic ring which preserves open covers, then G is an ana-

lytic ring (and preserves open covers).

The basic tool to prove this theorem is the inverse function Theorem.

THEOREM 1. 18. If I C Cnlp is any ideal, then the quotient C-algebra

On lp /1 has a unique structure of analytic ring such that 03C0 : On,p/I ~ C
becomes a local morphism.
To prove this theorem, we use the Main Theorem and the Fermat Property :
if h is a holomorphic function of n variables, then

Example ( 3 ) follows from this theorem.

PROPOSITION 2. 1. The functor 

Open ( X )op X C ~ Ens defined by ( H , U ) ~ Continuous ( H , U )

defines an analytic ring Cx in Sh ( X ) (Example (4)), which preserves

open covers.
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DEFINITION 2.3. An A-ringed space is a pair ( X, OX ), where X is a

topological space and (9x is an analytic ring in Sh ( X ) furnished with a

local morphism pX : OX ~ CX (it follows that pX is unique). Morphisms of

A-ringed spaces are defined as usual.

PROPOSITION 2.7. If V E C, the functor

Open ( V )op X C ~ Ens defined by ( H , U ) ~ Holomorphic ( H , U )

defines an analytic ring 0 v in Sh ( V ) (Example (5)). The inclusion

OV C Cv is local, and the pair ( V , 0v) is an A-ringed space.

Let @ be the category of A-ringed spaces and i : C ~ @ the functor

defined by U |~ ( U, OU).
THEOREM 2.8. For any A-ringed space (X, OX), the following diagram
commutes :

(0393 = global sections).

COROL L AR Y 2.9. The functor i : C ~ Q is an analytic ring in 8 (Exam-

ple (7)).

THEOREM 2. 10. If N C (D v is any sheaf of ideals, then the pair ( E, OE )
is an A-ringed space, where E = Zeros (Y) ~ V and (9 E is the quotient
sheaf (9v I’!J restricted to E . It follows that all analytic spaces are A-

ringed spaces (Example ( 6 ) ).

REMARK 3.7. Let C ~ Qn be the generic analytic ring. It follows from Co-

rollary 2.9 that there is a finite limit preserving functor Spec : (Tn 4 8.

We do not know if this functor is full and faithful, as it is the case with the

corresponding functor in the algebraic and C°° situations.

0. GENERAL RESULTS ON THEORY OF CATEGORIES AND HOLOMOR-

PHIC FUNCTIONS.

About limits. We will call limit a projective limit, and colimit the dual

concept.
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0.1. PROPOSITION. Let Q be an arbitrary category, then the following
statements are equival ent :

i) (i has finite limits.

ii ) Q has terminal object ( = 1 ), finite products and equalizers.

iii) (i has pullbacks and terminal object.

0.2. COROLLARY. Let Q and 93 be categories with finite limits and

F : Q ~ B a functor ; then the following statements are all equivalent :
i) F preserves finite limits.

ii) F preserves terminal object, finite products and equalizers.
iii) F preserves pullbacks and terminal object.

0.3. PROP OSITIO N. In a category Q, the following statements are equi-
valent :

is a pullback.

is a pull back, where ~ : L 4 V is the composite g p1 = fp2 and p =(p1 , ’P 2),
0.4. COROLLARY. In any category 8 the following are equivalent:

i) 0 : A ~ B is a monomorphism.

is a pullback.
iii)

is a pullback.
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0.5. COROLLARY. If a functor F : Q ~ B preserves pullbacks, then it

preserves monomorphisms.

About ring objects.
0.6. PROPOSITION (Unicity of the inverse). Let E be a category and A

a ring object in 6, then

are pullback diagrams.

0.7. PROPOSITION. Let be a category with terminal object and finite
products, A a ring object in E and V any subobject of A . Let i : V &#x3E;~ A

be th e inclusion monomorphism. Then the following are equival ent :

is a pullback.

V

is an equalizer, where p = ( p 1, p2 ) and h = if - ig.

About categories of fractions.

0.8. P ROPOSITION. Let C- be a category with finite limits, Ga : C -&#x3E; D
( a c A ) a family o f limit preserving functors and

I = {o E arrow (C) | Ga (or) is invertible in ’Ta I V a c A } 
Then I admits a calculus o f right fractions and the following holds :

i) The category o f fractions C[03A3-1 I has finite limits and the canon-
ical functor preserves those limits.
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ii) The family of functors defined by the equations:

Ga = H a o p 03A3 is conservative (i. e. , Ha (r) isomorphism for each a 03B5 A

implies r isomorphism), and Ha preserves finite limits for each a E A.

PROOF. Cf. Gabriel &#x26; Zisman [4].

About holomorphic functions.

0.9. P R OP OSITION . L et V = V1 x... x Vn , Vi C C be open subsets o f C ,
and g: V - C a holomorphic function, then there exists one and only one

holomorphic function h : V X VI -+ C such that the following equation holds

for all

PROOF. Let ~ : V x V1 -&#x3E; C be defined by

0 is holomorphic because g is holomorphic. We define h : V X V1 -&#x3E; C by

1

It is easy to see that h is continuous in V X Vi and holomorphic in

It suffices to see that h is holomorphic in each variable (Gunning &#x26; Rossi

[61, Theorem 2, page 2). It is easy to see that h is holomorphic in the

variables x2, ... , xn . The proof that h is holomorphic in the variable xi
is equivalent to the proof that h is holomorphic in the variable z1 : be-

cause the definition of h is symmetric in x 1 and zl . We fix xl , ... , n; ,
h ( x, , .. - , -) : V, 4 C is continuous and holomorphic in VI - { x1 }, then it
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is holomorphic in VI (Ahlfors [1], Theorem 7, page 124). The unicity is
an evident fact, because any two solutions coincide for x 1 # z 1, and
therefore by continuity they also coincide for xi - z 1 ’

0.10. COROLLARY. With the same hypothesis as in the Proposition 0.9
there exist holomorphic functions hI’...’ hn : V X V - C such that the fol-
lowing equality is true in v x V : 

0.11. REM ARK. The fact that Corollary 0.10 does not hold for open sets

in general has as consequence that quotients of analytic rings can not be

computed as the quotient of the underlying C-algebra. However, since the

corollary holds for a base of open sets, it will follow that quotients of

local analytic rings are computed as the quotient of their underlying C-

algebra (cf. Theorem 1.18).

