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AbstractÐMany real-world polygonal surfaces contain topological singularities that represent a challenge for processes such as

simplification, compression, and smoothing. We present an algorithm that removes singularities from nonmanifold sets of polygons to

create manifold (optionally oriented) polygonal surfaces. We identify singular vertices and edges, multiply singular vertices, and cut

through singular edges. In an optional stitching operation, we maintain the surface as a manifold while joining boundary edges. We

present two different edge stitching strategies, called pinching and snapping. Our algorithm manipulates the surface topology and

ignores physical coordinates. Except for the optional stitching, the algorithm has a linear complexity and requires no floating point

operations. In addition to introducing new algorithms, we expose the complexity (and pitfalls) associated with stitching. Finally, several

real-world examples are studied.

Index TermsÐPolygonal surface, topological singularities, manifold, cutting, stitching.
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1 INTRODUCTION

POLYGONAL surfaces are a common choice for represent-
ing three-dimensional geometric models. Models of this

type are used for rendering images in a large variety of
disciplines including computer-aided design (CAD) sys-
tems, feature animation, scientific visualization, and med-
ical imaging. Many polygonal surfaces contain topological
singularities that challenge algorithms designed to operate
exclusively on manifold surfaces.

We consider only the topological properties of a

surface. Topological singularities can be intentionally

created by algorithms that, for example, intentionally

merge vertices to avoid duplicating physical coordinates

or intentionally collapse edges and faces to reduce the

polygon count. Singularities are also produced uninten-

tionally by faulty algorithms and as a result of ªbugsº in

software implementations of correct algorithms. Finally,

singularities can be introduced by human modelers using

modeling software.
Examples of algorithms that require input free of

topological singularities include: algorithms for surface

subdivision [1]; algorithms that simplify surfaces [2], [3];

algorithms for surface compression [4]; algorithms for

progressive transmission [5]; algorithms that generate

polyhedra for Rapid Prototyping [6]. Other algorithms,

such as surface smoothing [7], yield undesired results when

executed on nonmanifold input. The example of surface

smoothing is examined in Section 6.2.

We describe techniques to remove topological singula-
rities from input data so that algorithms that require
manifold conditions can be safely used. Specifically, we
describe a novel and efficient method for automatically
converting a nonmanifold surface to a manifold surface.
Our techniques target the removal of singularities from
existing topological descriptions. However, one of our
techniques (snapping) can be used to create manifold
topologies from sets of disconnected polygons.

1.1 An Overview of the Algorithm

Our algorithm can be characterized by two high-level
operations: cutting and stitching. The cutting operation
involves disconnecting the surface topology along a set of
marked edges and marked vertices. In Section 4, we
describe two different methods for cutting: a global method
and a local method. The global method operates on all the
faces and vertices of the surface. The local method operates
only on marked vertices. The global method is more
appropriate when there are a large number of topological
singularities to correct and the local method is more
efficient when there are only few singular elements in a
generally correct topology. The cutting operation is fol-
lowed by the stitching operation. Stitching involves joining
two boundary edges while guaranteeing that the surface is a
manifold. In Section 5, we present two stitching strategies:
pinching and snapping.

Fig. 1 provides an overview and illustration of our
algorithm with a practical example. In this figure, we
consider two tetrahedra sharing a common edge. We
subdivide the surface of the tetrahedra into smaller
triangles to create the surface shown in Fig. 1A. In Fig. 1B,
regular edges are shown in orange and singular edges are
shown in red. The two disconnected surfaces shown in
Fig. 1C are created by ªmultiplyingº vertices. In Fig. 1C,
each manifold has a boundary, shown in green. The three
singular vertices in Fig. 1B that are shared by two singular
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edges are each multiplied four times. The two singular

vertices shared by one singular edge are only multiplied

twice. After stitching along the same boundaries (pinching)

we create the two disconnected solids shown in Fig. 1D.

However, if we stitch along different boundaries (snap-

ping), we create the single surface with no boundaries

shown in Fig. 1E. All three surfaces, C, D, and E, are

manifolds with the same geometric realization as A.

1.2 Claim

The application of the cutting and stitching algorithms

introduced in this paper will always produce one or more

manifold polygonal surfaces from an input polygonal

surface as defined in Section 2.

1.3 Overview of the Paper

We define terms related to polygonal surfaces in Section 2.

In Section 3, we describe our algorithm for building

manifolds from a set of polygons. The cutting and stitching

stages of this algorithm are discussed in Section 4 (cutting)

and Section 5 (stitching). We examine real-world examples

in Section 6. In Section 7, we discuss related work and we

present conclusions in Section 8. In Appendices A and B, we

discuss data structure and file format issues.

2 POLYGONAL SURFACES

We define an abstract polygonal surface S�fvig; ffjg� as a set

of abstract vertices fvig and a set of faces ffjg. Each face is a
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Fig. 1. Converting a nonmanifold surface to a manifold surface. A, B, C: Cutting through singular edges: For illustrative purposes, topologically

disconnected vertices are shown physically apart. We implement two stitching strategies: ªpinchingº edges along the same boundary (D) or

ªsnappingº together edges belonging to different boundaries (E).



cyclically ordered subset of at least three (abstract) vertices.1

A face is said to be incident on its constituent vertices. We

will call a vertex with no incident faces a stand-alone vertex.

