
Several factors currently limit the size of
Virtual Reality Modeling Language

(VRML) models that can be effectively visualized over
the Web. Principal factors include network bandwidth
limitations and inefficient encoding schemes for geom-
etry and associated properties. The delays caused by
these factors reduce the attractiveness of using VRML

for a large range of virtual reality
models, CAD data, and scientific
visualizations. The Moving Pictures
Expert Group’s MPEG-4 addresses
the problem of efficiently encoding
VRML scene graphs. MPEG-4 ver-
sion 2 contains a 3D mesh coding
toolkit to compress Indexed-
FaceSet and LODnodes, featuring
progressive transmission.1

In this article we propose a frame-
work to mitigate the effects on users
of long delays in delivering VRML
content. Our solution is general and
can work independently of VRML.
We exploit the powerful prototyping

mechanisms in VRML2 to illustrate how our techniques
might be used to stream geometric content in a VRML
environment.

Our framework for the progressive transmission of
geometry has three main parts, as follows: 

1. a process to generate multiple levels-of-detail
(LODs),

2. a transmission process (preferably in compressed
form), and

3. a data structure for receiving and exploiting the
LODs generated in the first part and transmitted in
the second.

The processes in parts 1 and 2 have already received
considerable attention (see below and the sidebars). In
this article we’ll concentrate on a solution for part 3.

Our basic contribution in this article is a flexible LOD
storage scheme, which we refer to as a progressive multi-

level mesh. This scheme, primarily intended as a data
structure in memory, has a low memory footprint and
provides easy access to the various LODs (thus suitable
for efficient rendering). This representation is not tied
to a particular automated polygon reduction tool. In
fact, we can use the output of any polygon reduction
algorithm based on vertex clustering (including the
edge collapse operations used in several algorithms).

The progressive multilevel mesh complements com-
pression techniques such as those developed by Deer-
ing,3 Hoppe,4 Taubin et al.,5 or Gumbold and Strasser.6

We discuss the integration of some of these compres-
sion techniques. However, for the sake of simplicity, we
use a simple file format to describe the algorithm, which
we’ll explain later. Transmitting or storing a mesh in this
file format (or compressing it with standard tools such
as gzip) proves useful only in situations where no avail-
able geometric compression methods will serve. (For
instance, when encoding arbitrary vertex clusterings
that change the topology and introduce a nonmanifold
connectivity).

In our approach, we partition the vertices and trian-
gles of the mesh into several LODs by assigning an inte-
ger level to each vertex and triangle. We define and use
vertex representatives to cause certain vertices—depend-
ing on the selected LOD—to be represented by another,
substitute vertex. Not all vertices have representatives.
Or, more precisely, a vertex may be represented by itself.
Representatives can be stored in a single array with one
entry per vertex.

Using the PROTO mechanism of VRML and a script
node executing Java code, we implemented a new
VRML node to support this representation. A live demo
is currently available on the Web at http://www
.research.ibm.com/people/g/gueziec (where you can
access relevant VRML files and Java bytecode). Figure 1
shows snapshots of our VRML implementation (an ear-
lier version of this demo appeared at VRML 987). Note
the LOD can be changed interactively after (and even
during) progressive loading.

When restricting ourselves to LODs produced using
the familiar edge-collapse operations (as Ronfard and
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Rossignac,8 Xia and Varshney,9 and Hoppe10 did), we
can use a directed acyclic graph (DAG) to represent a
partial ordering among the edge collapses, allowing for
local (possibly view dependent) LOD control of a given
shape (similar to deFloriani11).

Edge collapses
A variety of polygon reduction techniques4,8,9 use edge

collapses to create intermediate LODs. As Figure 2
shows, applying such a polygon reduction technique cre-
ates a forest (set of disjoint trees) of collapsed edges.
Individual trees can be partially collapsed, with each
partial collapse corresponding to an intermediate LOD.

Vertex representatives
A sequence of edge collapses creates a surjective map

from the original surface to a simplified surface. With
this technique, we don’t have to create new triangles.
Instead, we use the surjective map to modify triangles
from the original surface. To construct the surjective
map, we assign a representative for each surface vertex.
In the beginning of the process, each vertex represents
itself. As edges collapse, the process removes some ver-

tices and chooses representatives for them among the
remaining vertices.