0.12. PROPOSITION (Implicit function T’heorem). L et k - n be natural

numbers, U an open subset of C’ and h : U -&#x3E; Ck a holomorphic function.

Let p f U be such that h (p) = 0 and such that the rank o f D ( h) (p) is

k , wh ere

is the lacobian matrix of h in p . Then there exist open sets W C U, p r- W ,

V C en, and a bi-holomorphic bijection P : V 4 W such that

Here we have indicated with 77 the projection into the last k coordinates,
rr : C’ 4 C .

About transversal pullbacks.
0. 13. DEFINITION. Let M, N and X be complex manifolds, f : M » X and

g : N + X analytic functions. We say that f and g are transversal if, for

each m E M and each n E N such that f ( m ) = g ( n ) = x E X , the images
by f * : TM -&#x3E; TX and g+:: TN -&#x3E; T X of the tangent spaces of M at m and

of N at n , respectively, generate the tangent space to X in x .
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0.14. DEFINITION. Let M be a complex manifold and h : M » Ck an ana-

lytic function ; we say that h is independent, or that the components of h ,

hi , ... , hk . M -&#x3E; C are independent if for each p c M such that h ( p ) = 0 ,

the rank of h in p equals k .

Note that h I, ... , hk are independent iff h and the constant func-
tion 0 are transversal.

0. 15. DEFINITION. We will denote with O the category of complex mani-

folds and analytic functions between them. A diagram

in 0 is a transversal pullback if it is a pullback in 0 and f and g are

transversal.

0.16. DEFINITION. A diagram

in 0 is an independent equalizer if it is an equaliz er in 0 and the comp-
onents of h are independent.

0.17. DEFINITION. We denote with C the category of open subsets of Cn

(all n ) and holomorphic functions. is a full subcategory of 0, where all
the precedent definitions make sense.

0.18. P ROP OSITIO N. The following statements are equivalent:

ii) h1 , ... , hm are independent, where , and

where by i we indicate the inclusion of V in Cm .

iii) ~1, ..., ~2m are independent, where is defined

by
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are transversal.

The proof is straightforward.

0.19. COROLLARY. The following are equivalent:

is a transversal pullback.

is an independent equalizer,
where p = (p1, p2) and h is the composition as in the Proposition 0.18.

PROOF. Corollary 0.7 and Proposition 0.18.

0. 20. PROP OSITION. The following are equivalent :
i) f : V -&#x3E; W is an independent monomorphism.

is a transversal pullback.

is a transversal pullback.

PROOF. Corollary 0.4 and Proposition 0.18.

0.21. PROPOSITION. Let F: C -&#x3E; E be any functor. Then the following
two statements are equivalent :

i) F preserves transversal pullbacks and terminal object.
ii) F preserves independent equalizers, finite products, terminal ob-

fect and open inclusions.
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P ROO F. i) ==&#x3E; ii): Any pullback over the terminal object is transversal, so

F preserves finite products. An independent equalizer is a transversal pull-
back to the zero map, so it is preserved by F . Finally, it follows from

Proposition 0.20 that F preserves open inclusions.

ii) =&#x3E; i) Let

be a transversal pullback; then, by Coro llary 0,19,

is an independent equalizer. Thus

is an equalizer; but the inclusion i : V -&#x3E; Cm is open, then F( i ) :

F(V) -&#x3E; F ( C )m is a monomorphism and F ( h ) : F(U) X F(W) -&#x3E; F ( C )m is

Then, we deduce from 0.7 that

is a pullback.

1. THE ANALYTIC RINGS.

1. 1. DEFINITION. Let E be a category with finite limits; a functor F:

e -&#x3E; E is an analytic ring in E if any of the two equivalent conditions in

Proposition 0.21 holds. A morphism between analytic rings is a natural

transformation, as functors. We will denote Qn (E) the category just def-

ined. By an abuse of notation, where there will be no danger of confusion,
we will write F for F ( C ) and if E : F -&#x3E; G is a morphism we will write

ç for çe.
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l. 2. O BSE RVATION. If F E An( E ) and V is an open subset of C , th en

F ( V ) is a subobject of Fn = F ( C )n . This is so because F preserves

open inclusions and finite products. Thus an analytic ring may be thought
as a C-algebra F , with the additional structure given by partial n-ary oper-
ations with domain of definition F ( V ) C F ( C )n , one for each holomor-

phic function V 4 C , for all V open in some Cn. We will refer to these

partial operations as « V-ary operations ». We must also note that the for-

getful functor (fn ( &#x26;n6.) -+ Ens, which maps each analytic ring F onto its

value in C is faithful. Thus each F has an «underline set». We also have

a forgetful functor from (in( Ens) into the category of C-algebras in &#x26;n6.,
which is faithful but it is not full (as we will see in the Observation 1.7).

However in the case of local analytic rings, it is full and faithful (as we

will see in Proposition 1.23).

1.3. PROPOSITION. Let C,5 be a category with finite limits, then the follow-

ing statements hold :

i) An (E) has finite limits and they are computed pointwise.
ii) lj 6 has filtered colirrzts that commute with finite limits, then

Qn(E) has fil tered colirnits, they are computed pointwise and commute

with finite limits.

PROOF. Straightforward.

1.4. PROPOSITION. For each uhject U of C, the representable functor
e ( U, - ) : C - Ens preserves all the limits, thus in particular it is an ana-

lytic ring in Ens. We denote On ( U) the analytic ring C( U, - ) , for U

an open subset o f en. We have a functor

which is full and faithful and it is an analytic ring in (fn ( Ens)op. Remark

that, in particular, it preserves products ; thus

where 0 indicates the coproduct in Qn ( Ens). 

P RQO F. Qn ( Ens)op is a full subcategory of (EnsC)op, and
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is just Yoneda’s functor. That it is an analytic ring, when considered with

codomain Qn ( Ens)op, follows by a standard argument.

1.5. P ROPOSITION. The forgetful functor C- - Ens is an analytic ring in

Ens, which we will denote C by abuse of notation.