A (vertex, incident face) pair is called a corner. An edge is

defined as an unordered pair fvi; vjg or, equivalently,

fvj; vig, of consecutive vertices in one or more faces. Since

all vertices in a face are different, there cannot be self-loop

edges with this definition. A face is said to be incident on its

constituent edges. The edge fvi; vjg is said to be incident on

the vertices vi and vj. vi and vj are said to be the endpoints of

the edge. Two vertices may share at most one incident edge.

Two vertices sharing a common edge are said to be adjacent

vertices. Edges sharing a vertex are said to be adjacent

edges and faces sharing an edge are said to be adjacent

faces. There are two possible orderings for the vertices of a

face, resulting in two orientations for that face.
An abstract polygonal surface can be embedded in R3 by

assigning coordinates to each vertex (and different abstract
vertices may be assigned the same coordinates). We use the
word geometry to refer to these physical coordinates. There
are no particular constraints on the geometry for our
methods to apply. For example, the physical coordinates of
an embedded face do not have to be planar. Also, properties
such as colors, normals, and texture coordinates may be
associated with vertices, faces, and corners. We use the
word topology to refer to fvig (abstract vertices) and ffjg
(faces). Cutting and stitching only operate on the topology.

In this paper, we are only concerned with abstract
polygonal surfaces (with the exception of the Related Work
section). For short, we simply write ªpolygonal surfaceº or,
when there is no ambiguity, ªsurface,º but it is an abstract
polygonal surface that we refer to.

We call the subset of faces of ffjg that share a vertex v the
star of v. The star of v is denoted as v?. The number of faces
in v? is called the valence of the vertex v. An edge is said to
be a singular edge if at least three faces are incident on it.
Otherwise, it is said to be a regular edge. The link of v, or `�v�,
is a graph whose nodes are the faces of v?. An arc is created
between two nodes if the corresponding faces share an edge
incident on v. A regular vertex is a vertex whose link is either
a chain or a cycle.2 If a vertex is not a regular vertex, then it
is said to be a singular vertex. A polygonal surface is a
manifold if each vertex is a regular vertex, otherwise, it is a
nonmanifold polygonal surface. Both endpoints of a singular
edge are singular vertices since their link contains at least
one node of degree three. An isolated singular vertex is said to
be a singular vertex that is not an endpoint of a singular
edge. An isolated singular vertex is shown in Fig. 2.

We call an edge with one and only one incident face a
boundary edge. A connected set of boundary edges is called a
boundary. A regular endpoint of a boundary edge is called a
boundary vertex. A regular vertex that is not a boundary

vertex is called interior vertex. A vertex can thus have one of
three types: singular, boundary (regular), interior (regular).

Two adjacent faces have a compatible orientation if the two
vertices of each shared edge listed in one face appear in
opposite order in the other face. The surface is orientable if
each face can be oriented such that any two adjacent faces
have a compatible orientation. An orientable manifold
surface arranged such that its faces are all oriented in a
compatible way is said to be oriented. A connected
orientable manifold surface can be oriented in only two
possible ways.

3 CONVERSION OF NONMANIFOLD SURFACES

Our conversion algorithm is characterized by two high level
operations: cutting and stitching. As described in Section 4,
cutting involves breaking the surface along singular edges
and singular vertices. The result of this operation is a
manifold surface. This new surface may contain boundary
edges that, under some criteria, are candidates for pairwise
merging. As described in Section 5, the goal of the stitching
operation is to stitch together these boundary edges to form
the final manifold surface. Our conversion algorithm uses
the following sequence of steps.

Step I: Find unique edges and identify singular edges.
When visiting the face list, we find the unique edges and
record each (edge, face) incidence. Edges that are shared
by at least three different faces are marked as singular.

Step II: (Local Cutting Method Only) Identify isolated
singular vertices. To identify these vertices we begin
constructing v? for every vertex v that is not an endpoint
of a singular edge. We start with an arbitrary face f
incident on v and pivot. To pivot, we locate in f an edge
e1 incident on v. From the (edge,face) incidences, we
infer a face g that, together with f , shares e1; we then
locate in g an edge incident on v different from e. We
continue until we encounter a boundary edge or the first
face f . If we encounter a boundary edge, we locate, in the
first face, f a second edge e2 6� e1 incident on v and pivot
in the opposite direction. After completion, we count the
number of faces that were visited and compare this
number to the valence of v. If the two numbers are
different, then we classify the vertex v as an isolated
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1. Since a set allows no repetition, there cannot be repeated vertices in a
face with this definition. Frequently, input models have ªdegenerate facesº
with repeated vertices. We eliminate such faces before using our
algorithms. See Section 6.

2. A cycle is a connected graph where each vertex has degree two and a
chain is a connected graph where each vertex has degree one or two. See, for
instance, [8].

Fig. 2. An isolated singular vertex v.



singular vertex. This procedure does not require that the

surface be orientable.

Step III: Cut. As described in Section 4, we apply either the

global cutting method on the marked edges or the local

cutting method on the marked edges and on the isolated

singular vertices identified in Step II.

Step IV: (Optional) Build an Oriented Manifold. To create

an oriented manifold we must verify that each pair of

adjacent faces are consistently oriented. This is prefer-

ably performed after a first cutting step in order to have a

manifold. We build a spanning tree of faces, where two

adjacent faces form an arc of the tree only if a consistent

orientation can be found across all shared edges, possibly

after inverting the orientation of one of the faces. The

orientation of each face in the tree is thus consistent with

the root face's orientation. We then verify whether face

pairs not connected by the spanning tree are consistently

oriented. We mark shared edges where the orientation is

inconsistent for cutting. (So, the reason for inverting the

orientation of some faces is to avoid cutting through

every edge where the orientation was originally incon-

sistent). We then cut along these marked edges to create

an oriented manifold.

