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ABSTRACT
We present a method to estimate the in/out function of a
closed surface represented by an unorganized set of data
points. From the in/out function, we compute an approxi-
mation of the signed distance function to a surface M whose
sampling are given by this set of points. The procedure cor-
rectly detects the interior and the exterior of M, even if M
is multiply connected. The representation of the signed dis-
tance function combines the advantages of two previously
known schemes, “Implicit Simplicial Models” and “Adap-
tively Sampled Distance Fields”, incorporating new features
deriving from the concept of a Binary Multitriangulation.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computer Graph-
ics—Computational Geometry and Object Modeling

General Terms
Binary Multitriangulation, Implicit Simplicial Models

Keywords
Stellar Operators, Topology Estimation, Implicit Surfaces

1. INTRODUCTION
The reconstruction of a surface from unorganized sets of

data points has became a classical problem in computer
graphics. It can be informally posed as follows:

Problem 1. Given a sufficiently well sampled set of
points S = {xi} on a surface M, find a surface M′ that
closely approximates M.

This problem can be greatly simplified if additional infor-
mation, like the sense of the normal vector in each point,
are given. In this paper, we attack problem 1 in its full
generality, without further assumptions.
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With no pretension of formulating a complete taxonomy,
we can classify the different methods to solve problem 1 into
two main lines: the computational geometry approach and
the implicit surface approach. The computational geometer
uses all his machinery of Voronoi diagrams, Delaunay tri-
angulations, alpha shapes and so on, in order to guarantee
sufficient conditions for reconstruction and optimal compu-
tational complexity bounds. In spite of their theoretical
relevance, the related algorithms tend to be of complex im-
plementation and of low effectivity in real problems, since
we cannot always verify that sufficient conditions exist. In
a sense, this approach is too combinatorial.
The implicit surface approach seeks to represent M′ as

the zero set of a function f such that

f(xi) = 0.

This formulation leads naturally to the analytical tech-
niques of interpolation theory and, among many other meth-
ods, the use of Radial Basis Functions (RBF’s) as inter-
polant elements seems to be the most successful [4]. How-
ever, because of the unbounded and continuous nature of
the RBF’s, sophisticated numerical methods are required to
compute and to evaluate f (see [3]). That is, we could say
that this approach is too continuous.
In [15], Taubin and Ronfard proposed a half way, intro-

ducing the concept of Implicit Simplicial Models, where the
surface M′ still is represented as the zero set of a continuous
function f , but now f is defined over a simplicial complex
K. Thus, the simpler combinatorial nature of the domain
of f can be exploited to recover, for example, the topology
of M′. Nevertheless, they implemented only an algorithm
to reconstruct planar curves.
In this paper, we extend that algorithm to surface re-

construction and improve it putting more structure on the
simplicial complex K, by applying the concept of Binary
Multitriangulations [5]. In this sense, our approach resem-
bles that taken by Frisken et al in [8], where the concept of
Adaptively Sampled Distance Fields was proposed, but there
are essential differences between then, as we will point out
in section 3.2.
Shortly, our algorithm takes as input a set of points sam-

pled over a closed surface 1, without normals, and outputs
a simplicial decomposition of a bounding box enclosing the
points, and, for each vertex of that decomposition, a sign
+/- telling if the vertex is outside or inside of the surface.
From that output, its easy to compute an approximation

1For a definition of closed surface, see [6].
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of the signed distance function of the point cloud. Finally,
a marching tetrahedra algorithm can be used to extract a
polygonal mesh that approximates the surface.
The paper is organized as follows. In Section 2, we discuss

some of the previous work to solve problem 1, emphasizing
the techniques that are closely related to ours. In Section 3,
we present the basic concepts that are necessary to the com-
prehension of the structuring and reconstruction algorithm
introduced in Section 4. Finally, in Section 5, we summa-
rize the results of our method and suggest some possible
extensions to it.