1.6. PROPOSITION. ( On ( U ) is the free analytic ring on n U-generators. )
L et F be an object o f Qn ( Ens) and s1,... , sn elements o f F = F ( C)
such that (s l’ ... , sn ) E F ( U ) ; th en there exists one and only one mor-

phism of analytic rings

where zi : U 4 C is the i-th projection C -&#x3E; C restricted to U and U is

an op en subset o f C .

PROOF. It is Yoneda’s Lemma, because

1.7. OBSERVATION. Let ll = C x C - 10 1 ; we know that a function holo-

morphic in U has a unique holomorphic extension to C2 (Gunning &#x26; Rossi

[6], Corollary 6, page 21), and so we have a morphism of C-algebras ev0 :

L9n ( U ) - C («evaluation » in 0). This morphism cannot be a morphism of

analytic rings because by Proposition 1.6, any morphism of analytic rings
is given by evaluation at a point p of U, and since 0 E U, p # 0 . Clearly

evp # evo . More generally, let G C Cn be a proper Reinhardt domain (cf.

Grauert &#x26; Frische [5], Definitions 1.7 and 1.8, pages 5 and 6) and H the

complete hull of G (loc. cit., Definition 5.1, page 20). Then we have that

any function f holomorphic in G has a unique extension f holomorphic
in H (loc. cit. Theorem 5.5, page 20). Thus any point of H not in G def-

in es a morphism On ( G ) -&#x3E; C of C-algebras which is not a morphism of ana-

lytic rings. Remark that Proposition 1.6 clearly implies Milnor’s exercise

([3], Proposition 0.7) with respect to morphisms of analytic rings for any

open set G of C’ .

1.8. DEFINITION. Let @ be a category with finite limits, F , G : C -&#x3E; 6

functors and -n- : F -&#x3E; G a natural transformation. We say that yT is local if
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for all open inclusions U C V in C (including U = O ), the square

is a pullback in 5,. It is equivalent to ask this condition only for V = Cn ,
all n . This follows from a basic fundamental property of pullback squares
that says that given any two composable squares S, T with S a pullback,
then the composite square S T is a pullback iff the square T is a pull-

back. We have : if n : F -&#x3E; G is local and l : H -+ F is any other natural

transformation, the composite ul is local iff l is.

We say that a functor F: e -+ &#x26; preserves a given covering (Iac U
in e if the family F ( Ua ) -&#x3E; F ( U ) is an un iversal effective epimorphism

family in &#x26;.

109. PROPOSITION. Let E be a category with finite limits, F, G : C -&#x3E; E

functors and TT : F -&#x3E; G a local natural trans formation. L et :

i) 0 ---&#x3E; U ===&#x3E; V an empty equalizer,

H = h-1 ( U) a pullback square, with U C V an open inclusion,
iii) U C V an open inclusion,

iv) Ua C V an open covering.
Then, F preserves the equalizer in i), the pullback in ii), the monomorph-
ism in iii) and the covering in iv), provided that G does.

PROOF. iv) and iii) are clear, ii) follows from the composite property of

pullback squares mentioned above. Finally, i) is easy.

1. 10. THEOREM. Let 6 be a category with finite limits and F: C -&#x3E; E be
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a finite products (and terminal object) preserving functor. Suppose there is

a local natural transformation 17: F -&#x3E; G, with G an analytic ring in &#x26;,

which preserves open coverings. Then F is an analytic ring in E (and it

preserves open coverings).

PROOF. According to Definition 1.1, it only remains to see that F pre-

serves open inclusions and independent equalizers. The first assertion we
did in Proposition 1.9, iii). For the second, we do as follows. Let V C Cn,
V open, 0 e V and consider the diagram

where rr is the projection onto the last k coordinates, and the square in

the left is a pullback. This pullback is transversal since V C C" is open,

and thus it is preserved by G . It follows then from Proposition 1.9, ii)

that it is preserved by F , which since it preserves products, it also pre-

serves the equalizer in the bottom row. It follows that F preserves the

equalizer in the top row. Let now

u C C" , W C Cn-k , be an independent equalizer in C. From th e implicit
function Theorem (Proposition 0.12) it follows that there is an open cov-

ering W a of W , open sets Ua C U, Wa = Ua n W , b i-holomorphic bijec-
tions cPa: Va -&#x3E; Ua , 0 E Va and ’J1 a : L » W , such that

commutes, where the bottom row is an equalizer of the previously consider-
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ed form. Clearly F preserves the equalizer of the middle row. Let U0 C U
be the complement of the set of zeros of h . There is an empty equalizer

v

which, by Proposition 1.9, i), is also preserved by F . We have then

where we include also a = 0. The bottom row is an equalizer in E for

all a . By Proposition 1.9, iv) the vertical arrows are universal effective

epimorphic families, while by 1.9, ii) each of the squares on the left is a

is a pullback. It is easy then to check that the top row is also an equal-
izer. This finishes the proof.

We pass now to consider analytic rings in 6n&#x26; furnished with a

local morphism into C . Remark that C , as a functor C -&#x3E; Ens, preserves
open coverings.

1.11. DEFINITION. Let F be an object of Qn ( Ens) ; F is a local ana-

lytic ring if there exists a local morphism rr : F -&#x3E; C .

This definition means that for each open set U of Cn , the square

is a pullback in Ens. That is, the domain of definition of the U-ary oper-
ation of F is F ( U ) = ( n )- 1 ( U ) . If s 1 , ... , 5- are elements of F , and

h : U -&#x3E; C is holomorphic, then the corresponding operation h is defined in

( s1, ... , sn) iff (n s1, ... , n sn) E U ; furthermore,

(Compare with [3], Corollary 2 to Proposition 1.10. )
We will denote by Loc the full subcategory of (fn (Ens) whose



241

objects are the local analytic rings.

1o I 2o OB SERY ATIONa Let us denote by C * the open set C * = C - { 0 } .

Given any analytic ring F, all the elements of F (C*) C F ( C ) = F are

invertible in the ring F , since the C*-ary operation 1/x is defined in

F( C* ) . Vlhen 17: F -&#x3E; C is a local analytic ring, we have:

for any given x in F .