Step V: (Optional) Stitch. As described in Section 5, we use

one of two methods to stitch boundary edges.

4 CUTTING

Cutting involves breaking a surface along a collection of

marked edges and vertices. New abstract vertices are

created and faces are modified to refer to the proper

(abstract) vertex. A rigorous definition of cutting (and

stitching) can be found in [9]. We propose two methods for

cutting through singular edges and vertices: a local method

and a global method.

4.1 Local Method for Cutting

We refer to the method described in this section as the local
method for cutting because it only operates on selected
vertices and faces. Starting with the list of singular edges
marked in Step I of Section 3, we mark vertices that are
endpoints of these edges. We also mark isolated singular
vertices that were identified as described in Step II of
Section 3. For each marked vertex vi, we partition the faces
of v?i into subsets (connected components) corresponding to
equivalence classes under an ªis reachableº relation. When
constructing the partition, we consider two adjacent faces
reachable if and only if they share an unmarked edge which
is incident on the candidate vertex.

Once the number of connected components nc of v?i is
known, we create nc ÿ 1 additional copies of the (abstract)
vertex vi with the same coordinates and same properties.
Each instance of vi is labeled from 0 to nc ÿ 1. The instance
of vi labeled 0 corresponds to the original vertex. Instances
labeled 1 to nc ÿ 1 are new. For each face f in v?i , we replace
vi with the instance of vi corresponding to the component
number of f (the number of the connected component of vi
it belongs to, between 0 and nc ÿ 1). We call this operation
multiplying the vertex vi.

The local cutting method is illustrated in Fig. 3. Here, the
method is applied to the star of vertex v5 and its six incident
faces f0 . . . f5. In Fig. 3a, marked edges are drawn bold. The
unmarked edges incident on v5 are fv4; v5g and fv5; v7g.

Four sets (connected components) of faces g0, g1, g2, and
g3 are identified in v5

? (see Fig. 3b). Four copies of the
singular vertex v5 are thus created, each copy being
associated to one face set: v5, v10, v11, and v12. (In Fig. 3b,
topologically disconnected faces are shown to be geome-
trically disconnected for illustrative purposes. In practice,
no physical coordinates are modified.) By construction,
each copy of v5 must be a regular vertex (with no incident
singular edge and incident faces all connected by regular
incident edges: the link is a chain).
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Fig. 3. Local cutting: (a) Star of Vertex v5 with marked edges in bold. (b) Four sets of faces g0; . . . ; g3 connected by unmarked edges are identified in

v?5. v5 is multiplied into four vertices: v5, v10, v11, and v12.



The cut is completed once all marked vertices have been
multiplied. The cost of computing the number of connected
components of faces incident on every marked vertex is
bounded by the number of marked vertices times the
largest valence of a marked vertex. Also, for each vertex vi,
we need to know the relative position of the corresponding
corner in incident faces in order to change the correspond-
ing vertex index. The worst case complexity of the local
cutting is thus proportional to the number of marked
vertices multiplied by the largest valence of a vertex and by
the maximum number of vertices in a face.

4.2 Global Method for Cutting

Since the method described in this subsection operates on
all of the faces and vertices of the surface, we call it the
global method for cutting. The method starts by marking all of
the singular edges identified in Step I of Section 3. The naive
approach of cutting only singular edges fails to detect
isolated singular vertices. Instead, we start by creating a
new surface � from the original surface S by breaking all
adjacencies between faces. There are as many vertices in �
as corners in S. In Fig. 4a, we show the corners w0 . . .w20

obtained by breaking all of the adjacencies in v?5 of Fig. 3a.
We then partition the corners of � into groups using the
adjacency relationships defined by the unmarked edges of
S. Specifically, for each unmarked edge in S, we retrieve the
faces of S that share the edge and for each of the two edge
endpoints we identify the pair of corresponding corners in
�. The identification establishes an equivalence relation
which defines a partition on the set of corners. The corner
groups (equivalence classes) define a new manifold surface
ready to be stitched.

The result of applying the global cutting method on v?5 is
shown in Fig. 4b. The corner groups g0 . . . g16 are shown in
this figure. The configuration that we use is the same as in
Fig. 3a. However, since the method is global, all vertices in
the configuration are affected, not only v5. (The local
method will produce the same result as Fig. 4 after locally

cutting v1 and v6.) The method is linear with respect to the
sum of the total number of corners (to break adjacencies)
and the number of unmarked edges.

4.3 Comparison of the Two Cutting Methods

The labeling of vertices after the cut is different in both
methods, but the surface topology is the same (e.g., in our
example v5 and g2 refer to the same abstract vertex after
cutting, depending upon the method. In a typical imple-
mentation, these could be two different integer values
assigned to the same vertex). Unlike the local method, the
global method implicitly cuts through isolated singular
vertices. The global method also implicitly eliminates stand-
alone vertices.

There are cases when one method will be preferred over
the other. A comparison of the costs for the two cutting
methods supports the conclusion that the global method
has a lower cost when the cut covers a large portion of the
surface. Alternatively, when the number of marked edges
or singular vertices is small with respect to the total number
of surface edges and vertices, the local method is
significantly less costly because it visits only marked edges
and vertices.

