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Abstract of
“Recognition and Positioning of Rigid Objects
using Algebraic and Moment Invariants,”

by Gabriel Taubin, Ph.D., Brown University, May 1991

In this thesis we describe twomodel-based approaches to 3D rigid object recognition and po-
sitioning from range data, particularly in cluttered environments. Following a model-based
approach, we recognize and locate objects in the data data set by comparing and geomet-
rically matching small regions of the data with corresponding regions of known models,
stored in a database. Due to the problem of occlusion, a known object is represented in the
database as a hierarchical collection of regions, each of them approximated by a parameter-
ized model. We use two types of parameterized models. With the first type we consider ob-
jects whose boundaries can be well approximated by piecewise algebraic curves or surfaces,
or both, in which case the preliminary recognition and matching is based on comparing the
coefficients of the corresponding polynomials; the final recognition and matching is based
on determining how well the data fits a stored polynomial model. With the second type, we
consider more general objects, objects which do not fall into the previous group, and usemo-
ments as the region descriptors. In order to develop practical systems for object recognition
and position estimation, a number of problems must be solved first. Problems solved for
this purpose, in this thesis, are the following. The first of these problems is how to fit mod-
els to regions of the data sets. Although computing moments from a data set is relatively
straightforward, fitting algebraic curves and surfaces to regions of a data set is difficult.
We show several different efficient and numerically stable algorithms for fitting implicit 3D
curves and surfaces to data sets, in particular, for fitting algebraic 3D curves and surfaces to
data sets. The algorithms also apply to 2D curves, and to curves and surfaces in fourth and
higher dimensions. We also show how these fitting methods can be used in segmentation
algorithms. The second problem is that when the coordinate system changes, the coefficients
of the polynomial which define a given curve or surface change, and the same happens with
the moments of a region. However, both coefficients and moments change in a well known
fashion. The recognition and matching is based on computing and comparing invariants of,
either the coefficients of the polynomials, or the moments. Invariants are functions of the
coefficients or the moments, which are independent of the coordinate system. We introduce
computationally efficient algorithms for computing invariants. The third problem solved
is the problem of recovering the coordinate transformation which best aligns two matching
curves or surfaces, or two vectors of moments. We solve these problems by defining an in-
trinsic coordinate system for both algebraic curves, and moment vectors. The parameters
of this intrinsic coordinate system are functions of the coefficients of the polynomials, or
the moments, and are very inexpensive to compute. Finally, the fourth problem dealt with
is preliminary ideas on how to organize all of these tools to build object recognition and
positioning systems.
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Chapter 1

Introduction

In this thesis we describe two model-based approaches to 3D rigid object recognition and
positioning from range data. Due to the problem of occlusion, known solid objects are rep-
resented in a database as hierarchical collections of regions of the boundary curves and sur-
faces. The two approaches differ basically in the models used to represent the regions. In the
first approach, we assume that the regions can be well approximated by piecewise algebraic
surfaces. In the second approach we consider more irregular objects, and the descriptors for
the regions are vectors of moments. We show that these two models have many common
features, in particular the techniques for deciding whether two regions match or not, and for
orienting two matching regions with respect to each other are almost the same.
Figure 1 describes the common structure of both approaches. Models, either algebraic

surfaces or vectors of moments, are fitted to small regions of the data set. These regions are
small enough so that most of them correspond to a single object, but big enough to contain
sufficient information to uniquely determine the location and orientation of an object. Alter-
natively, models are fitted to smaller regions, and symbolical methods, such as polynomial
multiplication in the case of algebraic curves and surfaces, are used to compute the param-
eters of the models which fit a group of these small regions. Since the parameters of these
models are coordinate system dependent, a vector of invariants is computed for each model.
An invariant is a function of the parameters which yields the same values independently of
the viewer coordinate system. This vector of invariants is used to index into the database of
regions of known models. Using these invariants, the database can be organized for an effi-
cient search. The database search produces a list of triples. Each of these triples consists of a
region, i.e., a portion of a 3D surface, the object that the region correspond to, and the coordi-
nate transformation from the object coordinate system to the local region coordinate system.
If one or more matches are found in the database, the intrinsic coordinate system of the data
set region is computed, and, for every match found, the coordinate transformation which
best aligns the data region with the model region is computed using the intrinsic coordinate
systems of the two regions. This coordinate transformation constitutes a hypothesis of the
presence of the associated object in the computed position and orientation. The hypotheses
generated in this way are then globally tested, and the final interpretation of the data set is
produced. The intrinsic coordinate system of a data region is a viewpoint independent co-
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Figure 1.1: Basic structure of the recognition systems.
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ordinate system computed from the model parameters, which is commonly refered to as the
object coordinate system in the Computer Vision literature. Themodel parameters recomputed
in the intrinsic coordinate system are invariants of the data region.
This global structure has many points in common with other well known object recogni-

tion systems, and the main contributions of this thesis are in the implementation of several
steps of the recognition and positioning processes described above. We develop several ef-
ficient and computationally stable algorithms for fitting implicit surfaces to data, not only
for algebraic surfaces, but for arbitrary families of implicit curves and surfaces parameter-
ized by a finite number of parameters. These methods not only apply to 3D surfaces, but
to curves and surfaces of any dimension, in particular for 2D and 3D curves. We show
how these fitting algorithms can be used for segmenting 2D edge maps and range images.
Then, we develop methods for computing invariants of polynomials. Since our intended
application is the recognition and positioning of objects from range data, we concentrate on
Euclidean invariants, functions of the coefficients of the polynomials which do not change
after an Euclidean coordinate transformation. However, other related problems, such as the
recognition of 3D objects from the projection of their occluding boundaries, require the com-
putation of invariants with respect to projective, affine, or similarity transformations. We
also show methods for computing invariants with respect to these three groups.
We emphasize the computational aspect of the process, based on well known, efficient and

numerically stable matrix algorithms. For example, if M is a square n× n matrix, Q is an
orthogonal n× n,matrix, and M ′ = QtMQ , then both M and M ′ have the same eigenval-
ues, i.e., the eigenvalues of a square matrix are invariant under orthogonal transformations.
Equivalently, the characteristic polynomials χ(θ) = det (M − θI) and χ′(θ) = det (M ′ − θI)
are identical, i.e., the coefficients of this polynomial are invariants under orthogonal trans-
formations. Furthermore, the eigenvalues of M and the coefficients of its characteristic
polynomial are functionally equivalent, but the eigenvalues can be computed by numerical
methods in a number of arithmetic operations proportional to n3 , while the symbolical ex-
pansion of the determinant which defines the coefficients of characteristic polynomial has
n! terms.
For every algebraic curve or surface, we define its intrinsic coordinate system as a func-

tion of the coefficients of the defining polynomials. This intrinsic coordinate system of an
algebraic curve or surface is independent of the viewer coordinate system, in the sense that
the polynomial equations of the same curve or surface in its intrinsic coordinate system have
the same coefficients, independently of the viewer coordinate system. They are Euclidean
invariants. For example, figures (1.2-a) and (1.2-b) show two cubic 2D curves given by the
union of three straight lines extracted from the edge images, and figures (1.2-c) and (1.2-d)
show their corresponding frames of reference. The computation of the intrinsic coordinate
system is based on efficient and numerically stable matrix operations. We show that the
tools developed for the computation of algebraic invariants also apply to the computation of
moment invariants without modification. The intrinsic coordinate system of a set of points
based on moments is also developed, not only for the Euclidean case, but for the similarity
and affine cases. Finally, we develop several methods for globally testing the hypotheses
generated, based on particular geometrical properties of both algebraic curves and surfaces,

3
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Figure 1.2: (a): Cubic 2D curve, union of the three straight lines fitted to the data points in
the dark region. (b): Intrinsic frame of reference for the curve in (a). (c): Cubic 2D curve,
union of the three straight lines fitted to the data points in the dark region, matching the
curve in (a). (d): Intrinsic frame of reference for the curve in figure (c).
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Figure 1.3: Implicit surface defined by the third degree polynomial f(x1, x2, x3) = x2
1 + x2

2 −
x3(x2

3 − 1)− 1 .

and moments.

1.1 Geometric properties of implicit curves and surfaces
An implicit surface in 3D is the set of zeros of a smooth function f : R3 → R of three variables

Z(f) = {(x1, x2, x3) : f(x1, x2, x3) = 0} .

An implicit surface Z(f) is algebraic if the function f is a polynomial. For example, figure
1.3 shows an algebraic surface, the set of zeros of the third degree polynomial f(x1, x2, x3) =
x2
1 + x2

2 − x3(x2
3 − 1)− 1 .

Similarly, an implicit 2D curve is the set of zeros of a smooth function f : R2 → R of
two variables

Z(f) = {(x1, x2) : f(x1, x2) = 0} ,

an algebraic 2D curve is the set of zeros of a polynomial of two variables, an implicit 3D
curve is the intersection of two 3D surfaces, the set of zeros of a two dimensional vector
function f : R3 → R2 of three variables

Z(f) = {(x1, x2, x3) : f(x1, x2, x3) = 0} ,

and an algebraic 3D curve is the set of zeros of a two dimensional vector of polynomials of
three variables.

5



The representation of curves and surfaces in implicit form, as opposed to parametric
form, has many advantages. In the first place, an implicit curve or surface maintains its
implicit form after a change of coordinates, that is, if a set of points can be represented as
a subset of an implicit curve or surface in one coordinate system, so can it be in any other
coordinate system. That is not the case with data sets represented as graphs of functions
of two variables, i.e., as depth maps, the patch descriptors produced by many well known
segmentation algorithms. In the second place, the union of two or more implicit curves
or surfaces can be represented as a single implicit curve or surface, the set of zeros of the
product of the functions which define the individual curves or surfaces,

Z(f1) ∪ Z(f2) ∪ · · · ∪ Z(fn) = Z(f1 · f2 · · ·fn) ,

so that groups of curve or surface patches, or eventually a whole object, can be represented
as a subset of a single implicit curve or surface.
For example, the two cylinders in figure 1.4 are the sets of zeros of

{x : x2
1 + (x3 − 1)2 − 4 = 0} and {x : x2

2 + (x3 + 1)2 − 4 = 0} ,

respectively. The nonplanar space curve that is the intersection of these two surfaces is the

Figure 1.4: A pair of cylinders represented as a single fourth degree surface.

set of zeros of the column vector

f(x1, x2, x3) =
(
x2
1 + (x3 − 1)2 − 4

x2
2 + (x3 + 1)2 − 4

)
.

The 3D surface that is the union of the two cylinders is the surface defined by the set of zeros
of the product

{x : (x2
1 + (x3 − 1)2 − 4)(x2

2 + (x3 + 1)2 − 4) = 0} . (1.1)

6



Hence, a single fourth degree polynomial can represent a pair of cylinders, and this is true for
arbitrary cylinders, e.g., a pair that do not intersect. This property relaxes the requirements
on a segmentation algorithm, and it is very important in regard to the matching problem,
allowing the matching and aligning of groups of patches at once by using a single analytic
function to represent the group of patches.

1.2 Fitting implicit curves and surfaces to data
The first problem that we have to solve is how to fit implicit curves and surfaces to data.
Given a family of implicit functions parameterized by a finite number of parameters, and a
finite set of points in space, assumed to belong to the same curve or surface, we would like
to fit an implicit curve or surface to the data by estimating the parameters which minimize
the mean square distance from the data points to the curve or surface defined by those
parameters.
Unfortunately, there is no closed form expression for the distance from a point to a

generic implicit curve or surface, not even for algebraic curves or surfaces, and iterative
methods are required to compute it. We replace the real distance from a point to an implicit
curve or surface by a first order approximation. The mean value of this function, on a fixed
set of data points, is a smooth nonlinear function of the coefficients, and can be locallymin-
imized using well established non-linear least squares techniques. However, since we are
interested in the global minimum, and these numerical techniques find local minima, we
still need procedures to choose good initial estimates. In the case of algebraic curves and
surfaces, we replace the performance function. Instead of the approximate mean square dis-
tance we use a new approximation, turning the difficult multimodal optimization problem
into a computationally attractive generalized eigenproblem. The curves or surfaces com-
puted by this generalized eigenvector fitmethod usually produces good fits. The fits are often
satisfactory, not requiring further improvement, and the required computation is modest
and practical.

1.3 Geometric matching procedures
The approximate mean square distance can also be used to test hypotheses supported by
several regions of the data set. Since we are dealing with range data, the hypotheses gen-
eration is based on a theory of Euclidean invariants of algebraic curves and surfaces. This
theory of Euclidean invariants lets us decide whether two curves or surfaces of the same de-
gree match or not. A positive answer to the matching problem would mean that the second
curve or surface is almost equal to the first one, but after an unknown Euclidean coordi-
nate transformation, i.e., a rotation and a translation. If two curves or surfaces match, the
theory also lets us recover the Euclidean transformation which transforms the first curve or
surface into the second one. We also describe new techniques for the efficient computation
of projective, affine, and similarity invariants of algebraic curves and surfaces, which find
application in other related problems.
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For object recognition, we propose a system that involves indexing into a data base of
objects represented by features consisting of groups of moderately high degree algebraic
surfaces, or algebraic curves, or both. These high degree algebraic curves and surfaces have
much more discriminating power than does an individual low degree algebraic surface such
as a plane or a quadric surface. Hence, these high degree algebraic curves and surfaces are
more powerful discriminatory features than are the quadric surfaces or the high curvature
points that are usually used. Two types of representations are presently under consideration.
One is the representation of a collection of a few low degree algebraic surfaces by a single
algebraic surface of higher degree. For example, representing three planes by the set of ze-
ros of a single third degree polynomial, the product of the three first degree polynomials,
each representing one plane, or representing a quadric and a cubic surface by a single fifth
degree algebraic surface. The simple low degree primitive surfaces used are those that can
be found with modest computation. Exact segmentation is not necessary. Partial occlusion
is not a problem; a primitive surface can be estimated from a portion of the primitive surface
data. Once the primitives are found in the data, groups are then represented by single higher
degree algebraic surfaces. The other type of representation are the interest regions, which
are spherical regions in which the data is not well represented by a low degree algebraic
surface, such as first or second degree, but is well approximated by an algebraic surface of
one degree higher. For example, a region occupied by a portion of two intersecting cylin-
ders would be represented exactly by a fourth degree surface and poorly by a lower degree
surface if enough of the surfaces were sensed. More generally, a fourth degree surface might
capture a chunk of information useful for recognition purposes on a natural irregular sur-
face such as a face, whereas a lower degree surface might not. Useful interest regions are
those having the stability that the polynomial does not depend on the exact placement of the
sphere specifying the region of data to be used. For this approach, sphere sizes should be
chosen such that most spheres will contain data well approximated by low degree surfaces,
and only a few will require representation by higher degree surfaces. These higher degree
surfaces then contain considerable discriminatory power for object recognition. Figure 1.5
show an example of an interest region.
In this way we can deal with the occlusion problem. Note that the members of a group

of detected patches do not even have to be connected, so that hypotheses of objects and
their positions can be generated from more global information, and this procedure can be
implemented using a voting scheme, such as a generalized Hough transform or geometric
hashing [9, 90, 91, 15, 14, 129].

1.4 Overview of the Thesis
In Chapter 2 we develop several algorithms for fitting implicit curves and surfaces param-
eterized by a finite number of continuous parameters to data. In Chapter 3 we describe
algorithms which make use of the fitting methods for segmenting 2D edge maps and 3D
range images. In Chapter 4 we develop a computational theory of algebraic invariants. We
introduce the concept of covariantmatrix, and show how to efficiently compute invariants of
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Figure 1.5: Fourth degree interest region.

algebraic forms by performing matrix operations on covariant matrices. We consider invari-
ants with respect to general linear transformations, and orthogonal transformations. All the
invariants with respect to the general linear group are invariants with respect to the orthogo-
nal group, but the existence of an invariant linear differential operator, the Laplacian, allows
for a special treatment. In Chapter 5 we define the intrinsic frame of reference of an algebraic
curve or surface, and show how groups of curves or surfaces can be aligned at once with this
method, providing a newway to globally test a hypothesis supported by different regions of
the data set. In Chapter 6 we show how the theory of invariants of algebraic forms of Chap-
ter 4 can be applied to the computation of moment invariants. The availability of moments
of all the orders at once let us define not only an intrinsic Euclidean coordinate system, but
also an intrinsic affine coordinate system. Then the shape polynomials and the ∆-distances are
introduced as tools to measure how well a shape fits as a subset of another shape, and so,
obtaining a tool to globally test a hypothesis supported by several subsets of the data set. In
Chapter 7 we describe how all these tools can work together to build practical recognition
systems based on both algebraic surface or moment vector modeling. Finally, in Chapter 8
we present our conclusions.
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Chapter 2

Implicit Curve and Surface Fitting

In this chapter we develop algorithms for fitting implicit curves and surfaces to finite data
sets. Given a family of implicit functions parameterized by a finite number of parameters,
and a finite set of points in space, assumed to belong to the same curve or surface, we want
to estimate the parameters which minimize the mean square distance from the data points
to the surface or curve defined by those parameters. Unfortunately, there is no closed form
expression for the mean square distance from a data set to a generic curve or surface, and
iterative methods are required to compute it.
We develop a first order approximation for the the distance from a point to a curve or

surface generalizing some previous results. The mean value of this function, on a fixed set
of data points, is a nonlinear function of the coefficients, but since it is a smooth function of
these coefficients it can be minimized using well established non-linear least squares tech-
niques. However, since we are interested in the global minimum of the approximate mean
square distance, and these numerical techniques find only local minima, methods to chose
good initial estimates are required.
In the past other researchers have minimized a different mean square error, the mean

sum of squares of the values of the functions which define the curve or surface on the data
points, under different constraints. It is well known that this performance function can
produce a very biased result. We study the geometric conditions under which the curve
or surface produced by the minimization of the mean square error fails to approximate the
minimizer of the approximate mean square distance. This analysis leads us to a quadratic
constraint, a function of the data, which turns the minimization of the mean square error
into a stable and robust generalized eigenvector problem in the linear case, that is, when
the admissible functions form a vector space. For example, algebraic curves and surfaces of
arbitrary degree can be fitted with this method.
Then we introduce the reweight procedure, which in most of the cases helps to improve

the solution produced by the generalized eigenvector fit at a lower cost than the general
iterative minimization techniques. Finally, the result of the reweight procedure is fed into
the Levenberg-Marquardt algorithm in order to minimize the approximate mean square dis-
tance.
In the case of algebraic curves and surfaces, the results of these minimization processes
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enjoy the very desirable property of being invariant with respect to similarity transforma-
tions of the data set, particularly with respect to rigid body transformations. Hence, these
fits are independent of the coordinate system used.
In section 2.3 we derive the approximate distance, the first order approximation to the

real distance, from a point to a curve or surface. In section 2.4 we introduce the approximate
square distance and develop the constraints for the linear case. In section 2.5 we study the
relation between the mean square error and the approximate mean square distance, estab-
lishing the relation of our contribution with the previous work. In section 2.6 we introduce
the generalized eigenvector fit method for the linear case, in appendix 2.12 we analyze the
existence and uniqueness of the solution and in section 2.7 we analyze its complexity. In
section 2.8 we show that the curves and surfaces produced by the generalized eigenvec-
tor fit and the minimization of the approximate mean square distance are invariant under
change of basis in the linear case, and under similarity transformations in the case of alge-
braic curves and surfaces. In section 2.9 we introduce the reweight procedure and establish
its relation with previous work. In section 2.10 we describe several families of parameter-
ized implicit curves and surfaces, including superquadrics, where the methods introduced
in this chapter can be applied. Finally, in section 2.11 we survey the previous work on im-
plicit curve and surface fitting, establishing their relation with the methods introduced in
this chapter. In the next chapter we describe a variable order algorithm for the segmentation
of curves and surfaces in terms of algebraic primitives based on the techniques developed
in this chapter.

2.1 Implicit curves and surfaces

Let f : IRn → IRk be a smoothmap, a mapwith continuous first and second order derivatives
at every point. We say that the set Z(f) = {x : f(x) = 0} of zeros of f is defined by the
implicit equations

f1(x) = 0 , . . . , fk(x) = 0 .

We are interested in three particular cases for their applications in Computer Vision and
Computer Aided Design. They have special names: Z(f) is a planar curve if n = 2 and k = 1,
it is a surface if n = 3 and k = 1, and it is a space curve if n = 3 and k = 2. In order to avoid
pathological cases, we have to require that the set of points of Z(f) which are regular points
of f be dense in Z(f) , where a point x ∈ IRn is a regular point of f if the Jacobian matrix

Df(x) =

⎛

⎜⎜⎝

∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)

... . . . ...
∂fk
∂x1

(x) · · · ∂fk
∂xn

(x)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

∇f1(x)t

...
∇fk(x)t

⎞

⎟⎟⎠

has rank k, or equivalently if thematrixDf(x)Df(x)t is nonsingular. Otherwise, x is a singular
point of f .
The intersection of two surfaces is a space curve. However, this representation is not

unique, a space curve can be represented as the intersection of many pairs of surfaces. For
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example, if Z(f) is the intersection of two cylinders

f(x) =

(
x2
1 + (x3 − 1)2 − 4

x2
2 + (x3 + 1)2 − 4

)

=

(
−3− 2x3 + x2

3 + x2
1

−3 + 2x3 + x2
3 + x2

2

)

and
g(x) =

(
−3− 2x3 + x2

3 + x2
1

4x3 + x2
2 − x2

1

)

=

(
1 0

−1 1

)

f(x) ,

the second component of g represents a hyperbolic paraboloid, and the sets of zeros of f and
g are exactly the same Z(f) = Z(g) . Figure 2.1 shows these two different representations
of the same space curve. In general, for any nonsingular k × kmatrixA , the function g = Af

Figure 2.1: Different representations of the same space curve.

has the same zeros as f does Z(Af) = Z(f) . If g = Af for certain nonsingular k× k matrix
A , we say that f and g are two representations of the same set Z(f) . Particularly, for k = 1 ,
the planar curve or surface Z(f) is identical to Z(λf) , for every nonzero λ .
Unions of implicit surfaces are implicit surfaces. For example, the union of the two cylin-

ders of the previous example

{x : x2
1 + (x3 − 1)2 − 4 = 0} ∪ {x : x2

2 + (x3 + 1)2 − 4 = 0}

is the surface defined by the set of zeros of the product

{x : (x2
1 + (x3 − 1)2 − 4)(x2

2 + (x3 + 1)2 − 4) = 0} .

Hence, a single fourth degree polynomial can represent a pair of cylinders, and this is true for
arbitrary cylinders, e.g., a pair that do not intersect. Note that although the two cylinders are
regular surfaces, the points which belong to the intersection curve become singular points of
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the union, the normal vector to the surface is not uniquely defined on the curve. In general,
if Z(f1), . . . , Z(fk) are surfaces, their union is the set of zeros of the product of the functions

Z(f1) ∪ · · · ∪ Z(fk) = Z(f1 · · · fk) ,

with the points which belong to the intersection curve
⋃

i ̸=j

Z(fi) ∩ Z(fj)

being singular points of the union. The same results hold for planar curves. The case of
space curves is more complicated, but, for example, the union of two implicit space curves
Z(f) ∪ Z(g) is included in the space curve

{x : f1(x)g1(x) = 0 , f2(x)g2(x) = 0} .

2.2 Object representation, segmentation and recognition
The boundaries of most manufactured objects can be represented exactly as piecewise smooth
surfaces, which in turn can be defined by implicit equations, usually algebraic surfaces.
Given a parameterized family of implicit surfaces, image segmentation is the problem of

finding a partition of a data set into homogeneous regions, each of them well approximated
by a member of the family under certain approximation criteria.
An object O is a collection of surface patches

O =
q⋃

i=1

Oi ,

where each surface patch is a regular subset of an implicit surface

Oi ⊆ Z(fi) = {x : fi(x) = 0} i = 1, . . . , q .

A subcollection of patches, or even the whole object can be represented as a subset of a single
implicit surface

O ⊆ Z(f1 · · ·fq) =
q⋃

i=1

Z(fi) .

The boundaries of many more objects can be approximated with piecewise algebraic sur-
faces. An objectO is represented approximately as a subset of a single implicit surface Z(f) ,
under a certain approximation criterion. The two-dimensional parallel of this representation
allow us to represent sets of picture edges as subsets of a single implicit planar curve. And
the set of space curves corresponding to surface normal discontinuities, or other geometric
invariant curves such as the the lines of curvature of surfaces [140, 139], can be approxi-
mated by a subset of a single implicit space curve. This single implicit curve or surface will
be called a model of O in standard position. Figures 2.2 and 2.2 show an attempt to recover
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Figure 2.2: Degree 5 planar curve generalized eigenvector fit.

Figure 2.3: Degree 5 planar curve fit after reweight procedure.
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the boundary of an object with some of the methods to be introduced in subsequent sec-
tions. The set of zeros of a single fifth degree polynomial is fitted to the data using the
generalized eigenvector fit algorithm of section 2.6, and then the fit is improved with the
reweight procedure of section 2.9. Although the curve does not fit the data well, because the
degree is not high enough, we can appreciate how the fit is refined by the iterative reweight
procedure. Since from a practical point of view, it is not convenient to work with very high
degree polynomials, we see this unified representation as a way to represent small groups
of smooth patches. Based on this idea, we introduce the concept of interest region, and we
sketch a tentative approach to object recognition in a cluttered environment. For example in
Figure 2.2 we show how the tip of the pliers shown in Figure 2.2 can be well approximated
by a fourth degree algebraic curve, and in Figure 2.6 we show the result of fitting a single

Figure 2.4: Regions well approximated by fourth degree algebraic curves. Only the data
inside the gray areas have been used in the computations, so, the approximation is good
only there.

third degree algebraic surface to two visible surface patches of a pencil sharpener, a planar
end and a patch of cylindrical side.
If the data set is an observation of a part of a single and known object O in an unknown

position, and Z(f) is a model of O in standard position, then position estimation becomes the
problem of best fitting the data set with a member of the family of implicit curves or surfaces
defined as compositions of f with elements of the admissible family of transformations G ,
because if T ∈ G is a nonsingular transformation, then

T−1[Z(f)] = {T−1(y) : f(y) = 0} = {x : f(T (x)) = 0} = Z(f ◦ T ) ,
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Figure 2.5: Regions well approximated by fourth degree algebraic curves. Only the data
inside the gray areas have been used in the computations, so, the approximation is good
only there.

DATA SET FITTING DEGREE = 3

Figure 2.6: The original range data, and a single third degree polynomial fit to the planar
cap and patch of cylindrical side of a pencil sharpener
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that is, the implicit curve or surface Z(f) transformed by T−1 is a new implicit curve or sur-
face, the curve or surface defined as the set of zeros of f composed with the transformation
T .
Typical examples of families of transformations are rigid body, similarity, affine and pro-

jective transformations. A detailed formulation is given in section 2.10. If the object is un-
known, but it is known that it is one of a finite number of known objects modeled in standard
position by the curves or surfaces Z(f1), . . . , Z(fq) , then object recognition is equivalent to es-
timating the position of each object, assuming that the data corresponds to that object, and
then associating the data to the object which minimizes the fitting criterion.
If the data set is a view of several objects, object recognition is equivalent to segmentation

with curve or surface primitives belonging to the family of compositions of models of known
objects in standard position with admissible transformations.
Two different approximation criteria will be considered in different parts of this paper,

they are based on the 2-norm
1

q

q∑

i=1

dist(pi, Z(f))
2

and the∞-norm
sup
1≤i≤q

dist(pi, Z(f))

where {p1, . . . , pq} is a finite data set, and dist(pi, Z(f)) is the distance from the point pi to
the curve or surface Z(f) .
We are primarily interested in fitting curves and surfaces to data under the ∞-norm,

but fitting under the 2-norm is computationally less expensive. In section 3 we describe
an algorithm which follows the classical hypothesize and test approach, a curve or surface is
hypothesized by minimizing an approximation to the 2-norm, and then it is tested with the
∞-norm.

2.3 Approximate distance
Since a general formulation lets us study the three cases of interest at once, we will continue
our analysis in this way, showing at the same time that it applies to an arbitrary dimension.
In general, the distance from a regular point x ∈ IRn of a smooth map f : IRn → IRk ,

to the set of zeros Z(f) , can not be computed by direct methods. The case of a linear map
is an exception, in which case the Jacobian matrix D = Df(x) is constant, and we have the
identity

f(y) ≡ f(x) +D (y − x) .

Without loss of generality we will assume that the rank of D is k . The unique point ŷ that
minimizes the distance ∥y − x∥ to x , constrained by f(y) = 0 , is given by

ŷ = x−D†f(x) ,
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whereD† is the pseudoinverse [48, section 9.2][66, chapter 6] ofD . In our caseD† = Dt[DDt]−1 ,
with the square of the distance from x to Z(f) being

dist(x, Z(f))2 = ∥ŷ − x∥2 = f(x)t[DDt]−1f(x) .

In the nonlinear case we approximate the distance from x to Z(f) with the distance from
x to the set of zeros of a linear model of f at x , a linear map f̃ : IRn → IRk such that

f(y)− f̃(y) = O(∥y − x∥2) .

Such a map is uniquely defined when x is a regular point of f , and it is given by the trun-
cated Taylor series expansion of f

f̃(y) = f(x) + Df(x) (y − x) .

Clearly f̃(x) = f(x) , Df̃(x) = Df(x) , and we have

dist(x, Z(f))2 ≈ f(x)t
(
Df(x)Df(x)t

)−1
f(x) . (2.1)

This normalization generalizes two previous results. For k = 1 , the case of planar curves
and surfaces, the Jacobian has only one rowDf(x) = ∇f(x)t, and the right hand sidemember
of (2.1) reduces to f(x)2/∥∇f(x)∥2 , the value of the function is scaled down by the rate of
growth at the point. Turner [137] and Sampson [118] have independently proposed it for
particular cases of curve fitting. For k = n, the Jacobian matrix is square and nonsingular,
and so the right hand side member of (2.1) reduces to ∥Df(x)−1f(x)∥2 , which is the length
of the update of the Newton-Raphson root finding algorithm [42, chapter 5]

x′ = x− Df(x)−1f(x) .

Our contribution is the extension to space curves, and in general to curves and surfaces of
any dimension.
Since the right hand side member of (2.1) is a nonnegative number, from now on we will

call √
f(x)t (Df(x)Df(x)t)−1 f(x)

the approximate distance from x to Z(f) . Figure 2.7 shows several contours of constant dis-
tance, constant function value and constant approximate distance for the simplest case of
planar curve with a singular point, the pair of intersecting lines {x : x1x2 = 0} . Figure 2.8
shows the same contours for the regular curve {x : 8x21+(x2

2−4)2−32 = 0} . The contours of
constant function value tend to be farther from the singular points and closer to the regular
points than the real distance. The approximate distance solves these problems.
The approximate distance has several interesting geometric properties. It is independent

of the representation of Z(f) . IfA is a nonsingular k × k matrix, and g(x) = Af(x) , then

g(x)t[Dg(x)Dg(x)t]−1g(x) = f(x)tAt[ADf(x)Df(x)tAt]−1Af(x)
= f(x)t[Df(x)Df(x)t]−1f(x) .

(2.2)
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Figure 2.7: Contours of constant distance, constant function value and constant approximate
distance to the curve {x : x1x2 = 0} near a singular point

Figure 2.8: Contours of constant distance, constant function value and constant approximate
distance to the curve {x : 8x21 + (x2

2 − 4)2 − 32 = 0} near a regular curve
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It is also invariant to rigid body transformations of the space variables, if T (x) = Qx+ b is a
rigid body transformation, then D[f(Qx+ b)] = Df(Qx+ b)Q and so

D[f(Qx+ b)]D[f(Qx+ b)]t = Df(Qx+ b)QQtDf(Qx+ b)t = Df(Qx+ b)Df(Qx+ b)t .