It helps to use colors to illustrate this process. In the
beginning, every vertex and triangle is red. We use blue
for vertices and triangles that are gradually removed
from the mesh. We give the edge collapse a direction:
one endpoint is removed and painted blue; the other
endpoint stays red (until a subsequent collapse removes
it) and remains in the mesh (note that its actual coordi-
nates may be modified, but it keeps its index). The tri-
angles removed during the edge collapse are blue. Figure
3 (next page) illustrates the (directed) collapse of an
edge v1 → v2. The red vertex v2 becomes the representa-
tive of the blue vertex v1. A one-to-one correspondence
exists between the blue vertices and edge collapses.

The representatives are preferably stored using an
array, with one entry per vertex (red vertices are repre-
sented by themselves). To build the simplified surface,
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1 Snapshots of
our VRML
implementation
using a horse
model (original
model provided
by Rhythm &
Hues Studios).
LODs with 
(a) 247, 
(b) 665, 
(c) 1,519 and
(d) 4,350 trian-
gles are
accessed inter-
actively on a
Pentium 133-
MHz laptop PC
using a VRML
browser.

2 Forest of
collapsed edges
obtained using
a simplification
algorithm.12

Vertices con-
nected by
marked edges
collapse to the
same location.

Triangular Meshes, LODs, and Edge
Collapses

A polygonal surface is often represented with
a triangular mesh, composed of a set of vertices
and a set of triangles, each triangle being a
triplet of vertex references. In addition,
triangular meshes have a number of vertex or
triangle properties such as color, normal, or
texture coordinates. A corner is a couple
(triangle, vertex of triangle). An edge is a pair of
vertices, called endpoints, used in a triangle. An
edge collapse consists of bringing both endpoints
of an edge to the same position, thereby
eliminating two triangles (or one triangle at the
boundary of the surface). The edge collapse has
an inverse operation, often called vertex split.

A significant number of automated methods
for producing LOD hierarchies of a triangular
mesh rely on edge collapses or on clustering
vertices connected by edges, corresponding to
applying several edge collapses in sequence.
Methods differ in the particular strategy used for
collapsing edges. For instance, Ronfard and
Rossignac,8 Guéziec,12 and Garland and
Heckbert13 ordered the potential collapses
according to different measures of the deviation
from the original surface that results. Hoppe’s4

approach minimizes a surface energy (based on
pairwise vertex distances) and other criteria.
Guéziec,12 Bajaj and Schikore,14 and Cohen,
Manocha, and Olano,15 bound the maximum
deviation from the simplified surface to the
original. Note that many very effective
simplification techniques work without collapsing
edges (notably triangle collapses,16 vertex
removals,17,18 and the Superfaces method19).

.



we path-compress the vertex repre-
sentatives array as shown in Figures
3b and 3d. We refer to the resultant
array as the pc-rep array. To perform
the path compression, we follow the
representative hierarchy until we
find a root and make each element
in the path point directly to the
root.20 Triangles are stored using the
original vertex indices and, for a par-
ticular LOD, they’re rendered using
the pc-rep array.

Vertex and triangle levels
Now we’ll explain how to assign

levels to vertices and triangles as
edges collapse. In what follows,
we’ll write that a vertex is in the star
of an edge if it’s either an endpoint
of the edge or adjacent to an end-
point.
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4 (a) A simple mesh. Nine edge collapses, numbered I through IX, affect the levels of the red and blue vertices as shown (numbers in
black indicate the vertex identifiers; numbers in blue and red indicate the levels assigned to vertices during edge collapses). (b) Label-
ing the blue triangles according to the edge collapse number (I through IX) that eliminates them. (c) and (d) Partitioning the surface
in seven LODs. The ith LOD uses vertices and triangles with labels i, i + 1. . . ., 7.
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3 (a) During an edge collapse, the blue vertex v1 and blue triangles are removed. The arrow
indicates a vertex representative assignment. (b) A vertex representative array and path-
compressed representative (pc-rep) array. (c) Tree of representatives before path compression.
(d) After path compression.
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Consider the model of Figure 4,
called the simple mesh, with 16 ver-
tices and 18 triangles. We used nine
edge collapses to simplify the mesh.
We assigned levels to vertices as fol-
lows: at the start all vertices are red
with Level 0. When an edge collaps-
es, we compute the maximum Level
l in vertices of the edge star and
assign Level l + 1 to both the red and
blue edge endpoints. L + 1 is also the
level assigned to the triangles that
become blue during the collapse. We
used levels of blue vertices and tri-
angles to generate LODs. Levels of
red vertices are used only temporar-
ily for computing levels of blue ver-
tices. To become familiar with this
process, examine Figure 4 careful-
ly—it provides the complete details
of the edge collapses. In the end of
the simplification process, we incre-
mented the highest level and
assigned it to all red vertices and trian-
gles (this is Level 7 in Figure 4).