For a couple of reasons, the global method is slightly
simpler to implement. First, as mentioned above, the
detection of stand-alone and isolated singular vertices is
implicitly performed in the global method. Second, the
vertex multiplication process in the local method
(Section 4.1) requires searching for the vertex's reference
in all its incident faces. This search is avoided in the global
method since vertex references in faces are defined during
the corner grouping process.

5 STITCHING

Stitching simply means identifying two boundary edges.
During the global cutting operation, a new surface is
defined by identifying corner groups with new vertices.
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Fig. 4. Global cutting. (a) A new surface is created from the original surface of Fig. 3a by breaking all adjacencies between faces. Corners are then

partitioned into groups using the adjacency relationship defined by the unmarked edges (here, fv4; v5g and fv5; v7g). Corner groups are shown using

circular arcs. (b) The result of global cutting. The local method will produce the same result after locally cutting v1 and v6.



Stitching can be viewed as a continuation of this grouping
process. After each stitch, a new surface can be defined by
identifying each corner group with a new vertex.

The application of either the local cutting method or the
global cutting method to the surface shown in Fig. 5a will
produce the surface shown in Fig. 5b. The sequence of four
stitches specified in Fig. 5b will create the nonmanifold
surface shown in Fig. 5c. The stitching algorithms in [10]
and [11] could produce stitches of this type. Since, in our
case, the vertex identifications are induced by edge
stitching, no isolated singular vertex can appear; we must
only test for the creation of singular edges. We refer to an
edge stitch as a valid stitch if it does not create a singular
edge. Otherwise, it is invalid.

How can a singular edge be created? We consider a
manifold surface and identify two vertices, v1 and v2, when
stitching edges: What must we verify to guarantee that the
resulting surface contains no singular edge? A singular
edge must be incident on the identified pair fv1; v2g. (This is
the only way an additional face could become attached to
it.) Let us consider v0, the endpoint of the singular edge
different from fv1; v2g. Without loss of generality, suppose
v0 and v1 are adjacent and consider the three possible cases

as in Fig. 6: Case A: v2 is not adjacent to v0. v0 stays regular

after identifying v1 and v2 (its link is unaffected). Case B1: v2

and v1 are adjacent and both fv0; v1g and fv0; v2g are

boundary edges: v is regular after identifying v1 and v2.

Case B2: A singular edge is created after identifying v1 and

v2. Thus, the test is: v1 and v2 must both be adjacent to some

vertex v0 such that fv0; v1g and fv0; v2g are not both

boundary edges (B2).
Stitching strategies. We propose two different greedy

strategies for stitching: pinching and snapping. The pinch-

ing strategy attempts to stitch boundary edges created

during the cutting operation and is discussed in Section 5.1.

We will prove that it is impossible to create a nonmanifold

surface using this strategy; no explicit test is required when

implementing it.
The snapping strategy differs from the pinching strategy

in that it attempts to stitch along boundaries other than just

those boundary edges created during the cutting operation.

For this strategy, special care must be taken to avoid the

creation of singular edges. The snapping strategy is

discussed in Section 5.2.
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Fig. 5. (a) A nonmanifold surface; after cutting through singular edges, we obtain the surfaces of (b). (b) A sequence of edge stitches (labeled 1, 2, 3,
and 4) resulting in a nonmanifold surface in (c). (c) Spirals indicate which corners are identified (grouped) after stitching. Although edges marked with
2 and 4 were not explicitly stitched together, the corner groupings have effectively identified them (only one edge can go through two vertices) and
the central edge is now shared by four faces (thus singular).



5.1 Pinching Strategy

The pinching strategy is illustrated in Fig. 7. Edges are

considered to be stitchable only if they have been cut during

the cutting operation. We start the pinching operation by

computing boundaries (connected sets of adjacent bound-

ary edges). For each boundary, we choose a pair of adjacent

stitchable edges and, using their common boundary vertex

as a pivot vertex, we ªpinchº them together. We then check

to see if the adjacent pair of edges on the boundary are

stitchable. If they are, we stitch them and then continue

until the next pair of edges is not stitchable. We then search

for an adjacent pair of stitchable edges and repeat the

operation.
Using this strategy, it is impossible to create a nonmani-

fold surface. This can be proven by the following contra-

diction: As we stitch adjacent edges, exactly one pair of

(boundary) vertices, noted v1 and v2, is identified when

stitching two edges (instead of two pairs of vertices when

stitching nonadjacent edges as in Section 5.2). Let us

suppose that the identification of v1 and v2 would generate

a singular edge (we cannot produce an isolated singular

vertex, as mentioned previously).
For this to happen, v1 and v2 must both be adjacent to

some vertex v0. Also, fv0; v1g and fv0; v2g cannot both be

boundary edges. (This follows from the above discussion of

Fig. 6). Without loss of generality, we assume that fv0; v1g is

not a boundary edge. Because we only pinch edges that

were cut, we know that, before cutting, v1 and v2 were

identified, meaning that fv0; v1g and fv0; v2g used to

represent the same (singular) edge. The situation is

illustrated in Fig. 8A. We also know that a cut was

subsequently made through that singular edge (Fig. 8B).
The fact that fv0; v1g is not a boundary edge implies that