A similar derivation shows that a scale transformation of the space variables produces the
corresponding scaling of the approximate distance.
Since we are interested in fitting curves and surfaces to data in a finite number of steps,

we will restrict ourselves to families of maps described by a finite number of parameters.
Let us fix a smooth function φ : IRr+n → IRk defined almost everywhere. From now on we
will only consider maps f : IRn → IRk which can be written as

f(x) ≡ φ(α, x) ,

for certain α = (α1, . . . ,αr)t , in which case we will also write f = φα . We will refer to
α1, . . . ,αr as the parameters and to x1, . . . , xn as the variables. The family of all such maps will
be denoted

F = {f : ∃α f = φα} ,

we will say that φ is the parameterization of the family F , and we will write Fφ when hav-
ing to differentiate among different parameterizations. The approximate distance from x to
Z(φα) will be denoted

δ(α, x) =
√
φα(x)t[Dφα(x)Dφα(x)t]

−1φα(x) ,

or δφ(α, x) when needed.
We will give special attention to the linear parameterization, where φ(α, x) is a linear func-

tion of α , and so F is a finite dimensional vector space of smooth maps IRn → IRk .We will
refer to this case as the linear case. In the linear case, a map f belongs to F if and only if for
every nonsingular k × k matrix A , Af also belongs to F . Vector spaces of polynomials of
degree ≤ d are typical examples of linearly parameterized families. In section 2.10 we show
several nonlinear parameterizations of families of curves and surfaces with applications in
Computer Vision.

2.4 Approximate mean square distance
Let D = {p1, . . . , pq} be a set of n-dimensional data points, and let Z(f) be the set of zeros
of f = φα : IRn → IRk . If we assume that α is known and δ(α, p1)2, . . . , δ(α, pq)2 , are
independent and uniformly distributed as the square of a normal random variable of mean
zero and variance σ2 , the sum

1

σ2

q∑

i=1

δ(α, pi)
2 (2.3)

has a χ2 distribution with q degrees of freedom.
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If the true α is unknown, it can be estimated minimizing (2.3). Curve or surface fit-
ting corresponds to the minimization of (2.3) with respect to the unknown parameters of
α1, . . . ,αr .
Assuming that the variance σ2 is known, the problem is equivalent to minimizing the

approximate mean square distance from the data set D to the set of zeros of f = φα

∆2
D(α) =

1

q

q∑

i=1

δ(α, pi)
2 (2.4)

Depending on the particular parameterization φ , the r parameters α1, . . . ,αr might not
be independent. For example, by (2.2) the sum does not change if we replace Af for f ,
where A is a nonsingular k × k matrix, and if f̂ minimizes the approximate mean square
distance (2.4) so doesAf̂ . In other words, the parameters might not be identifiable. This lack
of identifiability is not a problem though, because we are not interested in the function f̂ ,
but in its set of zeros Z(f̂) . For example, in the linear case the symmetric matrix constraint

1

q

q∑

i=1

Df(pi)Df(pi)
t = Ik , (2.5)

equivalent to k(k + 1)/2 scalar constraints on the parameters, can be imposed on f without
affecting the set of zeros of a minimizer of (2.4). The reason is that ∆2

D(α) is defined only if
the symmetric matrices

Df(p1)Df(p1)
t , . . . , Df(pq)Df(pq)

t

are nonsingular, and since all of these matrices are also nonnegative definite, they are posi-
tive definite, and their mean

1

q

q∑

i=1

Df(pi)Df(pi)
t (2.6)

is positive definite as well, in which case there exists a nonsingular k× k matrixA such that

Ik = A

(
1

q

q∑

i=1

Df(pi)Df(pi)
t

)

At =
1

q

q∑

i=1

D[Af ](pi)D[Af ](pi)
t ,

and Af satisfies the constraint (2.5). We can take A as the inverse of the Cholesky decom-
position of (2.6). Since f belongs to F if and only if Af does, the constraint (2.5) does not
impose any restriction on the set of admissible curves or surfaces {Z(f) : f ∈ F} .
The problem of computing a local minimum of an expression like (2.4) is known as the

nonlinear least squares problem, and it can be solved using several iterative methods [42,
chapter 10]. Among them, the Levenberg-Marquardt algorithm [92, 99] is probably the best
known, and excellent implementations of it are available in subroutine packages such as
MINPACK [100]. A short description of the Levenberg-Marquardt algorithm in the context
of our problem is given in Appendix A.
Every local minimization algorithm requires a good starting point. Since we are inter-

ested in the global minimization of (2.4), even using the Levenberg-Marquardt algorithm we
need a method to chose a good initial estimate.
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2.5 Mean square error
The study of ∆2

D(α) in a particular case will provide us with a good strategy to choose an
initial estimate in certain cases, such as, for example, in the linear case. Let us assume that
the matrix function Df(x)Df(x)t is constant on the set Z(f) , in particular Z(f) does not
have singular points. For k = 1 this means that the length of the gradient of the unique
component f1 of f is constant on Z(f), but nothing is said about its orientation. Linear
functions obviously have this property because in this case Df(x) is already constant. But
circles, spheres and cylinders, among other families of functions, have the same property. If
f also satisfies the constraint (2.5) and the data points are close to the set of zeros of f , by
continuity of Df we have

Ik =
1

q

q∑

i=1

Df(pi)Df(pi)
t ≈ Df(pj)Df(pj)

t j = 1, . . . , q

and the approximate mean square distance∆2
D(α) is approximated by the mean square error

ξ2D(α) =
1

q

q∑

i=1

∥f(pi)∥2 . (2.7)

In this particular case, when DfDf t is constant on Z(f) , the minimizers of (2.7) and (2.4),
both constrained by (2.5) are almost the same, and we will see in the following section that
in the linear case the global minimizer of (2.7)-(2.5) can be computed at a much lower cost
than a local minimizer of (2.4)-(2.5).
Furthermore, we have observed that, if f̂ is the global minimizer of ∆2

D(α) , and the
matrix Df̂Df̂ t is not close to a singular matrix on D , the minimizer of ξ2D(α) constrained
by (2.5) is a very good approximation of f̂ , and the Levenberg-Marquardt algorithm started
from this estimate converges quickly after a few iterations. Geometrically, Df̂Df̂ t not close
to a singular matrix means that no point of D is close to a singular point of f̂ . Since f̂ is
unknown, we can not test beforehand whether Df̂Df̂ t is close to a singular matrix or not. In
order to speed up the convergence of the Levenberg-Marquardt algorithm, after computing
the minimizer of the mean square error, and before the iterative minimization, we apply the
reweight procedure,which is described after the analysis of the linear case, in section 2.9.
Most of the previous work on fitting implicit curves and surfaces to data has been based

on minimizing the mean square error, but with different constraints. In section 2.11 we give
a detailed description of these earlier methods.

2.6 Generalized eigenvector fit
In this section we show that in the linear model, the minimization of the mean square error
(2.7) constrained by (2.5) reduces to a generalized eigenvector problem. In section 2.11 we
show that this method, introduced by us [127, 128], generalizes several earlier eigenvector
fit methods.
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Let X1(x), . . . , Xh(x) be linearly independent smooth functions, for example polynomi-
als, and let us denote

X = (X1, . . . , Xh)
t : IRn → IRh

In this section all the maps can be written as linear combinations of the components of X ,

f = FX : IRn → IRk

for a k× hmatrix F of real numbers. The parameter vector α has r = hk elements, and it is
equal to the concatenation of the rows of F

Fij = α(i−1)h+j i = 1, . . . , k j = 1, . . . , h .

Since differentiation is a linear operation, we have

Df = D[FX] = F [DX] ,

where DX is the Jacobian of X . The constraint (2.5) become a quadratic constraint on the
elements of F

Ik =
1

q

q∑

i=1

F [DX(pi)][DX(pi)
t]F t = FNDF

t (2.8)

where
ND =

1

q

q∑

i=1

[DX(pi)DX(pi)
t]

is symmetric nonnegative definite. The approximate mean square distance ∆2
D(α) does not

have any special form, but the mean square error (2.7) becomes

ξ2D(α) =
1

q

q∑

i=1

∥FX(pi)∥2

=
1

q

q∑

i=1

trace
(
F [X(pi)X(pi)

t]F t
)

=
1

q
trace

(
FMDF

t
)
,

(2.9)

where
MD =

1

q

q∑

i=1

[X(pi)X(pi)
t] ,

the covariance matrix ofX over the data set D . This matrix is classically associated with the
normal equations of the least square method [66, chapter 6]. And several researchers have
introduced linear or quadratic constraints on F to fit implicit curves or surfaces, k = 1 ,
to data [4, 13, 20, 33, 36, 37, 64, 104, 103, 110, 118] minimizing (2.9). However, all of these
constraints do not take into account the data, they are fixed and predetermined constraints
on the coefficients, and most of them introduce singularities in parameter space, i.e., certain
parameters are never solutions of the corresponding method. A detailed description of these
methods is given in section 2.11 below. Our contribution is the introduction of the quadratic
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constraint (2.8) which is function of the data, and the handling of space curves within the
same framework. The generalized eigenvector fit algorithm is more robust than most of the
previous direct methods, except perhaps for Pratt’s simple fit algorithm [110], explained in
section 2.11, which seems to be equivalent both in computational cost and robustness. We
plan to carry out a detailed comparison of the generalized eigenvector fit and the simple fit
algorithms in the near future.
Note that ifMD is singular and a row Fj of the matrix F belongs to the null space ofMD ,

then
0 = FjMDF

t
j =

1

q

q∑

i=1

|FjX(pi)|2

and the function fj = FjX is identically zero on D , in which case fj interpolates all the data
set. If

1 = FjNDF
t
j =

1

q

q∑

i=1

∥∇fj(pi)∥2

as well, then Fj has to be a row of the minimizer matrix F̂ of (2.9)-(2.8), when such a mini-
mizer exists. In appendix 2.12we analyze the existence and uniqueness of solution and show
that, if ND is positive definite and F̂1, . . . , F̂k are the eigenvectors of the symmetric-positive
pencil MD − λND corresponding to the least k eigenvalues 0 ≤ λ1 ≤ · · ·λk ,

F̂iMD = λiF̂iND i = 1, . . . , k

F̂iNDF̂j = δij =

{
1 if i = j
0 if i ̸= j

i, j = 1, . . . k ,

then F̂ , the matrix with rows F̂1, . . . , F̂k , is a minimizer of (2.9)-(2.8).
In general, the matrix ND is rank-deficient, but the problem can be reduced to an equiv-

alent positive-definite one of size equal to the rank of ND . A minimizer exists if and only if
the rank of ND is at least k , and the solution is unique if k = rank(ND) or, if k < rank(ND)
and λk < λk+1 .
We have already shown examples of generalized eigenvector planar curve fit in figures

2.2,2.2, 2.2, and 2.2. Figure 2.6 shows an example of generalized eigenvector nonplanar
space curve fit, the intersection of two cylinders. Figure 2.10 shows an example of algebraic
fourth degree surface fit. The original surface is the surface of revolution generated by the
curve of figure 2.8, and the solution is the set of zeros of a general fourth degree polynomial
with 35 coefficients. Figure 2.11 shows another example of generalized eigenvector space
curve fit, again the intersection of two surfaces, where the solution fits the data very well,
but it is very different from the original curve elsewhere. In general, even if the solution
fits the data well, we can not expect to reconstruct the same original curve or surface, the
curve or surface the data is a sample of. Depending on the amount of noise and the extent
of the original curve or surface sampled by the data, the generalized eigenvector fit can
produce this kind of solution or not. It is less likely to occur if the reweight procedure and
the Levenberg-Marquardt algorithms are used, and the solution is tested after each of the
three steps.
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ORIGINAL CURVE DATA POINTS

SOLUTION SUPERIMPOSED

Figure 2.9: Generalized eigenvector space curve fit. The solution is the intersection of two
unconstrained quadrics.

ORIGINAL SURFACE NOISY DATA GENERALIZED EIGENVECTOR FIT

Figure 2.10: Fourth degree algebraic surface fit.
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ORIGINAL CURVE DATA POINTS

SOLUTION SUPERIMPOSED

Figure 2.11: Generalized eigenvector space curve fit. The solution is the intersection of two
unconstrained quadrics.
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2.7 Computational cost
The complexity of evaluating the matricesMD and ND depends on the functions which con-
stitute the vectorX . In the case of polynomials, whenX is the vector of monomials of degree
≤ d , the elements of MD are moments of degree ≤ 2d and the elements of ND are integral
combinations of at most n moments of degree ≤ 2(d − 1) . For example, for polynomials of
degree two in three variables we have

X =
(
1 x1 x2 x3 x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

)t

Other basis vectors, such as the Bernstein basis are more expensive to evaluate, but are
potentially more stable [54, 53]. The solution is independent of the basis though, as we
explain in section 2.8. We circumvent the stability problem by using centered and scaled
monomials, also explained in section 2.8. The center of the data set is its mean value, and
the scale is the square root of the mean square distance to the center. The computation of
the center and scale only require the moments of degree ≤ 2 , the moments used for the
eigenvector line or planar fit.
Computing the matrices from their definitions require more operations than computing

the vector of moments of degree ≤ 2d , and then filling the matrices by table look up. The
tables are computed off-line. The vector of monomials of degree ≤ 2d has s = (2d+n

n ) = O(h)
components, and can be evaluated by exactly s − n − 1 multiplications, where h = (d+n

n ) =
O(dn) is the number of components ofX , the size of the matrices. It follows that q(s−n−1)
multiplications and (q − 1)(s− n− 1) additions are required to evaluate the moments, and
then h(h+ 1)/2 operations to fillMD and at most nh(h+ 1) operations to fill ND . The total
number of operations required to build the matrices is O(qh+ nh2) .
An algorithm which computes all the eigenvalues and eigenvectors is given by Golub

and Van Loan [66], requiring about 7h3 flops, where h is the order of the matrices, and a flop
roughly constitutes the effort of doing a floating point add, a floating point multiply, and
a little subscripting. That algorithm uses the symmetric QR algorithm to compute all the
eigenvalues and corresponding eigenvectors. When all the eigenvectors are computed the
symmetric QR algorithm requires about 5h3 flops.
Since we only need to compute a few eigenvalues and eigenvectors, we use the alterna-

tive methods implemented in EISPACK [122, 60], that is, tridiagonalization, the QR algo-
rithm and inverse iteration. Tridiagonalization of a symmetric matrix requires about 2/3h3
flops. The computation of each eigenvalue using the QR algorithm without computing
eigenvectors requires about 5h flops per eigenvalue. When the eigenvalues are well sep-
arated from each other, as is generally the case in our matrices due to measurement errors
and noise, only one inverse iteration is required to compute an eigenvector. Each inverse
iteration requires about 4h flops. From all this analysis we conclude that the proposed algo-
rithm requires about 3h3 flops. The alternative implicit curve and surface fitting algorithms
all have the same order of complexity [33, 110].
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2.8 Independence and invariance
The solution produced by the generalized eigenvector fit method is independent of the basis.
In particular, it is independent of the order of the elements of a particular basis. If Y1, . . . , Yh

is another basis of the vector space spanned byX1, . . . , Xh , andwe denote Y = (Y1, . . . , Yh)t ,
then there exists a nonsingular h×hmatrix A such thatX = AY . Every admissible function
can be written as f(x) = FX = [FA]Y , and

FMDF
t = F

(
1

q

q∑

i=1

[X(pi)X(pi)
t]

)

F t = [FA]

(
1

q

q∑

i=1

[Y (pi)Y (pi)
t]

)

[FA]t ,

with the corresponding identity for ND , because, by linearity of differentiation

D[FX ] = FD[AY ] = [FA]DY .

It follows that F solves the generalized eigenvector fit problem with respect to the basisX if
and only if [FA] solves the same problem but with respect to the basis Y . Since the approxi-
mate distance, and a fortiori the approximate mean square distance, are clearly independent
of the basis, the minimizer of the approximate mean square distance is independent of the
basis too.
If f is a solution of the generalized eigenvector fit or a minimizer of the approximate

mean square distance to the data set D = {p1, . . . , pq} , i.e., the curve or surface Z(f) best
fits the data set D , we want to know for which families of nonsingular transformations T
the transformed curve or surface T−1[Z(f)] = Z(f ◦ T ) best fits the transformed data set
T−1[D] = {T−1(p1), . . . , T−1(pq)} .
If the vector space spanned by X is the space of polynomials of maximum degree d ,

then the solution of the generalized eigenvector fit is invariant with respect to similarity
transformations. If T (x) = Ax + b is an nonsingular affine transformation and f(x) is a
polynomial, the composition f(T (x)) is a polynomial of the same degree, whose coefficients
are polynomials in A, b , and the coefficients of f(x) . If the components of X form a basis
of the vector space of polynomials of degree ≤ d , then so do the components of Y (x) =
X(T (x)) , because the transformation T is nonsingular. It follows that there exists an h ×
h nonsingular matrix T ⋆ , whose coefficients are polynomials of degree ≤ d in A and b
such that X(T (x)) ≡ T ⋆X(x) is a polynomial identity [141, chapter III,§4]. Furthermore, the
map T 2→ T ⋆ defines a faithfull representation of the n-dimensional affine group in the
h-dimensional general linear group, a 1 − 1 homomorphism of groups, which in particular
satisfies [T−1]⋆ = [T ⋆]−1 . We study in deeper detail a closely related representation in the
context of invariant theory, in Chapter 4. For example, if T is a translation in the plane

T (x) =
(
x1 + b1
x2 + b2

)
,

and X is the vector of monomials of degree ≤ 2 in two variables

X = ( 1 x1 x2 x2
1 x1x2 x2

2 )
t ,
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then

X(T (x)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
x1 + b1
x2 + b2

(x1 + b1)2

(x1 + b1)(x2 + b2)
(x2 + b2)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
b1 1 0 0 0 0
b2 0 1 0 0 0
b21 2b1 0 1 0 0
b1b2 b2 b1 0 1 0
b22 0 2b2 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2
x21
x1x2
x22

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= T ⋆X(x) .

If f = FX is a solution of the generalized eigenvector fit for the data set D , and T is a
similarity transformation, that is, A = λQ , with Q orthogonal and λ a nonzero constant,
then g = f◦T = [FT ⋆]X is the solution of the same problem for the data set T−1[D] , because

MT−1[D] =
1

q

q∑

i=1

[X(T−1(pi))X(T−1(pi))
t ]

=
1

q

q∑

i=1

[ [T−1]⋆X(pi) ][ [T
−1]⋆X(pi) ]

t = [T ⋆]−1MD [T ⋆]−t

which implies that
[FT ⋆]MT−1[D][FT ⋆]t = FMDF

t ,

and with respect to the matrix ND , by the chain rule

DY = D[X(T (x)] = [DX](T (x)) · D[T (x)] = T ⋆ DX A = λT ⋆ DX Q,

which, since Q is orthogonal, implies that

NT−1[D] = λ2 [T ⋆]−1ND[T
⋆]−t ,

and so
[FT ⋆]NT−1[D][FT ⋆]t = λ2 FNDF

t .

The factor λ2 in the constraint equation does not change the solution of the problem.
A similar result holds for the minimizer of the approximate mean square distance (2.7),

but we omit the proof.
Figures 2.8 and 2.8 shows an example of generalized eigenvector fit of sixth degree al-

gebraic curves to two observations of the same object in different positions. The curves are
slightly different because so are the data sets.
The matrix MD could be very badly conditioned when X is the vector of monomials

of degree ≤ d . The matrix ND is generally better conditioned than MD , but not too much.
When the matrices are poorly conditioned the results are not accurate, or even totally wrong.
Even worse, the eigenvalue computation can diverge. Based on the results of the current
section, we would like to find a new basis Y = AX for the polynomials of degree ≤ d ,
such that the matrices computed with respect to this new basis are well conditioned. Such
a basis has to be function of the data set. One of such basis is the Bernstein basis [54, 53].
Since the evaluation of the Bernstein basis has a higher complexity than the power basis, we
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a

b

Figure 2.12: Invariance to translation and rotation. (a): Data set A. (b): Degree 6 generalized
eigenvector fit to data set A.
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a

b

Figure 2.13: Invariance to translation and rotation. (a): Data set B. (b): Degree 6 generalized
eigenvector fit to data set B.
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follow an alternative approach that is usually found in the statistical literature [38, 25]. The
center of the data set is its mean value

p̄ =
1

q

q∑

i=1

pi ,

and its scale is the square root of the mean square distance to the center

σ2 =
1

q

q∑

i=1

∥pi − p̄∥2 = trace

(
1

q

q∑

i=1

[pi p
t
i]− p̄ p̄t

)

.

If T is the similarity transformation T (x) = σ·x+p̄ , then solving the generalized eigenvector
fit or minimizing the approximate mean square distance with respect to the original data set
D is equivalent to solving the corresponding problem using the power basis with respect to
the transformed set T−1[D] , and this is the proper way to implement this algorithm. First
the center and scale are computed, then the data set is transformed and the corresponding
fitting problem is solved using the power basis, finally the coefficients are backtransformed
using T ⋆ . It is even better not to backtransform the polynomial g , the solution of the
transformed problem, and evaluate the solution of the original problem f in two steps

1. x′ = 1
σ (x− p̄)

2. f(x) = g(x′)
,

when such an evaluation becomes necessary.

2.9 The reweight procedure
Let f = φα and w1, . . . , wq be positive numbers. Let us call

ξ2D,w(α) =
1

q

q∑

i=1

wi ∥f(pi)∥2 (2.10)

the weighted mean square error. For planar curves and surfaces, k = 1 , and wi = 1/∥∇f(pi)∥2 ,
theweightedmean square error reduces to the approximate mean square distance. The point
pi is given a heavy weight only if it is close to a singular point of Z(f) . Note that if f̂ is a
minimizer of the approximate mean square distance constrained by (2.5), and pi is close to a
singular point of Z(f̂) , then both ∥f̂(pi)∥2 ≈ 0 and ∥∇f̂(pi)∥2 ≈ 0 , and the contributions of
pi to both the mean square error (2.7) and the constraint (2.5) are negligible. Minimizing the
mean square error, instead of the approximate mean square distance, is like fitting a curve or
surface to the data set, but without considering the points which are close to singularities of
Z(f̂) . If the minimizer of the approximate mean square distance has singular points, we can
not expect them to be well approximated by the set of zeros of the curve or surface solution
of the generalized eigenvector fit problem.
In general we take

wi(α) = trace
(
[Df(pi)Df(pi)

t]−1
)
,
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and based on the same arguments used in section 2.4, we impose the constraint

1

q

q∑

i=1

wi

(
Df(pi)Df(pi)

t
)

= Ik (2.11)

without modifying the set of zeros of the minimizer of the approximate mean square dis-
tance.
Now, if we keep w = (w1, . . . , wq)t fixed, and we stay within the linear model f(x) =

FX(x) , the minimization of (2.10) constrained by (2.11) is a generalized eigenproblem, as in
the previous section. In this case we minimize trace(FMD,wF t) constrained by FND,wF t =
1 , where

MD,w =
1

q

q∑

i=1

wi

(
X(pi)X(pi)

t
)

ND,w =
1

q

q∑

i=1

wi

(
DX(pi)DX(pi)

t
)
.

If f̂ is a minimizer of the approximate mean square distance, and the weighs w1, . . . , wq

are close to w1(f̂), . . . , wq(f̂) , by continuity the minimizer of the weighted linear problem is
close to f̂ . This property suggests the reweight procedure, described in Figure 2.14, where ϵ is
a small positive constant which controls when to stop the loop.

procedure Reweight (F,D)
F ′ := F
do

F := F ′

w := w(F )
F ′ := minimizer of trace(F tMD,wF )

constrained by F tND,wF = Ik
while∆2

D(F
′) < (1− ϵ)∆2

D(F )
if∆2

D(F
′) < ∆2

D(F ) then
return(F ′)

else
return(F )

Figure 2.14: The reweight procedure for the generalized eigenvector fit.

In the linear model the initial value of F will be the solution produced by the generalized
eigenvector fit with uniform weights, the case of the previous section. In a practical imple-
mentation, and in order to save time, the reweight procedure would be called only if this
initial value of F does not pass a goodness of fit test. At each iteration we solve a generalized
eigenproblem and then recompute the weights. We continue doing this while the approx-
imate mean square distance decreases. Then, if the value of F returned by the reweight
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procedure does not pass the same goodness of fit test we call the Levenberg-Marquardt al-
gorithm.
The reweight procedure is similar in spirit to Sampson’s algorithm [118] and those iter-

ative weighted least squares algorithms that appear in the regression literature [111]. There
is no certainty of convergence though, and according to Sampson, the system of equations
is so complex that it would be extremely difficult to determine the conditions under which
such a scheme converges [84]. These statement agrees with what we have observed during
the course of this study.
We have already shown in figures 2.2 and 2.2 how the reweight procedure improves the

result of the generalized eigenvector fit, even though the final result would not be accepted
by the goodness of fit test. In figure 2.15 we show how the reweight procedure improves the
fitting curve in a case where the result provides an acceptable approximation of the data.

a b

Figure 2.15: Reweight procedure improving generalized eigenvector fit. (a): generalized
eigenvector fit. (b): after reweight procedure.

2.10 Other families of curves and surfaces
In this section we consider several potential applications of the methods introduced in this
paper.
In certain cases, such as in the family of cylinders or superquadrics, the parameters can be

divided in two groups : shape and positional parameters. The radius of a cylinder is a shape
parameter and all the other parameters, which describe its axis, are positional parameters.
In the family of polynomials of a given maximum degree all the parameters are shape pa-
rameters, because the composition of a polynomial with a nonsingular affine transformation
is a polynomial of the same degree.
It is particularly important to consider the case in which all the parameters are positional

parameters, the case of a family of compositions of a fixed map g with a parameterized
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family of transformations G

F = {f : ∃ T ∈ G f(x) ≡ g(T (x))} ,

for its applications to object recognition and position estimation.

2.10.1 Transformations of a curve or surface
A family of transformations, for example rigid body, affine or projective transformations,
can be given in parametric form

G = {Tα : α ∈ IRr} ,

in which case the parameterization of the admissible functions is

φ(α, x) = g(Tα(x)) ,

where g(x) is a fixed map whose set of zeros we will call the model in standard position.
Explicit parameterizations of some of these families are discussed below in this section. The
problem of fitting a member of the family F = {f : ∃α f(x) ≡ g(Tα(x))} to a set of data
points D = {p1, . . . , pq} is position estimation or generalized template matching : we assume
that the data belong to a single object, and that this object is an observation of the model not
necessarily in the standard position, and possibly partially occluded. We minimize ∆2

D(α) ,
the approximate mean square distance from the data points to the model Z(g) transformed
to the position and orientation defined by the transformation Tα

Z(g ◦ Tα) = {x : g(Tα(x)) = 0} = {T−1
α (y) : g(y) = 0} = T−1

α [Z(g)] .

This method was used by Cooper, Hung and Taubin [35] to locate surfaces matching
curves in the context of the stereo problem. Figure 2.16 shows a simple example of planar
curve position estimation within this framework. How to choose initial estimates for the
minimization of the approximate mean square distance is the remaining problem of this
formulation, particularly when we have to deal with very complex objects or occlusions,
and it is the subject of subsequent chapters.

2.10.2 Projection of space curves onto the plane
The methods for the minimization of the approximate mean square distance introduced in
this paper can be used to improve Ponce and Kriegman’s algorithm [109] for object recogni-
tion and positioning of 3D objects from image contours.
In their formulation object models consist of collections of parametric surface patches

and their intersection curves. The image contours considered are the projections of surface
discontinuities and occluding contours. They use elimination theory [47, 65, 97, 117, 120, 27]
for constructing the implicit equation of the image contours of an object observed under
orthographic, weak perspective or perspective projection. The equation is parameterized by
the position and orientation of the object with respect to the observer.
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ORIGINAL OBJECT MODEL DEGREE =  3

NEW POSITION OBSERVATION ( 100 POINTS )

OBJECT IN ESTIMATED POSITION MODEL IN ESTIMATED POSITION + DATA

OBJECT IN ESTIMATED POSITION + DATA REAL AND ESTIMATED POSITION

Figure 2.16: Simple position estimation.
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Note that object models defined by implicit curves and surfaces can be handled using
the same techniques. For example, under orthographic projection the implicit equation of
the projection of an algebraic curve Z(f) onto the plane can be computed eliminating the
variable x3 from the pair (f1(x), f2(x)) , and since the occluding contour of a surface Z(f) is
the curve defined as the intersection of Z(f)with Z(∂f/∂x3) , the projection of the occluding
contour is in this case the discriminant of f with respect to z3 [141, chapter I, §9].
They use more complex iterative methods to compute the distance from a point to the

hypothesized curve than the approximate distance, and so, it becomesmuchmore expensive
to minimize their approximation to the mean square distance than in our case.

2.10.3 Parameterizations of some transformation groups
The general rigid body transformation is T (x) = Qx+b , where Q is a rotation matrix, an or-
thogonal matrix of unitary determinant, and b is a n-dimensional vector. The general affine
transformation can be written as usual as T (x) = Ax + b , where A is a n × n nonsingular
matrix and b is a n-dimensional vector. Alternatively, we can write it as T (x) = LQx + b ,
where L is a nonsingular lower triangular matrix and Q is a rotation matrix.
The usual parameterization of a general rotation matrix is trigonometric

⎛

⎜⎝
cos θ1 sin θ1 0

− sin θ1 cos θ1 0
0 0 1

⎞

⎟⎠

⎛

⎜⎝
cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

⎞

⎟⎠

⎛

⎜⎝
1 0 0
0 cos θ3 sin θ3
0 − sin θ3 cos θ3

⎞

⎟⎠ ,

where θ1, θ2, θ3 are the so called Euler angles. Since we have to iterate on the parameters, we
propose the alternative rational parameterization, originally due to Cayley [143, chapter II,
B.10], and which is valid in any dimension.
A square matrix Q is called exceptional if

| I +Q | = 0 ,

and non-exceptional otherwise, where I is the identity matrix. That is, a matrix es exceptional
if it has −1 as an eigenvalue. If the matrix Q is non-exceptional, let us consider the matrix

U = (I −Q)(I +Q)−1 = (I +Q)−1(I −Q) .

The matrix U so defined is non-exceptional as well, because

| I + U | =
∣∣∣(I +Q)−1 ((I +Q) + (I −Q))

∣∣∣ = 2 | I +Q |−1 ,

and the matrix Q can be recovered from U in the same way, because

I − U = (((I +Q)− (I −Q))(I +Q)−1) = 2Q(I +Q)−1

I + U = (((I +Q) + (I −Q))(I +Q)−1) = 2I(I +Q)−1

(I − U)(I + U)−1 = (2Q(I +Q)−1) (2I(I +Q)−1)−1 = Q .
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Furthermore, it is not difficult to see that Q is a rotation if and only if U is skew-symmetric.
For n = 2 , a skew-symmetric matrix can be written as

U =
(

0 u
−u 0

)
,

and no real 2× 2 skew-symetric is exceptional, because

| I + U | = 1 + u2 ≥ 1 .