Partitioning a surface into LODs
Once we’ve produced a partition of the vertices and

the triangles in levels (Figures 4c and 4d illustrate this
for the simple surface), we can define the surface LODs.
The ith LOD consists of all vertices and triangles of a level
greater or equal to i. In Figure 4 the coarsest surface level
is 7 and the finest is 1. To evolve from surface LOD i to j
< i, we simply provide vertex and triangles of levels j to i
− 1. If a high granularity isn’t required, we can create
fewer levels by merging any number of consecutive lev-
els in a single level. (In fact, we reduced the number of
levels to three from the same data in Figure 5.)

Figure 5 shows how to access different LODs of the
progressive multilevel representation. For Level 2 (left),
which has five triangles, follow the representatives hier-
archy toward the roots until the representative indices
fall below 7 (the current number of vertices). For Level
1 (middle), which has 12 triangles (and 13 vertices),
follow the representatives until they fall below 13 (rep-
resentatives for vertices below index 13 can be ignored
and thus crossed out). Level 0 (right) shows 16 vertices
and 18 triangles. All representatives can be ignored.

We next sort the vertices and triangles according to
their level, starting from the highest to the lowest level
(red vertices and triangles have the highest level), and
update the triangle vertex indices and the vertex repre-
sentatives to reflect the permutation (sorting) on the
vertices. This results in a progressive multilevel mesh as
defined in the next section.

Progressive multilevel mesh
A progressive multilevel mesh with L different levels

is a particular triangular mesh as follows (instead of enu-
merating levels from 1 through L, we enumerate them
from 0 through L −1 for easier translation to a C- or Java-
type array):

■ Vertices and triangles are assigned a level starting
from 0 (the most detailed level) to L − 1 (coarsest
level). Both are enumerated in order of decreasing
level, and the maximum index nl for a vertex of a given
level l is stored.

■ For each vertex v with a level less than L − 1, a repre-
sentative may be supplied. A representative references
another vertex, with a higher level (and lower vertex
number) substituted for the vertex v whenever v is
missing from the current mesh. Representatives define
a graph called a forest, which can be conveniently
stored using an array with one entry per vertex.

■ From this information, we can efficiently compute L
LODs: each LOD l, 0 ≤ l ≤ L − 1 uses vertices and tri-
angles of levels l, l + 1, …, L − 1. For each such trian-
gle, if a vertex reference exceeds nl, we follow the
forest of representatives as shown in Figure 5 until we
fall below nl. For speed-up we path-compress the for-
est of representatives. The cost of pointing directly to
the roots from each node is slightly superlinear in
terms of the number of nodes (see Tarjan20). By sub-
stituting vertex references in triangles with their cor-
responding forest root, we can switch directly from
any level to any other level without explicitly build-
ing intermediate levels. Path compression is per-
formed on a temporary copy of the representatives
array (to preserve the forest hierarchy for subsequent
use) every time the LOD changes.

■ Vertices of the LODs don’t have to be a proper subset
of the original vertices (although it’s more conve-
nient). When evolving from Level l of the triangular
mesh to Level l − 1 (increasing the resolution), the
positions and properties (color, texture coordinates,
surface normal) of the representatives of Level l − 1
vertices may be changed by reading them from a sec-
ondary array (or list). The primary array stores the
original values.
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(middle), and Level 0 (right).
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■ Potentially, vertices can be added in a level without
adding corresponding triangles, thus allowing addi-
tional freedom for changing the topology.