2. RELATED WORK
One of the most cited paper that is related to problem 1 is

the work of Hoppe [9]. In this paper, local approximations
of the tangent plane of a point cloud are constructed using
principal component analysis (PCA). Then, an optimization
algorithm is used to analyze the Riemannian Graph, (i.e. a
graph that encodes geometric proximity of the tangent plane
centers), and determines a consistent orientation of the tan-
gent planes. From a family of oriented tangent planes, a
piecewise linear approximation of the signed distance func-
tion is obtained. The contact point between this work and
ours is the use of PCA to estimate the tangent plane to the
underlying surface defined by a point cloud. On the other
hand, our approach is hierarchical and adaptive: we build
a sequence of partial solutions progressively more refined
and fitted to the data, and the final mesh is obtained using
a marching tetrahedra algorithm over a adaptive simplicial
mesh, rather than a marching cubes over a fixed resolution
cubical mesh.
In [1], the focus is the generation of implicit representa-

tions of a M′, that are smooth and not just given by a piece-
wise linear approximation. In order to achieve this goal, the
authors employ computational geometry techniques to build
the, so called, simplicial hull (a tetrahedral mesh) around
the surface M, and then a C1 interpolatory surface is con-
structed using cubic A-patches. That is, M′ is represented
as a piecewise cubic implicit surface. One problem of this
approach is that the sufficient conditions to guarantee that
each A-patch is a single sheeted surface are very intricate [2].
We overcome this difficulty by requiring a diffeomorphism
condition on each tetrahedron (see definition 1), avoiding a
priori self-intersections in the implicit surface.
As we have mentioned before, RBF’s are very powerful

approach to solve problem 1. However, an important point,
frequently forgotten (and one of the key features of fast mul-
tipole methods, the tool needed to efficiently evaluate the
RBF’s), is the use of a hierarchical subdivision of space to
cluster the sample points [3]. In this paper, the process of
hierarchical subdivision is used to estimate the topology and
adaptively approximate the geometry, simultaneously.
It is exactly in relation to the use of hierarchical subdivi-

sion techniques, that resides the main difference between our
paper and the work of Taubin and Ronfard [15] (besides, of
course, the extension from curve to surface reconstruction).
In their work, a triangle could be subdivided in two differ-
ent ways and the space refinement process didn’t follow any
pre-established order. We, on the other hand, through the
concept of a Binary Multitriangulation, enforce the police
that each tetrahedron is always divided into two, along its
longest edge, and conversely, an edge can only be subdi-
vided if it is the longest edge of all tetrahedron incident on

it. Because the triangulation obtained by the above pro-
cess possesses excellent adaptation qualities, we were able
to eliminate the relaxation step of the algorithm described
in [15], which simplifies considerably our implementation.

3. BACKGROUND
In this section we review some concepts that are necessary

for the understanding of the structuring and reconstruction
algorithm described in Section 4.

3.1 Implicit Simplicial Models
Implicit Simplicial Models (ISM’s) were first introduced

in [15]. Here we present a generalized definition. The pre-
cise definitions of topological concepts like simplex, simpli-
cial complex and combinatorial manifold can be found in
[5]. The following definitions are needed to grasp definition
1. Let Πn = {(w0, . . . , wn) ∈ Rn+1|w0 + · · ·+wn = 1}. The
standard n-simplex ∆n is defined by ∆n = {(w0, . . . , wn) ∈
Πn|wi ≥ 0}. By vi∆

n we denote the i-th vertex of ∆n, that
is, if vi∆

n = (w0, . . . , wn), then wi = 1. For each n-simplex
σ =< p0, . . . , pn > in the Euclidean space Rn, we can asso-
ciate a map Wσ :Π

n → Rn given by

Wσ(w0, . . . , wn) = w0p0 + . . .+wnpn,

called barycentric parametrization. This map has an inverse
W−1

σ known as barycentric coordinates with respect to σ.
Note that Wσ takes ∆n in σ and that Wσ(vi∆

n) = pi.
We can label the faces of ∆n with a function χ : ∆n →
{0, 1}(n+1) defined by

χ(w0, . . . , wn) = (b0, . . . , bn),

where

bi =

�
0, se wi = 0
1, se wi 	= 0 .