The rational parameterization of the 2×2 non-exeptional rotation matrices is defined by the
map R2 → O(2) given by

Q(u) =
(
1 −u
u 1

)(
1 u

−u 1

)−1

=

⎛

⎜⎜⎜⎝

1− u2

1 + u2

2u

1 + u2

2u

1 + u2

1− u2

1 + u2

⎞

⎟⎟⎟⎠ . (2.12)

The only exceptional two-dimensional rotation is the matrix
(−1 0

0 −1

)

which corresponds to a rotation of π radians.
For n = 3 , we can write the general skew-symmetric matrix in the following way

U =

⎛

⎜⎝
0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞

⎟⎠ ,

because, if u = (u1, u2, u3)t and v are two three-dimensional vectors, then Uv is equal to the
vector product u× v . Again, no skew-symmetric 3× 3 matrix is exceptional, because | I +
U | = 1+u2

1+u2
2+u2

3 ≥ 1 , and the only exceptional rotation matrices are those corresponding
to rotations of π radians. The rational parameterization of the 3 × 3 rotation matrices is
defined by the map R3 → O(3) given by

Q(u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + u2
1 − u2

2 − u2
3

1 + u2
1 + u2

2 + u2
3

2(u1u2 − u3)

1 + u2
1 + u2

2 + u2
3

2(u1u3 − u2)

1 + u2
1 + u2

2 + u2
3

2(u1u2 + u3)

1 + u2
1 + u2

2 + u2
3

1− u2
1 + u2

2 − u2
3

1 + u2
1 + u2

2 + u2
3

2(u2u3 − u1)

1 + u2
1 + u2

2 + u2
3

2(u1u3 − u2)

1 + u2
1 + u2

2 + u2
3

2(u2u3 + u1)

1 + u2
1 + u2

2 + u2
3

1− u2
1 − u2

2 + u2
3

1 + u2
1 + u2

2 + u2
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.13)

Note that this function maps a neighborhood of the origin u = 0 continuously onto a
neighborhood of the identity matrix Q(0) = I . Clearly, if Q0 is a rotation, then, the map
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u 2→ Q0Q(u) maps a neighborhood of the origin onto a neighborhood of the matrix Q0 , and
in this way we can deal with the exceptional orthogonal matrices. Also note that the three
parameters have explicit geometrical meaning. If u2 = u3 = 0 , the matrix Q(u) becomes

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0
1− u2

1

1 + u2
1

−2u1

1 + u2
1

0
2u1

1 + u2
1

1− u2
1

1 + u2
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

a rotation about the x1 axis. More generally, if v(t) describes the trajectory of a point which
rotates with constant angular velocity, the motion equations can be written as v̇ = u ×
v = Uv , where v̇ is the time derivative of v(t) . In the language of Lie groups, the skew-
symmetric matrices are the infinitesimal generators of the group of rotations.

2.10.4 Cylinders, algebraic curves and surfaces
The implicit equations of a straight line can be written as

{
Qt

1x− α4 = 0
Qt

2x = 0

where Q1, Q2, Q3 are the columns of a general rotation matrix Q(α1,α2,α3) parameterized
as in (2.13), with α1,α2,α3 real parameters, in which case the general implicit representation
of a cylinder is given as the set of zeros of

(Qt
1x− α4)

2 + (Qt
2x)

2 − α2
5 = xt(I −Q3Q

t
3)x− 2α4Q

t
1x+ α2

4 − α2
5 , (2.14)

the set of points at a distance |α5| from the straight line. By homogeneity, the set of zeros of
(2.14) does not change if we multiply it by the constant κ2 = (1+α2

1 +α2
2 +α2

3)
2 ̸= 0 , so that,

the cylinder can also be represented as the set of zeros of

f(x) = xt(κ2I − q3q
t
3)x− 2α4κq

t
1x+ κ2(α2

4 − α2
5) , (2.15)

where

q1 = κQ1 =

⎛

⎜⎝
1 + α2

1 − α2
2 − α2

3

2(α1α2 + α3)
2(α1α3 − α2)

⎞

⎟⎠ and q3 = κQ2 =

⎛

⎜⎝
2(α1α3 + α2)
2(α2α3 − α1)

1− α2
1 − α2

2 + α2
3

⎞

⎟⎠ .

This representation is particularly attractive because the coefficients of f(x) are polynomi-
als in the five unconstrained parameters α1, . . . ,α5 , and so, much less expensive to evaluate
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than the trigonometric functions. Explicitly,

f(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + α2
1 + α2

2 + α2
3)(α

2
4 − α2

5)
−2α4((1 + α2

1)
2 − (α2

2 + α2
3)

2)
−4α4(1 + α2

1 + α2
2 + α2

3)(α1α2 + α3)
−4α4(1 + α2

1 + α2
2 + α2

3)(α1α3 − α2)
(1 + α2

1 + α2
2 + α2

3)
2 − 4 (α1α3 + α2)2

−8 (α1α3 + α2)(α2α3 − α1)
−4 (α1α3 + α2)(1− α2

1 − α2
2 + α2

3)
(1 + α2

1 + α2
2 + α2

3)− 4(α2α3 − α1)
−4 (α2α3 − α2)(1− α2

1 − α2
2 + α2

3)
4 (1 + α2

1 + α2
2)(1 + α2

3)− 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1

x2

x3

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The same procedure that we applied above, the multiplication of the implicit equation of
the cylinder by a power of κ to convert the rational parameterization of the coefficients into
a polynomial one can be applied to the composition of a fixed polynomial with a rigid body
transformation to obtain a polynomial parameterization of all the members of the family,
even if some shape parameters are present, as in the cylinder.

2.10.5 Superquadrics
According to Solina [124], superquadrics were discovered by the Danish designer Peit Hein
[61] as an extension of basic quadric surfaces and solids. They have been used as primitives
for shape representation in Computer Graphics by Barr [10], in Computer Aided Design by
Elliot [51], and in Computer Vision by Pentland [107], Bajcsy and Solina [8], Solina [124] and
Boult and Gross [22, 23, 73].
Barr divides the superquadrics into superellipsoids, superhyperboloids and supertoroids.

We will only consider the case of superellipsoids here as an example. The usual representa-
tion of a superellipsoid is the set of zeros of f(x) = g(x)− 1 , where

g(x) =

⎛

⎝
∣∣∣∣∣
utx

a1
− b1

∣∣∣∣∣

2
ϵ1

+

∣∣∣∣∣
vtx

a2
− b2

∣∣∣∣∣

2
ϵ1

⎞

⎠

ϵ1
ϵ2

+

∣∣∣∣∣
wtx

a3
− b3

∣∣∣∣∣

2
ϵ2

and [u v w] is a general rotation matrix parameterized by the three Euler angles θ1, θ2, θ3 , and
a1, a2, a3, b1, b2, b3, ϵ1, ϵ2 are unconstrained parameters. Solina [124] proposes an alternative
parameterization with

f(x) =
√
a1a2a3 ( |g(x)|ϵ2 − 1 )

to overcome the bias problem associated with the minimization of the mean square error,
and Gross and Boult [73] compare the performance of these two representations with other
two, one of them proposed by themselves.
We propose the following parameterization, a generalization of the parameterization of

cylinders (2.15), which simplifies the computation of the partial derivatives with respect to
α , required by the Levenson-Marquardt algorithm

φ(α, x) =
(
α2
7(q

t
1x− α4κ)

2α10 + α2
8(q

t
2x− α5κ)

2α10
)α11

α10 + α2
9(q

t
3x− α6κ)

2α11 − κ2α11 ,
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where q1, q2 and q3 are the three columns of the parameterized rotation matrix (2.13) multi-
plied by κ2 . Superhyperboloids and supertoroids can be parameterized in a similar way.

2.11 Related work on implicit curve and surface fitting
According to Duda and Hart [48], the earliest work on fitting a line to a set of points was
probably motivated by the work of the experimental scientist; the easiest way to explain a set
of observations is to relate the dependent and independent variables by means of the equa-
tion of a straight line. Minimum-squared-error line fitting [48, section 9.2.1] and eigenvector
line fitting [48, section 9.2.2] are the two classical solutions to this classical problem. With
our notation, in both cases the mean square error (2.5) is minimized, with F = (F1 F2 F3)
and X = (1 x1 x2) . In the first case the linear constraint F3 = 1 is imposed, while the
quadratic constraint F 2

2 +F 2
3 = 1 is imposed in the second case. Early work on eigenvector

line fitting can be traced back to Pearson [106] and Hotelling [82] on principal components
analysis. Jollife [85, chapter 1] gives a brief history of principal components analysis.
Pratt [110] affirms that there appears to be relatively little written about fitting planar

algebraic curves to data [104, 103, 13, 4, 137, 36, 37, 20, 64, 118, 33], and none whatsoever of
least-squares fitting of nonplanar algebraic surfaces. We can add to this statement that we
have been unable to locate any previous work on fitting space curves defined by implicit
functions, except for Ponce and Kriegman [109] who fit the projection of a space curve to
two-dimensional data points, and only a few references on fitting quadric surfaces to data
[62, 75, 57, 31, 16, 17] However, there is an extensive literature on fitting parametric curves
and surfaces to scattered data, for example [41, 59, 63, 96, 105].
The first extensions of the line fitting algorithms concentrated on fitting conics to data

minimizing the mean square error. Since the implicit equations are homogeneous, a con-
straint has to be imposed on the coefficients to obtain a nontrivial solution, and either linear
or quadratic constraints were considered. With our notation a conic is the set of zeros of a
polynomial f(x) = FX , where F = (F1, . . . , F6) , and X = (1, x1, x2, x2

1, x
2
2, , x1x2, x2

2)
t .

Biggerstaff [13], Albano [4] and Cooper and Yalabik [36, 37] impose the constraint F1 = 1 .
This constraint has the problem that no conic that pass through the origin satisfies it, and so
it can not be a solution of the problem. Paton [104, 103] imposes the constraint F2

1+· · ·+F 2
6 =

1 , and Gnanadesikan [64] uses F 2
2 + · · · + F 2

6 = 1 . These two constraints are not invari-
ant with respect to translation and rotation of the data, while Bookstein’s constraint [20]
F 2
4 + F 2

5 /2 + F 2
6 is. However, the previous two quadratic constraints allow the solution

to have F4 = F5 = F6 = 0 , a straight line, while Bookstein does not. Pratt [110] shows
that this is a great disadvantage, and proposes a new quadratic constraint for the case of
circles. Cernuschi [31] derives a quadratic constraint which is invariant under the action of
the Euclidean group for quadric surfaces, generalizing Bookstein’s constraint.
In general, linear constraints turn the minimization of the mean square error into a linear

regression problem, while quadratic constraints convert it into an eigenvalue problem. It
is important to note that in all the previous cases, the constraints are independent of the
data. They have been chosen beforehand. In our generalized eigenvector fit the quadratic
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constraint is a function of the data.
More recently Chen [33] fitted general linearly parameterized planar curves to data. With

our notation an admissible function is f(x) = FX = F1X1 + · · ·FhXh . He imposes the
constraint Fh = 1 turning the minimization into a linear regression problem, and he solves
the normal equations with the QR algorithm [66, chapter 6]. This constraint looks arbitrary
because it rules out all the curves with Fh = 0 or close to zero. A different ordering of the
basis vector would produce a different solution. In the case of fitting circles to data shown
as an application in Chen’s paper, where X = (1 x1 x2 x2

1 + x2
2)

t , a straight line can not be a
valid solution as in Bookstein’s algorithm, and the same kind of behavior has to be expected.
Chen apparently developed his algorithm independently of the earlier work of Pratt

[110], whose simple fit algorithm is very close to Chen’s, except for the fact that he solves
the ordering problem in a clever way. Pratt presents his algorithm for algebraic curves
and surfaces, but it can be formulated for the general linear case with the same effort. Let
D = {p1, . . . , pq} be the set of data points. Let us first assume that q = h− 1 , where h is the
number of elements of X , and the h× q design matrix

XD = [X(p1) · · ·X(pq)]

has maximal rank h− 1 . The function

f(x) = det ([XD X ])

is a linear combination of the elements of X , with the coefficients being the cofactors of the
elements of the h-th column. Note that for every i = 1, . . . , h− 1

f(pi) = det ([XD X(pi)]) = 0

because the matrix has two identical columns. The function f(x) interpolates the data points.
Pratt calls this technique, which generalizes the classical Vandermonde determinant [40,
chapter II], exact fit. The coefficients can be efficiently computed by first triangularizing XD
via column operations at cost O(h3) , and then computing the cofactors at an additional
cost O(h2) . In the general case he applies the Cholesky decomposition to the square matrix
XDX t

D = qMD obtaining the unique square lower triangular matrix Lwith positive diagonal
elements such that XDX t

D = LLt , then he deletes the last column of L and treats the result
as though it were the h × (h − 1) matrix XD of the exact fit case. In this procedure the
coefficient of Xh is never zero and corresponds to the constraint Fh = 1 , producing the
same solution as Chen’s algorithm. The way Pratt overcomes the ordering problem is by
performing the Cholesky decomposition with full pivoting, permuting the elements of X
during the decomposition. No one coefficient is singled out as having to be nonzero. Pratt
calls this procedure simple fit.
With respect to iterative methods, Sampson [118] introduced a reweight procedure to

improve Bookstein’s algorithm in the case of “very scattered” data. He explains that this
reweighting scheme does not necessarily converge, but he does not make use of further
optimization techniques.
Solina [124] and Gross and Boult [73] fit superquadrics [10] to data minimizing the mean

square error (2.7) using the Levenberg-Marquardt algorithm.
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Ponce and Kriegman [109] introduce two iterative methods for estimating the distance
from a point to an implicit curve, and then use the Levenberg-Marquardt algorithm to mini-
mize the sum of the squares of these estimates. Both methods are obviously more expensive
than minimizing the approximate mean square distance.

2.12 Analysis of the generalized eigenvector fit
LetM andN be r×r symmetric matrices,N nonnegative definite, and let F be a k×rmatrix.
Let us consider the problem of minimizing

trace (FMF t) (2.16)

constrained by
FNF t = Ik . (2.17)

Let h = rank(N) , then h ≥ k , otherwise the problem has no solution, because from (2.17)

h = rank(N) ≥ rank(FNF t) = k .

We will see that this condition is also sufficient for the existence of solution. Also k =
rank(F ) , because

k = min{k, h} ≥ rank(F ) ≥ rank(FNF t) = k .

Let Fi denote the i-th row of F , and DFi the Jacobian with respect to the r variables of
Fi .We can rewrite (2.16) as

k∑

i=1

FiMF t
i ,

and (2.17) as

FiNFj = δij =

{
1 if i = j
0 if i ̸= j

i, j = 1, . . . , k .

Let us consider the function

ϕ(F,λ) =
k∑

l=1

FlMF t
l −

k∑

l=1

k∑

j=1

λlj[FlNF t
j − δlj] .

where λ is a k × k matrix. If F̂1, . . . , F̂k are the rows of a minimizer F̂ of (2.16)-(2.17), by the
Lagrange multipliers theorem [6, Theorem 7-10], there exist a matrix λ̂ , such that

0 =
1

2
DFi[ϕ](F̂ , λ̂) = F̂iM −

k∑

j=1

λ̂ijF̂jN i = 1, . . . , k ,

or in matrix form
F̂M = λ̂F̂N .
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Since the matrixM is symmetric and nonnegative definite, so is FMF t for every matrix F ,
and for certain orthogonal k × k matrix Q

Q[FMF t]Qt = [QF ]M [QF ]t

is diagonal. Since Qt = Q−1 and (2.16) and (2.17) are invariant with respect to similarity
transformations

trace (FMF t) = trace ([QF ]M [QF ]t)

and
FNF t = Ik ⇔ [QF ]N [QF ]t = Ik ,

the matrix F is a solution of the minimization problem if and only if QF is. We may assume
without loss of generality, that F̂MF̂ t is diagonal. In this case λ̂ is nonnegative definite and
diagonal because

λ̂ = λ̂ Ik = λ̂ F̂NF̂ t = F̂MF̂ t ,

or equivalently
F̂iM = λ̂iiF̂iN i = 1, . . . , k ,

F̂i is a generalized eigenvector of the symmetric-positive pencil M − λN corresponding to
the eigenvalue λ̂ii . It is clear that if 0 ≤ λ1 ≤ · · · ≤ λh are the eigenvalues of M − λN ,
the choice λ̂11 = λ1, . . . , λ̂kk = λk defines a solution of the minimization problem, and a
solution clearly exists. The solution is unique if and only if λk < λk+1 , and it is a subspace
of dimension s ≤ h− k if λk = λk+1 = · · · = λk+s and, s = h− k or λk+s < λk+s+1 .
The pencil M−λN is symmetric-positive ifN is also positive definite. Algorithms to solve

a symmetric-positive eigenproblem are well known [66, Sec. 8.6.], and very good subroutine
packages are available such as EISPACK [122, 60] . The following is a brief description of
such an algorithm.
Since N is symmetric and positive definite, it has a Cholesky decomposition L−1NL−t =

Ir , where L is nonsingular and lower triangular. Let 0 ≤ λ1 ≤ · · · ≤ λk be the least eigen-
values of H = L−1ML−t , and let U1, . . . , Uk be corresponding orthogonal row eigenvectors.
The eigenvalues can be computed with the QR algorithm , and then the eigenvectors can be
computed one by one by Inverse Iteration . If U is the k × r matrix with rows U1, . . . , Uk ,
λ = diag(λ1, . . . ,λk) , and F = UL−1 , then

FM = UHLt = λULt = λFN ,

FNF t = UU t = Ik ,

and F is the solution of the original problem. F can be computed by backsubstitution .
If N is rank-deficient, as it is for example in the case of polynomials, we can reduce the

original problem to a symmetric-positive one, generalizing the previous algorithm [67].
Since N is nonnegative definite, using the Cholesky decomposition with full pivoting

, we can find an r × h matrix L1 and an r × (r − h) matrix L2 such that N = L1Lt
1 ,

NL2 = 0 , and the square matrix L = [L1 L2] is nonsingular. The matrix L is a product of
transpositions and elementary triangular transformations. In this case the matrix L−1NL−t
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is not the identity matrix, but a diagonal matrix with h ones followed by r − h zeros on the
diagonal. The matrix H = L−1ML−t , can be decomposed in the following way

H =

(
H3 +H2H1H t

2 H2H1

H1H t
2 H1

)

=

(
Ih H2

0 I(r−h)

)(
H3 0
0 H1

)(
Ih H2

0 I(r−h)

)t

The matricesH1, H2, H3 are computed in this order from the corresponding blocks ofH . Let
U1 be a k×hmatrix, U2 a k× (r−h)matrix, and U = [U1 U2] . Since L is nonsingular, we can
write F = UL−1 for certain matrix U . Then

trace (FMF t) = trace (UHU t)
= trace (U1H3U t

1) + trace ([U1H2 + U2]H1[U1H2 + U2]t) .

and
FNF t = Ik ⇔ U1U

t
1 = Ik .

Since U2 is not included in the constraint, and thematrix [U1H2+U2]H1[U1H2+U2]t is nonneg-
ative definite, if F is a solution of theminimization problem, then U2 = −U1H2 . The original
problem has been reduced to minimizing trace (U1H3U t

1) constrained by U1U t
1 = Ik ,which

is a particular case of the symmetric positive problem.
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Chapter 3

Segmentation Algorithms

As an application of the ideas introduced in preceding chapters, we have implemented two
versions of the same segmentation algorithm. The first one segments planar edge maps into
algebraic planar curve patches, and the second one segments range images into algebraic
surface patches. In both cases the maximum degree is a parameter that can be chosen by
the user, but due to numerical and complexity considerations, it is not appropriate to use
patches of degree higher than four or five. There is a straightforward extension of these
algorithms to the segmentation of space edge maps, composed of surface discontinuities,
surface normal discontinuities, occluding boundaries, or lines of curvature, into algebraic
space curve patches, which we are currently implementing.
These algorithms are partially based on Besl and Jain’s variable-order surface fitting al-

gorithm [12, 11], Silverman and Cooper’s surface estimation clustering algorithm [121], and
they are also related to Chen’s planar curve reconstruction algorithm [33].
Both versions have the same structure with minor differences at the implementation

level. The basic building blocks are: noise variance estimation, region growing, and merg-
ing.
Our philosophy is that this segmentation is most useful when the appropriate segmen-

tation is well defined, i.e., when there are range or surface normal discontinuities between
regions, each of which is well represented by a single polynomial.

3.1 Noise variance estimation
Since the algorithm follows an hypothesize and test approach, tests for accepting or rejecting
a hypothesized curve or surface as a good approximation for a given set of data points have
to be chosen. Also, good subsets of the data set to start the region growing process, the seeds,
have to be located. These two subjects are closely related.
Our tests are based on modeling a smooth region of the data set as samples of an im-

plicit curve or surface plus additive perturbations in the orthogonal direction to the curve or
surface. These orthogonal perturbations are assumed to be independent Gaussian random
variables of zero mean. The square of the noise variance at one data point σ̂(x) is estimated
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by fitting a straight line or plane to the data in a small neighborhood of the point, in our im-
plementation a circle or ball of radius equal to a few pixels, using the eigenvector fit method,
and then computing the approximate mean square distance to the fitted line or plane. This
estimator can be biased if the curvature of the curve or surface is large at the point.
Although a much better method to estimate the noise variance would be to fit a circle

or ellipsoid to the data in a neighborhood of the point and then measure the approximate
mean square distance to this curve or surface, we have experienced very good results with
the former method.
The first step of the algorithm is to estimate the square of the noise variance at every data

point, and to store these values in an array for latter usage. In the case of surfaces, we only
compute the estimated noise variances on a subsampled image, to save computational time.
The second step of the algorithm is to build a histogram of the square noise variance. The

data points with square noise variance in the top ten percent of the histogram are marked
as outliers. This points correspond to mixed regions, corners, or surface normal disconti-
nuities. All the remaining points are left available to start growing regions from the small
neighborhoods of them used to estimate the noise variances, because a straight line or plane
well approximates the data in that neighborhood.

3.2 Goodness of fit tests
During the region growing process, curve or surfaces are hypothesized as good approxima-
tions for a given subset of data. These hypotheses have to be tested because the criterion
used for fitting is different from the desired one. We have chosen the thresholds used to
test the validity of a hypothesized curve or surface approximation for a set of data points
as functions of the noise variance estimates for the individual points of the set, instead of
choosing global thresholds for the full data set, as in [12]. The reasons are two. In the first
place, we have observed that in the case of surfaces the point noise variance estimated with
the method described in the previous section is non-stationary, varying slowly according
to the angle of the normal with respect to the vertical, that is, the viewing direction. In
the second place, local thresholds allow parallel implementations of the algorithms, because
distant regions become independent of each other. The data set can be spatially divided into
blocks of approximately the same size, the region growing algorithm can be run in parallel
for each block, and then pairs of neighboring blocks can also be merged in parallel. A pyra-
mid architecture can be used to implement such an algorithm. The two implementations
that we present in this paper are sequential, and are only intended to show the usefulness
of the previous fitting techniques. We will implement the corresponding parallel versions in
the near future.
Let S = {p1, . . . , pq} , be a set of data points, and let α be a parameter vector which

defines an implicit curve or surface.
The mean noise variance estimate on the set S will be denoted

σ̂2
S =

1

q

q∑

i=1

σ̂(pi) ,
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where σ̂(pi) is the noise variance at the point pi estimated with the method of the previous
section. The maximum approximate square distance from the set S to the curve or surface
defined by α will be denoted

δ2S(α) = max
1≤i≤q

δ(α, pi)
2 .

Two tests are performed on the parameter vector α to decide whether to accept the curve
or surface define be α as a good approximation of the set S or not. The first test is related to
the χ2 statistic. The parameter vector α passes the first test if the approximate mean square
distance satisfies the inequalities

ϵ1 σ̂
2
S < ∆2

S(α) < ϵ2 σ̂
2
S ,

where 0 < ϵ1 < 1 < ϵ2 are test constants. If α satisfies the first test, then we perform the
second test. The parameter vector α passes the second test if

δ2S(α) < ϵ3∆
2
S(α) ,

where ϵ3 > 1 is another test constant.
If the parameter vector α does not satisfy the first test with ∆2

S(α) ≤ ϵ1 σ̂2
S , that is,

with the approximate mean square distance to small, the curve or surface defined by α is
overaproximating the data set, and the hypothesis has to be rejected. For example, if we try to
test a pair of very close parallel lines as an approximation of a noisy straight line segment.
In a variable-order algorithm, this means that the order has to be decreased. If the parameter
vector α does not satisfy the first test with ϵ1 σ̂2

S ≤ ∆2
S(α) , that is, with the approximate

mean square distance to large, too many points of S are too far away from the curve or
surface defined by α , and it can not possibly pass the second test. The hypothesis has to be
rejected. Finally, our goal is to accept the parameter α only if the curve or surface defined by
α approximates well every point of S , that is, the maximum approximate distance is not
to large with respect to the variance estimate for the set. The second test takes care of this
situation.

3.3 Region growing
The basic structure of the variable-order region growing algorithm can be described as fol-
lows. An increasing sequence F1 ⊆ · · · ⊆ ForderMAX of families of functions is given. A
region is a data structure R = (S, f, order) , where S is a connected subset of data points,
and f is an element of Forder which well approximates every point of S . A point x is well
approximated by the curve or surface defined by the parameter vector α if the approximate
distance satisfies the inequality

δ(α, x)2 < ϵ2 σ̂
2
S ,

where ϵ2 is the same constant of the previous paragraph. In the case of surfaces, we also
test surface normal continuity. When the noise variance is estimated at a point, the equation
of the fitting line or plane also provides an estimate for the curve or surface normal at the
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point. If the angle between the gradient of the surface defined by α at a point under test and
the estimate for the surface normal at the same point is larger than a certain value, the point
is rejected.
The region growing starts by finding a seed region R = (S, f , 1) , where S is a subset of

data points and f is an element of F1 , whose set of zeros Z(f) approximates well every
point of S . In our case F1 is the family of polynomials of first degree, and a seed region
is the subset of data points in the neighborhood of a point not marked as an outlier, which
was used to estimate the noise variance at the point, together with the fitted straight line or
plane.
Then, given a current region R = (S, f , order) , the following loop is repeated until no

further grow in S is observed. Themaximal connected region S′ of points well approximated
by f and which intersects the initial seed set is computed. If S′ does not have more points
than S , then neither S nor f are changed and the loop is exited. Otherwise a new member
f ′ of Forder is fitted to S′ , and if it satisfies the goodness of fit test, the region R is replaced by
R = (S ′, f ′, order) , and the loop repeated. If f ′ does not satisfy the test, the loop is exited.
When the loop is exited, if order is equal to the maximum order orderMAX the region growing
is finished returning the current regionR = (S, f , order) . Otherwise a member f′ of Forder+1

is fitted to S , and if it satisfies the goodness of fit test, f is replaced by f ′ , order is increased
to order + 1 , that is, R is replaced by R = (S, f ′, order + 1) , and the loop is traversed once
more. If f ′ does not satisfy the test, the region growing is finished returning the current
region R = (S, f , order) .
In our implementation of the algorithm for planar curve segmentation, the second order

corresponds to circles, the third to general second degree polynomials, the fourth to third
degree polynomials, and so on. In the case of surfaces the second order corresponds to
spheres and cylinders, the third order to second degree polynomials, the fourth to third
degree polynomials, and so on. The reasons for introducing an extra family between first
and second degree polynomials are two. Firstly, we want to locate large and smooth curve
or surface patches without curve or surface normal discontinuities, singularities. Since any
pair of straight line or planar patches can be well approximated by the set of zeros of a valid
second degree algebraic curve or surface, the set of zeros of the product of the two linear
equations, without the new family, it is equally likely that a region grow across a curve or
surface normal discontinuity than along a smooth curved area. The second reason is that
slightly curved areas of the data set which are almost well approximated by a straight line
are usually best approximated by second degree curves or surfaces with many branches,
such as pairs of lines or planes, hyperbolas or hyperboloids, and ellipses or ellipsoids with
very unequal mean axes.
The reason for introducing the merging process is that once a region has grown large

enough, very few new points compatible with the current hypothesized curve or surface
can be found, and the fit corresponding to the next order is generally rejected due to the
same problem that we just explained for the case of almost flat data sets approximated by
second degree curves or surfaces. The approximate mean square distance is too small. With
the merging algorithm a larger proportion of points is included in the current region, and
there exist a possibility of a successful fit of higher order.

49



We have restricted the curve or surface types used in the region growing process to those
that can be computed only with the generalized eigenvector fit algorithm, without the need
of improving them with the reweight heuristic and the iterative Levenson-Marquardt algo-
rithm, saving time in the computation. For planar curves we use straight lines and circles.
For surfaces, the parallel of circles are spheres and cylinders, but since fitting cylinders re-
quire the Levenberg-Marquardt algorithm and a strategy to compute an initial estimate, we
also moved the spheres and cylinders to the merging phase, leaving a single order planar
region growing.
Figures 3.1 and 3.2 provide a description of our implementation of the region grow-

ing algorithm for planar curves. The corresponding surface algorithms are simplified

procedure GrowRegionFromPoint (p)
S := SeedSet (p)
order := Line
f := FitImplicit (order ,S)
R := (S, f , order)
CopyRegion (R,R′)
orderMAX := Circle
LOOP:
GrowRegion (R,R′)
TEST:
if order ′ = Circle or order = Line
CopyRegion (R′,R)
if order = Circle then

order := Line
f := FitImplicit (order ,S)
if TestOrder (R) ̸= Increase then
CopyRegion (R,R′)
orderMAX := Line
goto LOOP

else if order = Line
if orderMAX = Circle

order := Circle
f := FitImplicit (order ,S)
goto LOOP

return (R′)

Figure 3.1: Region growing algorithm for planar curves.

versions of the planar curve algorithms described above. TestOrder (R) is a procedure
which implements the goodness of fit test described in the previous section for the region
R = (S, f , order) , and returns one of three values : Decrease, Accept, or Increase. It is clear
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procedure GrowRegion (R,R′)
do

∆1 := CompatiblePoints (R)
δ1 := |∆1|
S := S ∪∆1

f := FitImplicit (order ,S)
∆2 := CompatiblePoints (R)
δ2 := |∆2|
S ′′ := S ∪∆2

S := LargestComponent (p,S ′′)
if |S| < |S ′′|/2 then
if order = Circle then order := Line
return

δ3 := |S ′′|− |S|
if |S| > |S ′| then
CopyRegion (R,R′)

δ4 := δ1 + δ2 + δ3
if TooFewPoints (order ,S) then
if order = Circle then order := Line
return

while max{|δ1|, |δ2|, |δ3|, |δ4|} > δMIN

return

procedure CompatiblePoints (R)
B := {x : ∥x∥ ≤ radius}
S ′ := S
do

S := S ′

S ′ := {x ∈ S ⊕ B : IsCompatible (x, f , order)}
whileR′ ̸= R
return (R)

Figure 3.2: Core of region growing algorithm for planar curves.
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what the procedure FitImplicit (order ,S) does. With respect to GrowRegion (R,R′) , the
procedure CompatiblePoints (R) computes a not necessarily connected region intersecting
the current region by sequentially dilating the current region and checking for compati-
ble points. IsCompatible (x, f , order) just checks that the approximate distance from x to
the set Z(f) be within the limits imposed by the second part of the goodness of fit test.
In the case of surfaces it also checks the angular deviation between the estimated normal
and the gradient of f at the point. Without this check some surface patches grow along
very thin strips of neighboring transversal patches. LargestComponent (p,S) computes the
largest connected component of the set S which is adjacent or contains the point p. Finally,
TooFewPoints (order ,S) rejects a region if it has shrinked to much with respect to the given
order.