Thus, x will be invertible in F provided that n ( x ) # 0 . As it is well-

known, this is equivalent to say that F = F ( C ) is a local C-algebra with

residual field C . In particular, 77 is unique since rr C completely deter-

mines 7T .

Finally, we remark that for any analytic ring F , local or not, it

follows easily (from the preservation of transversal pullbacks) that the set

F ( C* ) C F is the set of units of the ring F .

1. 13. PROPOSITION. For each p 6 Cn , we will deno te with (9 n p the ring
of germs of holomorphic functions in p. Then Cnlp is an analytic ring in

PROOF. Propositions 1.3 and 1.4.

1.14. OBSERVATION. For each open subset V of Cm, On,p( V ) is the

set of germs of holomorphic functions with values in V ; by the Proposi-
tions 1.3 and 1.4 :

1.15. PROPOSITION. There exists a morphism 77: 0,,,p -&#x3E; C of analytic
rings (necessarily unique) which makes On,p a local analytic ring. Then, 
it is clear that 7r is the unique morphism o f C-algebras On,p -&#x3E; C .

PROOF. zr = colim( evp), where evp: e(U, V)-+ C is the evaluation at

the point p . By the Observation 1.14, the square
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is a pullback, for any open set V in C

1. 16. PROPOSITION. ((9n,p is the free local analytic ring in n|p-gener-
ators.) Let F be in Lac and

where u: F -&#x3E; C is the (unique) morphism of analytic rings from F to C .

Then there exists a unique morphism of analytic rings e: On,p -&#x3E; F such

that E (zi | p) = si i ( 1  i  n ) where z i is th e i-th projection Cn -&#x3E; C .

PROO F . Let U be open in Cn such that p E U, P = (p1, ..., Pn ). Then

Thus (s 1 ’ ... , sn ) E F ( U ) . By Proposition 2.8 there exists a unique mor-

phism of analytic rings

If U C U’ , clearly the diagram :

commutes (where the horizontal arrow is the restriction morphism). There-

fore, by the universal property of the colimit, there exists a unique e :

On,p -&#x3E; F such that for each open U of Cn such that p E U, the following

diagram commutes:

1.17. PROPOSITION.

in Cln( Ens) and so also in Lac (where 0 indicates the coproduct).

PROOF. It follows from Proposition 1.4 and the fact that products of opens
form a base of open neighborhoods for the product topology.

1. 18. TH EOREM. L et 77-.’ G 4 C be a local anal ytic ring. Le t 1 be an ideal
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of the C-algebra structure of G . Then, the following holds :

i) There exists a unique local analytic ring, which we will denote

GI1, together with a unique morphism of analytic rings v : G -&#x3E; GI1, such

that G/I ( C) = GII and such that vC is equal to the canonical morphism
into the quotient G -&#x3E; G/ I as C-algebras.

ii) 1 f E: G -&#x3E; F is a morphism of analytic rings such that Çe ( 1) = { 0 }
then there exists a unique morphism of analytic rings ç: G/I -&#x3E; F such

that the following diagram commutes :

P ROOF . i) Let v : G » G/ I be the quotient C-algebra, and yT: G/I -&#x3E; C be -

the unique morphism of C-algebras. We define G/I ( Cn ) = ( G/I )n, and if
U is any open subset of Cn , U C Cn , we define v U: G ( U) -&#x3E; G/I ( U) to

be the image of G ( U ) by the map vn , as indicated in the following dia-

gram :

It follows that both squares are pullbacks since the maps in the lower row

are surjective. We affirm there exists a unique structure of analytic ring
on GII which makes v a (local) morphism of analytic rings. Effectively,
for each open subset Il of Cn and each holomorphic function g : U -&#x3E; C ,

we have to define G/I ( g ) as indicated in the following diagram:

Clearly it suffices to prove that if

are such that ai - bi E I C G, then
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We do as follows : n ( ai ) = n ( bi ) since ai - bi fl. Let

Vi C C be open, such that p f V C U . From the fact that rr is local it fol-

lows that

Take functions hi : V X V -&#x3E; C such that the equation

holds in C (Corollary 0.10). Then, the following holds in G :

where This shows that

It is immediate to check that in this way we determine a (finite) product

preserving functor G/I : C -&#x3E; Ens together with a local natural transforma-

tion rr : G/I + C . Then, by the Theorem 1.10, G/I is an analytic ring.

ii) We know that with these hypotheses, there exists a unique morphism

of C-algebras EC: G/I (C) -&#x3E; F (C) such that

commutes. This arrow induces the natural transformation 6 in an obvious

way. The unicity comes from the fact that v V : G ( V ) -&#x3E; G/I ( V ) is sur-

jective for each V c e, and so v : G + GII is an epimorphism.

are ideals, then

is the ideal of
nerated by the images of I and J by the canonical mappings :
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PROOF. Proposition 1.17 and Theorem 1.18.

1.20. DEFINITION. An analytic algebra in the Malgrange’s sense (Mal-

grange [7J, page 32) is a C-algebra isomorphic to a quotient On,p/I with
I c On,p any ideal. A morphism of analytic algebras is a morphism of C-

algebras u : A -&#x3E; B such that there exists a germ h of holomorphic func-

tion em -+ Cn (around q ) such that h ( q) = p and the following diagram
commutes :

where h *( f ) = f o h . We will denote this category Ol.

1. 2 l. P ROP OSITION. L et be any map such that the dia-

gram:

commutes. Then, u is a morphism of anal ytic algebras iff it is a morphisms
of analytic rings.

PROOF . If u = h *, it is clear that u is a morphism of analytic rings. Now

let u be a morphism of analytic rings. We take hi | q = u ( zi I p ) . We have
a germ of holomorphic function h : C ’ 4 C’ (around q )

such that

Clearly h defines a morphism of analytic rings 
we have
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From the Proposition 1.16 it follows that h * = u . And so u is a morphism
of analytic algebras.

1.22. PROPOSITION" Let be any map such that the dia-

gram

commutes. Then u is a morphism of analytic algebras iff it is a morphism

of C-algebras.

