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Abstract In multi-view reconstruction systems, the recov-
ered point cloud often consists of numerous unwanted
background points. We propose a graph-cut based method
for automatically segmenting point clouds from multi-view
reconstruction. Based on the observation that the object of
interest is likely to be central to the intended multi-view
images, our method requires no user interaction except two
roughly estimated parameters of objects covering in the cen-
tral area of images. The proposed segmentation process is
carried out in two steps: first, we build a weighted graph
whose nodes represent points and edges that connect each
point to its k-nearest neighbors. The potentials of each point
being object and background are estimated according to
distances between its projections in images and the corre-
sponding image centers. The pairwise potentials between
each point and its neighbors are computed according to their
positions, colors and normals. Graph-cut optimization is then
used to find the initial binary segmentation of object and
background points. Second, to refine the initial segmenta-
tion, Gaussian mixture models (GMMs) are created from
the color and density features of points in object and back-
ground classes, respectively. The potentials of each point
being object and background are re-calculated based on the
learnedGMMs.The graph is updated and the segmentation of
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point clouds is improved by graph-cut optimization. The sec-
ond step is iterated until convergence.Ourmethod requires no
manual labeling points and employs available information of
point clouds from multi-view systems. We test the approach
on real-world data generated by multi-view reconstruction
systems.

Keywords Graph-cut · Point clouds · Segmentation ·
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1 Introduction

Three-dimensional models of real-world objects are widely
used in archaeology, cultural heritage management, anima-
tion, game and other fields. In comparisonwith laser scanners
and structured light scanners, image-based reconstruction
of 3D objects is considered the most flexible and low-cost
way. Image-based 3Dmodeling has the advantage over other
3D modeling techniques in terms of equipment availability,
affordability, scalability and amount of user requirements.
One of the most popular approaches to image-based recon-
struction is the combination of structure from motion (SfM)
and multi-view stereo (MVS), which produces 3D recon-
structions from a set of overlapping images. SFM recovers
camera poses and MVS produces dense 3D point clouds.
Several commercial [1] and freely available [2–4] software
appeared in the past few years. A point cloud with positions,
colors and normal vectors is usually recovered from these
systems.

However, besides the points of interested object, out-
liers often exist in the point cloud, as shown in Fig. 1b.
Thus, the segmentation of point clouds into object and back-
ground is a necessary operation in the 3D reconstruction
workflow,which is usually donemanually before reconstruc-
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Fig. 1 Segmentation results of a pot model. a Three of 39 images used
in multi-view reconstruction. b The generated 3D point cloud (left)
and reconstructed mesh (right). c Segmented 3D point cloud (left) and
reconstructed mesh (right)

tion of a mesh model. Moreover, some applications want an
unattended photo-to-3d workflow. For instance, after exca-
vators in an archaeological site upload photos into database,
REVEAL system [5] uses the photos to automatically gener-
ate accurate 3D models of the artifacts, excavation and site.
Figure 1 gives an example of a pot model generated from
39 images using Bundler [3] and PMVS [4]. Without seg-
mentation, the pot mesh from surface reconstruction [6] is
connected numerous unwanted outliers. Since the real-world
data is usually large and object points are highly entangled
with background points, automatically segmenting 3D point
clouds is a challenging task without information supplied by
the user.

In this paper, we propose a graph-based method for
segmenting point clouds generated by a multi-view recon-
struction system. Our method is based on the observation
that the object of interest is much likely to be central to the
intended multi-view images since the object of interest is
always being focused upon by the camera and within the
central area of the viewport. We begin by a graph-cut opti-
mization to segment the obvious object points leveraging the
fixation constraint. Gaussian mixture models (GMMs) are
then created and learned from the color and density informa-

tion of points in object and background classes, respectively.
The graph is updated and the segmentation of point clouds
is improved by graph-cut. The improvement of GMMs and
graph-cut optimization is iterated until convergence. The
method does not require the object be fully contained in each
view. We show its effectiveness on several real-world data
generated from multi-view systems.

The main contributions of this work are:

– We use the fixation constraint to initiate the process
of point clouds segmentation. Two intuitive parameters
describing the coverage of object in the images are used as
a priori assumption about the object. Themethod requires
nomanual labeling points and runs automaticallywithout
user interaction.