3.4 Merging
The variable-order merging tries to findmaximal subsets of the smooth regions or, depending
on the application, groups of smooth regions, each of them represented as a subset of the
set of zeros of a single implicit curve or surface. The merging process can be seen as a
generalization of region growing, where regions grow not by single points, but by groups of
points.
At every step the variable order merging produces the best possible merge of two neigh-

boring regions. At the beginning all the neighboring pairs which are well fitted by a surface
of the current order are computed and inserted into a priority queue according to the value
of the maximum relative approximate square distance, the number

δ2S(α)

∆2
S(α)

,

where S is the union of the two sets being considered for merging. The priority queue
is implemented with a binary heap. Every node of this heap consists of a tern of regions
(R,R′,R′′) , where R′ and R′′ are two neighboring regions, the set S of the region R is the
union of the sets S′ and S ′′ corresponding to the region R′ andR′ , and the element f of R ,
is an acceptable fit of the current order for S.
Then, and while the queue is not empty, the pair corresponding to the minimum value

is deleted from the queue and merged, creating a new region and deleting two, all the pairs
which are still in the queue and involve either one of the twomerged regions are deleted, and
all the pairs which involve the new region are recomputed and reinserted in the queue. The
procedureMerging (order , list) , described in figure 3.3, is called sequentially for increasing
values of order, until the maximum one, with list equal to the current list of regions. The
procedureMergeAndFit (order ,R,R′) , fits a surface of the requested order to the union of
the two regions, and returns a nonempty data structure only if a fit of the given order suc-
cessfully passes the goodness of fit test. Finally, the procedures MinOrder and MaxOrder
impose preliminary limits before the fitting precess. For example, if two regions are cur-
rently approximated by quadrics, it does not make sense to fit a plane to the union, nor an
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procedure Merging (order , list)
heap := ∅
for R′ ∈ list
for R′′ ∈ list\{R′}

node := MergeAndFit (order ,R′,R′′)
ifnode ̸= ∅ then
Insert (node, heap)

while heap ̸= ∅
(R,R′,R′′) := DeleteMin (heap)
R′ := R
list := list\{R′′}
for R ∈ list\{R′}
if S ∩ S ′ ̸= ∅ then
Delete (R, heap)

for R′′ ∈ list\{R′}
if S ′′ ∩ S ′ ̸= ∅ then

node := MergeAndFit (order , (R′,R′′)
if R ̸= ∅ then
Insert (node, heap)

return (list)

procedure MergeAndFit (order ,R′,R′′)
if order < MinOrder (order ′, order ′′) then
return (∅)

if order > MaxOrder (order ′, order ′′) then
return (∅)

S := S ′ ∪ S ′′

f := FitImplicit (order ,S)
if TestOrder (R) ̸= Accept then

R := ∅
return ((R,R′,R′′))

Figure 3.3: Merging procedure.
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algebraic surface of degree higher than four, because the product of the two quadrics already
approximates the union well.

3.5 Experimental results
Figures 3.4, 3.5 and 3.6 show the results of our segmentation algorithm applied to contours
obtained by thresholding gray level images taken by a standard TV quality CCD camera.
Figures 3.8 and 3.7 show the corresponding results for the segmentation of range images
taken with a White Scanner model 100 laser range finding system. And finally, figure 3.9
shows the segmentation of one range image from the NRCC data base [113], the file “jet4”.
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Figure 3.4: Segmentation of planar curve. (a): Data Set. (b): Segmentation after region
growing with straight line and circle primitives. (c): After merging (b) using general second
degree algebraic curve primitives (conics). (d): After merging (c) using general third degree
algebraic curve primitives.
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Figure 3.5: Segmentation of planar curve. (a): Data Set. (b): Segmentation after region
growing with straight line and circle primitives. (c): After merging (b) using general second
degree algebraic curve primitives (conics). (d): Aftermerging (c) using general fourth degree
algebraic curve primitives.
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Figure 3.6: Segmentation of planar curve. (a): Data Set. (b): Segmentation after region
growing with straight line and circle primitives. (c): After merging (b) using general second
degree algebraic curve primitives (conics). (d): After merging (c) using general third degree
algebraic curve primitives.
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Figure 3.7: Segmentation of 3D scene : sphere, cylinder and box. (a): Original range image
represented as a gray level image. (b): The same range image from a perspective view. (c):
White areas represent regions occluded by shadows. (d): Result of region growing with
planar patches reconstructed as a gray level image. (e): The same result from a perspective
view. (f): The segmentation after the region growing. (g): Result of merging (d)-(e)-(f)
with general second degree algebraic surface patches (quadrics), reconstructed as a gray
level image. (h): The same result from a perspective view. (f): The segmentation after the
merging.
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Figure 3.8: Segmentation of 3D scene : spray bottle and cylinders. (a): Original range image
represented as a gray level image. (b): The same range image from a perspective view. (c):
White areas represent regions occluded by shadows. (d): Result of region growing with
planar patches reconstructed as a gray level image. (e): The same result from a perspective
view. (f): The segmentation after the region growing. (g): Result of merging (d)-(e)-(f)
with general second degree algebraic surface patches (quadrics), reconstructed as a gray
level image. (h): The same result from a perspective view. (f): The segmentation after the
merging.
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Figure 3.9: Segmentation of 3D scene : NRCC “jet4” file. (a): Original range image repre-
sented as a gray level image. (b): The same range image from a perspective view. (c): White
areas represent regions occluded by shadows and the background. (d): Result of region
growing with planar patches reconstructed as a gray level image. (e): The same result from
a perspective view. (f): The segmentation after the region growing. (g): Result of merging
(d)-(e)-(f) with general second degree algebraic surface patches (quadrics), reconstructed as
a gray level image. (h): The same result from a perspective view. (f): The segmentation after
the merging.
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Chapter 4

Invariant theory of algebraic forms

In previous chapters we have described methods for fitting algebraic curves and surfaces to
data points. In this chapter we develop the tools for efficiently solving the algebraic curve
and surface matching problem. This problem can be described as follows. We start with a
database of curves or surfaces, a finite set of algebraic curves or surfaces, the sets of zeros
of the polynomials f1, . . . , fr , These curves or surfaces describe complex regions of object
boundaries, regions which uniquely determine the position of the corrersponding object.
Then, for every other curve or surface extracted from the data set, the zeros of a polynomial
f , we have to decide whether or not there exist a coordinate transformation x′ = T (x) , and
an element fi of the database, such that the transformed polynomial f′(x′) = f(T−1(x′))
defines almost the same curve or surface as the one defined by fi . The transformation will
be Euclidean for the recognition and positioning of objects from range data, but we will
also consider similarity, affine, and projective transformations for other applications. If we
obtain an affirmative answer, then we want to recover the unknown transformation from
the coefficients of the matching pair of polynomials. This transformation would correspond
to the hypothetical presence of the object, that the curve or surface defined by fi represents
a region of, in the data set.
Our approach will be based on computing and comparing invariants. An invariant of an

algebraic curve or surface is a function of the coefficients of the defining polynomials which
does not change after a change of coordinates. Every curve or surface will be represented as
a point in a multidimensional invariant space, and the classification will be carried out using
an appropriate distance measure, or a statistical classifier, in invariant space,
By introducing homogeneous coordinates, every curve or surface described in Euclidean

space by a polynomial in n indeterminates, can be described in projective space by its asso-
ciated homogeneous polynomial in n + 1 indeterminates. A polynomial is homogeneous, or
a form, if every one of its terms is of the same degree. If φ(x0, . . . , xn) is a form of degree d
in n + 1 variables, and ψ(u1, . . . , un) is a regular polynomial of degree ≤ d in n variables,
the following equations define the processes of homogeneization and dehomogeneization.

ψ(u1, . . . , un) 2→ φ(x0, . . . , xn) = xd
0 ψ
(
x1
x0
, . . . , xn

x0

)

φ(x0, . . . , xn) 2→ ψ(u1, . . . , un) = φ(1, u1, . . . , un)
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For example, the quadratic form

φ(x0, x1) = 1
2Φ(2,0)x

2
0 +Φ(1,1)x0x1 +

1
2Φ(0,2)x

2
1 (4.1)

is the homogeneous version of the one dimensional quadratic polynomial

ψ(u1) = 1
2Φ(2,0) u

2
1 +Φ(1,1) u1 +

1
2Φ(0,2) .

Algebraic invariants of polynomials have to be defined with respect to a linear group
of transformations. The groups of Euclidean, similarity, and affine transformations, are sub-
groups of the projective group, and every invariant with respect to one of these group, is also
invariant with respect to all the previous groups, because every one of these four groups
contain all the previous groups as subgroups. It is natural to start studying invariants of
forms with respect to the projective group, i.e., homogeneous linear transformations of the
homogeneous coordinates x′ = Ax , where A is a nonsingular n × n matrix, an element
of the general linear group GL(n). Projective invariants of algebraic forms also have other
applications in Computer Vision, in the recognition and classification of three-dimensional
shapes from the two-dimensional projections of their occluding contours [142, 58]. This ap-
plications make a systematic treatment of the subject interesting by itself, independently of
our intended application.
When invariants with respect to a subgroup of affine transformations are considered,

such as Euclidean transformations, it is better to work with regular polynomials. A general
affine transformation x′′ = Ax + b can be decomposed as a homogeneous transformation
x′ = Ax , followed by a translation x′′ = x′ + b . Every regular polynomial can be writ-
ten in a unique way as a sum of homogeneous polynomials of different degrees, and these
homogeneous parts transform independently of each other under homogeneous coordinate
transformations, i.e., coordinate transformations without translation part. In this chapter
we will consider Euclidean transformations without translation part. The general case will
be solved by defining the center of an algebraic curve or surface in Chapter 5. A general
Euclidean transformation will be homogeneous when written with respect to coordinates
systems with the origins in the centers of both curves or surfaces. Euclidean invariants
are in one-to-one correspondence with joint Cartesian invariants of the homogeneous terms
with respect to the curve or surface center. A Cartesian invariant is an invariant with re-
spect to the orthogonal group. Since we are primarily interested in Euclidean matching of
algebraic curves and surfaces, it is extremely important to compute Cartesian invariants of
forms. Every invariant of a form with respect to the general linear group, is also invari-
ant with respect to the orthogonal group, but we will be able to exploit the structure of the
orthogonal transformations and construct other Cartesian invariants.
According to Dieudonné [45, 44], by the middle of the nineteenth century it was known

that, if in the quadratic form (4.1) we make a linear change of variables x′ = Ax , where A
is a nonsingular 2× 2 matrix, we obtain a new quadratic form

φ′(x′
1, x

′
2) = 1

2Φ
′
(2,0)x

′
1
2 +Φ′

(1,1)x
′
1x

′
2 +

1
2Φ

′
(0,2)x

′
2
2 ,

and the function
I(φ) = Φ(2,0)Φ(0,2) −Φ2

(1,1) (4.2)
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satisfies the following identity
I(φ′) = |A|−2 I(φ) , (4.3)

where |A| is the determinant of A . A function I(φ) of the coefficients of a form φ , is
a relative invariant of weight two, if the identity (4.3) is satisfied. More generally, a relative
invariant of weight w of a form, φ(x) of degree d in n variables is a homogeneous function
I(φ) of the coefficients, such that, if x′ = Ax is a nonsingular homogeneous coordinate
transformation, and φ′(x′) = φ(A−1x′) is the polynomial which describes the set zeros of φ
in the new coordinate system, then I(φ′) = |A|−w I(φ) . An absolute invariant is a relative
invariant of weight zero.
The classical invariant theory of algebraic forms was developed in the nineteenth cen-

tury by Boole [21], Cayley [30], Clebsh [34], Elliot [50], Gordan [68], Grace and Young [69],
Hilbert [77, 78], Sylvester [126], and others [43, 117], to solve the problem of classification
of projective algebraic varieties, i.e., sets of common zeros of several homogeneous polyno-
mials. In this century, the main contributions have been by Weyl [143], Mumford [101] and
others [74, 125]. The projective coordinate transformations define a relation of equivalence
in the family of algebraic varieties, with two varieties being equivalent if one of them can
be transformed into the other by a projective transformation. The projective classification
of algebraic varieties is the description of the geometric properties which characterize the
members of the classes of equivalence, and for a given curve or surface, the determination
of its class of equivalence. For example, the algebraic varieties defined by binary quadratic
forms like (4.1) are sets of one or two points, so that, there are two classes of equivalence,
and the value of the invariant (4.2) determines the class. The form corresponds to the one
point class if I(φ) = 0 , and it corresponds to the two points class if I(φ) ̸= 0 . If we consider
polynomials with real coefficients and real projective coordinate transformations, instead
of complex polynomials and transformations, there are three classes corresponding to sets
with zero, one and two points, respectively. In the real case, the form corresponds to the
zero points class if I(φ) < 0 , it corresponds to the two points class if I(φ) > 0 , and it cor-
responds to the one point class if I(φ) = 0 . The invariant (4.2) is called the discriminant of
(4.1), because it discriminates among the different classes.
The classical approach to the classification problem, as for example the classification of

planar algebraic curves defined by a single form φ(x) of degree d in three variables, is to
find a set of relative or absolute invariants, { I1(φ), I2(φ), . . . } whose values determine the
class that the form belongs to. One naturally tries to find a minimal family, and Hilbert
[77, 78, 3] proved that there exist a finite number of polynomial invariants, a fundamental sys-
tem of invariants, such that every other polynomial invariant is equal to an algebraic com-
bination of the members of the fundamental system. But Hilbert’s proof is not constructive,
and the problem is then, how to compute a fundamental system of polynomial invariants.
Algorithms exist, such as the Straightening Algorithm [114], but they are computationally
expensive [144].
Due to the the finiteness of the database, and the numerical and measurement errors in-

volved, the classification problem that we have to solve is slightly different. We would like
to use a fundamental system of polynomial invariants for this purpose, but to achieve a low
computational cost is more important. We only need a sufficiently large family { I1(φ), . . . Is(φ) }
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of invariants with the separation property, i.e., for every pair of members fi and fj of the
database, there must exist an invariant Ik such that Ik(fi) ̸= Ik(fj) , such that members
of different calsses are mapped to different points in invariant space. These invariants do
not have to be functionally independent. Some of the techniques that we will describe for
the computation of invariants will produce vectors of invariants which will not necesarily be
functionally independent. However, finding an independent subset will be computationally
more expensive than using all the invariants as a feature vector.
In this chapter we describe several techniques for efficiently computing invariants and

covariants of forms, both with respect to general linear transformations, and with respect to
orthogonal transformations. We want to emphasize the computational aspect. For example,
the complexity of numerically computing the determinant of a square n × n matrix A is
in the order n4 arithmetic operations, because, in the order of n3 operations are needed
for computing the QR decomposition of A , and exactly n − 1 multiplications to compute
the determinant of the triangular matrix of the decomposition [66]. However, the analytic
expression of the determinant |A| as a polynomial of degree n in the n2 elements of the
matrix, has n! terms. Some of these techniques have been well known for a century, but our
emphasis on structuring the algorithms for the efficient numerical computation of invariants
based on matrix computations is new.
In section 4.1 we introduce the notation and the basic tools to analyze how the coefficients

of forms and the partial derivatives of forms transform when homogeneous linear transfor-
mations are applied to the space variables. This analysis corresponds to both the projective
transformation of forms, and the affine or Euclidean transformations of the homogeneous
terms of regular polynomials. In section 4.2 we formally define the concepts of invariant and
covariant, and give several methods for constructing and computing projective invariants of
forms. In section 4.3 we analyze, and give new methods for the construction and computa-
tion of invariants with respect to the orthogonal group. Finally, in section 4.4 we prove all
the lemmas and corollaries.
The problem of recovering the unknown transformation which transforms a curve or

surface into an equivalent one will be solved in the next chapter, and the relation of algebraic
invariants to moment invariants will be covered in the following chapter.

4.1 Polynomials, forms, and linear transformations
Every quadratic form can be written as a product of three terms, a row vector of indetermi-
nates, a matrix of coefficients, and column vector ofindeterminates. For example, the form
(4.1) can be written as

2φ(x1, x2) =
(
x1

x2

)t (Φ(2,0) Φ(1,1)

Φ(2,0) Φ(1,1)

)(
x1

x2

)
. (4.4)

If a nonsingular linear transformation is applied to the space variables

x′ = Ax :
{
x′
1 = a11x1 + a12x2

x′
2 = a21x1 + a22x2
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the transformed polynomial φ′(x′) = φ(A−1x′) can be written in the same way

2φ′(x′
1, x

′
2) =

(
x′
1

x′
2

)t (Φ′
(2,0) Φ′

(1,1)

Φ′
(2,0) Φ′

(1,1)

)(
x′
1

x′
2

)
, (4.5)

and the matrices are related by the following formula

Φ′
[1,1] = A−tΦ[1,1]A

−1 , (4.6)

where A−t = (A−1)t = (At)−1 , Φ[1,1] is the square matrix of coefficients in (4.4), and Φ′
[1,1] is

the corresponding matrix in (4.5). Note that these matrices can be obtain from the original
form by differentiation,

D[1,1]φ =

⎛

⎝
∂2φ
∂x2

1

∂2φ
∂x1x2

∂2φ
∂x1x2

∂2φ
∂x2

2

⎞

⎠ .

This matrix, theHessian matrix of φ , is well defined not only for a quadratic form, but a form
φ of arbitrary degree. If we denote D′

[1,1]φ
′ the Hessian matrix of φ′(x′) with respect to the

variables (x′
1, x

′
2)

t , then, we also have the relation

D′
[1,1]φ

′ = A−t D[1,1]φA
−1 ,

with (4.6) as a particular case. When φ is a quadratic form, the determinant of D[1,1]φ is an
invariant, but in general it is a new form which satisfies the relation

|D′
[1,1]φ

′(x′) | = |A|−2 |D[1,1]φ(x) | . (4.7)

This is a covariant. New invariants of a form can be computed from its covariants. As we
pointed out in the introduction of this chapter, the computation of |Φ[1,1]| can be performed
inexpensively using numerical techniques, but if the degree of φ is higher than two, the
computation of the covariant form |D[1,1]φ(x) | has to be performed symbolically, at a much
higher computational cost.
The operator defined by the previous construction, φ 2→ |D[1,1]φ(x) | , from the set of all

binary forms into the same set, is a polynomial differential operator. It maps a form φ into
another form which is computed by evaluating a polynomial of many variables in some
partial derivatives of φ . For example, for the Hessian matrix of the binary quadratic form
(4.1), we can write ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

p (θ1, θ2, θ3) = θ1θ3 − θ22 ,

D[1,1]φ = p
(
∂2φ
∂x2

1
, ∂2φ
∂x1x2

, ∂2φ
∂x2

2

)
.

And it is invariant, in the sense that for every binary form φ , the relation (4.7) is satisfied.
In fact, all the invariants and covariants of algebraic forms can be constructed as invariant
polynomial differential operators. In the case presented above, the operator is homogeneous,
in the sense that it is a polynomial evaluated in partial derivatives of φ , but all of the same
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order. In such a case, we obtain an invariant by restricting the operator to forms of degree
equal to the order of the derivatives.
In this section we will generalize this construction to forms of higher degree, and will

present several methods for the construction of covariants and invariants. Certain matrices
of partial derivatives of higher order will be our basic building blocks for the construction
of covariants and invariants. Our first task is to define these matrices and to analyze their
transformation rules under linear coordinate transformations.

4.1.1 Polynomials
From now on, polynomials will be written expanded in Taylor series at the origin

f(x) =
∑

α

1
α! Fα x

α , (4.8)

where the vector of nonnegative integers α = (α1, . . . ,αn)t is a multiindex of size |α| =
α1 + · · · + αn , α! = α1! · · ·αn! is a multiindex factorial, {Fα : α} is the set of coefficients
of f , Fα is a coefficient of degree |α| , and xα = xα1

1 · · ·xαn
n is the monomial of degree |α|

associated with the multiindex α . There are exactly

hd = (n+d−1
n−1 ) = (n+d−1

d )

different multiindices of size d, and so, that many monomials of degree d. A polynomial of
degree d has

hd + hd−1 + · · ·+ h0 = (n+d
n )

coefficients. The coefficients of f are equal to the partial derivatives of order d evaluated at
the origin

Fα =
∂α1+···+αn

∂xα1
1 · · ·∂xαn

n

f(0)

and only finitely many coefficients are different from zero.

4.1.2 Forms, homogeneous coordinates,
and projective transformations

A homogeneous polynomial, or form, is a polynomial with all the coefficients of the same
degree d

φ(x) =
∑

|α|=d

1
α! Φα x

α . (4.9)

For example, a fourth degree form in three variables is

φ(x1, x2, x3) = 1
24 Φ(4,0,0) x4

1 + 1
6 Φ(3,1,0) x3

1x2 + 1
6 Φ(3,0,1) x3

1x3 +
1
4 Φ(2,2,0) x2

1x
2
2 + 1

2 Φ(2,1,1) x2
1x2x3 + 1

4 Φ(2,0,2) x2
1x

2
3 +

1
6 Φ(1,3,0) x1x3

2 + 1
2 Φ(1,2,1) x1x2

2x3 + 1
2 Φ(1,1,2) x1x2x2

3 +
1
6 Φ(1,0,3) x1x3

3 + 1
24 Φ(0,4,0) x4

2 + 1
6 Φ(0,3,1) x3

2x3 +
1
4 Φ(0,2,2) x2

2x
2
3 + 1

6 Φ(0,1,3) x2x3
3 + 1

24 Φ(0,0,4) x4
3 .

(4.10)
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The vector of indeterminates x = (x1, . . . , xn)t can be seen as the coordinates of a point in
Euclidean n-dimensional space, or as the homogeneous coordinates of a point u = (u1, . . . , un−1)t

in Euclidean space of dimension n− 1 , if xn ̸= 0 . The correspondence given by

u1 =
x1

xn
, . . . , un−1 =

xn−1

xn
,

which is clearly not one to one, because for every nonzero constant λ ̸= 0 , λx = (λx1, . . . ,λxn)t

also represents the same point u = (u1, . . . , un−1) . Homogeneous polynomials in n homo-
geneous coordinates correspond to regular polynomials in n− 1 Euclidean coordinates.
A projective transformation is an homogeneous linear transformation x′ = Ax on the

homogeneous coordinates of a point. Every nonsingular matrix A defines a projective trans-
formation, but the correspondence is not one-to-one. Two nonsingular matrices A and B
define the same projective transformation if A = λB for certain constant λ ̸= 0 . Affine and
Euclidean transformations can be seen as particular cases of projective transformations. An
affine transformation u′ = Au + b in n-1-dimensional space, corresponds to the projective
transformation

x′ =
(
A b
0 1

)
x .

There is a one-to-one correspondence between regular polynomials in u = (u1, . . . , un−1)t

of degree ≤ d , and homogeneous polynomials in x = (x1, . . . , xn)t of degree d . A planar
curve is represented by a polynomial in two variables, or by a homogeneous polynomial in
three variables. A surface is represented by a polynomial in three variables or a homoge-
neous polynomial in four variables. For example, the polynomial (4.10), is associated with
the regular polynomial

1
24 Φ(4,0,0) u4

1 + 1
6 Φ(3,1,0) u3

1u2 + 1
4 Φ(2,2,0) u2

1u
2
2 + 1

6 Φ(1,3,0) u1u3
2 + 1

24 Φ(0,4,0) u4
2 +

1
6 Φ(3,0,1) u3

1 + 1
2 Φ(2,1,1) u2

1u2 + 1
2 Φ(1,2,1) u1u2

2 + 1
6 Φ(0,3,1) u3

2 +
1
4 Φ(2,0,2) u2

1 + 1
2 Φ(1,1,2) u1u2 + 1

4 Φ(0,2,2) u2
2 +

1
6 Φ(1,0,3) u1 + 1

6 Φ(0,1,3) u2 +
1
24 Φ(0,0,4) .

4.1.3 Vectors and matrices
Nowwe will introduce vectors and matrices of monomials, and their duals, the correspond-
ing vectors and matrices of partial derivative operators, and will analyze their transforma-
tion rules under linear coordinate transformations. In subsequent sections, these vectors
and matrices will constitute the basic building blocks for the construction of invariants and
covariants.
The lexicographical order for the multiindices is defined as usual,

α < β ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

either |α| < |β|
or |α| = |β|

and for certain 1 < k ≤ n :
α1 = β1, . . . ,αk−1 = βk−1,αk > βk
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For example, for multiindices of size 2 in three variables, the lexicographical order is

(2, 0, 0) < (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < (0, 1, 1) < (0, 0, 2) .

From now on, all the sets of objects subindicated with multiindices will be implicitly ordered
according to the lexicographical order, and they will be considered vectors or matrices ac-
cording to whether one or two subindices are used.

Monomials

The set of monomials of degree d lexicographically ordered
{√

1
α! x

α : |α| = d
}
, (4.11)

is an hd-dimensional vector, which we will denote X[d](x) . For example,

X[3](x1, x2, x3) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6
x3
1

1√
2
x2
1x2

1√
2
x2
1x3

1√
2
x1x2

2

x1x2x3
1√
2
x1x2

3
1√
6
x3
2

1√
2
x2
2x3

1√
2
x2x2

3
1√
6
x3
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For every pair of nonnegative integers, k and j , the set of monomials
{√

1
α! β! x

α+β : |α| = k, |β| = j
}

lexicographically ordered, defines an hk × hj matrix which we will denote X[k,j](x) . For
example,

X[2,1](x1, x2, x3) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
x3
1

1√
2
x2
1x2

1√
2
x2
1x3

x2
1x2 x1x2

2 x1x2x3

x2
1x3 x1x2x3 x1x2

3
1√
2
x1x2

2
1√
2
x3
2

1√
2
x2
2x3

x1x2x3 x2
2x3 x2x2

3
1√
2
x1x2

3
1√
2
x2x2

3
1√
2
x3
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that X[d,0](x) = X[d](x) , and X[j,k](x) = X[k](x)X t
[j](x) = X t

[k,j](x) .
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Partial differential operators

The space of forms of degree d in n variables is an hd-dimensional vector space, and the set
of monomials (4.11), i.e., the elements of X[d](x) , form a basis of it. Now, we will show that
its dual space is the space of homogeneous linear differential operators of the same degree,
and will show that the dual basis of (4.11) is the corresponding set of partial derivatives of
the same order.
Let D = (∂/∂x1, . . . , ∂/∂xn)t be the vector of first order partial derivatives, and for every

multiindex α , let Dα be the linear partial differential operator

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂α1+···+αn

∂xα1
1 · · ·∂xαn

n

.

For every form of degree d
ψ(x) =

∑

|η|=d

1
η! Ψη x

η

there is a corresponding homogeneous linear differential operator

ψ(D) =
∑

|η|=d

1
η! Ψη D

η ,

and every homogeneous linear differential operator of degree d can be written in this form
in a unique way, i.e., the vector space of linear differential operators of order d is a vector
space of the same dimension hd , and the map ψ(x) 2→ ψ(D) defines an isomorphism of
vector spaces.
Note that for every pair of multiindices, η of size k , and α of size d , we have

Dη(xα) =
{ α!

β! x
β if α1 ≥ η1, . . . ,αn ≥ ηn and α = β + η

0 otherwise ,
(4.12)

so that, if |η| = |α| = d
√

1
η! D

η
(√

1
α!x

α
)

=
{
1 if η = α
0 otherwise ,

and the set of homogeneous partial differential operators
{√

1
α! D

α : |α| = d
}
,

i.e., the elements of the vector X[d](D) , is a dual basis of (4.11). Furthermore, the map
f(x) 2→ f(D) , which transforms an arbitrary polynomial into the corresponding linear dif-
ferential operator, is an isomorphism of rings, and every polynomial identity has a corre-
sponding identity for linear differential operators [3, chapter B]. That is, in order to prove an
identity for linear differential operators, we only have to prove the associated polynomial
identity.
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Coefficients

Consistently with the notation introduced for vectors and matrices of monomials, and in
order to simplify what follows, we will write D[d] for the vector of operators X[d](D) , and
D[k,j] for the matrix of operators X[k,j](D) . If φ is a form of degree d and 0 ≤ k ≤ d , then
D[k]φ(x) is a vector of forms of degree d− k . In particular, D[d]φ is a vector of constants, the
coefficients of φ {√

1
α! Φα : |α| = d

}
,

which we will denote Φ[d] . In this way, a form φ of degree d can be written in vector form

φ(x) = Φt
[d]X[d](x) . (4.13)

The matrix D[k,d−k]φ , a matrix of constants, will be denoted Φ[k,d−k] . For example, for the
fourth degree form in three variables (4.10) we have

Φ[2,2] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2Φ(4,0,0)

1√
2
Φ(3,1,0)

1√
2
Φ(3,0,1)

1
2Φ(2,2,0)

1√
2
Φ(2,1,1)

1
2Φ(2,0,2)

1√
2
Φ(3,1,0) Φ(2,2,0) Φ(2,1,1)

1√
2
Φ(1,3,0) Φ(1,2,1)

1√
2
Φ(1,1,2)

1√
2
Φ(3,0,1) Φ(2,1,1) Φ(2,0,2)

1√
2
Φ(1,2,1) Φ(1,1,2)

1√
2
Φ(1,0,3)

1
2Φ(2,2,0)

1√
2
Φ(1,3,0)

1√
2
Φ(1,2,1)

1
2Φ(0,4,0)

1√
2
Φ(0,3,1)

1
2Φ(0,2,2)

1√
2
Φ(2,1,1) Φ(1,2,1) Φ(1,1,2)

1√
2
Φ(0,3,1) Φ(0,2,2)

1√
2
Φ(0,1,3)

1
2Φ(2,0,2)

1√
2
Φ(1,1,2)

1√
2
Φ(1,0,3)

1
2Φ(0,2,2)

1√
2
Φ(0,1,3)

1
2Φ(0,0,4)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finally, we can generalize (4.13), and write the partial derivatives with this matrix notation.
The following result shows that writing a polynomial expanded in Taylor series, the com-
putation of partial derivatives of a form becomes a shift operation.

Lemma 1 Let φ(x) = Φt
[d]X[d](x) be a form of degree d , and let k be a nonnegative integer such

that k ≤ d . Then, for every multiindex η of size k , we have

Dηφ(x) =
∑

|β|=d−k

1
β! Φβ+η x

β ,

or equivalently, in matrix form

D[k]φ(x) = Φ[k,d−k]X[d−k](x) .

4.1.4 Euler’s theorem
Aswementioned earlier, it is well known how to write a quadratic form as a product of three
terms, a row vector of variables, a matrix of coefficients, and a column vector of variables.
In this section we will generalize this construction to higher degree forms.
Euler’s theorem is a classical result which says how to reconstruct a form of degree d

from its partial derivatives

d φ(x) =
n∑

i=1

∂φ(x)

∂xi
xi = X t

[1](x)D[1]φ(x) .
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According to Lemma 1, for d = 2 this last expression can be rewritten as

2φ(x) = X[1](x)
tΦ[1,1]X[1](x) .

More generally, as Walker [141, theorem 10.3] points out, Euler’s theorem can be enunciated
as follows

Lemma 2 (Euler’s theorem) Let φ(x) = Φt
[d]X[d](x) be a form of degree d , and let k be a non-

negative integer such that k ≤ d . Then,
(
d
k

)
φ(x) =

∑

|η|=k

1
η! D

ηφ(x) xη

or equivalently, in matrix form
(
d
k

)
φ(x) = X t

[k](x)D[k]φ(x) = X t
[k](x)Φ[k,d−k]X[d−k](x) .

4.1.5 Transformation rules
In this section we study how the vectors and matrices

X[d](x) X[k,j](x) D[d]φ(x) D[k,j]φ(x) Φ[d] Φ[k,d−k] ,

transform when the space variables undergo either a nonsingular linear coordinate transfor-
mation, or an orthogonal transformation.
If x′ = Ax is a nonsingular linear transformation, for every form ψ(x) , the polynomial

ψ(Ax) is a form of the same degree. In particular, every component of X[d](Ax) can be
written in a unique way as a linear combination of the elements of X[d](x) , or in matrix form

X[d](Ax) = A[d]X[d](x) ,

where A[d] is a nonsingular hd × hd matrix. We will call the map A 2→ A[d] the k-th. degree
representation map, and the matrix A[d] the k-th. degree representation matrix of A . Further-
more,

Lemma 3 1. The map A 2→ A[d] defines a faithful linear representation, a 1 − 1 homomor-
phism of groups, of the group of nonsingular n× n matrices GL(n) into the group of nonsin-
gular hd × hd matrices GL(hd) , i.e., for every pair of nonsingular matrices A , and B , we
have

(a) The map preserves products : (AB)[d] = A[d]B[d] .
(b) The map is one to one : if A[d] = B[d] , then A = B .
(c) The matrix A[d] is nonsingular, and (A[d])−1 = (A−1)[d] .

2. The map A 2→ A[d] preserves transposition, i.e., for every nonsingular matrix A , we have
(At)[d] = (A[d])t . In particular,
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(a) If A is symmetric, so is A[d] .
(b) If A is symmetric positive definite, so is A[d] .
(c) If A is orthogonal, so is A[d] .

We can say more about this family of representations, and we will need the following three
results in the sequel.