Finally, we say that a map X :∆n → ∆n is face preserving
if χ◦X = χ. We can now enunciate the following definition:

Definition 1. An Implicit Simplicial Model O consists
of

1. A combinatorial n-manifold M ⊂ Rn triangulated by
the simplicial complex K;

2. for each n-simplex σ ∈ K, a face preserver diffeomor-
phisms Xσ : ∆n → ∆n, satisfying

σ1 ∩ σ2 = σ ⇒Wσ1Xσ1W
−1
σ1 |σ =Wσ2Xσ2W

−1
σ2 |σ

3. a function f from the vertices of K to the set R−{0}.

Item 2 is essentially a reparametrization of each n-simplex
compatible with the neighborhood relations. From an ISM,
we can define a function

F (p) =

nX
i=0

f(Wσ(vi∆
n))xi

σ(W
−1
σ (p)), (1)

where σ is a n-simplex that contains p and Xσ =
(x0

σ, . . . , x
n
σ). The equation F (p) = 0 defines a hypersur-

face which topology can be recovered from the topology of
K and from the signal of function f , and which its geometry
depends on the reparametrizations Xσ.
At first sight,it may seem complicated to find diffeomor-

phisms satisfying item 2, specially if we consider that such
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diffeomorphisms must depend on a few parameters. A very
simple and natural choice is set Xσ = I , where I is the
identity function. In fact, this is the choice adopted in this
paper. Because our main interest is to estimate the correct
topology of the surface, the piecewise linear reconstruction
which we obtain is satisfactory.
However, we could not find any references in the litera-

ture to this kind of “generalized barycentric coordinates”.
Because we realize the importance of this tool for our future
work, we are investigating a manageable way to generate
such diffeomorphisms and we expect to publish the results
of such research in a forthcoming paper.

3.2 Adaptively Sampled Distance Fields
According to its authors, “ADFs consists of adaptively

sampled distance values organized in a spatial data struc-
ture together with a method for reconstructing the under-
lying distance field from the sampled values.” [8]. In spite
of this very general definition, in practice the spatial data
structures used for ADF’s are quadtrees (octrees), together
with bilinear (trilinear) interpolation for reconstruction.
On the other hand, it is well known that such combi-

nations of spatial decomposition and interpolation scheme
suffer from discontinuity problems (i.e., the infamous “T-
junctions”).
It is also well known that this problem can be minimized

avoiding that neighbor cells of the quadtree (octree) differ
by more than one level. This has the additional advantage of
providing a more gradual variation of the interpolated data.
In this paper, we use a simplicial structure for spatial

decomposition. Therefore, we do not have T-junction prob-
lems, and also we can exploit the above-mentioned grad-
uallity property. The concepts related to this structure is
described next.

3.3 Binary Multitriangulations
Here we summarize the main results introduced in [5]. We

will show that the interplay between combinatorial and geo-
metrical structures of the subdivision process leads naturally
to the concept of binary multitriangulations, or BMT’s.
Stellar subdivision is the basic operation used to construct

a BMT. A review of Stellar theory and its fundamental con-
cepts can be found in [12]. For our purposes here, it is suffi-
cient to state a few facts. We will denote by M ′ = (ε, ν)M
the operation of bisecting the edge ε of a simplicial meshM ,
inserting the vertex ν to obtain the new meshM ′ (note that
this is a particular case of a stellar operation). A remarkable
fact, proved by Newman (references and a modern proof can
be found in [12]), is that if M and M ′ are two meshes which
represent the same polyhedron, then we can transform M
intoM ′ through a sequence of stellar operations, such as the
one described above.
Subdivision operations on edges have one important ad-

ditional advantage. Whenever a stellar subdivision happens
on an edge ε, all simplices containing ε are splitted in two.
Accordingly, a sequence of stellar subdivision induces a bi-
nary tree structure in the simplices. And binary trees often
leads to simpler algorithms.
In order to define the binary multitriangulation concept

(BMT), we need some auxiliary definitions. We follow
closely the definitions in [7].
A partially ordered set (poset) (C,<) is a set C with an

antisymmetric and transitive relation < defined on its ele-

ments. Given c, c′ ∈ C, notation c ≺ c′ means c < c′ and
there in no c′′ ∈ C such that c < c′′ < c′. An element c ∈ C,
such that for all c′ ∈ C, c ≤ c′, is called a minimal element
in C. If there is a unique minimal element c ∈ C, then c is
called the minimum of C. Analogously are defined maximal
and maximum elements.