some edge was subsequently stitched (pinched) to it. After

pinching, the pivot vertex becomes an interior vertex. Since

v1 is a boundary vertex (hypothesis), it follows that v0 must

have been the pivot vertex in a pinching operation and,

thus, v0 must be an interior vertex (Fig. 8C). This

configuration is impossible using the pinching strategy. It

can only be obtained by stitching nonadjacent edges, which

is forbidden with this strategy.
More generally, applying the pinching strategy to a loop

of boundary edges (to a boundary) results in a loop of

boundary edges to which trees of stitched (formerly

singular) edges are attached. If the original surface before

cutting represents a solid, this strategy for stitching has the

effect of breaking all connections of zero width and

regularizing the solid by computing its interior (see

Fig. 1d.) This is not true if singular edges form a graph on

the surface that is not a forest: Each loop of singular edges

would yield two disconnected boundaries after cutting.
Pinching does not reduce the number of connected

components as the snapping strategy does; the final number

of connected components is larger than or equal to the

initial number. This may or may not be an advantage. For

example, this strategy may help detach and subsequently

eliminate small (in terms of the geometry) nonmanifold

surface ªattachments,º such as dangling faces.

5.2 Snapping Strategy

Sometimes it is useful to permit stitching regardless of

whether or not two candidate edges had been created

during the cutting operation. Also, it may be desirable to

permit the stitching of boundary edges that are geome-

trically close to one another. For example, if a surface is

specified as a set of disconnected faces and if the

coordinates of vertices of such faces contain small, unin-

tended discrepancies, then it may be desirable to remove

these discrepancies and stitch together a manifold repre-

sentation of the faces. Another example is the creation of

suitable input for geometric compression methods that

operate most efficiently when the number of connected

components is kept to a minimum [4].
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Fig. 6. When identifying two vertices v1 and v2, how can a singular edge be created? v1 and v2 must both be adjacent to some vertex v0 such that

fv0; v1g and fv0; v2g are not both boundary edges (B2).

Fig. 7. A typical sequence of stitches produced by following the pinching

strategy.



5.2.1 An Overview of Snapping

We start the snapping algorithm by deciding when a pair of
boundary edges is stitchable and the order in which such

pairs will be stitched. We consider two edges to be

stitchable if each of their corresponding endpoints are

located within an � distance. We choose � to be a fraction of

the length of the shortest edge. To avoid a quadratic

number of comparisons between boundary edges, we

cluster the edges in an octree-like structure constructed

using the distance between edge centers. To build the

structure, we first compute a bounding box containing all

the edge centers and then recursively subdivide it into two

parts on the longest side. The boxes are enlarged by �=2

such that neighboring boxes need not be visited when

looking for a stitching candidate, as shown in Fig. 9. The

subdivision stops when either the side of a box becomes

smaller than � or the number of edges in a box is less than a

fixed number p. In practice, we use p � 20.
We consider in turn each pair of edges in each leaf box of

the octree. When we encounter a pair of edges whose

endpoints meet the � distance criterion, we check to see if

the edge stitch is valid. If it is valid, then we perform the

stitch. To minimize the number of connected components,

we perform two passes on the octree. In the first pass, we

only try to stitch edges from different connected compo-
nents. After this pass, all the stitchable edge pairs must

belong to the same connected component. In the second

pass, we attempt to stitch any pair of edges.

5.2.2 Tests for Determining Valid Stitches

At each step of the stitching process, each vertex of the
surface corresponds to a group of corners and each edge
corresponds to two groups of corners. To avoid any
confusion with the edges of the original cut surface we call
such edges current edges. A stitch is performed by merging
each of the two pairs of corner groups that define the
endpoints of two current edges. Since the surface is a
manifold before the stitch, every current edge is incident to
one or two faces. This condition must also hold after the
stitch. Only current edges incident to one of the four
vertices involved in the stitch may be affected by the stitch.
These edges must, by definition, belong to one of the stars
of the four vertices. Suppose that we wish to stitch the two
current edges �v0; v1� and �v01; v00� by merging v0 with v01 and
v1 with v00.

As shown in Fig. 10, several configurations may occur. In
this figure, circles represent groups of corners (vertices) and
lines represent boundary edges of the cut surface. A current
edge is represented by two circles connected by at least one
edge. The manifold property requires that no more than
two edges connect the same circles. There are three cases:

Case I. The stars of v0 and v1 do not intersect the stars of v00
and v01. This case is illustrated in Fig. 10a; the stitch is
valid; it can be performed.

Case II. Either �v0; v
0
1� or �v1; v

0
0� is a current edge. Fig. 10b

shows this configuration. The stitch cannot be performed
since it creates a self-loop edge which is prohibited in our
surface model.

Case III. There are two current edges of the form �v; v0�
and �v; v01� or of the form �v; v1� and �v; v00�. Several
such configurations are shown in Fig. 10c, Fig. 10d,
Fig. 10e, and Fig. 10f. Fig. 10c illustrates the case where
v � v1. Here, the stitch is invalid since the stitched
edge would be incident to three faces. For similar
reasons, stitches cannot be performed for the config-
urations of Fig. 10d and Fig. 10e. However, the
configuration of Fig. 10f yields no singular edge. In
this last case, stitching �v0; v1� and �v01; v00� implies
stitching �v; v0� and �v; v01�. We call this last stitch an
implicit stitch. In contrast, we refer to the stitch between
�v0; v1� and �v01; v00� as an explicit stitch. Explicit stitches
that yield a nonmanifold surface are rejected. How-
ever, in the process of rejecting a proposed explicit
stitch, we may encounter a valid implicit stitch, in
which case we merge the corresponding corner groups.
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Fig. 8. Validity of pinching: proof by contradiction. A (before cutting): fv0; v1g and fv0; v2g were the same singular edge. B (after cutting): v0, v1, and v2

were boundary vertices. C (current situation): How can v0 be an interior vertex, adjacent to two boundary vertices v1 and v2?