Lemma 4 Let d be a nonnegative integer, m =
(
n+d−1

n

)
, A = ( aij ) a lower (upper) triangular

n× n matrix, and a = (a11, . . . , ann)t the diagonal of A . Then,

1. The matrix A[d] is lower (upper) triangular.

2. For every multiindex α of size d , the α-th element of the diagonal of A[d] is aα .

3. The determinant of A[d] is equal to |A|m .

Corollary 1 Let d be a nonnegative integer, and let m =
(
n+d−1

n

)
. Then, for every n × n matrix

A we have
|A[d]| = |A|m .

Corollary 2 Let d be a nonnegative integer, let A be a diagonal n × n matrix, and let a =
(a11, . . . , ann)t be its diagonal. Then,

1. The matrix A[d] is diagonal.

2. For every multiindex α of size d , the α-th element of the diagonal of A[d] is aα .

The transformation rules for the matrices of monomials clearly follow from the corre-
sponding rules for the vectors of monomials. If x′ = Ax is a nonsingular linear transforma-
tion, then

X[k,j](Ax) = X[k](Ax)X[j](Ax)
t = A[k]X[k](x)X[j](x)

tAt
[j] = A[k]X[k,j](x)A

t
[j] .

Now we can determine the transformation rules for the vectors and matrices of partial
derivatives.

Lemma 5 Let x′ = Ax be a nonsingular linear transformation, D′ the vector of partial derivatives
with respect to the new coordinate system, φ(x) a form of degree d , φ′(x′) = φ(A−1x′) the unique
form of degree d such that φ′(x′) = φ(x) , and k and j two nonnegative integers. Then,

1. D′
[k] = A−t

[k] D[k] .

2. D′
[k,j] = A−t

[k] D[k,j]A
−1
[j] .

Or equivalently,

1. D′
[k]φ

′(x′) = A−t
[k] D[k]φ(x) .
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2. D′
[k,j]φ

′(x′) = A−t
[k]

(
D[k,j]φ(x)

)
A−1

[j] .

The transformation rules for the vectors and matrices of coefficients of a form constitute
particular cases of this result.

Corollary 3 Let φ = Φt
[d]X[d] be a form of degree d , x′ = Ax a nonsingular linear transformation,

φ′(x′) = φ(A−1x) = Φ′ t
[d]X[d](x′) the unique form of degree d such that φ′(x′) = φ(x) , and k a

nonnegative integer such that k ≤ d . Then,

1. Φ′
[d] = A−t

[d] Φ[d] .

2. Φ′
[k,d−k] = A−t

[k] Φ[k,d−k]A
−1
[d−k] .

Finally, since for an orthogonal matrix A−t = A , we obtain

Corollary 4 Let x′ = Ax be an orthogonal transformation, D′ the vector of partial derivatives with
respect to the new coordinate system, φ(x) a form of degree d , φ′(x′) = φ(Atx′) = Φ′ t

[d]X[d](x′) the
unique form of degree d such that φ′(x′) = φ(x) , and k a nonnegaive integer such that k ≤ d .
Then,

1. D′
[k] = A[k]D[k] .

2. D′
[k,j] = A[k]D[k,j]At

[j] = A[k]D[k,j]A
−1
[j] .

3. Φ′
[d] = A[d]Φ[d] .

4. Φ′
[k,d−k] = A[k]Φ[k,d−k]At

[d−k] = A[k]Φ[k,d−k]A
−1
[d−k] .

4.2 Algebraic invariants and covariants
A relative covariant of weight w of a form φ of degree d , is classically defined as a function

C(φ, x)

of the coefficients of the form and a vector of indeterminates, homogeneous in each variable

C(θ1 φ, θ2 x) = θk11 θk22 C(φ, x) ,

for certain rational constants k1 and k2 , and for every value of θ1 and θ2 , and such that, if
x′ = Ax is a nonsingular linear transformation, then

C(φ′, x′) = |A|−w C(φ, x)

where φ′(x′) = φ(A−1x′) . If w = 0 the covariant is absolute, and if the covariant is indepen-
dent of the indeterminates, it is an invariant.

73



In other words, if k1 and k2 are nonnegative integers, a covariant of the form φ(x) is
another form ψ(x) = C(φ, x) of degree k2 , with coefficients forms of degree k1 in the coeffi-
cients of φ , and such that, if x′ = Ax is a coordinate transformation, φ′(x′) = φ(A−1x′) , and
ψ′(x′) = ψ(A−1x′) , then ψ′(x′) = |A|w C(φ′, x′) , i.e., the coefficients of ψ′ can be computed,
except for a multiplicative constant, either by transforming its coefficients according to the
coordinate transformation, as for any form, or by evaluating the same homogeneous func-
tion of the coefficients of φ in the coefficients of the transformed form φ′ . The most general
covariants can be written as quotients of these.
One immediately proves that covariants of covariants are covariants, invariants of co-

variants are invariants, and homogeneous functions of invariants are invariants. If the set of
forms has two relative invariants, I1 of weight w1 ̸= 0 , and I2 of weight w2 ̸= 0 , one can
easily construct an absolute invariant

I =
Iw2
1

Iw1
2

.

The same construction applies to a covariant and an invariant. If C1 is a relative covariant
of weight w1 ̸= 0 , and I2 is an invariant of weight w2 ̸= 0 , then

C =
Cw2
1

Iw1
2

is an absolute invariant.
The trivial example of a covariant of a form φ is the identity, the form itself C(φ, x) ≡

φ(x) . Less trivial covariants are given by polynomials of one variable evaluated in the form
φ

C(φ, x) = p (φ(x)) where p (θ) =
d∑

i=0

pi θ
i .

For example, C(φ, x) ≡ φ(x)2 . And the most general covariant of a form φ , which is a
homogeneous polynomial of the coefficients, can be constructed by evaluating a polynomial
of many variables in the form φ and some of its partial derivatives

C(φ, x) = p
(
(Dαφ(x))α

)
,

where p
(
(θα)α

)
is a polynomial in an infinite number of variables, one for each multiindex

α [3]. Ratios of two of these yield rational covariants. However, not every polynomial of this
kind defines a covariant, and here is where the vectors and matrices of partial derivatives,
and their transformation rules, come into play. We will construct covariants and invariants
using certain matrix operations which are known to be covariant, or even invariant, with
respect to the matrix transformation rules, such as the determinant and the characteristic
polynomial of a square matrix.

Joint covariants

This definition of covariant of a form given at the beginning of this section, can be gener-
alized to joint covariants of several forms, each of them function not only of the vector of
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indeterminates x , but of several vectors of indeterminates, in a natural fashion. This is an-
other instance of the more general notion of covariant described above. A relative covariant
of weight w of r forms φ1, . . . ,φr and s vectors of indeterminates x1, . . . , xs is a function

C(φ1, . . . ,φr, x
1, . . . , xs) (4.14)

of the coefficients of the forms and the vectors, homogeneous in each variable, both in the
forms and the indeterminates, and such that, if x′ = Ax is a nonsingular linear transforma-
tion, then

C(φ′
1, . . . ,φ

′
r, x

1′, . . . , xs′) = |A|−w C(φ1, . . . ,φr, x
1, . . . , xs) . (4.15)

The covariant is absolute if w = 0 , and it is an invariant if s = 0 . In general, we will just
write C for (4.14), and C′ for the left side of (4.15).

A general definition of covariants

We can give a more general definition of covariant, which applies not only in the context of
forms [45]. An action of a group G on a set E is a map

{G×E → E
(σ, e) 2→ σ · e

which satisfies the following two properties

1. 1G · e = e
2. σ · (τ · e) = (στ) · e ,

where 1G is the identity of the group G , and the concatenation στ denotes the operation of
the group. The action is called trivial if σ · e = e for every element σ ∈ G , and e ∈ E . If E
and F are two sets with corresponding actions of the same group G , a covariant of E in F
with respect to G , is a function ξ : E → F which satisfies the following equation

ξ(σ · e) = σ · ξ(e) ,

for every element σ ∈ G , and e ∈ E . The covariant is called invariant if the action of G in
F is trivial. For example, in the case of invariants of a form φ of degree d , the group G is
GL(n), the group of nonsingular n × n matrices, the set E is the set of forms of degree d
in n variables, and the set F is the set of homogeneous functions in the same n variables,
modulo the relation of equivalence which identifies two functions which differ by a multi-
plicative constant. In both sets, the action is defined by (A, f(x)) 2→ f ′(x′) = f(A−1x′) . The
fitting algorithms described in previous sections are also covariants, acording to this defini-
tion. In this case the group G is the group of similarity transformations, the set E is the
family of finite subsets of n-dimensional data points, and the set F is the set of algebraic
curves or surfaces of a given maximum degree.
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4.2.1 Covariant and contravariant matrices
If an hk × hj matrix C[k,j] of functions of r forms and s vectors transforms as the matrix of
monomials X[k,j] , we will say that it transforms covariantly if

C′
[k,j] = A[k] C[k,j]At

[j] .

and contravariantly if it follows the transformation rules of the matrix of partial derivatives
D[k,j]

C′
[k,j] = A−t

[k] C[k,j]A
−1
[j] .

We can clearly extend these definitions to matrices which transform covariantly on the right
side and contravariantly on the left side, or viceversa. Vectors which transform covariantly
or contravariantly are just special cases C[k] = C[k,0] .
For example, if φ is a form of even degree d = 2k , the square matrix Φ[k,k] is a con-

travariant matrix. If this matrix is nonsingular, then Φ−1
[k,k] is a covariant matrix. If φ

is a form of odd degree d , we cannot construct a square matrix in the same way, but if
ψ(x) = φ(x)2 , then the square matrix Ψ[d,d] is contravariant, and Ψ−1

[d,d] is covariant.
If we restrict ourselves to orthogonal transformations, all these concepts coincide, and

we only talk about matrices which transform covariantly.

The representation matrices of a covariant matrix

Let C[1,1] be a n × n covariant matrix, and let us consider the coordinate transformation
x′ = C[1,1] x associated with it. For every positive integer k , the k-th. degree representation
map A 2→ A[k] defines a new hk × hk matrix C[1,1][k] . According to Lemma 3, if C[1,1] is
nonsingular, symmetric, positive definite, triangular, or diagonal, so is C[1,1][k] . But this new
matrix is also covariant.

Lemma 6 If C[1,1] is a n× n covariant, contravariant, covariant on the left side and contravariant
on the right side, or viceversa, so is the hk × hk matrix C[1,1][k] , for every positive integer k .

For example, if φ is a form of degree d ≥ 2 , we can apply this construction to the Hessian
matrix of φ , obtaining the contravariant matrices

D[1,1][k]φ =
(
D[1,1]φ

)

[k]
2 ≤ k ≤ d/2 .

If the Hessian of φ is not identically zero, then, the inverses of these matrices are covariant
matrices. If any case, the coefficients of the homogeneous characteristic polynomials

∣∣∣ θ1 D[k,k]φ+ θ2 D[1,1][k]φ
∣∣∣ 2 ≤ k ≤ d/2

define new covariants.

76



4.2.2 Construction of algebraic invariants and covariants
Now we will describe several methods for the construction of covariants and invariants,
based on matrix operations on covariant and contravariant matrices. The formulation is
particularly attractive because we are interested in computing invariants, and not necessarily
in giving explicit analytic expressions as functions of the form or forms. For example, com-
puting the value of the Hessian of a quadratic form using numerical techniques is much less
expensive than symbolically expanding the determinant of a square matrix.

The k-Jacobian

The first method for the construction of covariants is based on the fact that the Jacobian of
n functions of n variables is a covariant of weight one. If φ = (φ1, . . . ,φn) is a row vector
of forms, The Jacobian of the n forms is the determinant of the Jacobian matrix

D[1]φ = (D[1]φ1 | . . . | D[1]φn )

If x′ = Ax is a change of coordinates, and we denote φ′ = (φ′
1, . . . ,φ

′
n) , where φ′

i(x
′) =

φ(A−1x′) , we have
D′

[1]φ
′ = (D′

[1]φ
′
1 | . . . | D′

[1]φ
′
n )

= (A−tD[1]φ1 | . . . | A−tD[1]φn ) = A−tD[1](φ1, . . . ,φn) ,

and so, the Jacobian satisfies the following relation
|D[1]φ | = |A|−1 |D′

[1]φ
′ | .

This procedure can be generalized in the following way. Let us define the k-Jacobian
matrix of a row vector φ = (φα )|α|=k of hk forms, not all of them necessarily of the same
degree, as the hk × hk matrix

D[k]φ = (D[k]φα )|α|=k ,

and the k-Jacobian of φ as the determinant of its k-Jacobian matrix. The same argument
used for the 1-Jacobian shows that

|D[k]φ | = |A[k]|−1 |D′
[1]φ

′ | ,

and so, based on Corollary 1 we obtain
Lemma 7 The k-Jacobian of a row vector φ = (φα )|α|=k of hk forms is a covariant of weight
m =

(
n+k−1

n

)
.

This results clearly extends to the most general case
Lemma 8 Let k be a nonnegative integer, let C = ( Cα )|α|=k be a row vector of hk covariants, each
of them function of the vector of indeterminates x . Then, the k-Jacobian |D[k]C | is a covariant.
In particular, when the covariants Cα of the last lemma are forms of degree k in x , the

matrix D[k]C has as columns the vectors of coefficients of the forms, and the k-Jacobian
|D[k]C | becomes an invariant which can be computed inexpensively by numerical tech-
niques.
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The determinant of a square covariant matrix

The second method to construct covariants and invariants in based on computing determi-
nant of a square covariant or contravariant matrix.

Lemma 9 Let k be a nonnegative integer, and let C[k,k] be a square covariant matrix. Then, the
determinant | C[k,k] | , is a covariant.

For example, for every form φ of degree d , and every nonnegative integer k such that
k ≤ d/2 we have the covariant

|D[k,k]φ(x) | (4.16)

of weight 2
(
n+k−1

n

)
, a form of degree (d − 2k)hk = (d − 2k)

(
n+k−1
n−1

)
in x . For k = 1 it is

the well known Hessian of the form φ . In general, we will call (4.16) the k-Hessian of φ . If
d = 2k , the k-Hessian of φ is an invariant |Φ[k,k] | , which can be computed numerically.
The discriminant (4.2) of a binary quadratic form is a particular case of this invariants. The
next step is to apply this construction to linear combinations of square covariant matrices of
the same size.

The characteristic polynomial

If φ and ψ are forms of degree d ≥ 2k , and the determinant |D[k,k]φ | is not identically
zero, the matrix

C[k,k] =
(
D[k,k]φ

)−1 (
D[k,k]ψ

)

is covariant on the left side, and contravariant on the right side. New invariants can be com-
puted from square matrices which are left covariant and right contravariant, or viceversa,
because the transformation rules of these matrices correspond to conjugation

C′
[k,k] = A[k] C[k,k]A−1

[k] ,

and the characteristic polynomial of a square matrix is invariant under conjugation
∣∣∣ θI − C′

[k,k]

∣∣∣ =
∣∣∣A[k]

(
θI − C[k,k]

)
A−1

[k]

∣∣∣ =
∣∣∣ θI − C[k,k]

∣∣∣ .

The hk nonconstant coefficients of the characteristic polynomial
∣∣∣ θI − C′

[k,k]

∣∣∣ = θhk +
hk∑

i=1

(−1)i Ci θhk−i

are new covariants. In particular, the trace C1 , and the determinant Chk
of C[k,k] are absolute

covariants. Equivalently, if the coefficients of the square matrix are independent of the inde-
terminates, the hk principal values of Chk

are absolute invariants. If Chk
is also symmetric,

its hk eigenvalues are absolute invariants.
For example, if φ and ψ are forms of even degree d = 2k and the square matrix Φ[k,k]

is nonsingular, then, the coefficients of the characteristic polynomial
∣∣∣ θ I −Φ−1

[k,k]Ψ[k,k]

∣∣∣ ,
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are joint absolute invariants of the pair. In particular, the trace and the determinant

trace (Φ−1
[k,k]Ψ[k,k])

∣∣∣Φ−1
[k,k]Ψ[k,k]

∣∣∣

are absolute invariants of the pair. For k = 1 this construction gives us the well known n
absolute invariants of a pair of quadratic forms [58, 142].

The homogeneous characteristic polynomial

The method for computing covariants using the characteristic polynomial does not apply to
matrices which are covariant or contravariant on both sides. Also, the previous example of
the two forms of degree d = 2k is asymmetric, in the sense that it requires |Ψ[k,k]| ̸= 0 , while
no constraint is imposed on Φ[k,k] . However, if we multiply the characteristic polynomial of
the matrix Φ[k,k]Ψ

−1
[k,k] by the determinant |Ψ[k,k]| , we obtain

∣∣∣ θ I −Φ[k,k]Ψ
−1
[k,k]

∣∣∣
∣∣∣Ψ[k,k]

∣∣∣ =
∣∣∣ θΨ[k,k] −Φ[k,k]

∣∣∣ ,

The roots of this polynomial are in one to one correspondence with the roots of the homoge-
neous characteristic polynomial ∣∣∣ θ1Ψ[k,k] + θ2Φ[k,k]

∣∣∣ , (4.17)

and this expression is totally symmetric in Ψ[k,k] and Φ[k,k] . Furthermore, no constraint
is imposed on the matrices, and the coefficients of (4.17), as polynomials in (θ1, θ2) , are
homogeneous in the elements of the two matrices. The characteristic polynomial (4.17) is
identically zero if and only if the null spaces of the two square matrices have nonzero inter-
section, otherwise it has hk roots in the projective line, which are absolute invariants of the
pair of forms. These are generalized eigenvalues of the pair of matrices, and can be computed
efficiently in the order of (hk)3 operations [66].
This process admits the following generalization.

Lemma 10 If C[k,k]1, . . . , C[k,k]r are covariant or contravariant matrices, and we write the homoge-
neous polynomial ∣∣∣ θ1 C[k,k]1 + · · ·+ θr C[k,k]r

∣∣∣

of degree hk in θ = (θ1, . . . , θr)t in the normal form
∑

|α|=hk

1
α! Cα θ

α ,

then, the coefficients Cα , which are polynomials in the components of the matrices, are new covari-
ants. Explicitly, for every multiindex α , the coefficient Cα is an homogeneous polynomial of degree
αi in the components of the matrix C[k,k]i .

Note that, if the entries of the matrices C[k,k]1, . . . , C[k,k]r are independent of space vari-
ables, for every choice of θ = (θ1, . . . , θr)t , thematrix θ1 C[k,k]1+· · ·+θr C[k,k]r is also covariant
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and independent of space variables. Let 1 ≤ j < r , and let us consider the following two
new covariant matrices

C[k,k]r+1 = θ1 C[k,k]1 + · · ·+ θj C[k,k]j
C[k,k]r+2 = θj+1 C[k,k]j+1 + · · ·+ θr C[k,k]r

The hk generalized eigenvalues of this pair of matrices, the roots (λ1,λ2) of the binary form
∣∣∣λ1 C[k,k]r+1 + λ2 C[k,k]r+2

∣∣∣

are joint invariants of the r matrices, and can be computed efficiently in order of (hk)3

operations.

Polarization

The determinant of a square covariant or contravariant matrix is a covariant. We have seen
that the determinant of an homogeneous combination of covariant or contravariant matrices
of the same size defines many new covariants. More generally, if C(φ, x) is a covariant of a
form φ of degree d , and it is an homogeneous polynomial of degree k in the coefficients of
φ , then, for every set of the forms φ1, . . . ,φr , the function

C(θ1φ1 + · · ·+ θrφr, x)

is an homogeneous polynomial in θ = (θ1, . . . , θr)t , and so, it can be written in normal form

C(θ1φ1 + · · ·+ θrφr, x) =
∑

|α|=k

1
α ! Cα θ

α ,

where the coefficients Cα are functions of the coefficients of the forms and the vector of
indeterminates. Furthermore,

Lemma 11 The coefficients Cα(φ1, . . . ,φr, x) are joint covariants of the r forms φ1, . . . ,φr, with
the same weight, and for each i = 1, 2, . . . , r , Cα is homogeneous of degree αi in the coefficients of
the form φi .

4.2.3 Construction of covariant and contravariant matrices
The basic tools for the construction of contravariant matrices are the partial differential oper-
ator matrices D[k,j] . For every form φ of degree d ≥ k + j , the matrix D[k,j]φ is a covariant
matrix.
If C(φ, x) is an absolute covariant of the form φ , which is homogeneous of degree d ≥

k+ j in the variable x , then, the matrix of functions of the form φ and the vector x defined
by

C[k,j] = D[k,j]C (4.18)
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is a contravariant matrix. But if the weight of the covariant is w ̸= 0 , then, the matrix (4.18)
is not a contravariant matrix, because, if x′ = Ax is a coordinate transformation, then

C′
[k,j] = |A|−w A−t

[k]

(
D′

[k,j]C′
)
A−1

[j] .

However, this matrix can be transformed into a covariant matrix by replacing the relative
covariant with an absolute one. We can transform the relative covariant into an absolute
covariant by dividing it by a relative invariant I(φ) of the same weight w . For example, if
φ is a form of even degree d = 2k , we can consider

I1(φ) = |Φ2
[k,k] | ,

which is an invariant of weight w1 = 4
(
n+k−1

n

)
. I2(φ) = I1(φ)w/w1 is an invariant of weight

w , and so the matrix
C[k,j] =

1

I2(φ)
D[k,j]C

is a contravariant matrix.
With respect to covariant matrices, if C[k,k] is a contravariant matrix, and | C[k,k] | is not

identically zero, then C−1
[k,k] is a covariant matrix.

Now, we can construct new covariant and contravariant matrices alternating covariant
and contravariant matrices of the proper sizes. For example, If ψ is a form of degree ≥ 2k
such that |D[k,k]ψ(x)| is not identically zero, and φ and ξ are forms of degrees ≥ j+k , then

(
D[j,k]φ(x)

) (
D[k,k]ψ(y)

)−1 (
D[k,j]ξ(z)

)

is a contravariant matrix, and

C(φ,ψ, ξ, x, y, z) =
∣∣∣∣
(
D[j,k]φ(x)

) (
D[k,k]ψ(y)

)−1 (
D[k,j]ξ(z)

)∣∣∣∣

is a joint rational covariant of the three forms and the three covariant vectors x, y, z . As a
particular case of this, if φ is a form of degree d , and we set ψ(x) = φ(x)2 , a form of degree
2d , if the matrix Ψ[d,d] is nonsingular, then

I(φ) = Φt
[d]Ψ

−1
[d,d]Φ[d]

is an absolute invariant of the form φ , which can be computed using numerical methods.

4.2.4 Some examples of algebraic invariants
As applications of the techniques described above for the construction of covariants and
invariants, we will show here several invariants of one form, and joint invariants of two
forms, which can be computed efficiently. We are primarily interested in absolute invariants.
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Joint invariants of two forms

If φ1 and φ2 are two forms of the same degree d = 2k we have already shown that the hk
generalized eigenvalues, roots of the homogeneous polynomial

∣∣∣ θ1Φ1[k,k] + θ2Φ2[k,k]

∣∣∣ ,

are joint absolute invariants of the pair. The number of operations required to compute
the matrices Φ1[k,k] and Φ2[k,k] is in the order of (hk)2 multiplications, and the generalized
eigenvalues can be computed with in the order of (hk)3 operations.
If the degree is odd, or more generally, for every degree d , we can perform the same com-

putation for the squares of the two polynomials, ψ1(x) = φ1(x)2 , ψ2(x) = φ2(x)2 obtaining
hd generalized eigenvalues, the roots of the homogeneous polynomial

∣∣∣ θ1Φ1[k,k] + θ2Φ2[k,k]

∣∣∣ .

In this case, we have the extra cost of computing the square of the original polynomials,
which is less expensive than the computation of eigenvalues. In the order of (hd)2 opera-
tions are suficient.
We can also extend the previous procedure to the case of two forms φ1 and φ2 of differ-

ent degrees d1 and d2 . If k is the minimum common multiple of d1 and d2 , k1 = k/d1 ,
and k2 = k/d2 , the two new forms ψ1(x) = φ1(x)2k1 and ψ2(x) = φ2(x)2k2 are forms of the
same degree d = 2k . Now, we can compute the hk generalized eigenvalues, roots of

∣∣∣ θ1Φ1[k,k] + θ2Φ2[k,k]

∣∣∣ .

which are absolute invariants of the pair of forms.

Absolute invariants of one form

Absolute invariants of one form φ of degree d can be computed, using the methods de-
scribed in the previous paragraph, as joint invariants of φ and an absolute covariant ψ(x) =
C(φ, x) of φ . The two forms φ and ψ have to be algebraically independent to produce
nontrivial results. For example, choosing ψ(x) = φ(x)k will not work. An absolute co-
variant can be obtained as a ratio of a relative covariant divided by a relative invariant
of the same weight. The simplest covariants that we can construct with the methods de-
scribed in this chapter are the k-Hessians (4.16). The k-Hessian |D[k,k]φ | is a form of degree
(n − 2k)

(
n+k−1
n−1

)
if 1 ≤ k < d/2 , independent of x for k = d/2 , and identically zero for

k > d/2 . We will only consider the cases 1 ≤ k < d/2 , because we need a form of positive
degree. As an invariant we can take |Φ1[j,j] | , where φ1 = φ , if d = 2j is even, and φ1 = φ2

if d is odd, in which case j = d . If one of the k-Hessians has even degree, we can also take
φ1 equal to this k-Hessians, but this option is computationally more expensive because the
coefficients of the k-Hessians are computationally expensive to obtain. The absolute invari-
ant will be defined only for those forms φ of degree d such that |Φ1[j,j] | ̸= 0 . The absolute
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covariant will be
ψ =

D[k,k]φ

|Φ1[j,j] |w1
,

with the constant w1 properly choosen to make ψ an absolute covariant.

4.3 Cartesian invariants and covariants
Cartesian invariants of forms are defined in the same way as algebraic invariants of forms,
but the group of transformations is restricted to be the orthogonal group.
The fundamental difference between algebraic and Cartesian invariants, is that there ex-

ist no invariant form under the action of the projective group, while there are plenty under
the subgroup of orthogonal transformations. That is, there exists no nonzero form φ , such
that φ(Ax) ≡ φ(x) for every nonsingular matrix A , but φ(x) = ∥x∥2 , and any function
f(∥x∥2) , is invariant under orthogonal transformations.
This means that there exists no linear differential operator invariant under the general

linear group, but there are many invariant under the orthogonal group. In particular, there
exists no linear invariant of a form under projective transformations, i.e., one which is a
linear function of the coefficients of the form, but we will showmany linear invariants under
orthogonal transformations.
The Laplacian operator ∆ , the differential operator corresponding to the form ∥x∥2 is

a generator of the algebra of invariant linear differential operators. That is, every other
invariant linear differential operator can be written as a polynomial in the Laplacian [76].

4.3.1 The invariant inner product of forms
If φ = Φt

[d]X[d] and ψ = Ψ[d]tX[d] are two forms of degree d , the expression

⟨φ,ψ⟩ = Φt
[d]Ψ[d] =

∑

|α|=d

1
α! ΦαΨα ,

defines an inner product in the vector space of forms of degree d , which is invariant under
orthogonal transformations of the space variables. It is a joint Cartesian invariant of two
forms of degree d . If x′ = Ax is an orthogonal transformation, then

⟨φ′,ψ′⟩ = Φ′
[d]

tΨ′
[d] = Φt

[d] [A
t
[d]A[d]]Ψ[d] = Φt

[d]Ψ
t
[d] = ⟨φ,ψ⟩

because the matrix A[d] is orthogonal. In particular, the norm of φ

∥φ∥2 = ⟨φ,φ⟩ =
∑

α=d

1
α!Φ

2
α = Φt

[d]Φ[d] = ∥Φ[d]∥2 . (4.19)

is invariant under orthogonal transformations of the space variables. It is a Cartesian in-
variant of one form of degree d . For example, the norm of a second degree form in three
variables

φ(x1, x2, x3) = 1
2Φ(2,0,0) x2

1 + Φ(1,1,0) x1x2 + Φ(1,0,1) x1x3 +
1
2Φ(0,2,0) x2

2 + Φ(0,1,1) x2x3 + 1
2Φ(0,0,2) x2

3
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is
∥φ∥2 = 1

2Φ
2
(2,0,0) +Φ2

(1,1,0) +Φ2
(1,0,1) +

1
2Φ

2
(0,2,0) +Φ2

(0,1,1) +
1
2Φ

2
(0,0,2) .

4.3.2 Covariant matrices and the characteristic polynomial
As we have mentioned earlier, there is only one kind of covariant matrix with respect to
orthogonal transformations. Furthermore, the transformation rules of the square covariant
matrices correspond to conjugation, and so the characteristic polynomial of a square covari-
ant matrix yields new absolute covariants

∣∣∣ θI − C[k,k]
∣∣∣ = θhk +

hk∑

i=1

(−1)i Ci θhk−i .

In particular, if the elements of the matrix are independent of the indeterminates, the hk
eigenvalues of the matrix are absolute invariants. For example, if φ is a matrix of even de-
gree d = 2k , then, the hk eigenvalues of the square matrix Φ[k,k] are Cartesian invariants of
the form φ . More generally, for every form φ of degree d , if we set ψ(x) = φ(x)2 , the h[d]

eigenvalues of the matrix Ψ[d,d] are Cartesian invariants of φ , but they are functionally de-
pendent. The maximum number of functionally independent invariants of a form of degree
d can not be larger than the number of coefficients minus the number of parameters of the
orthogonal group O(n) , i.e., not larger than hd − n(n− 1)/2 .
As we did in the projective case, new covariant matrices can be constructed by multi-

plying two or more covariant matrices of matching sizes. For example, for every form φ of
degree d = k + j , the following symmetric and nonnegative definite matrix is covariant

Φ[k,j]Φ[j,k] = Φt
[j,k]Φ[j,k] ,

and its hk nonnegative eigenvalues are invariants. For different values of k and j we do
not obtain independent invariants though. For example, for k = 0 and j = d we obtain the
invariant norm of φ , which can be seen to be equal to the trace of Φ[k,j]Φ[j,k] , for every value
of j and k .
Joint invariants of two or more forms can be constructed in the same way. For example,

if φ is a form of degree d1 = k + j and ψ is a form of degree d2 = j + l , then, the matrix

Φ[k,j]Ψ[j,l]

is covariant, and the maximum number of joint invariants is obtained by choosing j equal
to the maximum between ⌈d1/2⌉ and ⌈d2/2⌉ .
Note that the Laplacian is a particular case of the construction described in this section

∆φ =
n∑

i=1

∂2φ

∂x2
i

= trace
(
D[1,1]φ

)

which is the coefficient corresponding to tn−1 of the characteristic polynomial
∣∣∣ θI −D[1,1]φ

∣∣∣ .
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And also because
∥x∥2 = trace (X[1,1]) = trace (xxt) .

Similarly, it is not difficult to see that the consecutive powers of the Laplacian can be
obtained in the same way

1

k !
∆kφ = trace

(
D[k,k]φ

)
,

because
trace (X[k,k]) = ∥X t

[k]∥2 =
1

k !
∥x∥2k ,

and every other invariant linear differential operator is a linear combination of these
∞∑

k=0

1

k !
pk ∆

2kφ ,

where only finitely many coefficients are nonzero.

4.3.3 The harmonic decomposition
The inner product defined above can also be written in the following way

⟨φ,ψ⟩ = φ(D)ψ = ψ(D)φ , (4.20)

where φ(D) and ψ(D) are the linear differential operators associated with the forms φ(x)
and ψ(x) of degree d ≥ 0 , because, by linearity

φ(D)ψ =
∑

α=d

1
α! ΦαD

α

⎛

⎝
∑

β=d

1
β! Ψβx

β

⎞

⎠

=
∑

α=d

∑

β=d

1
α!β! ΦαΨβ D

α(xβ) =
∑

α=d

1
α! ΦαΨα = ⟨φ,ψ⟩ .