– The color and density features are utilized in theGaussian
mixture models of object and background classes. Since
background points are usually much sparsely distributed
than object points in the output of multi-view reconstruc-
tion system, those background points which have the
similar colors to the object points are correctly classified
according to the density features.

– We allow for the label changing of all points during itera-
tive graph-cut optimization. This provides label recovery
from poor initial hypotheses without hard constraints.

2 Related work

Point cloud segmentation is an ongoing research field in
computer vision and computer graphics. Given a noisy point
cloud representing a scene, the goal is to separate the points
that belong to the object of interest from the background
points.

Most previous works focus on point clouds generated by
laser or structured light 3D scanners. As the graph-cut based
global optimization is widely used in image segmentation
[7,8], this framework is also extended to 3D point clouds. A
min-cut based method of segmenting objects in large-scale
outdoor point cloud scans is proposed in [9]. In the auto-
matic regime, a given or estimated radial scale is used to
specify hard constraints for foreground points. Alternatively,
the interactive regime allows the user to iteratively add back-
ground and foreground constraints. The edges of the graph
haveweights that decreasewith distance between points. The
graph-cut framework is also applied to data gathered with
active vision robotic heads [10]. Two methods, geometric
plane assumption and image saliency, are proposed for seed-
ing the segmentation. Color information is utilized in the
point cloud segmentation problem and multiple objects can
be identified. In modeling plants from multi-view images,
interactive graph-based optimization is implemented to seg-
ment the 3D data points and 2D images of individual leaves
[11]. They defined a combined distance function for pairs of
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points using color difference in images and 3DEuclidean dis-
tance. Graph-cut based interactive segmentation of 3D point
clouds is also discussed in [12], which relied on point label-
ing input specified by the user and utilized only Euclidean
distance between points. It is more challenging to segment
point clouds generated from SfM and MVS since there are
more background points compared to active scanners which
have limited ranges.

Fixation constraint has been used to indicate the object
of interest in image, video and multi-view object segmenta-
tion (MVOS) [14–16]. Using the fixation point as an object
marker, graph-cut is used to find the globally optimal closed
contour around the fixation point in the image [14]. In multi-
view object segmentation [15], a color model of the object
from the image pixels around the camera fixation points
is learned. Then, image edges and object color informa-
tion from calibrated images are combined in a volumetric
binary MRF model. The globally optimal segmentation of
object is obtained by a graph-cut optimization. In [16], the
MVOS problem is solved by a joint graph cuts linking pixels
through space and time. Appearance and stereo cues are also
combined in an energy minimization framework to solve the
MVOSproblem in [20]. They propose an automatic approach
based on a piecewise planar depth map representation with-
out consistent 3D reconstruction. However, MVOS requires
that the object of interest be fully visible in all considered
views. In contrast toMVOSwhose goal is to segment objects
of interest in images and videos, we focus on the segmenta-
tion of 3D object points and our method does not require the
object be fully contained in each view.

3 Overview

Given a point cloud generated by amulti-view stereo system,
each data point has a position x, normal vector n, RGB color

c and the images in which it is visible. Our goal is to segment
the point cloud into foreground (object) and background. We
consider the segmentation problem as a binary labeling prob-
lemwhere each point is labeled as object or background. Our
work is based on the graph-cut method described in [7,8].
However, we allow for the label changing of all points during
iterative graph-cut optimization and require no user interac-
tion. We create a graph G representing the point cloud. Each
point is represented by one node, which is linked to its k-
nearest neighbors by edges (the value k is discussed in the
results section). In addition, graph Gcontains two terminal
nodes s and t , where the sources is the object terminal and
the sink t represents the background terminal. An s − t cut
of graph G corresponds to a segmentation of the points into
object and background. All points remaining connected to
s in the s − t cut are considered to be classified as object
points and all points remaining connected to t are consid-
ered to be classified as background points. The quality of
the segmentation is measured by a cost function consisting
of two terms, unary potentials and pairwise potentials. Fast
and effective min-cut/max-flow algorithms are used to get
the global optimum of the cost function [18].