Figure 6 shows a simple file format that summarizes
the information required in a progressive multilevel
mesh. (Recall that a progressive multilevel mesh is pri-
marily a data structure. Files such as the one in Figure 6
should be used in practice for transmission and storage

only if no geometry compression
method is available.) Batches of ver-
tices and triangles are specified sim-
ilarly to a typical triangular mesh,
with the difference that some trian-
gles use vertex indices that poten-
tially can refer to vertices in missing
batches. In Figure 6, the line
6,2,8,  0,1, should be inter-
preted as follows: when the system
reads triangle (6,2,8) from the stor-
age or network, only vertices 0 to 3
can be referenced (this single vertex
batch was read so far). Vertex 6
requires a representative (this is 0)
as well as vertex 8 (1). The next time
the system reads 8, this vertex’s rep-
resentative is not specified again.

Low memory footprint
We perform a simple byte count

for specifying a generic mesh—
ignoring vertex and triangle prop-
erties—and assume that n vertices
and approximately 2n triangles exist
(this depends on the surface genus
and number of boundaries; it’s exact
for a torus). We also assume that the
system uses 4 bytes to store each ver-
tex coordinate (typically a 4-byte
float) and vertex index (a 4-byte
int). A generic mesh would be
stored using 36n bytes. Our repre-
sentation would use less than 40n
bytes, since vertex representatives—
the sole addition—aren’t supplied
for all vertices (the additional cost
factor is at most 40/36 ≅ 1.1).

Support for smooth transitions
When we add detail to the trian-

gular mesh by lowering the level
from l to l − 1, we introduce the ver-
tices of Level l − 1 in the mesh. The
new triangles are determined as
explained above, but for the new ver-
tices, the coordinates of their repre-
sentative are used first, resulting in
a mesh that remains geometrically
the same as the Level l mesh (when
all added vertices have a represen-
tative in Level l). Then, gradually, the
coordinates are interpolated linear-

ly from that position to the new coordinates using a para-
meter λ that varies between 0 and 1.

VRML implementation
In this section we describe our VRML 2.0 implemen-

tation, based on defining a new node using the PROTO
mechanism and Java in the script node for the logic. Fig-
ure 7 shows the PROTO that we defined and Figure 8
shows a sample VRML file using the PROTO. The new
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#3-level progressive mesh

{#level 2 vertices (4)

-3.0, 3.0, 3.0, 3.0, -3.0, -3.0

3.0. -3.0}

{#level 2 triangles (2), followed with

# representatives

6, 2, 8, 0, 1,

3, 8, 2}

{#level 1 vertices (3)

-2.3, 3.0,-3.0, 2.3, 2.3, 2.3}

{#level 1 triangles (4)

4, 6, 7, 1,

5, 2, 6,

6, 4, 5,

4, 0, 5}

{#level 0 vertices (3)

2.3, 3.0, 2.3, 2.3, 3.0, 2.3}

{#level 0 triangles (no representatives

#necessary)

8, 3, 9,

9, 1, 8,

7, 8, 1,

8, 7, 6}

PROTO MultiLevelProgIfs

[

field SFString urlData “”

field SFBool debug FALSE

]

{

DEF ifs IndexedFaceSet {

coordIndex []

coord Coordinate { point [ ] }

}

DEF script Script {

url “ProgIfs.class”

directOutput TRUE

mustEvaluate TRUE

field SFString urlData IS urlData

field SFNode ifs USE ifs

eventIn SFBool update

eventOut SFBool isReady

}

ROUTE script.isReady TO script.update

}

6 Exemplary
ASCII file for
storing a mesh
with three
progressive
LODs. This
example is 2D.
(# signs precede
comments.)

7 The file
“ProgIfs.wrl”
defining a
PROTO for an
IndexedFaceSet
that can be
streamed and
whose LOD can
be changed
interactively.

.



node behaves as an IndexedFaceSet, has the URL of
the file containing the data as the only field (instance
variable) to be set up when the node is instantiated, and
has one eventIn that the browser uses to request an
update.