And since the composition of two linear differential operators corresponds to the product
of the corresponding polynomials, we obtain the following fundamental property of the
Laplacian

Lemma 12 Let ψ be a form of degree d ≥ 2 and ξ a form of degree d− 2 . Then,

⟨ψ, ∥x∥2ξ⟩ = ⟨∆ψ, ξ⟩ ,

where the left side is the invariant inner product of forms of degree d , and the right side is the
invariant inner product of forms of degree d− 2 .

If the Laplacian of a form is identically zero, the form is called harmonic. Since the Lala-
cian of a form is a covariant, the property of being harmonic is clearly invariant under or-
thogonal coordinate transformations, and the set of all harmonic forms of degree d deter-
mines a stable subspace of the vector space of forms of degree d , with respect to the action
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of the orthogonal group. The subspace of harmonic forms is also irreducible, meaning that it
cannot be written as the sum of two stable subspaces, unless one of them is trivial, i.e., the
zero subspace. A total decomposition of the vector space of forms of degree d as a sum of
stable and irreducible subspaces would yield new invariants, and in the rest of this section
we will show how to efficiently compute this harmonic decomposition. Towards this goal,
the first result is the following

Lemma 13 The subspaces of harmonic forms of degree d and of forms of degree d divisible by ∥x∥ 2 ,
are complementary with respect to the invariant inner product, i.e., for every form φ of degree d there
exist two unique forms, ψ harmonic of degree d , and ξ of degree d− 2 , such that

φ(x) = ψ(x) + ∥x∥2ξ(x) .

And if we apply this lemma recursively, we obtain the following result

Corollary 5 Every form φ of degree d has a unique decomposition

φ(x) =
⌊d/2⌋∑

i=0

∥x∥2i φi(x) ,

where φi is an harmonic form of degree d− 2i .

Furthermore, the subspaces determined by this decomposition are orthogonal to each other,
because

Lemma 14 Let ψ be a harmonic form of degree d ≥ 2 , ξ a form of degree d− 2 , and k a nonneg-
ative integer. Then,

⟨∥x∥2kψ, ∥x∥2k+2ξ⟩ = 0 .

Finally, these subspaces are known to be irreducible [76, Introduction,theorem 3.1], but we
omit the proof because it is not necessary for our purposes.
After computing the harmonic decomposition, many new absolute invariants can be ob-

tained using the other techniques described above. For example, the norms of the harmonic
components

∥φi∥2 i = 0, 1, . . . , ⌊d/2⌋
of Corollary 5 are absolute invariants.
Our last task in this chapter is to present an efficient algorithm for the computation of

this harmonic decomposition.

4.3.4 Computing the harmonic decomposition
Let us denote Hd and H 0

d , the space of forms of degree d , and its subspace of harmonic
forms, respectively. We start by presenting a recursive algorithm based on Corollary 5. We
rewrite the decomposition as a recursion

{
ψ0 = φ
∆ψi = ∆(∥x∥2ψi+1) i = 0, 1, . . . , ⌊d/2⌋ , (4.21)
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where

ψj =
⌊d/2⌋∑

i=j

∥x∥2(i−j)φi j = 0, 1, . . . , ⌊d/2⌋ ,

and then observe that, based on the uniqueness of the decomposition

ψi = φi + ∥x∥2ψi+1 ∆φd−2i = 0 ,

and for every value of ψi , the second equation of (4.21) has a unique solution ψi+1 . In fact,

Lemma 15 The linear operator
{

Ld : Hd → Hd

ψ 2→ ∆(∥x∥2ψ)

is 1− 1 and onto, and so, for every form φ , the linear equation

∆(∥x∥2ψ) = φ

has a unique solution.

The following algorithm recursively computes the harmonic decomposition of the form
φ of degree d

ψi := φ
for i := 0 until ⌊d/2⌋−1 step 1 do
begin

ψi+1 := L−1
(d−2i−2)(∆ψi)

φi := ψi − ∥x∥2ψi+1

end

If this decomposition has to be computed for many forms of the same degree d it is more
appropriate to compute it for the basis vector X[d] , or equivalently for the monomials, and
then use the linearity of the decomposition. Now, since the decomposition is invariant under
orthogonal transformations of the space variables, and permutations of variables are orthog-
onal transformations, it is suficient to compute the decomposition for those monomials xα ,
with α1 ≤ α2 ≤ · · · ≤ αn , and then obtain the others by the corresponding permutations of
coefficients. After finishing this process we will obtain the matrices

P[d],i i = 0, 1, . . . , ⌊d/2⌋

of the orthogonal projectors Hd → ∥x∥2iH 0
d−2i , that is, if φ = Φt

[d]X[d] then

∥x∥2φd−2i = [P[d],iΦ[d]]
tXd .

The rank of P[d],i is equal to hd−2i − hd−2i−2 , the dimension of ∥x∥2iH 0
d−2i . We can obtain

an orthonormal basis of ∥x∥2iH 0
d−2i by applying the QR algorithm [66] to the matrix P[d],i ,
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that is, we orthonormalize the columns of P[d],i by performing Householder rotations, and
obtain a decomposition of the form

P[d],i = Q[d],iR[d],i ,

where Q[d],i is orthogonal, and R[d],i is upper triangular. Since the matrix P[d],i is not full
rank, only the upper hd−2i − hd−2i−2 rows of R[d],i will be nonzero, and it will not be nec-
essary to do a full decomposition. It will be suficient to do as many rotations as the rank of
P[d],i . If Q0

[d],i is the submatrix of the first hd−2i − hd−2i−2 columns of Q[d],i . These columns
form an orthonormal basis of ∥x∥2iH 0

d−2i . Finally we pack these matrices into a single or-
thogonal matrix

Q[d] =
(
Q0

[d],0|Q0
[d],2| · · · |Q0

[d],⌊d/2⌋

)

which we store. The elements of the vector of forms

Y[d](x) = Qt
[d]X[d](x)

form a new orthonormal basis of Hd , the first hd − hd−2 elements define a basis of H 0
d , the

following hd−2 − hd−4 elements define a basis of ∥x∥2H 0
d−2 , and so on. The decomposition

of a form φ = Φt
[d]X[d] has been reduced to the multiplication of the vector of coefficients by

the orthogonal matrix described above

Φ[d] 2→ Qt
[d]Φ[d] .

The first hd − hd−2 elements of this vector are the coefficients of φ0 in the basis defined by
Y[d] , the following hd−2 − hd−4 elements are the coefficients of ∥x∥2φ1 , and so on.

4.4 Proofs
Proof of Lemma 1:
Since we have the 1-1 correspondence

{α : |α| = d,α1 ≥ η1, . . . ,αn ≥ ηn} = {β + η : |β| = d− k} , = {β : |β| = d− k}+ η ,

from (4.12) we obtain

Dηφ(x) =
∑

|α|=d

1
α! Φα D

η(xα) =
∑

|β|=d−k

1
β! Φβ+η x

β ,

or equivalently √
1
η! D

ηφ(x) =
∑

|β|=d−k

(√
1

β! η! Φβ+η

) (√
1
β! x

β
)
,

which, if written in matrix form, is the desired result.
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Proof of Lemma 2:
Since the polynomial φ is homogeneous of degree d , we have the identity

θdφ(x) ≡ φ(θx)

in n + 1 variables θ, x1, . . . , xn . Differentiating k times with respect to t , and using the
chain rule, we obtain

(
d
k

)
θd−k φ(x) =

∑

|η|=k

1
η! D

ηφ(tx) xη = X t
[k](x)D[k]φ(θx) .

Finally, we evaluate the previous expression at θ = 1 and substitute the vector of partial
derivatives according to Lemma 1

(
d
k

)
φ(x) = X t

[k](x)D[k]φ(x) = X t
[k](x)Φ[k,d−k]X[d−k](x) .

Proof of Lemma 3 :
The multinomial formula is

1
d ! (x1 + · · ·+ xn)

d =
∑

|α|=d

1
α! x

α .

Let x and y be two n-dimensional vectors, and let us consider the multinomial expansion of
the d-th power of the inner product ytx , the polynomial of 2n variables

1
d ! (y

tx)d = 1
d ! (y1x1 + · · ·+ ynxn)

d =
∑

|α|=d

1
α! (y1x1)

α1 · · · (ynxn)
αn =

∑

|α|=d

1
α! y

αxα .

This polynomial is homogeneous of degree d in both x and y , and it is obviously invariant
under simultaneous orthogonal transformations of the variables x-y . In vector form,

1
d ! (y

tx)d = X[d](y)
tX[d](x) .

1a.) Let A and B be n× n nonsingular matrices. Then, the following expression

(AB)[d]X[d](x) = X[d]((AB)x) = X[d](A(Bx)) =
= A[d]X[d](Bx) = A[d](B[d]X[d](x)) = (A[d]B[d])X[d](x)

is a polynomial identity, and all the coefficients of the polynomials on the left side are iden-
tically to the corresponding coefficients of the polynomials on the right side, that is

(AB)[d] = (A[d]B[d]) .

1b.) Follows from the uniqueness of representation of a homogeneous polynomial as a linear
combination of monomials (4.9).
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1c.) From 1b.), the identity matrix is map to the identity matrix. Let A be a n×n nonsingular
matrix. Apply 1a.) with B = A−1 to obtain

I = (AA−1)[d] = A[d](A
−1)[d] ⇒ (A[d])

−1 = (A−1)[d] .

2.) Let A be a n× n nonsingular matrix Then, the following expression

0 = 1
d ! [((Ay)

tx)d − (yt(Atx))d]
= X[d](Ay)tX[d](x)−X[d](y)X[d](Atx)

= X[d](y)t
(
(A[d])t − (At)[d]

)
X[d](x)

is a polynomial identity, and all the coefficients of the polynomial on the right side are iden-
tically zero, that is

(At)[d] = (A[d])
t .

2a.) If A is symmetric, we have

(A[d])
t = (At)[d] = A[d] .

2b.) The matrix A is symmetric positive definite, if and only if we can write A = BBt , for
certain nonsingular n× n matrix B . Then

A[d] = (BBt)[d] = B[d]B
t
[d]

and so A[d] is positive definite as well.
2c.) If A is orthogonal, we have

(A[d])
−1 = (A−1)[d] = (At)[d] = (A[d])

t .

Proof of Lemma 4 :
1.) If α and β are two multiindices of size d , the (α, β)-th element of the matrix A[d] is

√
1

α! β! D
β((Ax)α) .

If β follows α in the lexicographical order, then, for certain 1 < k < n we have

α1 = β1, . . . ,αk−1 = βk−1,αk > βk ,

and so
αk+1 + · · ·+ αn < βk+1 + · · ·+ βn .

Since the matrix A is lower triangular, the degree of

(Ax)α =
n∏

i=1

⎛

⎝
i∑

j=1

aij xj

⎞

⎠
αi
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as a polynomial in xk+1, . . . , xn with coefficients polynomials in x1, . . . , xk is clearly not
greater than αk+1 + · · ·+ αn , and so

(
∂

∂xk+1

)βk+1

· · ·
(

∂

∂xn

)βn

((Ax)α) = 0 .

It follows that Dβ((Ax)α) = 0 , and the matrix A[d] is lower triangular.
2.) First note that for every 1 ≤ k ≤ n the variable xk appears only in the last term of the
product

k∏

i=1

⎛

⎝
i∑

j=1

aij xj

⎞

⎠
αi

,

and so (
∂

∂xk

)αk
⎛

⎝
k∏

i=1

⎛

⎝
i∑

j=1

aij xj

⎞

⎠
αi
⎞

⎠ =

⎛

⎝
k−1∏

i=1

⎛

⎝
i∑

j=1

aij xj

⎞

⎠
αi
⎞

⎠ αk! a
αk
kk .

By induction in k = n, n−1, . . . , 1 , it follows that the α-th element of the diagonal of A[d] is
1
α!D

α((Ax)α) = aα1
11 · · ·aαn

nn = aα

3.) Since A is triangular, |A| = a11 · · · ann . From 2.) we have

|A[d]| =
∏

|α|=d

aα = aγ ,

where γ =
∑

|α|=d α . By symmetry, all the components of the multiindex γ are equal, and
so, for every 1 ≤ i ≤ n

γi =
∑

|α|=d

αi = 1
n

n∑

i=1

∑

|α|=d

αi =
∑

|α|=d

= d
n

(
n+d−1
n−1

)
=
(
n+d−1

n

)
= m .

Finally

|A[d]| =

(
n∏

i=1

aii

)m

= |A|m .

Proof of Corollary 1 :
For every matrix A , there exist an orthogonal matrix Q , and a lower triangular matrix L
such that A = LQ . Since the map A 2→ A[d] is a homomorphism, we have A[d] = L[d]Q[d] ,
where L[d] is lower triangular and Q[d] is orthogonal, i.e., the decomposition is preserved.
It follows that

|A[d]| = |L[d]| = |L|m = |A|m .

Proof of Corollary 2 :
Apply Lemma 4 to both A and At = A .
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Proof of Lemma 5 :
1.) Since x′ = Ax , the partial derivatives are related by the chain rule

∂

∂xi
=

n∑

j=1

∂x′
j

∂xi

∂

∂x′
j

=
n∑

j=1

Aji
∂

∂x′
j

,

or in matrix form, D′ = (∂/∂x′
1, . . . , ∂/∂x

′
n)

t = A−tD . Then

D′
[k] = X[k](D

′) = X[k](A
−tD) = (A−t)[k]X[k](D) = A−t

[k]D[k]

2.)
D′

[k,j] = X[k](D′)X t
[j](D

′) =
= X[k](A−tD)X t

[j](A
−tD) =

= A−t
[k]X[k](D)X t

[j](D)A−1
[j] = A−t

[k]D[k,j]A
−1
[j] .

Proof of Corollary 3:

1.) Φ′
[d] = D′

[d]φ
′(x′) = A−t

[d]D[d]φ(x) = A−t
[d]Φ[d]

2.) Φ′
[k,d−k] = D′

[k,d−k]φ
′(x′) = A−t

[k]

(
D[k,d−k]φ(x)

)
A−1

[d−k] = A−t
[k]Φ[k,d−k]A

−1
[d−k] .

Proof of Lemma 6:

If C[1,1] is a covariant matrix, and x′ = Ax is a coordinate transformation, we have

C′
[1,1][k] =

(
A C[1,1] At

)

[k]
= A[k] C[1,1][k] At

[k] .

Similar derivations apply to the other cases.

Proof of Lemma 9 :
If C[k,k] is a covariant matrix, then

C′
[k,k] = A−t

[k] C[k,k]A
−1
[k]

Computing determinants we obtain
∣∣∣ C′

[k,k]

∣∣∣ =
∣∣∣A−t

[k]

∣∣∣
∣∣∣ C[k,k]

∣∣∣
∣∣∣A−1

[k]

∣∣∣ ,

and according to Corollary 1, we obtain
∣∣∣ C′

[k,k]

∣∣∣ = |A|−2m
∣∣∣ C[k,k]

∣∣∣

where m =
(
n+k−1

m

)
. The proof for contravariant matrices is similar.
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Proof of Lemma 10 :
Particular case of Lemma 11.

Proof of Lemma 11 :
The transformation rules are satisfied, because

C(φ′, x′) = |A|−wC(φ, x)

for every form φ of degree d , in particular for the form φ = θ1φ(1) + · · · + θrφ(r) . Since in
this case φ′ = θ1φ′

(1) + · · ·+ θrφ′
(r) , we have the polynomial identity in θ = (θ1, . . . , θr)t

∑

|α|=k

1
α ! Cα(φ

′
(1), . . . ,φ

′
(r), x

′) θα =

C(θ1φ′
(1) + · · ·+ θrφ′

(r), x
′) = |A|−w C(θ1φ(1) + · · ·+ θrφ(r), x)

=
∑

|α|=k

1
α !

(
|A|−wCα(φ(1), . . . ,φ(r), x

′)
)
θα ,

which is equivalent to the identity of the corresponding coefficients

∀α : Cα(φ′
(1), . . . ,φ

′
(r), x

′) = |A|−wCα(φ(1), . . . ,φ(r), x)

By symmetry, we only need to prove the second part for i = 1 . It follows by a similar
argument applied to the identity

∑

|α|=k

1
α ! Cα(λφ(1), . . . ,φ(r), x

′) θα =

C(θ1(λφ(1)) + · · ·+ θrφ(r), x) = C((θ1λ)φ(1) + · · ·+ θrφ(r), x)

=
∑

|α|=k

1
α ! Cα(φ(1), . . . ,φ(r), x

′) λα1 θα

where λ is a new variable, which is equivalent to

∀α : Cα(λφ(1), . . . ,φ(r), x
′) = λα1 Cα(φ(1), . . . ,φ(r), x

′)

for every multiindex α .

Proof of Lemma 12 :
Let ψ be a form of degree d ≥ 2 , and let ξ be a form of degree d− 2 . Let ζ(x) = ∥x∥2ξ(x) ,
then, ζ(D) = ∆ξ(D) = ξ(D)∆ , and so

⟨∥x∥2ξ,ψ⟩ = ⟨ζ ,ψ⟩ = ζ(D)ψ = ξ(D) (∆ψ) = ⟨ξ,∆ψ⟩ .
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Proof of Lemma 13 :
The Laplacian of a form φ of degree d is

∆φ(x) =
n∑

i=1

D2ei

⎛

⎝
∑

|α|=d

1
α! Φα x

α

⎞

⎠ =
∑

|β|=d−2

1
β!

(
n∑

i=1

Φβ+2ei

)

xβ .

So, it is harmonic if and only if it satisfies the implicit equations

0 =
n∑

i=1

Φβ+2ei |β| = d− 2 .

But for each multiindex β of size d− 2 , we have
n∑

i=1

Φβ+2ei = ⟨φ, ∥x∥2xβ⟩ ,

and since {∥x∥2xβ : |β| = d − 2} is a basis of the subspace of forms of degree d divisible
be ∥x∥2 , we have shown that this subspace is complementary of the subspace of harmonic
forms f degree d .

Proof of Lemma 14 :
By induction in k . For k = 0 it is just Lemma 12. For k > 0 , by the same lemma we have

⟨∥x∥2kψ, ∥x∥2k+2ξ⟩ = ⟨∆(∥x∥2kψ), ∥x∥2kξ⟩ ,

but, since ψ is an harmonic form of degree d , by the chain rule and Euler’s theorem
∆(∥x∥2kψ) = ∆(∥x∥2k)ψ + 2∇(∥x∥2k)t∇φ+ ∥x∥2k∆ψ

= (2k(2k − 2 + n) + 2d) ∥x∥2k−2ψ

because ⎧
⎪⎨

⎪⎩

∇(∥x∥2k) = 2k∥x∥2k−2x
∆(∥x∥2k) = 2k(2k − 2 + n)∥x∥2k−2

xt∇ψ = dψ .

It follows that
⟨∥x∥2kψ, ∥x∥2k+2ξ⟩ = (2k(2k − 2 + n) + 2d) ⟨∥x∥2k−2ψ, ∥x∥2kξ⟩ ,

which, by the inductive hypothesis, finishes the proof.

Proof of Lemma 15 :
It is suficient to prove that the matrix of Ld in the basis of monomials is positive definite.
Now, by Lemma 12, the element (α, β) of this matrix is

⟨∆(∥x∥2xα), xβ⟩ = ⟨∥x∥2xα, ∥x∥2xβ⟩ .
This matrix is a constant times the matrix of inner products of the elements of the basis
{∥x∥2xα : |α| = d} of the subspace ∥x∥2Hd of Hd+2 , and so, positive definite.
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Chapter 5

Geometric Matching of Algebraic Curves
and Surfaces

In this chapter we are concernedwith the positioning of algebraic curves and surfaces. Given
to curves or surfaces of the same degree, which are almost the same, but in different posi-
tions and orientations, we want to recover the Euclidean transformation which transforms
the first curve or surface into the second one. At the same time, since finite collections of
curves or surfaces can be represented by a single curve or surface by multiplying the corre-
sponding polynomials, we will solve the apparently more complex problem of recovering
the transformation which aligns two finite sets of curves or surfaces, without knowing a
priori which element of the first set corresponds to which element of the second set.
Our solution to these problems is to define for every algebraic curve or surface an intrin-

sic, or covariant according to the general definition given in the previous chapter, frame of
reference. By this we mean, a center and an orthonormal basis which are functions of the
coefficients of the polynomials that define the curve or surface, and are rigidly attached to
it. This intrinsic frame of reference is commonly referred to as the object coordinate system in the
Computer Vision literature. In our object coordinate system, the object center is at the origin,
and the orthonormal basis for the object coincides with the coordinate unit vectors. The co-
efficients of the polynomials recomputed with respect to their intrinsic frames of reference,
i.e., their object coordinate systems, are new Euclidean invariants, and we can also use these
new coefficients to decide whether there is a match or not. If the two curves or surfaces are
the same, their coefficient vectors should be the same, except for a nonzero multiplicative
constant. Then, the rotation and translation which transforms the first curve or surface into
the second one can be easily computed from the corresponding intrinsic frames of reference.
Although the algorithms for computing the center and canonical orientation will produce

results for every curve and surface, from the numerical point of view, in certain singular
cases small perturbations in the coefficients of the polynomials will introduce large pertur-
bations in the coordinates of the center and the canonical orientation, i.e., certain curves and
surfaces will not be well conditionedwith respect to the computation of the center and canon-
ical orientation. The classification based on comparing the coefficients of the polynomials
with respect to the intrinsic frame of reference, and the recovered position, will not be ac-
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curate in these cases. However, we can reliably detect this problem by computing certain
invariants of the homogeneous term of highest degree of the polynomials, which is invari-
ant under translation, and, if the determination of the intrinsic frame of reference is not well
conditioned, execute an alternative procedure. The alternative procedure will consist on
imposing certain linear constraints on the coefficients of the polynomials, a regularization
process, and then compute the intrinsic frame of reference reliably for the constrained curve
or surface.
If x′ = Ax + b is a nonsingular Euclidean coordinate transformation, and f(x) is a

polynomial, we will denote by f ′(x′) the polynomial which defines the same curve or sur-
face in the new coordinate system i.e., f ′(x′) = f(A−1(x′ − b)) . Both Z(f ′) and Z(f) de-
scribe the same set of points which have different coordinates in the two different coordi-
nate systems. The intrinsic frame of reference for the polynomial f will be defined by a
matrix A = Af and a vector b = bf , functions of the coefficients of f , such that Z(f′)
will be located in a canonical position and orientation. Then, if Z(f ′) and Z(g′) are in the
canonical positions for the polynomials f and g , respectively, we can say that Z(f) and
Z(g) match exactly if f ′(x′) ≡ λg′(x′) , for certain nonzero multiplicative constant λ , where
f ′(x′) = f(A−1

f (x′ − bf )) and g′(x′) = g(A−1
g (x′ − bg)) . With this approach, we will also be

able to make approximate matches by comparing the vectors of coefficients of the two poly-
nomials. Since two polynomials which differ by a multiplicative constant define the same
curve or surface, we can chose an inner product ⟨· , ·⟩ in the vector space of coefficients of
polynomials of degree ≤ d , and use the following number as a matching measure

match (f, g) =
⟨f ′, g′⟩2

∥f ′∥2∥g′∥2
,

where as usual ∥f∥2 = ⟨f, f⟩ is the norm of f with respect to the given inner product.
This inner product should include appropriate weighting for the different components of
the polynomial coefficient vectors. Note that 0 ≤ match (f, g) ≤ 1 and for an exact match

match (f, g) = 1 ⇔ ∃λ ̸= 0 : f ′(x′) ≡ λ g′(x′) .

Alternatively, we can define a probability distribution in the projective space of coefficients
of polynomials as a function of the data base of objects, and classify curves or surfaces using
statistical decision methods. This treatment applies to a 2D curve or surface defined by a
single polynomial, but we will extend it to 3D curves as well.
As examples of the methods to be described in this chapter, figures (5.1-a) and (5.1-c)

show two cubic 2D curves given by the union of three straight lines extracted from the
edge images, and figures (5.1-b) and (5.1-d) show their corresponding frames of reference.
Figures (5.2-a) and (5.2-c) show two irreducible fourth degree 2D curves, and figures (5.2-b)
and (5.2-d) show their corresponding frames of reference.
We will decompose the computation of the intrinsic frame of reference in two parts, the

translation vector or center, and then the rotation matrix or canonical orientation.
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a

b

c

d

Figure 5.1: (a): Cubic 2D curve, union of the three straight lines fitted to the data points in
the dark region. (b): Intrinsic frame of reference for the curve in (a). (c): Cubic 2D curve,
union of the three straight lines fitted to the data points in the dark region, matching the
curve in (a). (d): Intrinsic frame of reference for the curve in (c).
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a c

b d

Figure 5.2: (a): Interest region, quartic 2D curve fitted to the data points inside the circle. (b):
Intrinsic frame of reference for the curve in (a). (c): Interest region, quartic 2D curve fitted to
the data points inside the circle, matching the curve in (a). (d): Intrinsic frame of reference
for the curve in (c).
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5.1 The center of a planar curve or surface
Our definition of center of a 2D curve or 3D surface, defined as the set of zeros of a single
polynomial of degree d ≥ 2 , is a generalization to d > 2 of the well known case of a non-
singular quadratic curve or surface. For example, a quadratic polynomial of two variables
can be written as a sum of forms

f(x) = f2(x) + f1(x) + f0 , (5.1)

where
⎧
⎪⎨

⎪⎩

f2(x1, x2) = 1
2F(2,0) x2

1 + F(1,1) x1x2 +
1
2F(0,2) x2

2 = F t
[2]X[2](x1, x2)

f1(x1, x2) = F(1,0) x1 + F(0,1) x2 = F t
[1]X[1](x1, x2)

f0 = F(0,0) = F[0]

The second degree polynomial g(x) = f(x+y) can also be written as a sum of homogeneous
polynomials g(x) = g2(x) + g1(x) + g0 , where g2(x) = f2(x) , g0 = f(y) , and

g1(x1, x2) = [F(1,0) + F(2,0) y1 + F(1,1) y2 ] x1 + [F(0,1) + F(1,1) y1 + F(0,2) y2 ] x2 .

The center of Z(f) is the vector y which makes the linear term g1(x) identically zero. It is
defined only if the matrix

F[1,1] =
(
F(2,0) F(1,1)

F(1,1) F(0,2)

)

is nonsingular, in which case it is given by the following expresion
(
y1
y2

)
= −

(
F(2,0) F(1,1)

F(1,1) F(0,2)

)−1 (F(1,0)

F(0,1)

)
= −F−1

[1,1]F[1,0] , (5.2)

where the matrix F[1,1] is computed from the coefficients of the form f2 and F[1,0] from the
coefficients of f1 as we have described in the previous chapter.

5.1.1 General case
Every polynomial f of degree d can be written in a unique way as

f(x) =
d∑

k=0

fk(x) ,

where fk is a form of degree k , and fd is not identically zero. For every fixed space vec-
tor y , the translated polynomial g(x) = f(x + y) , as a polynomial in x , has exactly the
same degree d , and so, it can also be written in a unique way as a sum of homogeneous
polynomials

f(x+ y) = g(x) =
d∑

k=0

gk(x) ,
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where the coefficients of gk are polynomials of degree d − k in y . Expanding the homo-
geneous terms of f in Taylor series at x , and regrouping terms corresponding to the same
degrees, we obtain that the term of degree d is invariant under translation

gd ≡ fd ,

and the term of degree d− 1 is given by

gd−1 ≡ fd−1 + yt∇fd = fd−1 +
n∑

i=1

yi
∂fd
∂xi

.

We define the center of f as the vector y which minimizes the invariant norm of the homo-
geneous polynomial gd−1

∥fd−1 + yt∇fd∥2 ,
a least squares problem, which has a unique solution if the vectors of coefficients of the
partial derivatives of the term of degree d , the homogeneous polynomials

∂fd
∂x1

, . . . ,
∂fd
∂xn

are linearly independent.
In matrix form, the term of degree d− 1 of the translated polynomial can be written as

gd−1(x) = [F[d−1] + F[d−1,1] y ]
tX[d−1](x) ,

in such a way that the center of f is the minimizer of the quadratic

∥F[d−1] + F[d−1,1] y∥2 . (5.3)

The condition for unique solution is now a condition on the rank of thematrix F[d−1,1] , which
has to be equal to n . Equivalently, the covariant matrix

F[1,d−1]F[d−1,1] = F t
[d−1,1]F[d−1,1] (5.4)

has to be nonsingular. But even when such a condition is not satisfied,

y = −F †
[d−1,1]F[d−1] (5.5)

is a solution, where F †
[d−1,1] is the pseudoinverse of F[d−1,1] . When the condition for unique

solution is satisfied, the pseudoinverse is given by

F †
[d−1,1] = [F[1,d−1]F[d−1,1]]

−1F t
[d−1,1] .

The first step in the classification and positioning process, is to determine whether the
matrix (5.4) is close to singular or not, by computing its n eigenvalues. These eigenvalues
are Cartesian invariants of the form fd of higher degree, and so, Euclidean invariants of the
polynomial f . They are used as the first step in the classification process, and to limit the
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search to a small subset of the database. Since the matrix (5.4) might not be well conditioned,
the proper way to compute this eigenvalues is by appling the singular value decomposition
algorithm [66] to the matrix F[1,d−1] . The square of these singular values are the eigenvalues
of (5.4).
Finally, the center of a planar curve or surface, as has been defined in this section, is

independent of the coordinate system

Lemma 16 Let f(x) be a polynomial of degree d , x′ = Ax + b an Euclidean coordinate transfor-
mation, f ′(x′) = f(At(x′ − b)) , y = −F †

[d−1,1]F[d−1] and y′ = −F ′†
[d−1,1]F

′
[d−1] . Then y′ = Ay + b .

5.1.2 Singular case
If F[d−1,1] has rank k < n , there exists an orthogonal transformation x′ = Ax such that, if
f ′(x′) = f(Atx is the unique polynomial which satisfies the then the last n − k columns of
F ′
[d−1,1] are identically zero. Since the columns of F ′

[d−1,1] are the coefficients of the partial
derivatives of f ′ , this means that the form φ′d(x

′) is only function of the first k variables
x′
1, . . . , x

′
k . The matrix A can be computed diagonalizing [F[1,d−1]F[d−1,1]] because

F ′
[1,d−1]F

′
[d−1,1] = A [F[1,d−1]F[d−1,1]]A

t .

Only the first k variables of y′ are present in (5.3), and are uniquely determined by (5.5).
After fixing these k variables, we look at the form of highest degree j < d which is linear in
the remaining variables y′k+1, . . . , y

′
n , which do not appear in the highest degree form, and

we can minimize its invariant norm with respect to these variables in the same way as we
did before. If the problem is not totally solved yet, we can repeat this procedure with the
forms of lower degree.
In general, the center will be uniquely determined if the partial derivatives

∂f

∂x1
, . . . ,

∂f

∂xn

are linearly independent, or equivalently, if the block matrix of coefficients of the partial
derivatives

(F[1,d−1] | F[1,d−2] | · · · | F[1,1] | F[1,0] ) (5.6)
has maximal rank n . If the rank of this matrix is k < n , the previous procedure will
uniquely determine k components of the center. The others can take any value, because
in such a case, the curve or surface defined by f ′ would be independent of them. We will
determine the numerical rank of the matrix (5.6) as the first step, using the QR algorithm,
or the singular value decomposition algorithm, and reduce the number of variables of the
problem if so is required.
In the singular case, some orientation information is obtained. Furthermore, the ranks of

the matrices of partial derivatives are Euclidean invariants, and can be used for recognition
as well. The center of a planar curve or surface, as defined by this procedure, is covariant
with the curve or surface, as in the nonsingular case.
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5.2 The center of a 3D curve
An algebraic curve has been defined as the set of zeros of a vector f(x) = (f(x), g(x))t of
polynomials of degree ≤ d , with at least one of the two components of degree d . We can
decompose the polynomials as sums of forms

f =
d∑

i=0

fi and g =
d∑

i=0

gi ,

and without loss of generality, we will assume that the the degree of f is d , and the two
forms of higher degree, fd and gd , are orthogonal with respect to the invariant inner product
of forms of degree d . Otherwise, by independence of representation, we can replace the
two polynomials by two linear combinations of them which satisfy this condition. These
transformations do not change the curve or surface, and so, these constraints do not restrict
the number of representable curves. If the degree of g is less than d , we define the center of
the curve as the center of the surface associated with f .
If both f and g are polynomials of the same degree d , we can also assume that the

invariant norms of fd and gd are both equal to 1. In this case we define the center as the
point y which minimizes the sum of the square norms of the two forms of degree d − 1 of
the translated polynomials, the quadratic

∥F[d−1] + F[d−1,1] y∥2 + ∥G[d−1] +G[d−1,1] y∥2 ,

which can also be written as
∥H[d−1] +H[d−1,1] y∥2

where, for each pair of nonnegative integers j and k , the matrix H[j,k] is constructed by
concatenating the corresponding matrices of coefficients of f and g

H[j,k] =
(
F[j,k]

G[j,k]

)
,

and we also write H[k] instead of H[k,0] . Finally, the solution is given by

y = −H†
[d−1,1]H[d−1] .

when [H[1,d−1]H[d−1,1]] is nonsingular, and can be extended to the singular case as we have
done for the planar curves and surfaces.
It can be proved that the center of a curve defined in this way is independent of the

coordinate system, and also independent of the representation.