Fig. 9. Stitchable edge pairs fall inside the same box.



This is the case for the configurations shown in Fig. 10c
and Fig. 10e. A procedure called CompareStars�v; v0�
evaluates the effect of merging two corner groups, v and
v0 and classifies the merging as one of three types: (Type
1) creates at least one singular edge, (Type 2) creates no
singular edge and creates no implicit stitch, or (Type 3)
creates no singular edge and creates one or two implicit
stitches. Given two stitchable edges �v0; v1� and �v01; v00�,
we perform the following steps:

Step I. We evaluate CompareStars�v0; v
0
1� and perform the

merging if there is an implicit stitch (Type 3).

Step II. We evaluate CompareStars�v1; v
0
0� and perform the

merging if there is an implicit stitch (Type 3).

Step III. If one of the two merges was performed (Type 3)
and if the other does not create a singular edge and no
implicit stitch (Type 2), then perform the merge.

Step IV. If neither merge was performed and if both merges
would not create any singular edges (Type 2), then
perform both merges.

It is important to perform the first two steps sequentially.
In the case of Fig. 10c, the above procedure will merge v0

with v01 in Step I. However, CompareStars�v1; v
0
0� will

prevent the second merging in Step II. Fig. 10d shows
another case where order is important. CompareStars��
works by maintaining a list of current edges incident to the
corners of a group. CompareStars�� verifies whether any
edge is repeated in the two lists. For each repetition, if both

edges are boundary edges, then there is an implicit stitch;

otherwise, a singular edge would be created when merging.

5.2.3 Orientability

If we want to have an oriented surface, then we start by

using the cutting methods of Section 4 to enforce the

orientability of the input surface. Next, we consistently

orient the faces of the different surface connected compo-

nents: We maintain a partition on the faces into connected

components; each face also carries an orientation bit

indicating whether the ordering of its vertices (its orienta-

tion) should be kept or reversed. The orientations of the

various components are subject to change when stitching.

The orientation bit of a face composed with the orientation

bit of the component representative provides the current

orientation of a connected component. When stitching two

disconnected components, we update the current orienta-

tions to make them consistent across the stitched edges: We

update the orientation bit of the representative of one of the

components. When stitching edges of the same component,

implicit stitches do not affect the orientability, but explicit

stitches may affect the orientability: In Step IV, we retrieve

the current orientations of the faces incident on the

(boundary) edges �v0; v1� and �v01; v00� and we make sure

that they are consistent. Otherwise, we do not perform the

stitch.
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Fig. 10. Different configurations for a proposed stitch between �v0; v1� and �v01; v00�.



6 EXAMPLES

6.1 Conversion of Nonmanifold Surfaces

We illustrate cutting and stitching with three practical

examples. Since cutting and stitching are purely topological

processes, their effects are not necessarily visible unless

further processing occurs. The following visualization

techniques are used to illustrate our methods: Different

colors are used for boundary edges, regular edges, and

singular edges; singular vertices are highlighted; geome-

trically adjoining boundary edges are disconnected (in

some figures); and different colors are used for faces that

belong to different connected components (in some figures).
The first example is a polygonal CAD model of a

desk lamp and is shown in Fig. 11a. The original model

contains 5,054 triangles and 2,810 vertices, including 125

singular edges and 128 singular vertices. After cutting

through singular edges and vertices, 5,052 triangles and

3,058 vertices result. Fig. 11a shows the various

connected components after conversion using different
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Fig. 11. Lamp model. (a) General view. (b), (c), (d) Successive details showing edges shared by more than two faces. (e), (f), (g) Singular edges are

shown in red and singular vertices in black in increasingly detailed views.



colors. The conversion took less than one second on an
IBM RS6000 580.

The second example is a model representing a portion of
a spaceship with 12,539 triangles and 15,011 vertices.
Fig. 12a shows how the model is formed of a multitude of
diconnected components. Disconnected surface compo-
nents are drawn using different colors. The original model,
after removing degenerate triangles, has 435 singular edges
and 1,689 singular vertices. After cutting and stitching using
the snapping strategy, we obtained 12,552 triangles and
7,429 vertices. The conversion took 21 seconds using an IBM
Power PC 42T.

Asking a user to decide on how to locally connect polygons
of a surface for thousands of different instances is not
practical. This example thus makes a strong case for
automating topology correction methods. Another benefit
of the conversion process is to halve the number of vertices for
this model, thus saving storage space and speeding up
rendering (using triangle strips, for instance, or, more simply,
because fewer geometric transformations are necessary).

The third example is a polygonal approximation of an
isosurface extracted from a CT-scan of a fossil monkey jaw
and is shown in Fig. 13a. The original model has
75,842 triangles and 37,624 vertices. The model contains
462 singular edges and 563 singular vertices; singular edges
are shown in Fig. 13b and singular vertices in Fig. 13c. In

this example, singularities originated from an incorrect

algorithm. After cutting through singular edges and

vertices, we obtained 75,371 triangles and 37,636 vertices.