Definition 2. A binary multitriangulation is a poset
(T , <), where T is a finite set of abstract 3-manifolds
(named triangulations) and the order < satisfies:

1. M ′ ≺ M if, and only if, M ′ = (ε, ν)M , for some edge
ε ∈M .

2. There is maximum and minimum abstract 3-manifolds
in T , called base triangulation and full triangulation,
respectively

Property 2 says, in fact, that a BMT is a lattice. Other
fact which follows from the definition is that every two tri-
angulations in T are stellar equivalent. As usual, a BMT
can be thought as a directed acyclic graph (DAG), with one
drain and one source, whose arrows are labeled with stellar
subdivisions on edges. From an algorithimic perspective, the
key idea is to use the above mentioned binary tree structure
in the simplices to encode the DAG.
We have implemented these ideas in a C++ library using

generic programming techniques. This give us great flexi-
bility in the specialization of the general concepts already
defined, without a performance overhead. One of the most
useful of such specializations is the concept of a rectangular
triangulation. In this case, the base triangulation is taken to
be a cube subdivided into six tetrahedron. Also, the relation
≺ possesses the additional restriction that the edge ε has to
be the longest 2 edge of all tetrahedra which contain ε.
One of the functions implemented in the library, allow

a subdivision of an arbitrary tetrahedron of the rectangu-
lar triangulation, guaranteeing that the above mentioned
restriction is satisfied, that is, automatically performing ex-
tra subdivisions in neighbor tetrahedra which contain longer
edges (see Fig. 1). This operation is essential in the adap-
tation algorithm described below.

(a) (b)

Figure 1: The splitting of the marked tetrahedron
automatically causes a sequence of subdivisions in
the BMT.

2It is possible to give a completely combinatorial interpreta-
tion to the term “longest” employed above, but we will not
go into the details here.
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4. THE ALGORITHM
In this section we describe an algorithm to solve problem

1. The only assumption is that the data points belong, or
are close to, a closed surface, and are roughly uniformly
distributed along the surface. The topology is unknown in
advance and estimated by the algorithm. The algorithm
output is a ISM that represents an approximation of the
signed distance function, from which we can to easily extract
a triangular mesh. Program 1 shows the global structure of
the algorithm.

Program 1 Main loop of the algorithm

while(!to refine.empty()) {
simplex s=to refine.pop();
local fitting(s);
if(!stop test(s)) subdivide(s);
estimate topology();

}
estimate distance();

Initially, we find a cube 3 which enclose the points. There
are many ways to choose that cube, but we had adopted a
cube which center is the centroid of the points and which ori-
entation is obtained via PCA analysis. We set the base mesh
to the cube subdivided in six tetrahedra. These six tetrahe-
dra are inserted into the list to_refine and the algorithm
enters in a loop for refinement and topology estimation. In
this loop, we remove a tetrahedron σ of the to_refine list
, compute the local fitting and apply the stop test. This
test includes the verification of maximum subdivision level,
minimum number of samples in σ and a data adjustment in
a coplanarity sense, which we will explain in detail later. In
case σ does not pass the test, it is subdivided and the new
tetrahedra generated by the subdivision are inserted into
to_refine. After each subdivision, one passe of the topol-
ogy estimation algorithm is performed. The loop continues
while to_refine is not empty. Finally, the algorithm ends
with the distance estimation step.
Now we describe in detail the main building blocks of

the surface reconstruction algorithm: local fitting, topology
estimation and distance estimation.