Under the assumptions that the object is located in the cen-
tral area of all images and its appearance is different from the
background, we do not require hard constraints from the user
labeling for segmentation. In the proposed method, the fixa-
tion constraint is employed to provide an initialization. After
obtaining a tentative object and background classification of
points by graph-cut optimization, Gaussian mixture models
including color and density features of the points are further
used to refine the segmentation. The labels of all points can
changeduring iterative graph-cut optimization. This provides
label recovery from poor initial hypotheseswithout hard con-
straints, especially for the views in which the object is partly
contained. An overview of our segmentation algorithm is
given in Fig. 2.

Fig. 2 Overview of our
algorithm Initialization 

1. Construct a k-nearest neighbors graph on the input points. 
2. Compute the point-wise potentials of assigning the point to object and background based on the 
horizontal and vertical observational parameters describing the coverage of the interested object in the 
images, and the projected pixel coordinates in the images in which the point is visible. 
3. Compute the pairwise potentials between neighboring points according to their distances, normals 
and colors. 
4. Run graph-cut to find a tentative object and background classification of points. 
Refinement 
1. Create Gaussian mixture models from the color and density features of points in object and 
background classes, respectively. 
2. Update the point-wise potentials according to the likelihoods that the point belongs to the object and 
background GMMs. 
3. Run graph-cut to find an updated object and background classification of points. 
4. Repeat Steps 1-3 in Refinement until the classification converges. 
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Fig. 3 The observational parameters in our algorithm are satisfied by
most images

4 Implementation

4.1 Initial point-wise potentials in initialization

Based on the assumption that the object is located in the
central area of all images, the center of the object points
can be estimated by finding the approximate point of inter-
section of the optical axis of the cameras. However, it is
difficult to estimate object and background probabilities
for a point pbecause the object points are usually not in
the center of the cloud point. Instead, our method takes
as input two observational parameters rw and rh which
specify the approximately ratios of the interested object
covering along the width w and height h of most images,
rw ≈ average(woi/wi ) and rh ≈ average(hoi/hi ), as shown
in Fig. 3. We consider a probabilistic model, which deals
with uncertainty by taking into account all images where the
point is visible. The object and background probabilities for
a point p are modeled as a two-dimensional Gaussian func-
tion:

Pobj(p) = 1

|I |
∑

i∈I
exp

(
− d2xi
2σ 2

xi

− d2yi
2σ 2

yi

)
(1)

Pback(p) = 1 − Pobj(p) (2)

where I denotes the set of images in which point p is visi-
ble, dxi and dyi are the horizontal and vertical pixel distances
between the projection of point p in image i and the center of
the image i , σxi = 0.5rw × wi and σyi = 0.5rh × hi control
the fidelity of Pobj and Pback in image i with width wi and
height hi .

We express the unary term E initial
p associating a label l p to

point p as follows:

E initial
p (l p) =

{− log(Pobj(p)), if l p = object
− log(Pback(p)), if l p = background

(3)

Therefore, E initial
p (object) is low in case p comes from object

and E initial
p (background) is low if p comes from background.

4.2 Pairwise potentials

Thepairwise termdescribes the penalty for placing a segmen-
tation boundary between neighboring points and encourages
assigning the same labels to neighboring points that exhibit
similar appearance. For a pair of neighboring points p and q,
the proposed pairwise potential considering positions, colors
and normal vectors of points is expressed by

Epq(l p, lq) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
exp

(−d(cp,cq )2

2σ 2
c

)
+exp

(−d(xp,xq )2

2σ 2
x

))

·max
(〈
np,nq

〉
, 0

)
, if l p �= lq

0, otherwise

(4)

where d(.,.) is the Euclidean distance, σc and σx indicate the
color and position expectations over all neighboring points,
〈np, nq〉 is the dot product of normal vectors. This penalty
Epq(l p, lq) is high in the regions of similar color and orien-
tation when neighboring points are assigned different labels.

4.3 Point-wise potentials in refinement

After a tentative object and background classification of
points using fixation constraint and graph-cut optimization,
we create Gaussian mixture models for object and back-
ground classes. The RGB color and sampling density of
points are used to set up GMMs. The density feature makes
the algorithm more robust based on the observation that
points in background are usually more sparsely distributed
than in object. We define the sampling density ρof a point p
as the average distance between p and its k-nearest neighbors
Np:

ρ = 1∣∣Np
∣∣

∑

q∈Np

d(p, q) (5)

where d(.,.) is the Euclidean distance. The sampling density
of points is then mapped to the interval [0, 255] to match the
RGB color component. Thus, the feature vector for a point
is a 4-dimensional vector whose components are RGB value
and ρ.