The Java program in the script node implements two
fundamental functions. One function, called addLev-
el(), appends a new level to the data structure after it’s
read and thus implements progressive loading. The other,
called setLevel(int level), implements fast switch-
ing between LODs, potentially setting a fractional level
for a geomorph using setLevel(float level).

The code has two threads: upon instantiation, a
thread downloads the data from the URL provided in
the urlData field, immediately returning control to
the browser. Then, whenever a level is completely down-
loaded and ready for display, Java notifies the VRML
browser by sending an isReadyevent. After the brows-
er regains control, it decides when to paint the new lev-
els by sending an update event to the node. The main
thread of the Java program handles the changes in LOD
of the IndexedFaceSet node.

The download thread progressively downloads the
total number of LODs, vertex, triangle, and properties
data, and periodically updates the corresponding arrays
(triangle, vertex pc-rep, vertex representative, and,
optionally, property arrays). These arrays—which are
private to the script code but persist after the download
thread finishes—are used later by the script code’s main
thread to update the IndexedFaceSetfields respond-
ing to browser requests. The main thread does this by set-
ting and changing values of the coordand coordIndex
fields (and optionally of the other property fields) as a
function of the data downloaded by the download thread
and the requested LOD. Typically, the download thread
automatically updates the IndexedFaceSetfields with
the highest resolution LOD available as soon as all the
data associated with it finishes down-
loading.

Note that we decided not to show
the VRML logic necessary to trigger
the change in LODs in Figure 7. This
can be done in many different ways.
For instance, as shown in Figures 1,
9, 10, and 11 (next page), a simple
user interface (including a slider)
can be spawned to interactively
change the LOD. Another possibili-
ty is to maintain a triangle budget in
the VRML scene and change it using
a Script (for simplicity, using
JavaScript) depending on the
object’s relative position in the
scene. This triangle budget can be a
field of the PROTO that the Java
code handles.

In Figure 9, texture coordinates
are specified for each vertex. A file
specifying this model must thus pro-
vide texture coordinates in addition
to the vertex positions (Figure 6
doesn’t show this).

Figure 11 shows a progressive multilevel mesh
obtained by clustering vertices and exhibiting topolog-
ical changes. Figure 11 also shows a geomorph between
two levels of the model. As we’ll discuss in the next sec-
tion, we use representatives only for a selected number
of clustered vertices. Accordingly, when performing a
geomorph, we generally don’t have a complete mapping
between vertices of the higher and lower levels, unless
more representatives are supplied than those required
strictly for discrete levels. As illustrated in Figure 11 geo-
morphs are nonetheless possible without this addition-
al information. The results may sometimes be less
visually pleasing.

Vertex clustering
Although it was convenient in the section “Edge col-

lapses” to start with the specification of a sequence of
edge collapses on a given mesh to build a progressive
multilevel mesh, we can use more general input.

We can easily build a progressive multilevel mesh
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#VRML V2.0 utf8

EXTERNPROTO MultiLevelProgIfs

[

field SFString  urlData

]

[“ProgIfs.wrl”]

Shape {

geometry MultiLevelProgIfs{

urlData “horse.lod.gz”

}

}

8 A simple
VRML file using
the PROTO
defined in
“ProgIfs.wrl.”
Using a VRML
browser when
adding a Back-
ground node
and some
Appearance
information, we
can produce the
pictures shown
in Figure 1.

9 A model 
with texture
coordinates per
vertex at the
highest (a) and
lowest (b) LOD.
Corresponding
wireframe
models are
shown in Fig-
ures 9c and 9d.
We can switch
between them
in real time on a
Pentium 133-
MHz laptop
computer.

(a) (b)

(c) (d)

.
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10 A model of
marble using
colors per ver-
tices with
50,000 triangles
at the highest
resolution.

11 Nonmani-
fold model with
levels of (a) 64,
(b) 16, and (c) 4
triangles. Topo-
logical changes,
obtained by
vertex cluster-
ings, can be
represented in a
progressive
multilevel mesh.
(d) A geomorph
between two
levels of the
model.