4.1 Local Fitting
The local fitting step consists in the standard application

of principal component analysis. We calculate the barycen-
ter pσ and the covariance matrix Cσ of the Nσ points con-
tained in σ. The smallest eigenvalue λ0

σ of Cσ measures the
least square error of the sample points. We keep stored in

each tetrahedron the “coplanarity error” εσ =
λ0

σ
λ0

σ+λ1
σ+λ2

σ
,

where λi
σ are the eigenvalues of Cσ, together with the plane

Πσ which passes trough pσ and is perpendicular to the eigen-
vector associated to λ0

σ. This information will be necessary
during the topology estimation step. The idea is that Πσ

represents a plane which is secant to the portion of the sur-
face M contained in σ which works as a local approximation
of M, with approximation accuracy given by εσ.

3In fact, to achieve a better adjustment to the data points,
a scaling can be applied to the cube, obtaining in this way,
a parallelepiped. However, to simplify the exposition of the
algorithm, we will refer to this bounding cell as “the cube”.

It may happen during the subdivision that some tetrahe-
dra possess an insufficient number of samples, causing the
matrix Cσ to be singular. In that case, that is, when the
number of samples per tetrahedron is less than a user de-
fined parameter, usually between 5 and 10, we set εσ and
Πσ with the same values of the parent tetrahedron.

4.2 Topology Estimation
The goal of the topology estimation step is to determine

a sign Sν ∈ {+1,−1} for each vertex ν of the triangulation,
thus indicating if ν is inside or outside the volume enclosed
by the surface M. Note that we can prescribe a sign for
each vertex ν of a tetrahedron σ based on the plane Πσ,

�
Sσ

ν = +1, if ν ∈ Π+
σ

Sσ
ν = −1, if ν ∈ Π−

σ .

However, nothing guarantees that these signs are glob-
ally consistent in relation to the other tetrahedra which also
contain ν. It is like each tetrahedron could have its own
opinion about which sign should be given for its vertices.
Of course, it is expected that the opinion of a tetrahedron
that possesses a small mean square error should be more
trustworthy than the opinion of a tetrahedron with a large
error. It is also clear thst, if two trustworthy tetrahedra
which share the same edge ε both agree that there is a sign
change, i.e., that the surface M intersects ε, then, this is a
strong indication that the vertices of ε should have opposite
signs. Taking these facts into account, we conclude that the
minimization of the function D(S) below, is equivalent to
minimize the disagreement of the tetrahedra with respect to
the sign prescribed to its vertices:

D(S) =
X
ε∈E

Hε Sν0Sν1 (2)

with the sum ranging over all the edges ε = {ν0, ν1} and
where the edge weight Hε is given by

Hε = −
X

σ:ε={ν0,ν1}∈σ

Sσ
ν0S

σ
ν1

�
εmax − εσ
εmax − εmin

�

with the sum extended over all tetrahedra that contains ε
as an edge. Above, εmax means the maximum εσ and εmin is
similarly defined. Of course, we also have to care of empty
tetrahedra. We set Sσ

ν = 1 and εσ = εempty whenever σ
does not contain points inside. The εempty parameter relates
to the global uncertainty of the data. Setting εempty = 0
is equivalent to knowing the point locations with absolute
accuracy.
The minimization of the quadratic expression (2) in

{+1,−1} is exactly the Ising model, for which simulated an-
nealing schemes are well documented [11]. Our implementa-
tion of the simulated annealing algorithm took advantage of
the fact that our data structure allows very efficient queries
about the neighborhood of each vertex.

4.3 Distance Estimation
The distance estimation step is currently very simple. Ini-

tially, we collect the vertices of all tetrahedra which contain
data points in a set V . Next, for each ν in V we compute
the smallest distance dmin between ν and the data points
contained in each tetrahedra incident in ν. Since our BMT
spatial data structure provides all these incidence relation-
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ships, the process is quite fast. Then, we set the distance
value f in ν as Sνd

2
min.

For our immediate objective, that is, the extraction of a
polygonal mesh that approximates the surface, it is sufficient
to know the value of f in the set V . Depending on the
application, it may be necessary to extend f to all other
vertices of the BMT. In this case, we could use a propagation
method, such as the fast marching method [10, 13].