Each GMM, one for the object and one for the foreground,
has K Gaussian components (K = 5 as suggested in [8]).
The parameters for the object and background GMMs are
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{πobj(k), μobj (k),
∑

obj(k)} and {πback(k), μback(k),∑
back(k)}, k = 1, . . . , K , i.e., the mixture weights π , means

μ and covariance matrices
∑

for the object and background
Gaussian distributions. The unary term E refine

p associating a
label l p to point p is now redefined in Eq. (6), where z is
the 4-dimensional feature vector of point p, det

∑
denotes

the determinant of the matrix
∑

and
∑−1 the inverse of the

matrix
∑

.

E refine
p (l p)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− log
K∑

k=1

[
πobj(k)

(2π)2
√

det
∑

obj(k)
exp

(
− 1

2 (z − μobj(k))T
∑

obj(k)
−1(z − μobj(k))

)]
, if l p = object

− log
K∑

k=1

[
πback(k)

(2π)2
√

det
∑

back(k)
exp

(− 1
2 (z − μback(k))T

∑
back(k)

−1(z − μback(k))
)]

, if l p = background

(6)

4.4 Graph-cut optimization

An energy function E is defined so that its minimum should
correspond to a good segmentation of the point clouds:

E =
∑

p

Ep(l p) + λ
∑

{p,q}∈N
Epq(l p, lq), (7)

where N is the set of all neighboring pairs in the k-nearest
neighborhood on the input points, the coefficient λ ≥ 0 con-
trols a relative importance of the two terms. The first term
Ep reflects howwell the labeling corresponds to the observed
data. Equation (3) is used in the initialization stage and Eq.
(6) is used in the refinement stage, respectively. The second
term Epq(l p, lq) measures the consistency between labeling
of adjacent points.

This kind of energy function can be represented by
Markov randomfields (MRFs) andminimized using the stan-
dard graph-cut algorithm [7]. In the graph, there are two types
of edges between nodes, T-edges and N-edges. T-edges con-
nect each point to the object terminal s and the background
terminal t . Theweight of the edge connecting point pwith s is
set to Ep(background) and theweight to t is set to Ep(object).

Ep(object) is low in case p comes from object and can there-
fore be severed at low cost. N-edges connect each point to its
k-nearest neighbors with weights Epq(l p, lq). The weights
of N-edges are not changed throughout the execution of our
algorithmand canbe computedonce and reused. In the refine-
ment stage of our algorithm, the graph structure stays the
same and enables a substantial speed-up in the iteration.

5 Experimental results

We tested our algorithm on dozens of datasets generated
from freely available software. In particular,we employVisu-
alSFM [2] to estimate camera poses and PMVS/CMVS [4]
to recover a point cloud. In our implementation, ANN [17]
is used to find the k-nearest neighbors of a point.

The result of segmentation depends on the coefficient λ.
For the point cloud given in Fig. 4b, segmentation results for
different λ values are shown in Fig. 5. As λ increases, more
points are classified into object points and over segmentation
is observed. As in image segmentation, the value that gives
the best segmentation may differ for different input data. Our
experiments show that λ values between 10 and 30work well
for most segmentations.

Then we compare different sizes of the neighborhood for
the segmentation. For the point cloud given in Fig. 4b, seg-
mentation results for 8, 12 and 16 nearest neighbors are
shown in Fig. 6. We get more accurate segmentation as the
size of the neighborhood is increased. In the rest of our exper-
iments, we use 16 nearest neighbors. When only RGB colors
are used to set up GMMs, spurious points in the background
are incorrectly classified into object, as shown in Fig. 6d.