PROOF. One of the implications is clear. We suppose that u is a mor-

phism of C-algebras ; as in the proof of the Proposition 1.21 we have a

germ h such that h *(zi | p ) = u (zi | p ). Then, since u is a morphism of

C-algebras, we have h *( l ( p ) = u ( l | p ) for any polynomial l . Let f ( p be

any germ of analytic function, it is clear that .for each power ? k of the

maximal ideal m f 0 we have f | p - l | p E Mk, where 1 p is the pol-
ynomial defined by a sufficiently long part of the Taylor’s development of

f p . It follows that the polynomials are dense in the topology defined by
the powers of the maximal ideal (Krull topology). This topology is Haus-

dorff, because it is clear that n mk = { 0 } (principle of analytic contin-

uation, Cartan [2], Corollary 2, page 141). Since u and h * are continuous

(because both send the maximal ideal into the maximal ideal), we have that

u = h * . And so u is a morphism of analytic algebras.

1.23. PROP OSITION. 11 
are ideals and

is any function such that the following diagram commutes

Then u is a morphism of analytic rings (for the structures given in 1. 18)

i f f u is a morphism of analytic algebras, iff u is a morphism of C-algebras.
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PROOF. Straightforward from 1.18, 1.21 and 1.22.

1.24. DEFINITION. A Weil’s C-algebra (Weil [9], see also Dubuc [3],
Definition 1.4) is a C-algebra X with the following properties :

i) it is local with maximal ideal I such that X/I = C ,

ii) the dimension of X as C-vector space is finite,

iii) Im+ 1 = 0 for some natural number m .

The height of X is h ( X ) = min m £ N I Im + 1 = 0 }.

We identify C with the subspace of the scalar multiples of 1 in

X . If x E X , then there exist: a unique scalar x0 (the finite part of x)

and unique nilpotent x 1 (the infinitesimal part of x ) such that x = x + x .
So X = C E9 I (as C-vector spaces) and X has a canonical morphism n0 ;
X - C . If Z is any C-algebra, a morphism o ; Z - X can be written in a

unique way as o = o0 + o1, where o0 = n0 is a morphism Z -C and

o1 is a linear (but not multiplicative) map Z -&#x3E; C. A morphism of Weil al-

gebras is a morphism of C-algebras.

If el, ... , e. are any elements of I which generate X, we can

write X = C[E1,... ,Ek] , where the ei satisfy a finite number of polynom-
ial equations.

1.25. PROPOSITION. All Weil’s algebras are of the type On,p/I. So any
Weil’s algebra has a unique structure of (local) analytic ring such that all

morphism of C-algebras become morphisms of analytic rings.

PROOF. Let X be a Weil’s algebra, let I be the maximal ideal of X and

let E1,...,En be elements of I such that X=C[E1,...,En]. For each
z c Cn and each a E Nn we write:

Let p be a point of C , f | p E On,p ; and let U C C and f : U -&#x3E; C holo-

morphic be a representative for f | p . Consider the Taylor’s series deve-

lopment of f :
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If m = height ( X ), we can write

Then. the following mapping is well defined

It is clear that q5 preserves 1 and is additive (because Da ( - )( p ) is ad-

ditive). To check that o is multiplicative is straightforward computation.

Then 0 is a morphism of C-algebras and it is clear that it is an epimor-

phism since all the polynomials are in (9,,, p Finally, the rest of the

statement follows from Propositions 1.18 and 1.23.

2. A-RINGED SPACES AND ANALYTIC SPACES.

We consider in this section analytic rings in the topos SX of shea-

ves over a topological space X.

2.1. PROPOSITION. Let X be any space, and let CX be the sheaf of

germs of continuous complex-valued functions defined in X . Then, CX is
an analytic ring in SX and it preserves coverings. More explicitely :

L et C X: C -&#x3E; Sx be the functor defined by : 

r(H, CX( U)) = Continuous ( H , U),

for H open in X and U f C. Then

i) CX preserves transversal pullbacks and the terminal object,
ii) CX preserves open coverings.

PROOF. i) Let U - Va be a limit diagram in e. Then, given any H open

in X, the diagram

Continuous ( H , U ) -&#x3E; Continuous ( H , Ua)

is a limit diagram in 5;nó.. This means that CX( U ) -&#x3E; CX( Ua) is a limit

diagram in S x. Thus, CX preserves all limits, in particular i) holds.

ii) Let Ua -&#x3E; U be an open covering in C. Then, given any H open
in X and h : H - U continuous, we have the diagrams
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where h -I (U ) m H is an open cover of H . This means that the family

CX ( a ) &#x3E;---&#x3E; CX ( U ) is an epimorphic family in SX .

2.2. REMARK. Let CX denote also the 6tale space over X whose fibers

are the rings CX,p of germs of continuous complex-valued functions def-
ined at p . Like in Propositions 1.13, 1.14 and 1.15, it follows easily that

there is a local morphism CX,p -&#x3E; C , the value of the germ, which makes of

CX p a local analytic ring, for each p . All these morphisms collect toge-

ther into a map n : CX 4 C. This map is continuous since CX has the

topology induced by its sections, and if a is a section of CX , n o is by
definition a continuous complex-valued function. Since (the functor) C x
preserves products, the 6tale space of the sheaf eX (C ) is the n-times

iterated fibre product over X of CX -&#x3E; X, that we denote CnX -&#x3E; X . Given
any pair of open sets H C X , U C Cn , a section

is thus a n-tuple of sections o : H -&#x3E; CnX such that 7T n oo : H -&#x3E; Cn factors

through U . The 6tale space of the sheaf CX( U ) , that we also denote

cx ( U ) -&#x3E; X , is the space

Given any continuous function f : X -&#x3E; Y, composing with f defines a mor-

phism f *: Cy, f (p) -&#x3E; CX, p of analytic rings in Sx, f *: f*CY -&#x3E; Cx,
where by f* CY we indicate the inverse image in SX of the sheaf Cy in SY.

2.3. DEFINITION. An A-ringed space is a pair (X ,OX) where X is a

topological space and (9 x : C - SX is an analytic ring in SX furnished

with a local morphism lx : OX -&#x3E; C X of analytic rings in SX . Notice that
from Theorem 1.10 and Proposition 1.8 it follows that the functor OX pre-
serves open covers. When the morphism Ix is injective, we will say that
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the A-ringed space is reduced.