5.3 Orientation of a curve or surface
The canonical orientation of an algebraic planar curve or surface, defined by only one polyno-
mial, can be defined in several ways, all of them based on the fact that a symmetric n × n
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matrix with nonrepeated eigenvalues λ1 > · · · > λn , has an associated set of unit length
eigenvectors v1, . . . , vn , thus generating 2n different orthogonal coordinate systems having
unit vectors in the directions of these eigenvectors, i.e., the coordinate systems defined by
the orthogonal matrices

(±v1 | · · · | ±vn ) .

In the example of the quadratic polynomial of two variables, the eigenvectors of the matrix

F[1,1] =
(
F(2,0) F(1,1)

F(1,1) F(0,2)

)
(5.7)

define the orientation of the polynomial, if its eigenvalues are not repeated.
For a polynomial f =

∑d
k=0 fk of degree d , we consider the symmetric n × n matrix

whose (i, j)-th element is the invariant inner product of the i-th and j-th partial derivatives
of fd with respect to xi and xj

〈
∂fd
∂xi

,
∂fd
∂xj

〉

= F t
[d−1,1]F[d−1,1] (5.8)

In the case of the quadratic polynomial of two variables, it is the square of (5.7), which has
the same eigenvectors, if its eigenvalues are not repeated.
If the matrix (5.8) has all different eigenvalues, we define the canonical orientation of f as

the orientation induced by the eigenvectors of (5.8). Then, in order to disambiguate among
the 2n different frames of reference, we can find the location of certain covariant points,
other than the center. Every nonzero component of a covariant point can be used to chose
the orientation of the corresponding axis. For example, if the polynomial f =

∑d
k=0 fk is

already centered, the following are covariant points
{
F[1,k]F[k] 1 ≤ k ≤ d− 1
F[1,j]F[j,k]F[k] 1 ≤ j, k ≤ d− 1, j + k ≤ d .

If the matrix has repeated eigenvalues, we will have to use information provided by the
other homogeneous terms of f to construct another n× n covariant matrix. In general, we
can consider the eigenvectors of the n× n matrix whose (i, j)-th component is given by

d∑

k=1

wk

〈
∂fk
∂xi

,
∂fk
∂xj

〉

=
d∑

k=1

wk

(
F[1,k−1]F[k−1,1]

)
(5.9)

where w1, . . . , wd are fixed constants, chosen to minimize the likelihood of repeated eigen-
values among the family of expected curves or surfaces, and the polynomial f =

∑d
k=0 fk

has been previously centered. For every value of w1, . . . , wd , the n eigenvalues of (5.9) are
Euclidean invariants of the polynomial f , and although they are not suficient to differenti-
ate between any two polynomials of the same degree, they can also be used as the first step
towards the classification of f .
The canonical orientation of an algebraic 3D curve can be defined in the same way, but

using the matrices H[j,k] defined in section 5.2, instead of the matrices F[j,k] .
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5.4 Geometric matching of groups of curves or surfaces
Given two groups of polynomials, {f1, . . . , fr} and {g1, . . . , gr} , representing planar curves
or surfaces, an apparently more difficult problem is to find the Euclidean transformation
which best aligns the first group with respect to the second one. We will assume that for
each degree d , there are exactly as many polynomials of degree d in the first group as in
the second group, as for example when all the polynomials have a common degree, but the
correspondences are a priori unknown. The simplest case, when all the polynomials are
linear, is related to the recognition and matching of objects which can be well approximated
by polyhedrals. The methods described in this chapter already provide the solution of this
problem. We consider the two polynomials

{
f = f1 · · · fr
g = g1 · · · gr ,

the products of all the polynomials in the first and second group, respectivelly, we compute
the corresponding intrinsic frames of reference, and obtain the Euclidean transformation
which produces the best global alignment from them. In fact, not all the homogeneous
terms of the products have to be computed. In general it will be suficient to compute the
two terms of higher degree, because only them are used to compute the intrinsic frame of
reference in the nonsingular case.
Note that, since the multiplication of polynomials is commutative and asociative, the

coefficients of f and g are symmetric functions of the coefficients of the factors. These
symmetric functions are independent of the order of the factors within the group, but still
contain enough information to recover the transformation which best aligns the two groups.
With this formulation the solution of the correspondence problem is avoided, but the corre-
spondences can be recovered a posteriori, it they are needed.

Related work on matching of groups of curves or surfaces

The idea of using a vector of symmetric functions with enough information to determine the
best matching transformation has been proposed by Brockett [26] in the context of point set
matching problems. He shows how to minimize, among other related partially continuous
and partially combinatorial optimization problems, the sum of distances

r∑

i=1

∥Qxπ(i) − yi ∥2 , (5.10)

where Q is an orthogonal matrix, π is a permutation of r elements, and x1, . . . , xr, y1, . . . , yr
are n-dimensional points. Although for every given permutation π the problem has a
closed form solution

Qπ =
(
Σt

πΣπ

)−1/2
Σt

π where Σπ =
r∑

i=1

xπ(i)y
t
i , (5.11)
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and (Σt
πΣπ)

−1/2 is the inverse of the unique symmetric positive definite square root of
Σt

πΣπ , it would be necesary to check the r! candidates Qπ to solve the original prob-
lem. Brockett proposes the use of a higher dimensional vector of symmetric functions of
the points, and the correspondent linear representation of the orthogonal matrix Q in that
vector space to turn the problem into a purely continuous one, which can be solved using
standard smooth optimization techniques.
Related to both, the problem of simultaneously matching groups of implicit curves, and

these point set matching problems, is the methods introduced by Faugeras and Hebert [55,
56] for matching groups of planar or quadratic patches. In the first case all the polynomials
are linear, and they write

{
fi(x) = vtix− δi
gi(x) = v′ti x− δ′i

i = 1, 2, . . . , r ,

where v1, . . . , vr, v′1, . . . , v
′
r are unit length vectors, normal to the planar patches that they

represent, and δ1, . . . , δr, δ′1, . . . , δ
′
r are the signed distances from the origin of the coordi-

nate system to the corresonding planes. In this case they assume that the correspondences,
determined by the permutation π , are a priori known, and the function of the Euclidean
transformation T (x) = Qx+ b that they minimize is

r∑

i=1

∥Qvπ(i) − v′i∥2 +W
r∑

i=1

(
vtπ(i)(Q

tb) + δπ(i) − δ′i
)2

, (5.12)

where W is a positive constant. Note that, if we denote b′ = Qtb , the left sum is only
function of Q , and the right sum is only function of b′ . Minimizing (5.12) is equivalent to
minimizing the two sums independently of each other. The first sum is equivalent to (5.10),
and it has a closed form solution given by (5.11), with xπ(i) replaced by vπ(i) , and yi by v′i .
Faugeras and Hebert use quaternions to turn this minimization problem into an eigenvalue
problem instead of the direct solution described above. With respect to the second sum,
since there is no constraint on b′ in the quadratic function

r∑

i=1

(
vtib

′ + δi − δ′i
)2

,

minimizing this sum is a standard least squares problem, which also has a direct solution

bπ = ∆πV
t
π

(
VπV

t
π

)−1

where Vπ is the n× r matrix

Vπ = [ vπ(1) | · · · | vπ(r) ] ,

and ∆π is the row vector

∆π = [ δ′1 − δπ(1), . . . , δ
′
r − δπ(r) ] .
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Faugeras andHebert also propose a similarmethod for matching groups of quadratic patches.
The new performance function turns out to be a particular case of the family of problems
considered by Brockett, whose solution involves nonlinar optimization techniques.
There are clear advantages in the methods introduced in this chapter, with respect to

Faugeras and Hebert’s. In the first place, our method is more general and applies to any
family of planar algebraic curves or algebraic surfaces. In the second place it produces a
direct solution with polynomial complexity in the dimension of the space and the degrees
of the polynomials, while the other method have complexity exponential in the number of
curves, because the correspondence is unknown, it produces a direct solution only if all the
curves are stright lines or all the surfaces are planes, and requires nonlinear optimization in
the quadric case.
The solution (5.11) of the point matching problem corresponding to the minimization

of (5.10) with a priori knowledge of the correspondence associated with the permutation π ,
has been derived and used by several authors in Computer Vision. It seems to be that Nadás
[102] was the first to give the closed form solution. Arun, Huang and Blostein [7] propose
an alternative derivation based on the singular value decomposition. Schwartz and Sharir
[119] obtain the same result for continuously parameterized curves, and Wolfson [145] uses
it for curve matching.

5.5 A Remark on algebraic curve and surface fitting
Since the homogeneous term fd of highest degree of a polynomial f =

∑d
k=0 fk of degree

d is invariant under translations, the invariant norm of fd is an Euclidean invariant of the
polynomial f . This invariant can be used as a constraint for fitting an algebraic surface or
2D to a data set D = {p1, . . . , pq} , by minimizing the mean square error

1

q

q∑

i=1

|f(pi)|2 ,

constrained by
∥fd∥2 = 1 .

Since this constraint is invariant under Euclidean transformations, the curve or surface de-
fined by the minimizer of the problem is independent of the coordinate system. Bookstein
[20] introduced the constraint

∥f2∥2 =
1

2
F 2
(2,0) + F 2

(1,1) +
1

2
F 2
(0,2) ,

for fitting conics to planar data sets following this method, and Cernuschi [31] derived the
constraint

∥f2∥2 =
1

2
F 2
(2,0,0) + F 2

(1,1,0) + F 2
(1,0,1) +

1

2
F 2
(0,2,0) + F 2

(0,1,1) +
1

2
F 2
(0,0,2) .
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for fitting quadric surfaces to three dimensional data sets. The problem with this approach
to algebraic curve and surface fitting is that, in general, the mean square error is a very
biased approximation of the mean square distance from the data points to the set of zeros
of f . The curve or surface defined by the solution of this minimization problem, although
invariant, fails to represent the data near singular points. The methods described in Chapter
2 produce better results.

5.6 Proofs
Proof of Lemma 16 :
It is suficient to consider the cases of pure translation and pure rotation separately. Let us
first consider the case of a pure translation, i.e., x′ = x + b . Since the term of degree d of a
polynomial is independent of the transformation parameters, we have

f ′
d(x

′) = fd(x) ,

or equivalently,
F ′
[d−1,1] = F[d−1,1] .

The term of degree d− 1 is given by

f ′
d−1(x

′) = fd−1(x)−D[1]f[d−1(x)b ,

or, in terms of the coefficients

F ′
[d−1] = F[d−1] − F[d−1,1]b .

The center is in this case

y′ = −F ′
[d−1,1]

†F ′
[d−1] = −F †

[d−1,1]F[d−1] + F †
[d−1,1F[d−1,1]b = y + b .

Now, the case of pure rotation x′ = Ax . In this case, since the terms of different degrees
transform independently of each other, we can apply the transformation rules studied in the
previous chapter

F ′
[d−1,1] = A[d−1]F[d−1,1]A

t and F ′
[d−1] = A[d−1]F[d−1] ,

and obtain
F ′
[d−1,1]

† = AF †
[d−1,1]A

t
[d−1] .

Finally,

y′ = −F ′
[d−1,1]

†F ′
[d−1] = −AF †

[d−1,1]A
t
[d−1]A[d−1]F[d−1] = −AF †

[d−1,1]F[d−1] = Ay .
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Chapter 6

Moment invariants

The boundaries of many three dimensional objects cannot be well approximated by piece-
wise algebraic surfaces. In this chapter we will develop an alternative approch for the recog-
nition and positioning of irregular objects, partially based on some of the techniques de-
scribed in Chapter 4. Due to the unknown ammount of occlusion present in the data, these
method will be based, again, on comparing, matching, and orienting small regions of the
date set with respect to regions of known models stored in a data base.
Recognition will be based on computing invariants of vectors and matrices of moments

of regions of the data sets, not invariants of the fitting curves or surfaces, but of the sets
of points themselves, and comparing these invariants against the corresponding invariants
previously computed for similar regions of the models in the database.
The methods to recover the unknown transformation which relates two matching sets

of points, one in the data, and the other in a model, will be based, as in Chapter 5, on an
intrinsic, or covariant, frame of reference of a finite sets of points. The center of a set of
points will not be defined as for curves and surfaces, but the canonical orientation will be
defined in a similar way, by diagonalizing square covariant matrices.
We are primarily interested in Euclidean transformations, because they are related to the

recognition and positioning of three-dimensional objects from range data, but we will also
study affine invaraints, and will define a canonical frame of reference with respect to affine
transformations.
Besides, we can not consider general projective transformations because they transform

bounded sets in unbounded sets, and so, the moments are not well defined with respect
to all the projective coordinate systems. Also, the transformation rules of moments with
respect to projective transformations are no longer linear. The main application of this affine
normalization of shapes is in the recognition and positioning of objects from the projections
of some of their contours onto the two-dimensional image plane. This is so because when
the camera is far away from the scene, the projective transformation which corresponds to
the imaging operation can be approximated by an affine transformation. Since there exists
an infinite number of nonsingular linear transformation which transform a given square
covariant matrix into the identity matrix, the affine normalization is based on transforming
one covariant matrix into the identity matrix, and simultaneouly diagonalizing a second
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square covariant matrix.
In section 6.1 we show how to properly define moments for continuous and discrete

data sets. In section 6.2 we define the center of a shape and the centered moments. In
section 6.3 we apply the techniques of Chapter 4 for the computation of affine and Euclidean
moment invariants. In section 6.4 we show how to define both Euclidean and affine intrinsic
coordinate systems of shapes. In section 6.6 we introduce the shape polynomials amd the ∆-
distances to measure how well a shape fits a subset of another shape, obtaining new tools
for testing hypotheses supported by several regions of the data set. Finally, in section 6.7 we
review the literature related to these subjects.

6.1 Moments of discrete and continuous data sets
In the first place, we will consider dense data sets, such as those provided by laser range sen-
sors. In this case it is better to assume that the data is a sampled version of a n-dimensional
nonnegative integrable density function µ(x) , and base the analysis on the continuous case.
Wewill only consider density functions which are bounded, nonnegative, and have compact
support. In this way the integral

∫
φ dµ =

∫
φ(x)µ(x) dx (6.1)

will be finite for every polynomial φ(x) . Furthermore, we will also require the total mass of
µ

|µ| =
∫
dµ =

∫
µ(x) dx

to be positive, otherwise the integral (6.1) will be zero for every polynomial φ .
If x′ = Ax + b is an affine transformation, φ′(x′) = φ(A−1(x′ − b)) = φ(x) , and µ′(x′) =

µ(A−1(x′ − b)) = µ(x) , by the well known change of variables formula, we have
∫
φ′(x′)µ′(x′) dx′ =

∫
φ(x)µ(x) |A| dx ,

because the determinant of the matrix A is the Jacobian of the affine transformation. The
prescence of this multiplicative factor is a problem which would affect the transformation
rules of moments, and the way to solve it is to consider the normalized integral

1

|µ′|

∫
φ′(x′)µ′(x′) dx′ =

1

|A||µ|

∫
φ(x)µ(x) |A| dx =

1

|µ|

∫
φ(x)µ(x) dx . (6.2)

With this normalization, and if we define, consistently with the notation of Chapter 4, the
vectors and matrices of moments as

µ[d] =
1

|µ|

∫
X[d](x) dµ(x) and µ[k,j] =

1

|µ|

∫
X[k,j](x) dµ(x) ,
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with d, k and j nonnegative integers, these vectors and matrices of moments follow the
well known transformation rules of the corresponding vectors and matrices of monomials,
i.e., if x′ = Ax is a nonsingular homogeneous coordinate transformation, then

µ′
[k,j] =

1

|µ′|

∫
X[k,j](x

′) dµ′(x′)

=
1

|µ|

∫ (
A[k]X[k]X

t
[j](x)A

t
[j]

)
dµ(x) = A[k] µ[k,j]At

[j] .

Note that, for every multiindex α of degree d , the α-th element of the vector of moments
µ[d] is

µα =
1

|µ|

∫
xα dµ(x) ,

multiplied by the constant
√

1
α ! .

We will also consider sparse data sets, composed of easily distinguishable feature points,
such as sharp corners, and points of high curvature, which can also be recovered using stero
techniques, or even data provided by tactile sensors. In this case, the data will be represented
by a finite set µ = {p1, . . . , pq} of n-dimensional points, and the normalized integral (6.2)
will be replaced by the normalized sum

1

q

q∑

i=1

φ(pi) .

The vectors and matrices of moments are defined accordingly

µ[d] =
1

q

q∑

i=1

X[d](pi) , µ[k,j] =
1

q

q∑

i=1

X[k,j](pi) .

The jacobian of the transformation does not appear in the discrete change of variables for-
mula, but the vectors and matrices of moments still transform as the corresponding vectors
and matrices of moments, under homogeneous coordinate transformations x′ = Ax .

µ′
[k,j] =

1

q

q∑

i=1

X[k,j](Api)

=
1

q

q∑

i=1

(
A[k]X[k,j](pi)A

t
[j]

)

= A[k]

(
1

q

q∑

i=1

X[k,j](pi)

)

At
[j] = A[k] µ[k,j]At

[j] .

Both cases, the positive density and the finite set of points, can be handled with the same
formalism, because both are particular cases of finite positive measures of compact support,
which we have called shapes [131]. The discrete case corresponds to a singular measure equal
to a finite sum of Dirac deltas, and the continuous case to an absolutely continuous measure
with respect to the Lebesgue measure. Thus, from now on we will continue with the anal-
ysis in the continuous case. The discrete case can be obtained by replacing the normalized
integrals by normalized sums.
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6.2 Centered moments
As in the case of the coefficients of polynomials analyzed in the previous chapter, the vectors
and matrices of moments of different degrees transform independently of each other when
the translation part b of the affine transformation x′ = Ax + b is zero. Moments of differ-
ent degrees are combined when a translation part is present. However, the transformation
rules for moments under translation differ from the corresponding rules for coefficients of
polynomials. We have seen that the coefficients degree d − 1 of a polynomial of degree d
transform linearly under translations, while in this case, the moments of first degree trans-
form linearly. This property makes the definition of the center of a shape much easier. It is
natural to define the center of a shape µ as the the vector of first degree moments

µ[1] =
1

|µ|

∫
x dµ(x) .

The center of a shape is covariant under affine transformations, because if x′ = Ax+ b is an
affine transformation

µ′
[1] =

1

|µ′|

∫
x′ dµ′(x′) =

1

|µ|

∫
(Ax+ b) dµ(x) = Aµ[1] + b ,

and then, only consider the centeredmoments, moments computed with respect to the center

Mα =
1

|µ|

∫
(x− µ[1])

α dµ(x) ,

and the corresponding vectors and matrices of centered moments

M[k,j] =
1

|µ|

∫
X[k,j](x− µ[1]) dµ(x) .

Note that all of these vector and matrices are clearly invariant under translation of the data
µ .
If we assume that the origin of the coordinate system is located at the center of the data,

then we only have to consider the transformation rules of the vectors and matrices of cen-
tered moments under homogeneous linear transformations x′ = Ax in the affine case, or
under orthogonal transformations x′ = Qx , in the Euclidean case.
The matrices of moments are covariant matrices, both in the discrete and in the con-

tinuous cases, and we can apply the same methods for the computation of invariants and
covariants developed in Chapter 4. The invariants of these matrices, and the joint invariants
of several of these matrices can be used for the classification of the data set µ .
It is important to note that the square matrices of moments are nonnegative definite. If

Φ[d] is an arbitrary vector of hd coefficients, or equivalently, if φ(x) = Φt
[d]X[d](x) is aform of

degree d , then

Φt
[d]M[d,d]Φ[d] =

1

|µ|

∫
Φt

[d]X[d,d](x)Φ[d] dµ(x)

=
1

|µ|

∫
(Φt

[d]X[d](x))
2 dµ(x) =

1

|µ|

∫
φ(x)2 dµ(x) ≥ 0 ,

(6.3)
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because the integrand is nonnegative for every value of x . In general, these matrices are
positive definite, unless all the points are interpolated by the algebraic curve or surface de-
fined by the zeros of a form φ(x) = Φt

[d]X[d](x) . In particular, if the density function µ(x) is
positive on an open set, all the square matrices M[d,d] are positive definite. However, some
of them might be very badly conditioned.
The matrix M[1,1] is also known as the scatter matrix of the data µ . We will assume that

it is positive definite, otherwise all the data is contained in hyperplane of the n-dimensional
space, and this is very unlikely.

6.3 Cartesian and affine moment invariants
Since the vectors and matrices of centered moments M[k,j] are covariant, the problem of
computing moment invariants reduces to the computation of joint invariants of a family of
covariant matrices, studied in detail in Chapter 4.

6.3.1 Cartesian moment invariants
In this case, the vectors and matrices of centered moments follow the same transformation
rules, under orthogonal transformations, than the corresponding covariant matrices of coef-
ficients of forms. Defining the moment forms

φ(x, y) = X t
[k](x)M[k,j]X[j](y) .

the problem of computing moment invariants reduces to the computation of joint invariants
of a family of forms.
Among the techniques that we have described for the computation of Cartesian invari-

ants of forms, the eigenvalues of square covariant matrices are the best suited for numerical
computation, followed by the harmonic decomposition. The hk eigenvalues of the matrix
of moments M[k,k] are Cartesian invariants.

6.3.2 Affine moment invariants
In this case, in order to use the eigenvalues of square matrices as absolute invariants, we
need to construct square matrices which are covariant on one side, and contravariant on the
other side. The matrices M[j,k] are covariant on both sides, but since the square matrices
M[k,k] are usually positive definite, we can define a new family of matrices with the desired
properties. For every pair of nonnegative integers j and k we will write

H[j,k] = M[j,k]M
−1
[k,k] . (6.4)

Note that this matrices only make sense for j ̸= k , because H[k,k] is the identity matrix. Also
note that H[j,k] ̸= H t

[k,j] . Now, if M[j,j] and M[k,k] are positive definite, the square hk × hk

matrix
H[k,j]H[j,k] = M[k,j]M

−1
[j,j]M[j,k]M

−1
[k,k]
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is left covariant and right contravariant, and so, its hk principal values λ1 > . . . > λhk
≥ 0

are joint absolute invariants of the moments of degrees 2j, j + k, 2k under affine transfor-
mations. This only makes sense for k ≤ j , because the other combination yields the same
principal values, followed by zeros. For example, if k = 1 and j = 2 we obtain the sim-
plest absolute affine moment invariants of a shape, the h1 = n principal values of the n× n
matrix

H[1,2]H[2,1] = M[1,2]M
−1
[2,2]M[2,1]M

−1
[1,1] ,

which is a rational function of the centered moments of degree 2, 3 and 4 .
Another family of left covariant and rigth contravariant matrices can be constructed re-

placing M[k,k] by M[1,1][k] in (6.4), where M[1,1][k] k-th. degree representation of M[1,1] . It is
symmetric and positive definite when M[1,1] is positive definite. In this case we write

U[j,k] = M[j,k]M
−1
[1,1][k] .

When j = k , the square matrix U[k,k] is not the identity matrix, and its hk principal values
are absolute invariants of the data µ . Since M[1,1] is positive definite, it has a nonsingular
square root, a square matrix L such that LM[1,1]Lt = I . We can take L as the inverse of the
lower triangular Cholesky decomposition of M[1,1] . From the properties of the representa-
tion map described in Lemma 3, we have

M[1,1][k] = L−1
[k]L

−t
[k].

Thematrices U[k,k] and L[k]U[k,k]L
−1
[k] are conjugates, and so, they have the same characteristic

polynomials. However, the last matrix is symmetric
L[k]U[k,k]L

−1
[k] = L[k]M[k,k]L

t
[k] ,

and has all real eigenvalues, which are absolute invariants of the shape µ . The simplest of
these matrices corresponds to the case k = 2 , which produces h2 =

(
n+2−1
n−1

)
= n(n + 1)/2

absolute invariants, functions of the centered moments of degree 2 and 4 . The simplest
affine absolute invariants of a shape are the n eigenvalues of the n× n symmetric matrix

LU[1,2]U[2,1]L
−1 = LM[1,2]M

−1
[1,1][2]M[2,1]L

t ,

which are functions of the centered moments of degree 2 and 3 . Note that, if we consider
the coordinate transformation x′ = Lx , this last matrix is nothing but

LM[1,2]M
−1
[1,1][2]M[2,1]L

t , =
(
LM[1,2]L

t
[k]

) (
L[k]M[2,1]L

t
)

= M ′
[1,2]M

′
[2,1] ,

This property is the basis for the definition of the intrinsic affine frame of reference of a
shape, described in detail in the next section.

6.4 Canonical frame of reference
We have defined the center of a shape as the mean of the data, the vector of moments of
degree one, which is an affine covariant vector of the shape. In order to define an intrinsic
frame of reference, we still have to determine a canonical orthogonal matrix, in the cartesian
case, and a canonical nonsingular matrix, in the affine case.
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6.4.1 Cartesian case
In this case we can define the orientation of a set of points as we did for algebraic curves and
surfaces, as one of the 2n orthonormal sets which diagonalizes a symmetric n×n covariant
matrix. The simplest matrix of this kind is the scatter matrix M[1,1] , but we can also use any
one of the following ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M[1,k]M[k,1]

M[1,k]M[k,k]M[k,1]

M[1,k]M
−1
[k,k]M[k,1]

M[1,k]M[1,1][k]M[k,1]

M[1,k]M
−1
[1,1][k]M[k,1]

k = 2, 3 . . . (6.5)

or any linear combination of them

θ1M[1,1] +
∑

k≥2

θk
(
M[1,k]M[k,1]

)
+ · · ·

In order to disambiguate among the 2n candidate orthogonal frames of reference, as we
did in the case of polynomials, we use covariant n-dimensional vectors. Every nonzero
element of one of these covariant vectors can be used to choose the orientation of the cor-
responding coordinate axis. The simplest covariant vector is M[1] , but since the moments
are centered, it is identically zero. Other covariant vectors can be computed as in (6.5), as
follows ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M[1,k]M[k]

M[1,k]M[k,k]M[k]

M[1,k]M
−1
[k,k]M[k]

M[1,k]M[1,1][k]M[k]

M[1,k]M
−1
[1,1][k]M[k]

k = 2, 3, . . . (6.6)

The simplest Cartesian covariant vector of this family is a function of centered moments of
degree 2 and 3

v1 = M[1,2]M[2] .

If this vector is not identically zero, the following vector is another covariant vector

v2 = M[1,1]v1 = M[1,1]M[1,2]M[2] .

If v1 is not an eigenvector of M[1,1] , then v1 and v2 are linearly independent, and in three-
dimensional space, the vector product of them v3 = v1×v2 defines a third nonzero covariant
vector. With these three linearly independent vectors, the orthogonal transformation can be
uniquely determined. In the two-dimensional case, only one nonzero covariant vector is
necesary to determine the orientation of the shape.

6.4.2 Affine case
The determination of an intrinsic affine coordinate system differs from the cartesian case. In
the first place, although there are only 2n orthogonal matrices which diagonalize a symmet-
ric n×n matrix, the number of nonsingular matrices which diagonalize the same symmetric
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matrix is infinite. However, if two nonsingular matrices transform a positive definite matrix
into the identity matrix, they are related by an orthogonal transformation.

Lemma 17 Let M be a symmetric positive definite n× n matrix. Then,

1. The inverse of the lower triangular Cholesky decomposition of M is the unique lower triangu-
lar matrix L , with positive diagonal elements, such that LMLt = I .

2. If A and B are two n × n matrices such that AMAt = BMBt = I , then AB−1 is an
orthogonal matrix. In particular, for every n×n matrix A such that AMAt = I , there exists
a unique orthogonal matrix Q such that A = QL .

For the proof of 1 see Golub [66], and for 2 just note that

I = AMAt = A
(
B−1B−t

)
At =

(
AB−1

) (
AB−1

)t
,

or equivalently, Q = AB−1 is orthogonal.
Now, let M be any n × n covariant matrix of moments, such as M[1,1] , or one of the

matrices in (6.5). Let L be the triangular matrix of the Lemma, and let us consider the co-
ordinate transformation x′ = Lx defined by this matrix. Then, the corresponding covariant
matrix M ′ in the new coordinate system is the identity matrix, because M′ = LMLt = I .
In order to determine a canonical affine transformation, we still need to uniquely specify
a canonical orthogonal matrix, because, for every orthogonal matrix Q , if A = QL , and
x′′ = Qx′ = Ax then, we also have M ′′ = AMAt = QQt = I . After the coordinate transfor-
mation defined by L , we are in the Cartesian case, but since M ′ = I has all the eigenvalues
repeated, we cannot use this matrix to determine an orientation, and we have to consider a
second covariant matrix N , with nonrepeated eigenvalues, for the determination of the rota-
tion part of A . This orthogonal matrix is, as in the cartesian case, one of the 2n orthogonal
matrices which diagonalize N ′ = LNLt leaving the eigenvalues in decreasing order.
In the applications we will take M = M[1,1] , and

N = M ′
[1,k]M

′
[k,1] = LM[1,k]M

−1
[k] M[k,1]L

t ,

for the smallest value of k = 2, 3, . . . for which N has nonrepeated eigenvalues. In general,
it will be suficient to consider the case k = 2 . Finally, in the two and three-dimensional
cases, we will use the covariant vectors

v1 = M ′
[1,2]M

′
[2]

and
v2 = M ′

[1,1]v1

to disambiguate among the 2n candidate orthogonal transformations.
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Affine covariant implicit curve and surface fitting

The fitting techniques of Chapter 2 are covariant with respect to similarity transforma-
tions, basically because distance is a metric concept. With the techniques to normalize a
shape with respect to affine transformations described above, we can extend the fitting tech-
niques to make them covariant with respect to affine transformations. In the first place the
shape is normalized making its scatter matrix equal to the identity matrix, i.e., the data set
D = {p1, . . . , pq} is transformed to a new set D′ = {p′1, . . . , p′q} according to the transforma-
tion x′ = L(x− µ[1]) , where µ[1] is the mean of the set D , and L is the inverse of the lower
triangular Cholesky decomposition of the scatter matrix M[1,1] of D . The transformed data
set D′ has zero mean and scatter matrix equal to the identity matrix. We know that any
other affine transformation with these properties differ from this one only by an orthogonal
transformation. Since the fitting methods of Chapter 2 are covariant with respect to simi-
larity transformations, it is not necesary to finish the normalization process. If g(x′) is a
polynomial which describes the fitting curve or surface according to one of the fitting meth-
ods of Chapter 2, then f(x) = g(L(x − µ[1])) describes a curve or surface which is an affine
covariant function of the data set.
Note that these modifications are based on changing the distance metric. The inner prod-

uct ⟨x, y⟩ = xty in n-dimensional space, is replaced by

⟨x, y⟩ = xtM−1
[1,1]y = (Lx)t(Ly)t = x′ty′ .