Fig. 4 Three of nine images
used in the reconstruction of ET
model (a) and the generated 3D
point clouds (b)
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Fig. 5 The effect of λ on the
segmentation results. a λ = 1,
6022 points. b λ = 10, 9136
points. c λ = 30, 11,396 points.
d λ = 50, 11,396 points

Fig. 6 Segmentation results of
ET model with different size k
of neighborhood. a 8-nearest
neighbors. b 12-nearest
neighbors. c 16-nearest
neighbors. d 16-nearest
neighbors without density
information

Fig. 7 Three of 80 images used in the reconstruction of Buddha statue (a), the generated 3D point clouds (b) and segmentation result (c)

Fig. 8 Three of 79 images used in the reconstruction of a stone relief (a), the generated 3D point clouds (b) and segmentation result (c)

Figures 7, 8 and 9 present segmentation results for more
challenging point clouds. The photos are taken in the exhi-
bition halls of a museum. Although there are some similar
objects in the background, our method obtains reasonable
segmentation results without user interaction.

Moreover, we do not require the object be fully visible in
the images used in reconstruction, as shown in Figs. 8 and 9.
However, it is still a constraint that the general appearance
of the interested object should be different from the back-
grounds’. In spite of using point density in the GMMs which

can exclude the background points far from the object, those
background points that have similar colors and densities with
the object points are incorrectly classified, as marked in Figs.
8c and 9c.

We also evaluate our approach on publicly availablemulti-
viewdataset [20] (see Figs. 10, 11). The objects of interest are
fully visible and in the central area in all considered views.
The ground truth segmentation results in the dataset cannot
be used as masks in MVS since their resolution are differ-
ent from the input images. Since the chair in Fig. 11 takes
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Fig. 9 Three of 90 images used in the reconstruction of a bronze tripod (a), the generated 3D point clouds (b) and segmentation result (c)

Fig. 10 Two of 35 images used in the reconstruction of a motorbike (a), the generated 3D point clouds (b) and segmentation result (c)

Fig. 11 Two of 41 images used in the reconstruction of a chair (a), the generated 3D point clouds (b) and segmentation result (c)

Table 1 The input parameters and performance of our experiments

Model rw rh #points before
segmentation

#points after
segmentation

Precision (%) Recall (%) Runtime (s)

ET 0.6 0.7 12,095 9,139 98.3 100.0 0.42

Bronze tripod 0.5 0.4 78,378 61,119 96.9 100.0 1.85

Chair 0.4 0.5 125,892 13,812 99.2 99.8 2.83

Motorbike 0.3 0.3 139,011 21,467 99.5 98.1 4.45

Buddha statue 0.3 0.8 179, 030 107,484 99.6 100.0 4.87

Stone relief 0.5 0.7 4,433,413 3,443,978 99.3 100.0 262.71

Average 98.8 99.6

consistent appearance, we set the number of its Gaussian
components to two.

Table 1 shows the two parameters rw and rh used in the
experiments, which are roughly estimated based on the cov-
erage of the interested object along the width and height of

the images. In fact, our method is not very sensitive on the
parameters and the results remain almost the same when the
parameters vary between ±10% in our experiments. Large
values of rw and rh lead to more object points.
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Fig. 12 Precision–recall plots of our algorithm for different values of neighborhood size k (λ = 10) (a) and λ(k = 16) (b)

To evaluate the performance of the algorithm, we make
use of the ground truth segmentation obtained by interactive
editing with the open-source 3D mesh processing software
MeshLab [19].Weuse precision and recallmeasures as in [9].
The precision measure is defined as the ratio of the number
of correctly predicted object points to the total number of
predicted object points. The recall measure is defined as the
ratio of the number of correctly predicted object points to the
number of ground truth object points. Precision is high when
most of the predicted object points are in the object and low
when there is significant over-segmentation. A high recall
indicates that most of the object points have been classified
into the object. Low recall is the result of under-segmentation.
For a perfect segmentation, precision and recall will be 1.
Figure 12 shows precision–recall curves of our algorithm for
different values of neighborhood size k and λ.

The time reports are obtained on a machine with two
8-core Intel Xeon E5-2560 CPUs, 2.00GHz and 64GB
of memory and no GPU-based acceleration technique is
exploited.

6 Conclusion

We introduce a method for the segmentation of point clouds
from multi-view system based on graph-cut. By using the
fixation constraint to initialize the segmentation, we do not
require hard constraints from the user labeling. Color and
density features of points are utilized in the Gaussianmixture
models of object and background classes,which improves the
robustness of themethod. Themethod has been demonstrated
on several challenging real-world datasets.
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