The conversion, including the removal of degenerate

triangles, took 6 seconds on an IBM RS6000 580 workstation.
We next report statistics on the conversion of 332 VRML

models in preparation for geometric compression using the

method described in [4]. As this compression method incurs

an overhead per connected component, we want to join

disconnected surfaces and minimize the number of con-

nected components; the snapping strategy for stitching can

be very useful in this situation. The results are gathered in

Table 1. We note that, on this data collected from the World

Wide Web, the ratio between the number of connected

components and the number of models can be very high (in

excess of 1,000 to one); our methods can reduce this ratio

considerably (less than five components per model on

average) while building manifold surfaces and keeping

surface properties (color, normal, texture coordinates)

unchanged.

6.2 How Topology Affects Geometry: Surface
Smoothing and Singularities

While cutting and stitching operate only on the topology,

their effects can become clearly visible (and change results
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Fig. 12. Spaceship dish model. (a) Disconnected surface components are drawn using different colors. (b) Detail: Regular edges are shown in
orange; boundary edges are shown in green; singular vertices are shown in magenta. No singular edge is visible in this area. (c) After cutting through
singular edges and vertices. (Gaps are introduced here for illustrative purposes. Vertex coordinates are not affected.) (d) After stitching using the
snapping strategy.



dramatically) if the geometry of the surface is modified by a

subsequent process.
In this section, we observe the combined effects of

cutting and stitching with the surface smoothing algorithm

of Taubin. Simply stated, a smoothing iteration in Taubin's

algorithm involves two steps. Laplacian smoothing is used

in a first step. To prevent shrinkage, in the second step, the

surface is locally inflated by pushing each vertex in the

opposite direction of the first (Laplacian) smoothing step. A

detailed description of the algorithm can be found in [7].

Taubin's algorithm is designed for use on a manifold

surface and will also handle a nonmanifold surface.

However, for a nonmanifold surface, the resulting surface

is not smooth in the vicinity of the singular edges and

vertices.

A nonmanifold model consisting of two spheres sharing

edges is shown in Fig. 14a. Using Taubin's algorithm, we

attempt to subdivide and smooth the nonmanifold. The

result is shown in Fig. 14b. This figure illustrates the non-

smooth behavior in the vicinity of the singular edges. In

Fig. 14c, we first cut through the singular edges using the

methods of Section 4 and then subdivide and smooth. In

Fig. 14d, we smooth after cutting and stitching using the

pinching strategy. In Fig. 14e, we smooth after cutting and

stitching the snapping strategy. Fig. 14f illustrates a

different outcome produced using the snapping strategy.

For further reading on the topic of smoothing, Hubeli and

Gross's paper [12] discusses smoothing algorithms specia-

lized for nonmanifold meshes.
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Fig. 13. Fossil monkey jaw (nonmanifold isosurface). (a) General view. (b) Singular edges are shown in red. (c) Singular vertices are shown in

magenta.

TABLE 1
Statistics on Conversion and Stitching Using the Snapping Strategy Applied to VRML 2.0 Models Collected on the World Wide Web

Timings were measured in minutes and seconds on an IBM RS6000 590 in debug mode; they include parsing of VRML files and scene graph
operations.



7 RELATED WORK

Our method is different from most of the previous work as
it operates solely on the surface topology. Following the
publication of an excerpt of the present work [13],
Rossignac and Cardoze [14] introduced the MatchMaker
algorithm for minimizing the number of vertex replications
when converting nonmanifold solids to manifold solid
representations. MatchMaker analyzes the neighborhood of
a singular vertex, and assigns (face, face) adjacencies
through singular edges, thus ªcutting lessº than the present
method. In MatchMaker, an edge cannot be uniquely
identified with a pair of vertices: For instance, two edges
(and four faces) can share the same two endpoints. Thus,
the edge list must be provided as an output of the
algorithm, while, in our case, the polygon-vertex incidences
completely specify the edges.

Dey et al. [15] study the conditions for creating
singularies when contracting edges of simplicial complexes:
The conditions are related to what is described in Section 5.
(In Dey's work, simplices are defined as convex hulls or
points and, consequently, are not abstract. Our definitions
are more general.) For 2-complexes (or surfaces), such
conditions were also described in [16] and [17].

We group other related work into three categories.
The first category of related work covers methods that

operate both on the geometry and topology to modify

surfaces so that they can represent the boundary of solids
[18]. This is an important issue for models represented
using the rapid prototyping STL format [19]. This format
consists of topologically disconnected triangles (see [20],
[21], [22], [6], [23]). To build solids from STL representa-
tions, Bohn and Wozny [24], [25] use a topology-based
approach complemented with heuristics for closing gaps.