4.4 Details
In order to facilitate the exposition, we have omitted some

details that we discuss now. Since it is somewhat expensive
to run the topology estimation step each time a tetrahedron
is subdivided, we decided to execute this step only after a
(user-defined) number of subdivisions. This increases signif-
icantly the performance of the program, on the other hand
it degrades slightly the quality of the topology estimation.
The solution to this problem is to run the topology esti-
mation one more time when the loop terminates, with the
simulated annealing parameters adjusted for a more gradual
decrease in temperature. In summary, the coarse topology,
found in the refinement loop is used as the initial condition
for a final iteration of topology estimation.
The to_refine list is, in fact, a priority queue ordered

by the εσ value. Thus the tetrahedra with greater error
are divided first, ensuring the correctness of the hierarchical
optimization process.
When the point cloud is not sufficiently dense, or when

the user chooses a small number of subdivision levels, it
may happen that the distance computed by the algorithm
vary excessively between neighbor vertices – causing the
extracted polygonal mesh to be “noisy”. In this case, we
can apply a smoothing algorithm such as the one described
in [14].

4.5 Results
In this section we show some results of using the algorithm

in synthetic and scanned data sets.
The first example is the Stanford bunny model. Fig-

ure 2(a) shows the set of cells V which are classified as con-
taining the surface. Figure 2(b) exhibits the polygonization
obtained from the zero level set of the distance function in
V .
The second example is a synthetic sampling of knotted

shape. Figure 3 shows the cells which contain the surface.
Note that, despite of the complicated embedding of this sur-
face, the topology estimation algorithm was able to recover
the correct shape.
The third example is a scanned dragon model, from the

Stanford repository. The original data set contained more
than 400 K points. Figure 4 shows a phong shaded image
of the extracted polygonal mesh.
The computational performance of our algorithm can be

analyzed through the timings shown in table 1. The execu-
tion was performed on a 1.5GHz Pentium 4 with 512 MB
RAM. The data indicates that the topology estimation is the
most expensive operation in the process. We believe that we
can increase the performance by fine tuning the simulated
annealing parameters.

samples ref. dist. top. mesh smooth.

bunny 35947 25.7 0.8 48.31 0.13 2.37
knot 100000 37.26 1.17 49.6 0.2 3.34
dragon 437645 9:18.34 5.77 1:13.92 1.13 16.40

Table 1: Timing results in seconds. The meaning of
the columns: ref is the time spent in the main loop;
dist, the time in the distance estimation step; top,
the topological refinement described in section 4.4;
mesh, the mesh extraction time; smooth, the time
spent in the mesh smoothing.

5. CONCLUSION
The starting point for our approach to solve problem 1

was the minimization of function (2). For this, we employ a
stochastic optimization algorithm, the simulated annealing.
A topic of further research is the utilization of another com-
binatorial optimization algorithm. Anyway, the key aspect
seems to be the use of the kind of “multi-grid” approach we
have taken here.
Our method recovers the topology just knowing the points

spatial position. Another research topic is the incorporation
of normal vector information to our scheme. This will pro-
vide better topology and geometry results. The geometry
can also be improved by using diffeomorphisms Xσ of higher
degree, not merely piecewise linear.
A careful analysis of the topology estimation step revels

that the point location data is used just to compute the
centroid and covariance matrix for each tetrahedron. The
algorithm works equally well if a black box supplies such
information. Therefore, we conclude that our algorithm can
be generalized to reconstruct surfaces described by probabil-
ity distributions. We pretend to explore that point in future
work.
Summarizing, the main feature of Implicit Simplicial

Models is the intrinsic separation between topology and ge-
ometry, combinatorial and continuous data. In this paper,
we have focused on topology recovering. In future work,
we intend to exploit the hierarchical organization and space
adaptivity of Binary Multitriangulations, as well the ISM
local geometry fitting power, in order to achieve better geo-
metric reconstructions.
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Figure 2: Bunny.
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Figure 3: knot.
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