In this way, the approximate affine invariant square distance, from a point x to the set of
zeros of f , is now

f(x)t
(
L−tDf(x)tDf(x)L−1

)−1
f(x) ,

and in the case of planar curves or surfaces, it reduces to

f(x)2

Df(x)M[1,1]Df(x)t
.

6.5 Examples and implementation
A few simple examples of affine invariants are shown in figures 6.1, 6.2, and 6.3. The five
numbers at the botom of the figures are five affine moment invariants. The first two are the
eigenvalues of the symmetric 2×2 matrix M ′

[1,2]M
′
[2,1] , multiplied by 1000 , and the last three

are the eigenvalues of the 3 × 3 matrix M ′
[2,2] , multiplied by 1000 as well. These centered

moments are computed not with respect to the original coordinate system, but with respect
to the coordinate system defined by x′ = Lx , where L is a 2 × 2 lower triangular matrix
such that LM[1,1]Lt = I , and M[1,1] is the 2 × 2 matrix of moments with respect to the
original coordinate system.
In order to show how simple this computations are, we now describe how these five

affine moment invariants are evaluated. Given a set of edge points {p1, . . . , pq} , we first
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I = (20, 32, 285, 818, 1146) I = (19, 39, 284, 804, 1135) I = (18, 32, 276, 817, 1143)

Figure 6.1: Some affine moment invariants. Only the data inside the circle is used in the
computation.
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I = (18, 167, 283, 1099, 1440) I = (71, 105, 311, 1028, 1389) I = (85, 205, 269, 1171, 1494)

Figure 6.2: Some affine moment invariants. Only the data inside the circle is used in the
computation.
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I = (65, 288, 329, 1216, 1561) I = (126, 233, 317, 1253, 1590) I = (88, 298, 328, 1209, 1562)

Figure 6.3: Some affine moment invariants. Only the data inside the circle is used in the
computation.
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compute its center
x̄1 = 1

q

∑q
i=1 pi1

x̄2 = 1
q

∑q
i=1 pi2

where pi1 and pi1 are the two coordinates of the point pi . Then we compute the centered
second degree moments

M(2,0) = 1
q

∑q
i=1(pi1 − x̄1)2

M(1,1) = 1
q

∑q
i=1(pi1 − x̄1)(pi2 − x̄2)

M(0,2) = 1
q

∑q
i=1(pi2 − x̄2)2

which we rearrange into a 2× 2 matrix

M[1,1] =
(
M(2,0) M(1,1)

M(1,1) M(0,2)

)
.

The third step is to find the lower triangular matrix L such that LM[1,1]Lt = I . We compute
it in two steps; we first find the lower triangular matrix L such that LLt = M[1,1] , the
Cholesky decomposition of M[1,1]

L =
(
L11 L12

L21 L22

)
whith

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L11 =
(
M(2,0)

)1/2

L12 = 0
L21 = M(1,1)/L11

L22 =
(
M(0,2) − L2

21

)1/2

and then we invert it in place
⎧
⎪⎨

⎪⎩

L11 = 1/L11

L21 = −L21L11/L22

L22 = 1/L22

At this point we compute moments of degree three, four, and eventually higher degree

M ′
(i,j) =

1

q

q∑

i=1

[L11(pi1 − x̄1)]
i[L21(pi1 − x̄1) + L22(pi2 − x̄2)]

j

for i+ j > 2 . The first two affine invariants are the two eigenvalues of the 2× 2 symmetric
positive definite matrix M ′

[1,2]M
′
[2,1] = M ′

[1,2]M
′t
[1,2] , where

M ′
[1,2] =

( 1√
2
M ′

(3,0) M ′
(2,1)

1√
2
M ′

(1,2)
1√
2
M ′

(2,1) M ′
(1,2)

1√
2
M ′

(0,3)

)

.

The last three affine moment invariants of the figures are the eigenvalues of the 3 × 3, sym-
metric nonnegative definite matrix

M ′
[2,2] =

⎛

⎜⎜⎝

1
2M

′
(4,0)

1√
2
M ′

(3,1)
1
2M

′
(2,2)

1√
2
M ′

(3,1) M ′
(2,2)

1√
2
M ′

(1,3)
1
2M

′
(2,2)

1√
2
M ′

(1,3)
1
2M

′
(0,4)

⎞

⎟⎟⎠ .
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The computation of Euclidean moment invariants is even simpler, because it does not
require the computation of the matrix L . In the Euclidean case, the eigenvalues of M[1,1] are
also moment invariants.
If we also want to compute an intrinsic affine coordinate system, we have to chose a

value of k such that the eigenvalues of the 2× 2 symmetric nonnegative definite matrix
M ′

[1,k]M
′
[k,1] are well separated. How to chose this value of k is currently under study, be-

cause early experiments using low values of k do not seem to provide sufficiently reliable
orientations. This problem is related to the question of which affine moment invariants are
more robust and stable than others. For example, when the shape of the data set is relatively
simple, such as the example of figure 6.1, the five moment invariants described in this sec-
tion seem to be stable. However, in more complex shapes, like those of figures 6.2 and 6.3,
the first two third degree moment invariants do not seem to be very stable, but the three
fourth degree moment invariants do seem stable. The matrices of moments introduced in
this paper are closely related to the problem of fitting algebraic curves and surfaces to data
[127, 128, 130], and the questions addressed in this paragraph are related to statistical tests
of goodness of fit of the curves and surfaces. A more extensive experimentation and analysis
of these and related problems is required, it is under way, and will be described in a future
report.
Other problems to be addressed are related to how to implement the computation of the

moments themselves. The strightforward evaluation of the sums is plagued with roundoff
errors, in particular when the number of points in the region is large. The moments have to
be evaluated hierarchically. The data set has to be partitioned in a number of of subsets, the
moments evaluated for these subsets, and then added together. In the 2D case, it is also im-
portant to consider the individual pixels not as discrete points, but as small rectangles with
area, and evaluate the moments accordingly using the integral formulas. Explicit formulas
can be derived for the moments on a rectangular area. Similarly, in the 3D case, surface-like
data sets, have to be treated as sampled surfaces. The points have to be used to define a tri-
angulation of the surfaces, and the moments evaluated as the sum of the surfaces integrals
on the triangles. Explicit formulas for the moments on a 3D triangular surface can also be
derived in this case.

6.6 Global testing and distances between shapes
With the methods described above in this chapter, the hypothesis generation part of a recog-
nition and positioning system can be implemented. Small regions of the data set will be cho-
sen. For each of them a vector of moment invariants will be computed. With these invariants
the database of regions of objects, indexed by these invariants, will be searched. For every
match found, a hypothesis of a certain object in certain position will be generated aligning
the intrinsic coordinate systems of the two matching regions. Then, these hypotheses will
have to be globally tested. Groups of these hypotheses will correspond to the same object
in almost the same position and orientation. One way to solve these problems is to define
an asymetric distance measure between two shapes. This distance measure has to measure
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how well one shape fits as a subset of a second shape. It has to be independent of the global
coordinate system used, i.e., if the two shapes are transformed according to the same affine
transformation, the distance measure has to stay invariant. With respect to improving a hy-
pothesis supported by several regions of the data set, if one shape is transformed according
to an affine transformations, while the other is kept unchanged, the distance measure also
has to be a smooth function of the transformation parameters, in order to let us use numeri-
cal optimization techniques to iteratively improve a hypothesized position of the object.
Our solution to this problem is to define, for every shape, a family of smooth potential

functions. These potential functions will be positive polynomials of increasing degree. We
have called them shape polynomials [129, 131]. The coefficients of the shape polynomial of
degree 2d are functions of the moments of degree ≤ 2d , they yield low values close to the
shape, and increase to infinity far away from the shapes. The approximation improves when
the degree increases. Another shape will be a subset of the first shape, if the potential is low
at every point of it, or equivalently, if the mean value of the shape polynomials on the new
shape yield low values for a suficiently high degree.

6.6.1 Shape polynomials
For the definition of the shape polynomials, we need to use noncentered moments and ho-
mogeneous coordinates. To every n-dimensional point x = (x1, . . . , xn)t , we associate its
homogeneous (n + 1)-dimensional version x̂ = (1, x1, . . . , xn) . To an affine transformation
x′ = Ax+ b it corresponds the homogeneous (projective) transformation

(
1
x′

)
=
(
1 0
b A

)(
1
x

)
. (6.7)

If the variable x0 is kept equal to 1 in the vector of monomials of degree d in n+1 variables
we obtain a vector of monomials of all the degrees 0, 1, . . . , d in n variables. Let us denote

X(d)(x) = X[d](x̂) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d!X[0](x)
...

1
(d−j)!X[j](x)

...
1
0!X[d](x) ,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where X[d] on the left side is the vector of monomials of degree d in n + 1 variables, and
the X[j] on the right side is the vector of monomials of degree j in n variables. The vector
X(d)(x) , except for the different scaling of its elements, is the vector X(x) used as a basis of
the polynomials of degree ≤ d in n variables in Chapter 2. If µ is a shape, let us denote

Σµ,d =
1

|µ|

∫
X(d)(x)X

t
(d)(x) dµ(x)

when the shape is an absolutely continuous positive measure with compact support, and

Σµ,d =
1

q

q∑

i=1

X(d)(pi)X
t
(d)(pi)
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when it is a finite set of data points. The matrix Σµ,d is symmetric, nonnegative definite
and its elements are moments of degrees 0, 1, . . . , 2d . It is singular only if all the data is
interpolated by an algebraic surface of degree ≤ d , and we will assume that this is not the
case. Except for the scaling of the elements of the vector of monomials, this is one of the two
matrices involved in the generalized eigenvector fit method of Chapter 2.
The matrix Σµ,d is not covariant with respect to general projective transformations of the

n + 1 homogeneous coordinates. However, it is covariant with respect to the subgroup of
affine transformations. If x′ = Ax+ b is an affine transformation, and we write

B =
(
1 0
b A

)
,

we have
X(d)(x

′) = X[d](x̂
′) = X[d](Bx̂) = B[d]X[d](x̂) , = B[d]X(d)(x) (6.8)

where B[d] is the representation of degree d of the (n + 1) × (n + 1) matrix B . It easily
follows that (

Σµ[d]

)′
= Σµ′[d] = B Σµ,d B

t , (6.9)

i.e., that the matrix Σµ,d is covariant with respect to affine transformations.
We define the shape polynomial of degree 2d of the shape µ , as

Υµ,d(x) =
1

(
n+d
n

) X(d)(x)
tΣ−1

µ,dX(d)(x) .

Shape polynomials of odd degrees are not defined, and we already know that the value of
these polynomials are invariant under affine transformations, because, from the well known
transformation rules of covariant and contravariant matrices, and from (6.8) and (6.9), we
obtain

Υµ′,d(x
′) = Υµ,d(x) .

Since the matrix Σ−1
µ,d is positive definite, the shape polynomial Υµ,d(x) yields a positive

value vor every choice of x . Also, Υµ,d(x) → ∞ when ∥x∥ → ∞ , because, if λ > 0 is the
minimum eigenvalue of Σ−1

µ,d , then

Υµ,d(x) ≥ λ
(
n+d
n

)∥X(d)(x)∥2 =
λ

(
n+d
n

)
∥x̂∥2

d !
=

λ
(
n+d
n

)
1 + ∥x∥2

d !
→ ∞

Figures 6.4, 6.5, and 6.6 show the graphs of shape polynomials of two dimensional shapes
for different degrees. Darker regions correspond to low values, and light regions to higher
values.
In the same way that we have done here, we can define trigonometric shape polynomials,

replacing the vector X(d)(x) by a vector of complex exponentials. For a large family of
shapes it can be proved that the sequence of trigonometric shape polynomials converges to
the original shape [129]. The corresponding analysis for the shape polynomials defined in
this section remains to be done, but the experimental evidence sugests a similar result.
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Figure 6.4: (a) : Data points scattered around an ellipse. (b) : Graph of shape polynomial of
degree 4. (c) : Graph of shape polynomial of degree 8. (d) : Graph of shape polynomial of
degree 12.
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Figure 6.5: (a) : Wrench. (b) : Graph of shape polynomial of degree 8. (c) : Graph of shape
polynomial of degree 12. (d) : Graph of shape polynomial of degree 32.
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Figure 6.6: (a) : Plier. (b) : Graph of shape polynomial of degree 4. (c) : Graph of shape
polynomial of degree 12. (d) : Graph of shape polynomial of degree 24.
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6.6.2 Comparing shapes with the ∆-distances
Let µ and ν be two shapes. We define the ∆-distance of degree d from ν to µ as

∆µ,d(ν) =
1

|ν|

∫
Υµ,d(x) dν(x) .

The computation of these distances is inexpensive, and just involve matrix operations, be-
cause

∆µ,d(ν) = 1

(n+d
n )

1
|ν|
∫
X(d)(x)tΣ

−1
µ,dX(d)(x) dν(x)

= 1

(n+d
n )

1
|ν|
∫
trace

(
Σ−1

µ,dX(d)(x)X(d)(x)t
)
dν(x)

= 1

(n+d
n )
trace

(
Σ−1

µ,d
1
|ν|
∫
X(d)(x)X(d)(x)t dν(x)

)

= 1

(n+d
n )
trace

(
Σ−1

µ,dΣν,d

)

.

The ∆-distances are joint affine covariants of the pair of shapes, i.e., they are independent of
the affine coordinate system, because, under affine transformations, both matrices Σµ,d and
Σν,d transform covariantly, and so Σ−1

µ,dΣν,d is contravariant on the left side, and covariant
on the right side. Since the trace of this matrix is one of the coefficients of its characteristic
polynomial, it is invariant under affine coordinate transformations.
Furthermore,

Lemma 18 If the shape ν represents a subset of the shape µ , then

∆µ,d(ν) ≤ |µ|
|ν|

for every degree d .

Note that the conclusion of this lemma is independent of the affine coordinate system,
because both the ∆-distance, and the ratio |µ|

|ν| are absolute affine invariants of the pair of
shapes. We will use this lemma in the following way, if the inequality is satisfied for a
sufficiently high value of d , we can hypothesize that ν is a subset of µ . Or equivalently, if
the inequality is not satisfied, and ∆µ,d(ν) ≫ |µ|

|ν| for one value of d , we have to reject the
hypothesis of ν being a subset of µ .
The ∆-distances can be used for positioning as well. If x′ = Ax + b is either an affine

transformation, a similarity transformation, or an Euclidean transformation, and B is the
(n+ 1)× (n+ 1) matrix which represents the same transformation in homogeneous coordi-
nates, we will consider the ∆-distance ∆µ,d(ν ′) as a function of the transformation param-
eters

ξ(B) = ∆µ,d(ν
′) =

1
(
n+d
n

) trace
(
Σ−1

µ,dB[d]Σν,dB
t
[d]

)
.

The global minimizer, B̂ , of this functional is an estimate of the transformation whichmakes
ν best fit as a subset of µ . Based on the last lemma, we can develop test to decide whether
to accept the result of this minimization process or not as a valid hypothesis, and to remove
conflicting hypotheses.
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6.7 Related work on moment invariants
Several authors have consideredmoment basedmethods for object recognition and position-
ing, first for two-dimensional, and more recently for three-dimensional objects, spanning a
period of almost thirty years [83, 5, 138, 123, 49, 46, 146, 98, 115, 116, 133, 112, 28, 55, 24, 86,
87, 1, 2, 108, 39, 93, 29, 132, 147, 94, 79, 80, 134, 135, 52, 131, 95].
The first to introduce moment invariants in the Pattern Recognition literature, was Hu

[83]. He presented a theory of two-dimensional moment invariants for planar geometric fig-
ures based on the classic theory of algebraic invariants of binary forms. He derived complete
systems of two-dimensional moment invariants under Euclidean transformations, expresing
the rotations as multiplications by exponentials in the complex plane. The harmonic decom-
position is equivalent to his method in the two-dimensional case. Some moment invariants
under affine transformations are also included. For the second and third order moments he
derives the following seven orthogonal invariants

I1 = M (2,0) +M (0,2)

I2 = (M (2,0) −M (0,2))2 + 4(M (1,1))2

I3 = (M (3,0) − 3M (1,2))2 + (3M (2,1) −M (0,3))2

I4 = (M (3,0) +M (1,2))2 + (M (2,1) +M (0,3))2

I5 = (M (3,0) − 3M (1,2))(M (3,0) +M (1,2))[(M (3,0) +M (1,2))2 − 3(M (2,1) +M (0,3))2]+
(3M (2,1) −M (0,3))(M (2,1) +M (0,3))[3(M (3,0) +M (1,2))2 − (M (2,1) +M (0,3))2]

I6 = (M (2,0) −M (0,2))[(M (3,0) +M (1,2))2 − (M (2,1) +M (0,3))2]+
4M (1,1)(M (3,0) +M (1,2))(M (2,1) +M (0,3))

I7 = (3M (2,1) −M (0,3))(M (3,0) +M (1,2))[(M (3,0) +M (1,2))2 − 3(M (2,1) +M (0,3))]−
(M (3,0) − 3M (1,2))(M (2,1) +M (0,3))[3(M (3,0) +M (1,2))2 − (M (2,1) +M (0,3))2] .

These invariants are functionally equivalent to some of the invariants described above. For
example, the first two are functionally equivalent to the two orthogonal invariants of the
matrix M[1,1] , because

I1 = trace(M[1,1])

I2 =
(
trace(M[1,1])

)2
− 4det(M[1,1]) .

Several other researchers used Hu’s invariants for different purposes. Dudani, Breeding,
and McGhee [49] use the seven two-dimensional moment invariants of Hu for the identi-
fication of aircraft from their projected contours. Wong and Hall [146] use the seven two-
dimensional moment invariants of Hu for the matching of radar to optical images using
a hierachical search technique with the moment invariants as similarity measures. Maitra
[98] modifies Hu’s seven orthogonal invariants to make then also invariant under scale and
illumination changes. Sadjadi and Hall [115] study numerical methods for the evaluation
of the Hu’s seven moment invariants. Later [116], they partially extend Hu’s work to the
three-dimensional. Based on the theory of algebraic forms, they develop certain orthogonal
invariants of quadratic and cubic forms, which are particular cases of the methods described
in this and previous chapters.
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Several authors derived moment invariants under constrained families of affine trans-
formations, and also considered moments with respect to other functions, not polynomials.
Alt [5] use moments as invariant features for the recognition of printed symbols, under a
limited family of affine transformations. Teague [133] introduce Zernike moments as fea-
tures for the recognition of two-dimensional patterns, and establish their relation with the
usual moments. Reddi [112] defines angular and radial moments, and establishes their re-
lation with Hu’s seven moment invariants. Casasent, Cheatham, and Fetterly [28] describe
and optical system to compute intensity moments of two-dimensional images. Boyce and
Hossack [24] use Zernike moments for image reconstruction. Abu-Mostafa and Psaltis [1]
evaluate the two-dimensional moment invariants as features for pattern recognition in terms
of discrimination power and noise tolerance. Later [2], they consider a new normalization
process for two-dimensional images based on complex moments. Cash and Hatamian [29]
use moments as invariant features for the recognition of characters in printed documents.
Teh and Chin [134, 135] compare different types of moments, regular moments, Legendre
moments, Zernike moments, pseudo-Zernike moments, rotational moments, and complex
moments, with respect to the representation and recognition of two-dimensional patterns.
Affine normalization of two-dimensional shapes is a subject treated by differen authors

as well. Udagawa, Toriwaki, and Sugino [138] define a procedure for the normalization two-
dimensional patterns, capital letters in their examples, under affine transformations based
on moments, and use the normalized moments as invariant features for recognition. Diril-
ten and Newman [46] are concerned with the problems of recognition and positioning of
patterns under affine transformations. They show that there are infinitely many affine trans-
formations which make the moments up to degree two of two patterns match, and two of
them differ by an orthogonal transformation, following the same approach that we have
followed, but they do not show a direct method to recover the unknown orthogonal trans-
formation. They also derive certain orthogonal moment invariants by contracting indices
of the symmetric moment tensors. These invariants can also be obtained with the methods
described here. For simplicity, and because the treatment presented in the text was suficient
for our purposes, we have deliberately ommited to introduce tensors, and to mention the
relation between symmetric tensors and forms. Faber and Stokely [52] determine the affine
transformation which relates two three-dimensional shapes by computing four pairs of co-
variant points using tensor-based techniques, and then solve the linear system which results
from the pairing. These covariant points usualy involve moments of degree up to five. They
also use the method of the principal directions of the tensor of inertia, a covariant matrix of
second degree moments, for recovering Euclidean transformations.
Hong and Tan [79, 80] introduced the concept of moment curve of a set of points, as a tool

for the affine normalization of planar shapes. The moment curve of a shape is an algebraic
curve of degree two or three, with its coefficients functions of the second degree moments of
set of points. It is a circunference if and only if the matrix of second degree moments M[1,1] is
a multiple of the identity matrix, and two shapes are equivalent with respect to affine trans-
formations, if and only if their corresponding moment curves are equivalent with respect to
orthogonal transformations. They propose as a disimilarity function between two shapes,
the minimum, over all the rotations, of an orthogonal disimilarity function between the cor-
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responding moment curves. The orthogonal disimilarity function is based on heuristics, and
involves rotating one curve to a finite number of angles, and comparing it with the other.
Using the implicit equation of the moment curve, we could use the methods for curve posi-
tioning to improve their method, but it is less expensive to recover the affine transformation
directly from the moments, as we have explained above.
The Euclidean and affine matching problems are also related to the motion estimation

problem. Lin, Lee, and Huang [93] estimate the Euclidean transformation which transforms
one set of points into a second one. The translation part is computing as the difference
between the centers of both sets, and the rotation part by diagonalizing their scattering ma-
trices M[1,1] and M ′

[1,1] , obtaining, as we did, 2n candidate solutions, or 2n−1 if only proper
orthogonal matrices are allowed. The method that the propose for discriminating among
these 2n−1 candidate transformations has a complexity function of the number of points,
though.
A few authors have worked out extensions of Hu’s invariants to the three-dimensional

case. Pinjo, Cyganski and Orr [108, 39] describe moment based methods for the determina-
tion of the orientation of 3-D objects in 3-space either from 2-D projections or 3-D surface
coordinate information. Their methods require the computation of moments up to degree
five. Lo and Don [94, 95] develop three-dimensional orthogonal moment invariants using
complex moments and the irreducible decomposition of the representation of the orthogonal
group defined by these moments. This approach produces invariants which are functionally
equivalent to those produced by what we have called the harmonic decomposition. They
also determine 2n candidate Euclidean transformations for matching two sets of points, by
centering the moments and diagonalizing the matrix of second degree moments. They also
discrimninate among these 2n candidates by looking at third degree moments, as we do,
obtaining a totaly equvalent method for position estimation.

6.8 Proofs
Proof of Lemma 18 :

In the discreate case, the shape ν represents a subset of the shape µ if the data points of
ν are part of the data points of µ . In the continuous case, ν represents a subset of µ if the
weight functions satisfy ν(x) ≤ µ(x) for almost every point x . But in both cases, for every
continuous function f(x) they satisfy the inequality

∫
f(x)2 dν(x) ≤

∫
f(x)2 dµ(x) ,

which has to be interpreted as a sum in the discreate case. In particular, the inequality is
true for every polynomial of degree ≤ d . A polynomial of degree ≤ d can be written as
f(x) = FX(d)(x) , where F is a row vector of coefficients. Since

∫
f(x)2 dν(x) = |ν|F

(
1

|ν|

∫
X(d)(x)X

t
(d)(x) dν(x)

)

F t = |ν|FΣν,dF
t ,
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the previous inequality becomes for this particular case

|ν|FΣν,dF
t ≤ |µ|FΣν,dF

t .

Since this inequality is true for every vector F we have an inequality between the symmetric
matrices

|ν|Σν,d ≤ |µ|Σν,d .

Let L be any square matrix such that LΣµ,dLt = I . The matrix LΣν,dLt is symmetric and
satisfies the inequality

LΣν,dL
t ≤ |µ|

|ν|
I .

The same inequality is mantained after computing the trace on both sides

trace
(
LΣν,dL

t
)

≤ |µ|
|ν|
trace(I) =

|µ|
|ν|
(
n+d
n

)
. (6.10)

But
trace

(
LΣν,dL

t
)

= trace
(
LtLΣν,d

)
= trace

(
Σ−1

µ,dΣν,d

)
= ∆µ,d(ν) . (6.11)

Finally, from (6.10) and (6.11), we obtain

∆µ,d(ν) ≤ |µ|
|ν|

.
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Chapter 7

Recognition Algorithms

In the introductory chapter we described the basic structure of the recognition and position-
ing systems which can be built using the tools developed in previous chapters. However,
such a general description admits several different implementations, all of them using the
same building blocks. We can divide the best known implementations which could make
use of the representation and matching techniques described in this thesis, into two large
groups: tree-search schemes, and voting schemes.
Tree-search algorithms are generally sequential algorithms which generate a hypothesis

based on some local information, and then try to search for more evidence sustaining the
current hypothesis, before generating a new hypothesis. The combinatorial complexity of
the search is limited based on geometrical considerations. As typical examples of tree-search
schemes, we can cite the works of Bolles and Horaud [19, 18], Faugeras and Hebert [55, 56],
Grimson and Lozano-Perez [72, 71], Grimson [70], and Chen and Kak [32]. All of these
systems are based onmodeling objects as piecewise algebraic surfaces, but using very simple
surface patches such as planes and certain quadrics. For matching and positioning they
consider different special cases, an this is where the unified treatment described in previous
chapters could be use to improve the performance of these methods.
Voting schemes are better suited for parallel architectures [136], and are generally based

on extensions of Ballard’s generalized Hough transform [9]. A typical example of voting
scheme procedures is the work of Bolle, Califano, Kjeldsen, and Taylor [15, 14]. A differ-
ent approach within the voting scheme procedures is a family of algorithms known as geo-
metric hashing. These algorithms have been developed by Schwartz and Sharir [119], Lam-
dan, Schwartz and Wolfson [89] Lamdan and Wolfson [90], Kishon and Wolfson [88], Hong
and Wolfson [81], Lamdan [91], and Wolfson [145]. In the geometric hashing algrithms, the
database is implemented as a hash table indexed by a vector of coordinate invariant features.
Since the models, and their visible regions, are known in advance, the hash function can be
optimized according to the typical operating conditions, such as the amount of occlusion.
Every succesfull local match generates a hypothesis, consisting of a pair object-coordinate
system. With each hypothesis a vote is generated a discretized parameter space correspond-
ing to the parameters of the coordinate transformations. The weight of the vote with is
proportional to certain more global matching measure. Finally, the hypotheses with larger
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votes are globally tested.
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Chapter 8

Conclusions

In this thesis we have described several algebro-geometric techniques necessary for the im-
plementation of model based object recognition systems in clutered environments. The em-
phasis of the thesis is on viewpoint independent, or invariantmethods to describe, compare,
and orient small regions of a data set. Models are fitted to regions of the data set, and vec-
tors of geometric invariants of the model parameters are used as the basis for recognition.
These geometric invariants are functions of the parameters which do not change when tha
data undergo a viewpoint transformation, while the model parameters do. Closely related
to the computation of these invariants are the methods introduced for recovering the un-
known transformations which make the matching regions coincide. Two types of models
have been studied, algebraic curves and surfaces, and moments. A good part of the thesis
has been devoted to developing methods for fitting algebraic curves and surfaces, or more
generaly implicit curves and surfaces, to data sets. Computing moments of a data set is rel-
atively strightforward. These two families of models have a lot in common in the area of
invariant theory, and a several methods developed for the algebraic curve and surface mod-
els are used without modification to compute moment invariants. The same is true with
respect to defining a canonical orientation for algebraic curves and surfaces, or moments.
Our emphasis throughout this thesis has been on developing numerical methods based on
well known, numerically stable and computationally efficient techniques. Besides the exten-
sive algebro-geometric analysis of the problems under consideration, it has been central to
both the algebraic curve and surface fitting techniques, and the computation of invariants,
the large body of well established and well anlyzed matrix algebra algorithms, in particular
the algorithms for computing egenvalues and eigenvectors of symmetric matrices.
We believe that this thesis represents an important contribution to the field of Computer

Vision. Several of the techniques introduced in this thesis represent new concepts in the field,
and most of them yield both conceptual and computational improvements with respect to
other methods used by other researchers for similar purposes.
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8.1 Future directions
Although we have implemented and tested in typical situations all the algorithms described
in this thesis, recognition systems based on these methods still have to be implemented and
tested. We are planning to implement some of these recognition systems in the near future.
Several implementation specific problems will arise and we will address them at the proper
time.
Other problems which we are planning to address in the near future are related to the

robustness of the methods introduced in this thesis. We are interested in both the robustness
of the curve and surface fitting techniques, the discrimination power of different invariants
computed from the same model parameters, and the accuracy of the position estimation.
That is, since all the mesurements contain noise, we have to look at the computational meth-
ods introduced in this thesis as statistical parameter estimation problems, and establish how
good they are based on analizing their estimation power.
In this thesis, the intrinsic coordinate system of algebraic curves and surfaces is defined

with respect to Euclidean transformations only, while the intrinsic coordinate system of mo-
ments is defined also with respect to affine transformations. Although it is not posible to find
an intrinsic coordinate system for moments with respect to projective transformations, it is
not clear whether it is posible or not to find a projective intrinsic coordinate system for alge-
braic curves and surfaces. Since the solution of this problem is related to the recognition and
positioning of 3D objects from the projections of their occluding boundaries, it is important
to find an answer to this problem. This problem is closely related to the problem of extend-
ing the techniques for computing invariants to the computation of invariants of 3D surfaces
from invariants of the curves which are the projections of thier occluding boundaries. We
are planning to study these problems as well.
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Appendix A

The Levenberg-Marquardt algorithm

LetD = {p1, . . . , pq} be a set of n-dimensional data points, and let φ(α, x) a parameterization
of the family of admissible maps F . The nonlinear least squares problem is to minimize the
length of the residual vector R = (R1, . . . , Rq)t

∥R(α)∥2 =
q∑

i=1

Ri(α)
2 = q ∆2

D(α) ,

where in our case
Ri(α) = δ(α, pi) i = 1, . . . , q ,

and the number of points is not less than the number of parameters. The Levenberg-Marquardt
algorithm, one of several methods to solve the nonlinear least squares problem, is based on
the following iteration step

αn+1 = αn −
(
J(αn)J(αn)t + µnIq

)−1
J(αn)tR(αn) ,

where J(α) is the Jacobian of R with respect to α

Jij(α) =
∂Ri

∂αj
(α) i = 1, . . . , q j = 1, . . . , r ,

and the constant µn is chosen as a small nonnegative number, equal to zero whenever pos-
sible, which makes the matrix

J(αn)J(αn)t + µnIq

safely positive definite. This strategy assures that the algorithm reduces the value of ∥R(α)∥2
at each iteration, converging to a local minimum, with fast quadratic local convergence. See
Dennis and Shnabel [42] for details.
We only need to provide procedures to compute the values of the residual vector R(α)

and the Jacobian J(α) . Since all the components of the residual vector have the same form,
we only need a procedure to compute δ(α, x) and its partial derivatives with respect to
α1, . . . ,αr .
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For example, let us consider the linear parameterization of planar curves and surfaces,
k = 1 . In this case we have f(x) = φ(α, x) = FX , where F = αt is an r-dimensional row
vector,

δ(F, x) =

(
F [XX t]F t

F [DXDX t]F t

)1/2

=

(
f(x)2

nablaf(x)∥2

)1/2

and
∂δ

∂Fj
(F, x) =

1

δ(F, x)[FDX][FDX]t

{
[FX]Xj − δ(F, x)2[FDX]DX t

j

}

In the case of cylinders, and in general in all the cases of parameterized families of poly-
nomials, where we can write f(x) = FX , with the coefficient vector as a function of the
parameters F = F (α) , we just apply the chain rule to the previous expression

∂δ

∂αi
(α, x) =

h∑

j=1

∂δ

∂Fj
(F (α), x)

∂Fj

αi
(α) .
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