Converting a nonmanifold surface to a solid is a difficult
task involving floating point precision problems, computa-
tionally demanding tasks, and a number of open problems.
An example of an open problem is the problem of filling a
polygonal hole with a reasonable polygonal surface without
creating intersections [26]. Recently, to address this open
problem, Barequet proposed a method using ªgeometric
hashingº to discover matching boundaries and close gaps
[27]. (To learn more about ªgeometric hashing,º the reader
may consult other articles in the magazine where [27] was
published.) In a related work, Butlin and Stops [28] repair
CAD data for input to engineering analyses or to simplify
data exchange. Barequet and Kumar [11] use methods
similar to the global cutting method of Section 4.2 on STL
files to stitch through regular edges. But, they can
subsequently create a nonmanifold after stitching addi-
tional edges. Murali and Funkhouser [29] use polygon faces
to partition the volume into cells and determine the
likelihood for each cell to be solid. From a set of cells
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Fig. 14. Surface smoothing and singularities. (a) Nonmanifold model of two spheres sharing two edges. (b) After subdividing and smoothing. (c) After

cutting, subdividing, and smoothing. (Only the bottom sphere is shown.) (d) After pinching boundary edges, subdividing, and smoothing. (e) After

snapping boundary edges and smoothing. (f) Another result of edge snapping.



considered solid, they produce a manifold boundary
representation.

The second category covers methods that create and
manipulate surface models. Szeliski et al. [30] build new
polygonal surfaces from an existing surface by defining a
collection of point samples and then using point repulsion
methods to evenly distribute these points. A manifold
surface triangulation of the distributed points is then
computed. Welch and Witkin [31] build polygonal surfaces
starting from simple surfaces by applying a series of surface
operations that consist of adding, deleting, or morphing a
portion of surface. They use mesh cutting techniques, but
cut only along simple curves. Both methods build new lists
of vertices and faces, while we manipulate an existing list of
face vertex references. Veron and Leon [32] detect auto-
matically singular vertices and edges, but they require user
assistance to correct the singularities.

The last category of related work covers methods for
building boundary representations of solids for use in Solid
Modeling CAD. This category and the current work both
address conversions between manifold and nonmanifold
representations (e.g., [33]). Historically, much of the
discussion on manifold and nonmanifold connectivities
was performed in a CAD context. In solid modeling,
nonmanifolds have the advantage of being able to represent
a closed set over regularized Boolean intersection, comple-
ment, and union operations. Nonmanifold issues have been
used to motivate the use of r-sets to represent solid objects
[34]. An r-set is essentially what Hoffmann refers to as a
nonmanifold solid [33]. r-sets can exhibit connections of
zero width. Desaulnier and Stewart [35] have studied the
relationship between manifold solids and r-sets. These
nonmanifold representations allow more consistent imple-
mentations of Boolean operations [36]. Heisserman [37]
developed a method for extracting a manifold boundary
representation from a set of intersecting solids. Our
methods differ from these works in that we we do not
assume that our surfaces are boundaries of solids and we
do not use the notions of interior or complement. This
difference permits our methods to be applied to nonor-
ientable manifolds such as Klein bottles or Moebius strips.

8 CONCLUSION

We have used cutting and stitching to automate the
conversion of a set of polygons to a manifold polygonal
surface. All the properties (colors, normals, texture coordi-
nates) of the original surface can be passed on without
degradation to the final surface. We have successfully used
our methods to convert nonmanifold surfaces for subse-
quent processing by algorithms for surface simplification
[3] and compression [4]. Some of these methods are also
incorporated into the Open Visualization Data Explorer
(OpenDX) open-source project [38], [39].

Our method may not be suitable if the original surface
was intended to be a nonmanifold, that is, if topological
singularities (singular edges and singular vertices) are an
integral part of the model. Otherwise, the method is general
and handles any type of topological singularity without
user intervention. Finally, the method does not address
geometric issues such as self-intersecting surfaces.

Stitching may be also used without cutting to join
topologically disconnected but geometrically adjacent sur-
face components. We have found this procedure useful for
optimizing surfaces before geometric compression.

APPENDIX A

DATA STRUCTURES AND FILE FORMATS

Some data structures for surfaces, such as the Winged Edge
proposed in the mid-1970s [40], can only represent a
manifold surface; the Winged Edge also imposes this
constraint on an associated file format. For instance, Kalvin
uses this property to guarantee building a manifold isosur-
face [41].

Many 3D model singularities occur because some
geometric models are stored and exchanged using an
unstructured file format. Examples include the vertex and
polygon lists in VRML [42] and polygon lists in the STL
format. The future adoption of geometric compression in
data exchange formats [4] may require topological consis-
tency to achieve maximum compression.

APPENDIX B

DATA STRUCTURES IN OUR IMPLEMENTATION

Our methods take as an input a surface represented by a list
of nv vertices and a list of nf faces. Internally, the vertices
and faces are represented using a ªvertex arrayº and a ªface
array.º The vertex array contains the vertex coordinates
(three per vertex). The face array contains the vertex
references for each face stored contiguously. We also use
a ªface start arrayº to provide the starting index of each face
in the face array.

By looping through the face array, we build a structure of
ne edges while recording the number of incident faces. The
edges are organized as a hash table indexed by the sorted
pair of endpoint references (smaller vertex index followed
by larger vertex index). This hash table and the list of face
incidences for each edge are constructed in O�nf� time by
visiting each face and, for each pair of consecutive vertices,
by retrieving the edge in the hash table and updating its
incidence list or inserting the edge in the hash table if it was
not present. The hash table permits, on average, constant
time access to the edges. The edge data structure contains
pointers to provide direct access to the incident faces.

When cutting and stitching, we need to maintain a
partition on the faces of a vertex star or equivalently on all
the corners associated to a vertex. We use the Union-Find
algorithm for this purpose, whose running time is essen-
tially O�n�, when n elements are in the partition [43]; once
the partition is determined, access to representatives of
faces or corners takes constant time.
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