(a)

(b) (c)

(d)

.



using the vertex clustering informa-
tion provided by any polygon reduc-
tion tool. To do this, we need the
vertices and triangles of the most
detailed mesh and, for each cluster-
ing, a new set of vertices (of the
mesh after clustering) and a map-
ping between the vertices of the pre-
vious mesh and the new vertices.

Figure 12 illustrates this process
and shows a model for which two
successive clustering operations were
applied.

We’ll now explain how we
obtained the resulting progressive
multilevel mesh shown in Figure 6. Vertices and trian-
gles are assigned levels and re-enumerated. For each
remaining vertex after clustering, we identify its ances-
tors in the previous mesh using the mapping provided.
Among its ancestors, we select one vertex as a “pre-
ferred” ancestor based on geometric proximity. (Other
criteria are possible.) We assign the remaining vertices
to Level 0 and the largest indices (for example, 7, 8, and
9 in Figure 12). We also identify the triangles that
become degenerate during the clustering and assign
them to Level 0 as well. Then we assign the largest tri-
angle indices to these degenerate triangles. (To avoid
visual clutter, Figure 12 doesn’t show this.)

The remaining vertices (0 through 6 in Figure 12) and
triangles are re-enumerated and the mapping adjusted
to take the re-enumeration into account. The operation
then repeats for the second clustering, for assignments
to Level 1. We stop when all clusterings are processed.

This construction actually demonstrates that non-
manifold models and topological changes can be rep-
resented in a progressive multilevel mesh (those
obtained by clustering vertices). In fact, Figure 11
shows a nonmanifold mesh whose topology is gradu-
ally simplified to that of a sphere (or tetrahedron). Fig-
ure 13 shows the corresponding multilevel file.

Returning to Figure 12, to specify the clustering oper-
ations, you would naturally specify that four vertices get
mapped into one, and that again four vertices get mapped
into one. Does this mean that 4 + 4 = 8 representatives
should be specified in the multilevel mesh representation
(or six, since when a vertex is its own representative, the
information is implicitly recorded)? Not so, because rep-
resentatives are required only when vertices touched by
triangles of a given level are missing from the current
level. It turns out that the information confined in Figure
6 suffices to encode the LODs of Figure 12, with only three
representatives. (You may want to examine which rep-
resentatives are necessary in Figure 13.)

Local surface refinement
Here we assume again that a suitable algorithm gen-

erates a succession of edge collapses to produce LODs.
The actual order in which the collapses occur is irrele-
vant. However, when the algorithm validates a given col-
lapse i, the collapsed edge neighborhood is in a particular
configuration, resulting from a few identifiable edge col-
lapses, say collapses j and k. We record that collapse i

must occur after collapses j and k, defining a partial
ordering on the collapses. This partial ordering proves
useful in selecting a consistent subset of the collapses for
a local simplification or refinement of the surface.

Storing a partial ordering between collapses
Each edge collapse has a status: S stands for “split,”

meaning that the collapse hasn’t occurred yet. C stands
for “collapsed,” meaning that the collapse has occurred.
If performing a certain collapse—for instance in Figure
4 collapse V with blue vertex 4 and red vertex 0 (4 → 0)
—requires that other collapses be performed before-
hand—for example, collapse I (5 → 1) and collapse III
(9 → 13)—we add two edges (V → I) and (V → III) to a
directed acyclic graph (DAG). This means that situations
in which V has status C and I has status S or III has status
S are impossible. We can store this DAG in various ways.
(Essentially, for each vertex of the DAG, we want to have
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7

8 9
4 0 1

2 3

5 6

Level 0 Level 1 Level 2

12 Building a progressive multi-
level mesh from two vertex cluster-
ings (circles show which vertices are
clustered). The vertices are enumer-
ated according to the level at which
they appear or disappear (top row).
The system identifies and enumer-
ates the triangles that collapsed as a
result of the clustering (bottom
row). The first clustering is shown
in green, while the second is shown
in blue.