2.4. REMARK. We will also denote OX ( C ) -&#x3E; X , or, according with our

standard abuse of notation, simply OX -&#x3E; X , the 6tale space of the sheaf

(9 X( C ) . The fibers Oy , p are analytic rings in l$na furnished with a mor-

phism lx, p : OX, p -&#x3E; CX ,p into the ring of germs in p of continuous com-

plex-valued functions. The fiber functor p*:SX -&#x3E; Ens preserves finite

limits, thus 1 X, p is a local morphism. It follows then since CX p is a

local analytic ring that OX , p is also a local analytic ring. All the mor-

phisms OX, p -&#x3E; C collect together into a map 11: OX -&#x3E; C, that we denote
also by rr . This map is continuous since it is the composite

where the second map is the one considered in Remark 2.2.

Since (the functor) (9X preserves products, the 6tale space of the
sheaf Cx(Cn ) is the n-times iterated fiber product over X of OX -&#x3E; X,
that we denote OX (C)n -&#x3E; X , or, simply nn 4 X. By definition of local

morphism, given any pair of open sets H C X, U C Cn, the following

square is a pullback :

This means that a section or c r( H, OX ( U)) can be identified with a n-

tuple of sections or: H 4 OnX such that the n-tuple of their values in C be-

longs to U :

Thus the 6tale space of the sheaf OX (U) , that we also denote (

is the space
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and or can be identified with a continuous function (section)

We finally remark the the morphism lx is unique. This is clear: Let

o, o’: OX -&#x3E; CX be any pair of morphisms. Th en no = n o’ = 11 since the

fibers are local analytic rings in a . Thus given any section Q of OX , 
o(o) and q5’( q) are complex-valued functions with same values. There-

forme, 0 (o) = o’( a) , which shows that o = o’.

NOTATION. Let p c X be a point of X, and let a be a section of Ox def-
ined in (a neighborhood of) p . We will denote by o | p the image of p by

o in Oy p and by o( p ) its value, that is, the complex number n ( o | p ) .

2.5. DEFINITION. A morphism (X, OX ) -&#x3E; ( Y , 0y ) o f one A-ringed space
into another is a pair

where f is a continuous function, f *OY is the inverse image (in SX) of
the sheaf (9y and 0 is a morphism of analytic rings in SX .

2.6. REMARK. The arrow 0 can be interpreted as a family of morphisms
of analytic rings in Ens, q5 : OY, f (p) -&#x3E; OX, p such that collected together
they determine a continuous map between the corresponding 6tale spaces.

Or, equivalently, such that given any section o of OY defined in an open

set H C Y, the composite sip = op (o |f(p)) defines a section of OX in
the open set f-1 ( H ) . Given any section defined in (a neighborhood of)

f ( p ) , clearly

That is, 0 always preserves the value of the sections. Furthermore, the

diagrams
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commute since rr f *l Y, f (p ) = 1T lX, pop , for all P , and, as before, sections
of CX,p are determined by their values. Thus, o always makes the follow-
ing diagram commutative :

2.7. PROPOSITION. Let W C Cn be any open subset, and let (9 w be the

sheaf of germs of complex-valued holomorphic functions defined in W . Then

OW is an analytic ring in SW’ More explicitely, (9w is the functor

C -&#x3E; SX defined by r (v, OW (U) ) = C(V, U ) for V open in W , U c C.

Furthermore, there is a morphism lW: OW &#x3E;---&#x3E; Cw defined by the inclusion

C( V, U ) C Continuous( V, U) which is local and determines a (reduced)

A-ringed space ( W, OW). If p c W, the fiber o f OW in p is OW,p = On,p. 
PROOF. Exactly like in Proposition 2.1. Furthermore, it is clear that I w
is a local morphism.

The category of A-ringed spaces will be denoted Q . If h : W -&#x3E; V is

a holomorphic function, composing with h , h * : OV,h(p) -&#x3E; OW,p defines
a morphism of analytic rings h *: h *0y » C9w which, together with h it-

self, clearly determines a morphism of A-ringed spaces. In this way it is

determined a full and faithful functor i : e + (f. We have :

2.8. TH EOREM. Given any A-ringed space ( X , (9 x ), the followi ng dia-

gram is commutative :

That is, if U is any open set U C Cn

PROOF. Let s be a section s : X -&#x3E; OX ( U ) , that is, an n-tuple of sec-

tions s - ( s1, ... , sn) , si: X -&#x3E; OX, such that for all p E X ,
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Let (f, rP) be a morphism

Then, the formulas f( p ) = ( s1 ( p ), ... , sn ( p )), that is, f = n s, and

establish the required natural bijection. Recall Proposition 1.16 which

says that 0, ,, f (p) is a free local analytic ring in the generators zi |f ( p ) .

2.9. COROLL ARY. The functor i : C -&#x3E; (i is an analytic ring in Q. That

is, it preserves terminal object and transversal pullbacks. Furth ermore, it

q represents » global sections. That is, we have

consists of the complex numbers structured with the sheaf of germs of holo-

morphic functions.

P ROOF. In diagram ( 1 ) in the theorem, P preserves all limits and OX is

an analytic ring. For the second part, just specialize formula (2) in the

theorem for LI = C .

We recall now some definitions of Grothendieck (Malgrange [8]) in

order to show that the classical notion of analytic space gives an example
of A-ringed spaces. The non-trivial part of this is the definition of the par-
tial operations and then the preservation of pullbacks. However, all this

follows easily from Theorems 1.10 and 1.18.