#2-level progressive mesh

{#level 2 vertices

0, 0, 0, 2, 2, 0, 2, 0, 2,

0, 2, 2}

{#level 2 triangles

0, 4, 5, 1, 2,

5, 4, 6, 3,

6, 0, 5,

4, 0, 6}

{#level 1 vertices

1, 1, 0, 1, 0, 1, 0, 1, 1,

2, 1, 1, 1, 2, 1, 1, 1, 2}

{#level 1 triangles

8, 6, 3,

3, 6, 9,

9, 8, 3,

6, 8, 9,

7, 5, 9,

9, 5, 2,

2, 7, 9,

5, 7, 2,

1, 4, 8,

8, 4, 7,

7, 1, 8,

4, 1, 7}

13 Vertices,
triangles, and
representatives
for the first two
levels of the
(nonmanifold)
mesh of Figure
11. Note that
three represen-
tatives suffice.

.



a list of all the directed edges that enter the vertex and all
the directed edges that exit from the vertex.) For our
approach, we chose to use hash tables keyed with the
vertex number. We also note that V has two collapse con-
straints and that I and III each have one split constraint.
When we split V, then we can decrease the number of
split constraints of I and III. Similarly, we can increase or
decrease the number of collapse constraints. Figure 14
shows the complete DAG for the surface of Figure 4.

The procedure we use for building the DAG is very
simple. First we examine the current level of all vertices
belonging to the star (1-neighborhood) of the collapsed
edge. Each level greater than zero indicates that the cor-
responding vertex was the outcome of a collapse. Then
we determine the collapses that produced that particu-
lar vertex (for instance, by recording this information
in a list or hash table).

Figure 15 shows how this DAG can locally refine the
surface using a consistent subset of vertex splits. You can
use various criteria to decide which vertices of the sur-
face should be locally split (based on the distance to the
viewpoint or the relation between the surface normal
and viewing direction, and so on). Then, using the par-
tial ordering defined above, it’s easy to determine which
vertex splits must occur and in which sequence they must
occur. Performing a topological sort on the DAG’s sub-
graph represented by the vertex splits accomplishes this.

Coupling with a geometry-compression
method

Taubin et al.5 introduced the progressive forest split
compression method, which represents a triangular
mesh as a low resolution mesh followed by a sequence
of refinements, each one specifying how to add trian-
gles and vertices. Figure 16 shows the basic operation—
a forest split. After marking a forest of edges on the
lower resolution surface, the surface is cut through the
edges and the resulting gap is filled with a forest of tri-
angles. For the added triangles to form a forest, we
impose topological constraints on the polygon reduc-
tion method. For instance, when using edge collapses,
we make sure that after removing the two triangles cor-
responding to the collapse (of an interior edge), the set
of removed triangles still forms a forest (this occurs
after the very first edge collapse).

The information to encode this operation can be
highly compressed. A simple encoding of the forest of
edges requires 1 bit per edge (for example, a value of 1
for the edges belonging to the forest and 0 for the other
edges). Since any subset of the forest edges forms a for-
est, we can determine at a certain point that some edges
must have a bit of 0, thus achieving additional savings.
The resulting bitstream can be further compressed
using arithmetic coding. The triangles for insertion
form a forest as well. Various possibilities exist for a
compressed encoding of their connectivity. For
instance, for each tree of the forest, we can use 2 bits
per triangle to indicate whether it’s a leaf, has a left or
right neighbor, or both.

Overall, a forest split operation doubling the number
n of triangles of a mesh requires a maximum of approx-
imately 3.5n bits to represent the changes in connectiv-
ity. We obtain this bit count by multiplying the number
of edges marked (approximately 1.5 times the number
of triangles) by 1 bit and the number of triangles added
(n) by 2 bits. Note that it’s impossible to more than dou-
ble the number of triangles in a mesh when applying a
forest split operation, because we can’t mark more edges
than what a vertex spanning tree has (one less than the
number of vertices, which is approximately half the
number n of triangles of the mesh). We can, however,
make the encoding of changes in geometry (vertex dis-
placements and new properties) more compact by using
efficient prediction methods along the tree of edges or
the gap obtained after cutting.