2.10. TH EOREM. L et U be an op en subset of C and let Y be an arbitrary

sheaf of ideals in OU. Let

or, equivalently,

Then, the following holds :

i ) There exists a unique analytic ring in SE , which we will denote
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OE, and a local morphism o f analytic rings lE : (DE -* C E, such that

The pair ( E, OE ) is an A-ringed space furnished with a morphism of A-

ringed spaces

where i : E C---&#x3E; U is the inclusion and is the quotient

as constructed in Theorem 1.18.

ii ) L et (X, OX ) be any A-ringed space and let

be such that

Then, there exists a unique morphism of A-ringed spaces

such that the following diagram commutes :

PROOF. i) Consider

in SE . The factorization l E indicated in the diagram follows by defini-

tion of E . VUe define and for open

Noticing that inverse limits are computed «fiberwise» in SE , the proof
follows from Theorem 1.18. Recall also Theorem 1.10.
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ii) Since o preserves the values of the sections (Remark 2.6), given
h |f ( p ) E Y | f ( p ), we have

Thus f ( p ) E E . This shows that f factors through E . Working fibrewise,
from Theorem 1.18ii) it follows a factorization for q5p: :

Given a section Q of OE defined in a neighborhood F of f ( p ) there is

a neighborhood V of f ( p ) in U and a section h of OU defined in V such
that

Then, the composite s | x = Yx ( o | f ( x ) ) defined in a neighborhood Y of

p in X, f(Y)C FnV, is equal to s | x = ox(h | f(x)). Therefore it is a
section of Ox defined in Y . This shows that the morphisms Vi p 

collected

together determine a morphism of A-ringed spaces.

2.11. DE F INITION. Let U be an open subset of Cn and let ill be a co-

herent sheaf of ideals in OU. The A-ringed space constructed in Proposi-
tion 2.10 is a (local) model. An analytic space is a ringed spa ce (in C-

algebras in the usual sense) ( X, OX ) where every point p 6X has an

open neighborhood E such that the restriction of ( X, OX ) to E is iso-

morphic to a model (defined above). The coherence of N means that every

point P c E C U of a model has an open neighborhood V in U such that

En V is cut out of V by the vanishing of finitely many holomorphic func-

tions defined in V . A special model is a model ( E , O E) , E C U , cut out
of U by the vanishing of the same finitely many holomorphic functions

defined in U . Since the models are A-ringed spaces, it follows that any

analytic space is an A-ringed space.
We will denote by D and by 2 the full subcategories of A-ringed

spaces whose objects are the special models and the (local) models resp-
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ectively. Notice that we have i : C -&#x3E; Ð.

2.12. PROPOSITION. Let U C C’ be open and h : U -&#x3E; Ck holomorphic,
h = ( h1,...,hk), hi E r( U, OU), and let (E,(9 E )be the special model

defined by the pair ( U, h ) . That is, defined by the shea f of ideals Y in

open in U. Then the diagram

is an equalizer in (f:

PROOF. Let (f, 0): (X, OX) -&#x3E; ( U, OU ) be such that it equalizes (h, h*)
and 0 . Then, for each p c X, we have :

By Proposition 2.10, ii), this finishes the proof.

Let ( E , O E ) and ( F , O F ) be special models defined respectively
by pairs

Then from Proposition 1.19 it follows easily that the special model def-

ined by the pair

is a product of A-ringed spaces.
Let (J’, 0) be a morphism between ( E , OE ) and ( F , OF ) given

by a holomorphic function f : U + V in such a way that the following dia-

grams commute:

(Notice that necessarily
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If (g’, Y ) is another morphism given as above by a holomorphic function

g : U - V , then it follows in the same way that Proposition 2.12, that the

special model defined by the pair

is an equalizer of A-ringed spaces between the pair of morphisms (f, o)
and (g, t/f ). It follows from Proposition 2.12 and Theorem 2.8 that any mor-

phism between special models is given locally in the above described

way. Thus any pair of morphisms determines a coherent sheaf of ideals

in OU which defines a model which is their equalizer in the category of

A-ringed spaces. It follows from these considerations that finite limits of

special models exist and are models. Since to construct finite limits it

suffices to do it locally, we see that the category L of models has finite

limits. Corollary 2.9 says that the functor i : C -&#x3E; fl is an analytic ring
in 2. It is not difficult to check that in addition, it preserves open cov-

erings.

3. TH E THEORY OF ANALYTIC RINGS.

One could think that a natural candidate to be the theory of analytic

rings would be the category D. That is, that the functor i : C -&#x3E; D is the

generic analytic ring. (As it happens in the algebraic case, where D =
affine schemes; or in the C°°-case, where D = affine C°°-schemes.)

However D lacks finite limits, since in general the equalizer of a

pair of morphisms in D is given by a coherent sheaf of ideals which is not

determined by the global sections (because morphisms in D do not extend

globally). The category 2 does have finite limits but the same lack of glo-
bal sections does not allow a direct proof of the required universal pro-

perty for the functor i : C -&#x3E; L. One thinks then to construct a category

like D , but where morphisms do extend. For example the category X where
obj ects are pairs ( U , f ) , U C Cn open and f : U -&#x3E; Ck h ol omorphic, and

where morphisms o : ( U , f ) -&#x3E; f V. g ) are holomorphic functions h : U’ -&#x3E; V

defined in an open neighborhood U’ of the set of zeros of f , and such that
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two such functions being considered equal if their difference is in the ideal

( f. 1 | W ) for a sufficiently small neighborhood W of the set of zeros of I .
The problem here is then that the functor i : C -&#x3E; X is no longer an ana-

lytic ring. Concretely, the morphisms that should be invertible in X if i is

to preserve transversal equalizers are only «locally invertible», and thus

not invertible in X.

We will construct the theory of analytic rings in two steps. First,
we construct a category with finite limits ? (much like X) such that i :

C -&#x3E; F preserves product and is universal with respect to product preserv-
ing functors. In a second step, by means of a calculus of fractions in F,
we obtain the theory of analytic rings.

Let ? be the category whose objects are pairs ( U , f ) , i n which

U is an open subset of C’ and r: U -&#x3E; Ck is a holomorphic function. A

morphism h : ( U , f ) -&#x3E; ( V , g ) is a holomorphic function h : U 4 V such that

and two such functions h , l : U + V are considered equal if

3.1. PROPOSITION. The categorx 5: has finite limits.

PROOF. i) ( C0, 0 ) = 1 .
ii) If ( U , f ) , ( V, g) E F, then ( U x V , f X g ) is the product of (U, f ) ,

( V , g ) in 5:, where f X g : U X V 4 Ck x Cr is th e product map.

iii) Let ( U , f ) and V , g ) be obj ects of if and h, l : ( U , f ) -&#x3E; (V , g )
two arrows in 5: , then

is an equalizer diagram in 5:. Suppose s : ( W , d ) -&#x3E; ( U , f ) equalizes b and

I , it means that

but ( h s ); = h.s and ( l s )i = l i s and so
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and for the others fi sE ( h1, ... , hk ) by hypothesis.

3.2. COROLLARY. If (V, f) E F then the diagram
I

is an equalizer in 5: .

PROOF. It is clear from the construction of equalizers in ? (Proposition
3.1).

3.3. PROPOSITION. We have a functor

which is full and faith ful and preserves finite products and terminal ob-

ject ; and i has the following property : for any functor H : C -&#x3E; &#x26;n6. which

preserves finite products and terminal object, there exists a unique finite
limits preserving functor H : F -&#x3E; Ens such that the following diagram
commutes

Furthermore, there exists an equivalence of categories between the func-
tors C -&#x3E; &#x26;n6. that preserve finite products and terminal object and thefunc-
tors F 4 &#x26;n6. that preserve finite limits.

PROOF. From the definition of the morphisms of 5: and the construction

of products in ? it is clear that i preserves finite products and terminal

object. Now, let H: C- 4 Ens be a functor which preserves finite products
and terminal object. Notice that H(C) is, in particular, a C-algebra. We

define H : F -&#x3E; &#x26;n6. by the expression

th en

because i is full and faithful and Yoneda’s lemma. We must see that H

preserves finite limits. We will only prove in detail that the diagram
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is an equalizer in Ens, where the left arrow is the map E |-&#x3E; E U(idU). It
is then straightforward to show that H preserves all equalizers, finite pro-

ducts and terminal object. Let 6 be an element of H ( U , f ) and g : U -&#x3E; V

holomorphic. We consider the diagram

where the vertical arrows on the left are compositions with g in fl) and

with f i in ( 2 ). Since fi = 0 in F [ ( U, f ), i C], from the diagram ( 2 ) ,

it follows that

On the other hand, if p E H ( U ) is such that H ( f i ) ( p ) = 0 for all i , the

expression 6V(g) - H ( g ) ( p ) defines a unique natural transformation e
such that E U ( id U ) = p ; because, if g = g’ in F [ ( U, f), i ( V ) ] , by
definition

then H ( g k) - H ( g’k ) = 0 (for all k ). This shows that the definition of

of çV ( g) does not depend of the choice of g . And the diagram ( 1 ) shows

that 6 as defined above is the unique one such that E U ( idU ) = 0 .

3.4. PROPOSITION. The functor i : C -+ F is universal for product pre-

serving functors H: e -+ &#x26;, into any category 6 with finite limits.

PROOF. It is the same that the one we will give in Proposition 3.6.

3.5. PROPOSITION. Let E be the subset o f F l ( F ) defined by :

a c I =&#x3E; H(o) is invertible for all analytic rings H in 6n&#x26;.

and l: C -&#x3E; Qn be the composite
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Then the following holds :

i) an has finite limits (and py preserves finite limits), and l: C -&#x3E; (fn

is an analytic ring in (fn.

ii) Given any analytic ring H in &#x26;n6.., there exists a unique finite lim-

its preserving functor Fl: Qn -&#x3E; Ens such that the following diagram com-

mutes :

Furthermore, there exists an equivalence of categories between the ana-

lytic rings C 4 &#x26;na in Fgn&#x26;,, and the finite limits preserving functors
Qn -&#x3E; Ens. In symbols : Qn(Ens) = Ens(Qn).
P ROO F Let H: C -&#x3E; Ens be an analytic ring. Then we have:

By Propositions 3.3 and 0.8 it follows ii). Also we see that (tn has finite

limits (and p E preserves finite limits). It remains to see that I is an ana-

lytic ring. Let

be a transversal pullback in C . Since F has finite limits, there exists

E r y such that the diagram
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is a pullback in 5:. And since i is a functor there exists a unique s : 

i ( W ) -&#x3E; E such that the diagram

is commutative. For any H c Qn( Ens), H sends the diagram (1) into the
following commutative diagram

But H preserves finite limits and H preserves transversal pullbacks ; then

H ( W ) and H ( E ) are pullbacks in &#x26;n6-; so H ( s ) is an isomorphism and

so s F S , then p E ( s ) is an isomorphism and p y sends the diagram ( 1 )

into the commutative diagram

But p E preserves finite limits, thus p E ( E ) is a pullback; and since

p E ( s) is an isomorphism the following diagram is a pullback:

A similar argument shows that I preserves the terminal object.

3.6. PROPOSITION (Completeness Theorem). Let H : C -&#x3E; E be an analytic
ring in any category E with finite limits. Then there exists a unique finite
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limits preserving functor H : Qn -&#x3E; iS such that the following diagram is

commutative :

Furthermore, this establishes an equivalence of categories between (fn ( &#x26;)
and &#x26; j (Qn), the category o f finite limits preserving functors Qn -&#x3E; E.

PROOF. The proposition is true for E = Ens. Let M be any category, we

will prove it for is an exp-

onential in eat (the category of categories), we have by adjunction a func-

tor H’ : M -&#x3E; Ens C such th at H’ (M ) ( U ) = H ( U ) ( M ) . F or any M E M,

H’ ( M )E (fn( &#x26;n6.). Then, we have a functor H’: m -+ Ens (Qn) . But Ens (Qn)
is a full subcategory of Ens Qn, so again by adjunction there is a functor

The diagram

clearly commutes. Finally, let E be any category with finite limits and

H c Qn ( E ). Composing with Yoneda’s functor we have :

Consider now the category F of Proposition 3.1. The fact that the Yoneda
functor h is full and faithful, together with Corollary 3.2 and the existence

of equalizers in 8, implies that there is a factorization if - FD as indicat-
ed in the diagram below. The factorization (in -&#x3E; E follows then by the un-

iversal property of p E : F -&#x3E; (În.
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This finishes the proof.

This shows that l : C -* Sn is the generic analytic ring.

3.7. REMARK. It follows from the results of Section 2 that there is a finite

limits preserving functor lin - lil C N. This is the functor Spec ; we do

not know if this functor if full and faithful as it is in the corresponding

algebraic and C°°-situtations. The consideration of the model of Synthetic
Differential Geometry determined by the site Qn may be useful to the study
of the model determined by the site 2 . That is, to the th eory of Analytic

Spaces. It would be interesting to show that 2 = tin .
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