The forest split compression can be coupled with our
progressive multilevel representation as follows: As soon
as a forest split refinement is transmitted, it can be inter-
preted as a vertex clustering operation performed on the
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V

I

VI

IIIVIII

IX

VII

IV

II

14 A directed
acyclic graph
representing
the partial
ordering of
edge collapses
corresponding
to Figure 4.

The progressive meshes method introduced by Hoppe4 consists
of representing a mesh as a base mesh followed with a sequence of
vertex splits (defined in the sidebar “Triangular Meshes, LODs, and
Edge Collapses”). This permits progressive loading and
transmission and view-dependent refinement. Progressive meshes
can also be used to obtain a compressed representation of a mesh.

The progressive multilevel meshes introduced here provide
freedom on the granularity of LOD changes and permit switching
between arbitrary LODs without constructing intermediate levels.
Also, arbitrary vertex clusterings can be encoded on manifold or
nonmanifold meshes, allowing changes to the topology.

Xia and Varshney9 applied edge collapses and vertex splits
selectively for view-dependent refinement of triangular meshes. In
the section “From edge collapses to a progressive multilevel
representation,” red vertices resemble the “parents” and blue
vertices the “children” in Xia and Varshney’s method.

De Floriani et al.11 used a directed acyclic graph (DAG) to
represent local mesh updates and their dependencies. In this
article, we present a related DAG representation where each node
represents an edge collapse and vertex split pair, and directed
edges represent dependencies between collapses.

Hoppe defined vertex hierarchies to perform selective, view-
dependent refinement of meshes.10 By querying neighboring faces
of a given edge or vertex, he can determine whether a given
collapse or split proves feasible in a given configuration.

Luebke and Erikson21 used an octree to represent vertex
hierarchies. Vertex representatives defined here relate to “triangle
proxies” in their work.

Related Work on Progressive and View-Dependent
Mesh Representations

.



refined mesh to obtain the previous mesh (since the cor-
respondence between the vertices before and after the
split is implicitly known), and thus be decoded into an
additional LOD by building a progressive multilevel mesh
from vertex clustering. The addLevel() method
described in the “VRML implementation” section may
then be used to append the new level to the data struc-
ture. A similar mechanism could be used to incorporate
other geometry compression methods as well.

Conclusion
We’ve described a framework for streaming polygonal

data. Our LOD representation features the following
characteristics:

■ It can be built from the output of most automated poly-
gon reduction algorithms (using vertex clustering).

■ It requires only a 10 percent memory overhead in
addition to the full detail mesh.

■ LODs can be accessed on-the-fly by manipulating ver-
tex indices.

■ Any granularity is possible, from individual vertex
splits to, for example, doubling the number of vertices.

■ It supports smooth transitions (geomorphs).
■ It’s complementary to a compression process: the data

can be put in our format after it’s transmitted in com-
pressed form.

We exploited VRML’s capability to create new nodes
and implemented our method for streaming geometry
in VRML. We used Java in Script nodes to interactively
load and change the LODs. Java’s performance was
very satisfactory. Some of the main difficulties we expe-
rienced were related to inconsistent or noncompliant
support of Java in Script nodes in VRML browsers.
However, we found that Platinum Technology’s World-
view 2.1 for Internet Explorer 4.0 is a good environment
to work with. When VRML browsers mature, we hope
that these issues will be resolved. We believe that we’ve
provided one of the first documented examples of how
to use Java in Script nodes to stream 3D geometry con-
tent in VRML.

Our work can be extended in many ways. While
VRML supports a very general binding model for prop-
erties (color, texture coordinates, and so on) of vari-
ous mesh elements (vertex, face, corner), this article
focuses on the geometry and properties bound to ver-
tices—vertex colors in Figure 10 and texture coordi-
nates per vertex in Figure 9. Implementing the selective
refinement of the LOD in Java would probably push
the limits of Java in script nodes (or the External
Authoring Interface), because geometry refinement
computations (in Java) and rendering (by the brows-
er) must be tightly coupled and exchange considerable
information. ■
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16 The forest
split refinement
operation: after
marking a forest
of edges on the
lower resolution
surface (left),
the surface is
cut through the
edges and the
resulting gap is
filled with a
forest of trian-
gles (right).

15 An example of selective refine-
ment (the original mesh is shown
on the left). The partial ordering of
edge collapses and vertex splits
enables a consistent subset of ver-
tex splits (right) starting from a
simplified mesh (middle).
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